WorldWideScience

Sample records for fire resistance

  1. Fire Resistant, Moisture Barrier Membrane

    Science.gov (United States)

    St.Clair, Terry L. (Inventor)

    2000-01-01

    A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.

  2. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  3. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  4. Study to develop improved fire resistant aircraft passenger seat materials

    Science.gov (United States)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  5. 30 CFR 77.1913 - Fire-resistant wood.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...

  6. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  7. Fire Resistance Tests of Various Fire Protective Coatings

    Directory of Open Access Journals (Sweden)

    Mindaugas GRIGONIS

    2011-03-01

    Full Text Available Tests were carried out on more than 14 different samples of fire protective coatings in order to investigate a relation between the thickness of the intumescent fire protection coating and the time of exposure to heat. A number of coatings of different chemical composition enabled to determine the fire resistance behaviour patterns. During test the one-side and volumetric methods were employed in observance of the standard temperature-time curves. For one-side method, the coating was applied on one side and all edges of the specimen, whereas for volumetric test the specimens were completely covered with fire protective coating. It is shown that a layer of coating protects the specimen's surface from heat exposure for a certain period of time until full oxidation of the coating occurs. The efficiency of fire protective coatings also depends on thickness of the charred layer of the side exposed to heat.http://dx.doi.org/10.5755/j01.ms.17.1.257

  8. Post-earthquake fire resistance of steel buildings

    DEFF Research Database (Denmark)

    Jelinek, T.; Zania, V.; Giuliani, Luisa

    2017-01-01

    -resistant steel frame to post-earthquake fires (PEFs) is investigated and compared with the response of the undamaged frame exposed to fire only, by means of numerical analyses performed using a commercial finite element software. The frame considered as a case study is not insulated against fire...

  9. Stronger Fire-Resistant Epoxies

    Science.gov (United States)

    Fohlen, George M.; Parker, John A.; Kumar, Devendra

    1988-01-01

    New curing agent improves mechanical properties and works at lower temperature. Use of aminophenoxycyclotriphosphazene curing agents yields stronger, more heat- and fire-resistant epoxy resins. Used with solvent if necessary for coating fabrics or casting films.

  10. Manufacturing of Fire Resistance Geopolymer: A Review

    Directory of Open Access Journals (Sweden)

    Aziz Ikmal Hakem

    2016-01-01

    Full Text Available Protection against fire using inorganic polymer is a new application of engineering technology. Even though, there are varieties of fire-protection materials, there is always a need for the development of new materials with improved thermophysical properties and low cost. Geopolymer composites materials are promising from this point of view. Granulated blast furnace slag, boiler ash and fly ash have been used as the prime materials for forming geopolymers composites. Geopolymers have been studied due to its unique properties such as a good fire resistance. Geopolymer offers an innovative for application associated with the high thermal application. This paper summarizes on the potential of alkaliactivated materials over the past decades along with outlines of the manufacturing of geopolymer composites for fire resistance application.

  11. Fire resistance of wood members with directly applied protection

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  12. Fire resistance of slim floor beams

    NARCIS (Netherlands)

    Fellinger, J.H.H.; Twilt, L.

    1996-01-01

    Slim floor beams support decks on a wide plate welded on the lower flange of an 1- shaped beam. The air gap between the plate and the lower flange increases the fire resistance of the beam. A Finite Element Method (FEM) model, validated with three fire tests, is used to set up simple calculation

  13. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Han, Enhou; Ke, Wei

    2007-01-01

    Expandable graphite (EG) coating and ammonium polyphosphate-pentaerythritol-melamine (APP-PER-MEL) coating were prepared. Thermal degradation and char formation of the coatings were investigated by differential thermal analysis (DTA), thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results have shown that the anti-oxidation and fire-resistant properties of expandable graphite coating containing EG with size of 74 μm are better than those of APP-PER-MEL coating. The static immersion test was applied to study water resistance of the coatings, and the fire protection test and mechanical test were used to analyse heat insulation and mechanical properties of coatings before and after water immersion. The fire-resistant and mechanical properties of APP-PER-MEL coating were severely damaged by water immersion, whereas EG coating containing 8.5% EG with size of 74 μm could retain the good fire resistance even after 500 h water immersion

  14. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  15. Fire resistant nuclear fuel cask

    International Nuclear Information System (INIS)

    Heckman, R.C.; Moss, M.

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked

  16. Evaluating a protocol for testing fire-resistant oil-spill containment boom

    International Nuclear Information System (INIS)

    Walton, W.D.; Twilley, W.H.; Hiltabrand, R.R.; Mullin, J.V.

    1998-01-01

    A series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves. Most response plans for in situ burning of oil at sea require the use of a fire-resistant boom to contain the oil during a burn. For this study, a wave tank was designed and constructed to assess the capabilities of a 15 m section of a boom subjected to a 5 m diameter fire with 0.15 m high waves. Five typical fire-resistant oil-spill containment booms were tested. The purpose of the project was to evaluate the test procedure, therefore the overall performance of the boom was not evaluated on a pass-fail criterion. The two most important aspects of the test method were repeatability and reproducibility. Some of the parameters tested included the effect of wind, waves, fire size, and fire duration. Methods to constrain the booms were also tested. 7 refs., 6 tabs., 7 figs

  17. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  18. 76 FR 71831 - Defense Federal Acquisition Regulation Supplement: Fire-Resistant Fiber for Production of...

    Science.gov (United States)

    2011-11-18

    ..., suppliers, or distributors of fire-resistant fibers, yarns, fabrics, or military uniforms) submitted.... The law does not restrict DoD's selection and use of fabrics containing fire-resistant rayon fiber... from selecting fabrics that include fire- resistant rayon fibers. Response: These responses have...

  19. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  20. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  1. Fire Resistance of Large-Scale Cross-Laminated Timber Panels

    Science.gov (United States)

    Henek, Vladan; Venkrbec, Václav; Novotný, Miloslav

    2017-12-01

    Wooden structures are increasingly being used in the construction of residential buildings. A common and often published reason to avoid wooden structures is their insufficient fire resistance, which reduces bearing capacity. For this reason, composite sandwich structures began to be designed to eliminate this drawback, as well as others. Recently, however, the trend is for a return to the original, wood-only variant and a search is underway for new technical means of improving the properties of such structures. Many timber structure technologies are known, but structures made from cross-laminated timber (CLT) panels have been used very often in recent years. CLT panels, also known as X-LAM, are currently gaining popularity in Europe. In the case of CLT panels composed of several layers of boards, they can be said to offer a certain advantage in that after the surface layer of a board has burnt and the subsurface layer has dried, oxygen is not drawn to the unburned wood for further combustion and thus the burning process ceases. CLT panels do not need to be specially modified or coated with fire resistant materials, although they are usually lined with gypsum-fibre fire resistant boards due to guidelines set out in the relevant standards. This paper presents a new method for the assessment of load-bearing perimeter walls fabricated from CLT panels without the use of an inner fire-retardant lining to ensure fire resistance at the level required by European standards (i.e. those harmonized for the Czech construction industry). The calculations were verified through laboratory tests which show that better parameters can be achieved during the classification of structures from the fire resistance point of view. The aim of the article is to utilize the results of assessment and testing by an accredited laboratory in order to demonstrate the possibilities of using CLT panels for the construction of multistorey as well as multi-purpose buildings in the Czech Republic.

  2. Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics

    Science.gov (United States)

    Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.

    2012-01-01

    Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.

  3. Fire Resistant Panels for the Tunnel Linings

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of experimental and theoretical research fire resistance fireproof panels Pyro-Safe Aestuver T. Owing to the assembly simplicity, materials cheapness, high ecological standard, recycling, reuse potential, are benefit. Research work is running to improve the knowledge about fireproof panels Pyro-Safe Aestuver T for tunnel lining, its basic performance, its long term behavior and in particular also its fire proof for example when used for the lining of road tunnels.

  4. FIRE-RESISTANCE PROPERTIES RESEARCH OF “WATER GLASS - GRAPHITE MICROPARTICLES” COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    E. A. Pitukhin

    2016-03-01

    Full Text Available Subject of Research. Research results of the fire-resistance for “water glass - graphite microparticles” composite material (CM are given. The method for fire-resistance test of the micro composition is suggested in order to determine the limit state of the experimental samples under hightemperature action. Method. Test-benchequipment being used for research includes metering devices of temperature and time, as well as laboratory electric furnace PL20 with a maximum temperature in the chamber up to 1250ºC. Fire-resistance limit for the test samples of composite material is determined by the loss of insulating ability (I. For that purpose, the time is obtained from the test beginning with the standard temperature mode up to a limiting condition. Main Results. In accordance with the requirements of regulatory documents fire-resistance limit I15 has been obtained equal to 15 minutes. The qualitative and quantitative phase analysis of the CM structure has been done. By the study of samples by X-ray diffraction and electron microscopy we have determined that the material retains the same chemical structure with a monotonic heating above 700° C. Practical Relevance. The composite material with obtained characteristics can be used as a protective coating for building constructions with the aim of fire-resistance enhancement and fuel hazard reduction.

  5. An evaluation of propane as a fuel for testing fire-resistant oil spill containment booms

    International Nuclear Information System (INIS)

    Walton, W. D.; Twilley, W. H.

    1997-01-01

    A series of experiments have been conducted to measure and compare the thermal exposure to a fire-resistant boom from liquid hydrocarbon fuel and propane fires. The objective was to test the potential of propane fueled fires as a fire source for testing fire-resistant oil spill containment booms.Thermal exposure from propane fires have been measured with and without waves. Results indicated that although propane diffusion flames on water look like liquid hydrocarbon fuel flames and produce very little smoke, the heat flux at the boom location from propane fires is about 60 per cent of that from liquid hydrocarbon fuel fires. Despite the attractive features in terms of ease of application, control and smoke emissions, it was concluded that the low heat flux would preclude the application of propane as a fuel for evaluating fire resistant containment booms. 2 refs., 7 figs

  6. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanchao [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Wang, Guojian, E-mail: wanggj@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 4800 Cao' an Road, Shanghai 201804 (China)

    2016-11-01

    Highlights: • The novel halogen-free flame retardant containing silicon and caged bicyclic phosphate was synthesized. • A novel transparent intumescent fire resistant coating was developed by the P-Si synergistic flame retardant and melamine formaldehyde resin. • Excellent fire protection of the transparent intumescent fire resistant coating. • The P-Si synergistic flame retardant could improve the thermo-oxidation resistance of transparent fire resistant coating. - Abstract: A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and {sup 1}H nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played

  7. Effect of Environmental Variables on the Flammability of Fire Resistant Materials

    OpenAIRE

    Osorio, Andres Felipe

    2014-01-01

    This work investigates the effects of external radiation, ambient pressure and microgravity on the flammability limits of fire-resistant (FR) materials. Future space missions may require spacecraft cabin environments different than those used in the International Space Station, 21%O2, 101.3kPa. Environmental variables include flow velocity, oxygen concentration, ambient pressure, micro or partial-gravity, orientation, presence of an external radiant flux, etc. Fire-resistant materials are use...

  8. Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications

    OpenAIRE

    Iqbal, H.M.S.; Stec, A.A.; Patel, P.; Bhowmik, S.; Benedictus, R.

    2013-01-01

    With increasing interest in epoxy-based carbon fiber composites for structural applications, it is important to improve the fire resistant properties of these materials. The fire resistant performance of these materials can be improved either by using high performance epoxy resin for manufacturing carbon fiber composite or by protecting the previously used epoxy-based composite with some fire resistant coating. In this context, work is carried out to evaluate the fire resistance performance o...

  9. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    Science.gov (United States)

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  10. Fire resistance of single pitched-roof steel portal frame

    Directory of Open Access Journals (Sweden)

    J. J. Ferrán Gozálvez

    2017-03-01

    Full Text Available The standard procedure of structural fire design is based on the simplified analysis of single members. This method leads to conservative results in the case of structures able to redistribution of forces. The failure mechanism affecting both life safety and fire propagation is unknown. This work proposes a methodology for the advanced fire calculation of single pitched-roof portal frame for an agroindustrial building according to the Spanish Specifications with the structural software SAP2000. A non-linear dynamic and plastic, geometric (P-Delta and large-displacements calculation method has been developed. The different failure mechanisms and their influence are studied in terms of fire time resistance, human hazard and good safety. Also, parametric analyses were conducted: load level, rotational stiffness of the base and finally, support fire protection.

  11. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.

    Science.gov (United States)

    Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J

    2016-01-27

    There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.

  12. Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire.

    Science.gov (United States)

    Carlsson, Fredrik; Edman, Mattias; Holm, Svante; Eriksson, Anna-Maria; Jonsson, Bengt Gunnar

    2012-10-01

    Forest fires have been the major stand-replacing/modifying disturbance in boreal forests. To adapt to fire disturbance, different strategies have evolved. This study focuses on wood fungi, and a specific adaptation to forest fire: increased heat resistance in their mycelia. Fifteen species of wood fungi were selected and a priori sorted in two groups according to their prevalence in fire-affected environments. The fungi were cultivated on fresh wood and exposed to 100, 140, 180, 220 °C for 5, 10, 15, 20 and 25 min. under laboratory conditions. A clear difference was found among the two groups. Species prevalent in fire-affected habitats had a much higher survival rate over all combinations of time and temperature compared to species associated with other environments. Thus, the results indicate that fire adaptation in terms of increased heat resistance in mycelia occurs in some species of wood fungi. Such adaptation will influence the ecology and population dynamics of wood fungi, as well as having implications for best practices during restoration fires. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Resistance is not futile: The response of hardwoods to fire-caused wounding

    Science.gov (United States)

    Elaine Kennedy Sutherland; Kevin Smith

    2000-01-01

    Fires wound trees; but not all of them, and not always. Specific fire behavior and differences among tree species and individual trees produce variable patterns of wounding and wound response. Our work focuses on the relationships between fire behavior and tree biology to better understand how hardwood trees resist injury to the lower stem and either survive or succumb...

  14. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple

    Directory of Open Access Journals (Sweden)

    Jensen Philip J

    2012-01-01

    Full Text Available Abstract Background Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the scion whose expression levels correlated with this response. Results Rootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-grown apple trees, consisting of 'Gala' scions grafted to a range of rootstocks, with E. amylovora. Disease severity was measured by the extent of shoot necrosis over time. 'Gala' scions grafted to G.30 or MM.111 rootstocks showed the lowest rates of necrosis, while 'Gala' on M.27 and B.9 showed the highest rates of necrosis. 'Gala' scions on M.7, S.4 or M.9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230 unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown 'Gala' scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be differentially expressed during E. amylovora infection were disproportionately represented among these transcripts. A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts originally identified using the first-generation array, 39 had expression levels that correlated with fire blight resistance in the breeding population. Conclusions Rootstocks had significant effects on the fire blight

  15. Fabrics for fire resistant passenger seats in aircraft

    Science.gov (United States)

    Tesoro, G. C.

    1978-01-01

    The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.

  16. Numerical prediction of fire resistance of RC beams

    Science.gov (United States)

    Serega, Szymon; Wosatko, Adam

    2018-01-01

    Fire resistance of different structural members is an important issue of their strength and durability. A simple but effective tool to investigate multi-span reinforced concrete beams exposed to fire is discussed in the paper. Assumptions and simplifications of the theory as well as numerical aspects are briefly reviewed. Two steps of nonlinear finite element analysis and two levels of observation are distinguished. The first step is the solution of transient heat transfer problem in representative two-dimensional reinforced concrete cross-section of a beam. The second part is a nonlinear mechanical analysis of the whole beam. All spans are uniformly loaded, but an additional time-dependent thermal load due to fire acts on selected ones. Global changes of curvature and bending moment functions induce deterioration of the stiffness. Benchmarks are shown to confirm the correctness of the model.

  17. Development of new radiation resistant, fire-retardant cables

    International Nuclear Information System (INIS)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi; Fujimura, Shun-ichi; Oda, Eisuke.

    1982-01-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of γ-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low. (Wakatsuki, Y.)

  18. Structural fire resistance experimental research priority needs of U.S. industry

    CERN Document Server

    Almand, Kathleen H

    2012-01-01

    Structural Fire Resistance Experimental Research – Priority Needs of U.S. Industry provides a synthesis of stakeholder input to a prioritized agenda for research at the National Fire Research Laboratory (NFRL) at the National Institute of Standards and Technology (NIST) designed to accelerate the implementation of performance-based fire engineering for structures. The NFRL presents a broad range of unanswered questions regarding the performance of real structures in fire conditions, and informs performance-based design methods and standards in this field. The authors conducted a comprehensive literature review of large-scale structural fire testing and compiled research needs from a variety of sources. The book addresses major issues of broad concern in the fire community, such as real fire exposure and structural response, composite floor system performance, enhancing modeling performance, and understanding the embedded safety features in design methods. It concludes with a prioritized set of research reco...

  19. Research of the Fire Resistance оf Translucent and Composite Facade System

    Directory of Open Access Journals (Sweden)

    Nedryshkin Oleg

    2016-01-01

    Full Text Available The paper aims at researching fire resistance of a prototype facade system “Technocom” (type Alucobond A2. Experimental and theoretical research of fire hazard facade system is carried out. The objectives of the study are to determine compliance with the applicable front of special technical requirements. The status of problem reducing fire hazard facade system is reviewed. The method developed by compensatory measures is applied.

  20. Fire resistant polyamide based on 1-(diorganooxyphosphonyl)methyl-2,4- and -2,6diamino benzene

    Science.gov (United States)

    Mikroyannidis, J. A. (Inventor); Kourtides, D. A. (Inventor)

    1986-01-01

    1-(Diorganooxyphosphonyl)methyl2,4- and-2,6diamino benzenes are reacted with polyacylhalides and optionally comonomers to produce polyamides which have desirable heat and fire resistance properties. These polymers are used to form fibers and fabrics where fire resistance properties are important, e.g., aircraft equipment and structures.

  1. Improvement of flame resistance of non-flame retardant cables by applying fire protection measures

    International Nuclear Information System (INIS)

    Takemura, Yujiro; Segoshi, Yoshinori; Jinno, Susumu; Mii, Kazuki

    2017-01-01

    The new regulatory requirements, which were put in force after the Fukushima Daiichi accident, impose the use of flame retardant cables on the plant components having safety functions for the purpose of fire protection. However, some Japanese nuclear power plants built in the early days use non-flame retardant cables that do not pass the demonstration test to check for the flame resistance. To cope with the new regulatory requirements, a fire protection measure for non-flame retardant cables was introduced to assure flame resistance of non-flame retardant cables equivalent to or higher than that of flame retardant cables. To illustrate the fire protection measure, both non-flame retardant cables and its cable tray are covered with fire protection sheet fabricated from incombustible material to form an assembly. Considering the demonstration test results, it can be concluded that flame resistance performance of non-flame retardant cables equivalent to or higher than that of flame retardant cables can be assured by forming the assembly even if an external fire outside the assembly and internal cable fire inside the assembly are assumed. This paper introduces the design of the assembly consisting of a bundle of cables and a cable tray and summarizes the results of demonstration tests. (author)

  2. Fire resistance of a steel plate reinforced concrete bearing wall

    International Nuclear Information System (INIS)

    Kodaira, Akio; Kanchi, Masaki; Fujinaka, Hideo; Akita, Shodo; Ozaki, Masahiko

    2003-01-01

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c σ b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c σ b) = 2.21 x (1/t) 0.323 (1), .N/(Ac x c σ b) 2.30 x (1/t) 0.378 (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  3. Fire resistance in American heavy timber construction history and preservation

    CERN Document Server

    Heitz, Jesse

    2016-01-01

    This volume presents a history of heavy timber construction (HTC) in the United States, chronicling nearly two centuries of building history, from inception to a detailed evaluation of one of the best surviving examples of the type, with an emphasis on fire resistance. The book does not limit itself in scope to serving only as a common history. Rather, it provides critical analysis of HTC in terms of construction methods, design, technical specifications, and historical performance under fire conditions. As such, this book provides readers with a truly comprehensive understanding and exploration of heavy timber construction in the United States and its performance under fire conditions.

  4. Fire blight resistance in wild accessions of Malus sieversii

    Science.gov (United States)

    Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistan...

  5. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating... Class 7 (Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam...

  6. Development of fire resistant, nontoxic aircraft interior materials

    Science.gov (United States)

    Haley, G.; Silverman, B.; Tajima, Y.

    1976-01-01

    All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.

  7. Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications

    NARCIS (Netherlands)

    Iqbal, H.M.S.; Stec, A.A.; Patel, P.; Bhowmik, S.; Benedictus, R.

    2013-01-01

    With increasing interest in epoxy-based carbon fiber composites for structural applications, it is important to improve the fire resistant properties of these materials. The fire resistant performance of these materials can be improved either by using high performance epoxy resin for manufacturing

  8. Development of assembly techniques for fire resistant aircraft interior panels

    Science.gov (United States)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  9. Assessment of the fire resistance of a nuclear power plant subjected to a large commercial aircraft crash

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo; Kim, Young-Jin

    2012-01-01

    Highlights: ► A procedure to assess fire resistance of structure for aircraft crash is proposed. ► Fire scenario of containment and auxiliary building is determined for aircraft crash. ► Heat transfer and thermal stress analyses are performed to obtain section forces. ► Fire endurance time is evaluated by load–moment strength interaction diagram. - Abstract: The safety assessment of infrastructures, such as a nuclear power plant, for the crash of a large commercial aircraft has been performed worldwide after the terrorism that occurred in the U.S. on September 11, 2001. The assessment, however, has mainly focused on the techniques of impact analysis. In this study, a systematic procedure to assess the fire resistance of containment and auxiliary buildings subjected to such an aircraft crash is proposed. The intensity, duration and distribution of the fire are determined based on aircraft crash analyses and characteristics of jet fuel. A three-dimensional detailed finite element model of the containment and auxiliary buildings is established and used for heat transfer and thermal stress analyses, taking into account the material properties at an elevated temperature. Section forces can then be obtained that are based on a nonlinear stress–strain relationship. The fire resistance of the structure is assessed by comparing the fire-induced section forces with the section resistance which is evaluated using the load–moment strength interaction diagram. The study addresses the problem whereby the conventional assessment that only considers the flexural behaviour is less accurate. The assessment results support the general conclusion that the nuclear power plant structures can maintain structural integrity against external fire due to their relatively thick sections. The proposed procedure can be extensively applied to evaluate the fire endurance time of any type of structure subjected to an arbitrary fire.

  10. Testing fire resistant boom in waves and flames

    International Nuclear Information System (INIS)

    McCourt, J.; Buist, I.; Pratte, B.; Jamieson, W.; Mullin, J.

    1997-01-01

    A near full-scale screening test to evaluate the durability and ability of refractory-fabric fire resistant booms to contain oil during an in-situ burn without the environmental problems of burning crude oil or the cost of testing offshore, was developed. The boom was first flexed under tension for two hours, then deployed in a U-configuration in an outdoor wave tank. Propane gas was burned in the pocket of the boom to simulate the collection and burning phases of an in-situ burn. Finally, the boom was returned to the indoor wave flume for another two hours of wave action and then inspected for damage. Results indicated damage of the same type as suffered in previously conducted sea trials, although the extent of damage was less severe. These results led to recommendations for improvement of the test protocol which included: (1) increasing the heat flux to the boom, (2) improving the heat flux measurement, (3) increasing the tension in the fire boom during flame testing, and (4) improving the characterization of the waves near the fire boom. 16 refs., 6 figs

  11. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  12. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  13. Fire Resistant Materials

    Science.gov (United States)

    1982-01-01

    Fire hazard is greater in atmospheres containing a high percentage of oxygen under pressure. NASA intensified its fire safety research after a 1967 Apollo fire. A chemically treated fabric called Durette developed by Monsanto Company, which will not burn or produce noxious fumes, was selected as a material for Apollo astronaut garments. Monsanto sold production rights for this material to Fire Safe Products (FSP). Durette is now used for a wide range of applications such as: sheets, attendants' uniforms in hyperbaric chambers; crew's clothing, furniture and interior walls of diving chambers operated by the U.S. Navy and other oceanographic companies and research organizations. Pyrotect Safety Equipment, Minneapolis, MN produces Durette suits for auto racers, refuelers and crew chiefs from material supplied by FSP. FSP also manufactures Durette bags for filtering gases and dust from boilers, electric generators and similar systems. Durette bags are an alternative to other felted fiber capable of operating at high temperature that cost twice as much.

  14. Failure analysis of fire resistant fluid (FRF piping used in hydraulic control system at oil-fired thermal power generation plant

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-04-01

    Full Text Available This is a case study regarding frequent forced outages in an oil-fired power generating station due to failure of fire resistant fluid (FRF piping of material ASTM A-304. This analysis was done to find out the most probable cause of failure and to rectify the problem. Methods for finding and analyzing the cracks include nondestructive testing techniques such as visual testing (VT and dye penetrant testing (PT along with that periodic monitoring after rectification of problem. The study revealed that pitting and pit to crack transitions were formed in stainless steel piping containing high pressure (system pressure 115 bars fire resistant fluid. However, after replacement of piping the pitting and cracking reoccurred. It was observed that due to possible exposure to chlorinated moisture in surrounding environment pitting was formed which then transformed into cracks. The research work discussed in this paper illustrates the procedure used in detection of the problem and measures taken to solve the problem.

  15. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    Science.gov (United States)

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  16. Performance of Link-To-Stub Bolted Connection in Column-Tree Moment Resisting Frames under Fire Conditions

    Directory of Open Access Journals (Sweden)

    Mahmood Yahyai

    2015-12-01

    Full Text Available Column-tree moment resisting frames, as the efficient shop-welded and field-bolted structural systems, are used in many countries. Very limited research has been carried out on such systems under fire conditions. This paper presents experimental investigations of the behavior of beam and bolted splice connections in steel column-tree moment resisting frames exposed to fire. Two full-scale steel sub-frames with different splice connections were tested under ISO 834 standard fire. The flange splice plates were configured as a single plate with single shear bolts in first specimen, and as double plates with double shear bolts in second specimen. The observation of thermal and structural fire behaviors including temperature histories, temperature-deflection of the beam, temperature-rotation of splice connections and failure modes were investigated. The temperature-deflection and temperature-rotation curves remained in the elastic range until about 600°C. Beyond 600°C, the behavior would be highly nonlinear plastic. The beam splice connection failed due to shear fracture of top bolts at temperatures beyond 750°C. Consequently, stub beam web failed at those temperatures because of block-shear. Using double plates with double shear bolts for flange splices would enhance the temperature resistance and rotational capacity of the beam splice connections. Both tests results confirmed that specimens retain the capacity to support the design load when the average beam temperature does not exceed 600°C. This temperature limit confirms the temperature criteria provided by ASTM E119 and ANSI/UL 263 for a restrained beam, and can be used to specify the minimum fire resistance criteria for beams in column-tree MRFs. The measured time-deflection curves showed that the restrained fire resistance rating for both unprotected specimens obtained about 15 minutes in both tests.

  17. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  18. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.

    Science.gov (United States)

    Yang, Ri-Long; Zhu, Ying-Jie; Chen, Fei-Fei; Dong, Li-Ying; Xiong, Zhi-Chao

    2017-08-02

    Counterfeiting of valuable certificates, documents, and banknotes is a serious issue worldwide. As a result, the need for developing novel anticounterfeiting materials is greatly increasing. Herein, we report a new kind of ultralong hydroxyapatite nanowire (HAPNW)-based paper with luminescence, fire resistance, and waterproofness properties that may be exploited for anticounterfeiting applications. In this work, lanthanide-ion-doped HAPNWs (HAPNW:Ln 3+ ) with lengths over 100 μm have been synthesized and used as a raw material to fabricating a free-standing luminescent, fire-resistant, water-proof paper through a simple vacuum filtration process. It is interesting to find that the luminescence intensity, structure, and morphology of HAPNW:Ln 3+ highly depend on the experimental conditions. The as-prepared HAPNW:Ln 3+ paper has a unique combination of properties, such as high flexibility, good processability, writing and printing abilities, luminescence, tunable emission color, waterproofness, and fire resistance. In addition, a well-designed pattern can be embedded in the paper that is invisible under ambient light but viewable as a luminescent color under ultraviolet light. Moreover, the HAPNW:Ln 3+ paper can be well-preserved without any damage after being burned by fire or soaked in water. The unique combination of luminescence, fire resistance, and waterproofness properties and the nanowire structure of the as-prepared HAPNW:Ln 3+ paper may be exploited toward developing a new kind of multimode anticounterfeiting technology for various high-level security antiforgery applications, such as in making forgery-proof documents, certificates, labels, and tags and in packaging.

  19. Fire resistant films for aircraft applications

    Science.gov (United States)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  20. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  1. Development of new radiation resistant, fire-retardant cables. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Fujimura, Shun-ichi; Oda, Eisuke

    1982-12-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of ..gamma..-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low.

  2. Fire and grazing influence site resistance to Bromus tectorum through their effects on shrub, bunchgrass and biocrust communities in the Great Basin (USA)

    Science.gov (United States)

    Condon, Lea A.; Pyke, David A.

    2018-01-01

    Shrubs, bunchgrasses and biological soil crusts (biocrusts) are believed to contribute to site resistance to plant invasions in the presence of cattle grazing. Although fire is a concomitant disturbance with grazing, little is known regarding their combined impacts on invasion resistance. We are the first to date to test the idea that biotic communities mediate the effects of disturbance on site resistance. We assessed cover of Bromus tectorum, shrubs, native bunchgrasses, lichens and mosses in 99 burned and unburned plots located on similar soils where fires occurred between 12 and 23 years before sampling. Structural equation modeling was used to test hypothesized relationships between environmental and disturbance characteristics, the biotic community and resistance to B. tectorum cover. Characteristics of fire and grazing did not directly relate to cover of B. tectorum. Relationships were mediated through shrub, bunchgrass and biocrust communities. Increased site resistance following fire was associated with higher bunchgrass cover and recovery of bunchgrasses and mosses with time since fire. Evidence of grazing was more pronounced on burned sites and was positively correlated with the cover of B. tectorum, indicating an interaction between fire and grazing that decreases site resistance. Lichen cover showed a weak, negative relationship with cover of B. tectorum. Fire reduced near-term site resistance to B. tectorum on actively grazed rangelands. Independent of fire, grazing impacts resulted in reduced site resistance to B. tectorum, suggesting that grazing management that enhances plant and biocrust communities will also enhance site resistance.

  3. Materials for fire resistant passenger seats in aircraft

    Science.gov (United States)

    Tesoro, G.; Moussa, A.

    1980-01-01

    The paper considers the selection of cushioning foam and upholstery fabric materials for aircraft passenger seats. Polyurethane, polychloroprene, polyimide, and polyphosphazene are the foam materials considered; and a variety of commercial and developmental fabrics (including wool, cotton, synthetics, and blends) are examined. Viable approaches to the design of fire-resistant seat assemblies are indicated. Results of an experimental laboratory study of fabrics and fabric/foam assemblies exposed to external point-source radiative heat flux are discussed.

  4. Fire-resistant materials for aircraft passenger seat construction

    Science.gov (United States)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  5. New methods for testing fire resistance of wood façade systems

    Directory of Open Access Journals (Sweden)

    Mårtensson August

    2016-01-01

    Full Text Available Arson in schools has been a huge problem in Sweden over the last fifteen years. The average amount of school arsons between 2000 and 2014 was 285 cases each year which corresponds to 50% of the total amount of reported fires in school buildings. This is a well-known problem and a lot of research has been done in this area. Investigations has been done about fire and heat detection systems, different technical factors significance in fire scenarios and how to prevent adolescents from starting fires. Another part of the problem that partly been investigated is how the schools are constructed. Roughly 50% of the arsons are outside of the school building. In Sweden one and two storey buildings are allowed to be built with wooden façades in accordance with the building code, which is one of the reasons many schools are built with wooden façade systems. The most critical part in a wood façade system from a fire safety perspective is concluded to be the eaves because of how they usually are built to let air pass through. Even though a wood façade isn't as well resistant to fire compared to a concrete façade, three versions of new test methods for combustible façades have been developed to make it possible to make sure in advance that a construction is resistant enough. The new test methods are focused on specific details and parts of a façade system to provide a more informative and useful result compared to SP Fire 105. Observations and measurements of flame spread and temperature changes in the eave, over the window joints and in the air gap are made. With these parameters in consideration criteria's has been chosen for a critical temperature of 280 ∘C at a critical time of 20 minutes.

  6. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  7. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-01-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  8. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  9. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jingpeng Li

    2015-01-01

    Full Text Available Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nanosheet networks grow onto the bamboo surface and subsequently modified with fluoroalkyl silane (FAS-17. The FAS-17 treated bamboo substrate exhibited not only robust superhydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (pH = 3 with a contact angle of 152°. Except for its robust superhydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  10. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  11. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  12. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design

    International Nuclear Information System (INIS)

    Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R.

    2016-01-01

    N-methylol dimethyl phosphono propionamide (MDPA) is one of the most utilized fire resistant (FR) finishes for cotton fabrics, utilized as part of a formulation with trimethylol melamine (TMM) to acquire better crosslinking and enhanced FR properties. The system parameters of the finishing treatment were upgraded for better FR properties and low mechanical loss to the fabric by the response surface methodology utilizing Box-Behnken statistical designed experimental strategy. The impacts of concentration on the cotton fabric’s properties (fire resistance and mechanical properties) were assessed with the regression equations. The optimum conditions by predicting the FR reagents focusing intact mechanical properties of the fabric were additionally studied. It was found that the parameters of crosslinking agents in the FR formulation have a prime role in the general FR properties of the cotton fabrics. The R-squared estimations of the considerable number of responses were above 92%, demonstrating the level of relationship between the predicted values by the Box-Behnken frameworks and the real test results.

  13. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Sarah C Avitabile

    Full Text Available Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter. Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood, they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  14. The improvement for fire retardant and radiation resistance characteristics of chloroprene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Lee, C.; Kim, P. J.; Kim, J. H

    2004-04-01

    In the report, in order to improve the fire retardancy better Chloroprene Rubber (CR) after adding each fixed amount of inorganic metallic hydroxide, and then compared and assessed fire retardancy with electrical properties and mechanical properties we intended to choose the most excellent additives. Also according to Co{sup 60} {gamma}-ray irradiation, we compared electrical, echanical and fire retardant characteristics to analyse to have the additives of inorganic filler effect on CR's antirad characteristic. In result, CR containing inorganic additive, advanced considerably fire retardant characteristics, but seems to be tended to declined electrical and mechanical characteristics on the whole. In syntherically comparison, the specimen viewed the most excellent characteristics is CR containing Magnesium hydroxide. As to Co{sup 60} {gamma}-ray irradiated Chloroprene rubber containing inorganic additives, fire retardant characteristic are improved, but electrical and mechanical properties are deteriorated as a function of radiation dose. Comparing before irradiation and after irradiation, the best inorganic filler into CR consider Magnesium hydroxide. In this report, in case of adding 30 phr of inorganic filler to CR we observed fire retardancy and radiation resistance characteristics change in according to the kinds of additives, but the research for choosing the optimum amount of additives is considered to progress from now on as adjusting the amount of additives presented excellent characteristics.

  15. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  16. Fabrication of Robust Super hydrophobic Bamboo Based on ZnO Nano sheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    International Nuclear Information System (INIS)

    Li, J.; Sun, Q.; Yao, Q.; Wang, J.; Han, Sh.; Jin, Ch.

    2014-01-01

    Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nano sheet networks grow onto the bamboo surface and subsequently modified with fluoro alkyl silane (FAS-17). The FAS-17 treated bamboo substrate exhibited not only robust super hydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (ph = 3) with a contact angle of 152°. Except for its robust super hydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  17. Fire resistant aircraft seat program

    Science.gov (United States)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  18. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound

    Science.gov (United States)

    Samanta, Ashis Kumar; Bagchi, Arindam

    2017-06-01

    Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.

  19. Fire retardant formulations

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to compositions where a substrate is liable to catch fire such as bituminous products, paints, carpets or the like. The invention relates to a composition comprising 40-95 weight % of a substrate to be rendered fire resistant such as bituminous material or paint......, carpets which substrate is mixed with 5-60 weight % of a fire retardant component. The invention relates to a fire retardant component comprising or being constituted of attapulgite, and a salt being a source of a blowing or expanding agent, where the attapulgite and the salt are electrostatically...... connected by mixing and subjecting the mixture of the two components to agitation. Also, the invention relates to compositions comprising 40-95 weight % of a substrate to be rendered fire resistant mixed with 5-60 weight % of a fire retardant according to claim 1 or 2, which fire retardant component...

  20. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    Science.gov (United States)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  1. Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs

    Science.gov (United States)

    Galimova, L. A.

    2017-10-01

    Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.

  2. Fire characteristics associated with firefighter injury on large federal wildland fires.

    Science.gov (United States)

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Recent amendments of the KTA 2101.2 fire barrier resistance rating method for German NPP and comparison to the Eurocode t-equivalent method

    Energy Technology Data Exchange (ETDEWEB)

    Forell, Burkhard [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2015-12-15

    The German nuclear standard KTA2101 on ''Fire Protection in Nuclear Power Plants'', Part 2: ''Fire Protection of Structural Plant Components'' includes a simplified method for the fire resistance rating of fire barrier elements based on the t-equivalent approach. The method covers the specific features of compartments in nuclear power plant buildings in terms of the boundary conditions which have to be expected in the event of fire. The method has proven to be relatively simple and straightforward to apply. The paper gives an overview of amendments with respect to the rating method made within the regular review of the KTA 2101.2. A comparison to the method of the non-nuclear Eurocode 1 is also provided. The Eurocode method is closely connected to the German standard DIN 18230 on structural fire protection in industrial buildings. Special emphasis of the comparison is given to the ventilation factor, which has a large impact on the required fire resistance.

  4. FIRE-RESISTANT SHIELDING COATING BASED ON SHUNGITE-CONTAINING PAINT

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-08-01

    Full Text Available Today when specific shielded facilities are designed the construction materials and shields should meet a range of fire safety requirements. A composite coating on the basis of a water-based fire-resistant paint filled with shungite nanopowder can be applied onto walls, floors, ceilings and other surfaces in the shielded areas to reduce electromagnetic radiation and simultaneously to ensure fire safety. Shungit is a mineral with multilayer carbon fullerene globules which diameter is 10–30 nm. Due to the high conductivity shungite is able to weaken electromagnetic radiation. A coating made of schungite-containing paint on a cellulose substrate was subjected to the open flame under the temperature of 1700° C for 3 minutes and 40 seconds. That resulted in the formation of insulating foam layer without mechanical damage of the substrate. The XRD diffraction analysis of the powder obtained in the process of flame influence on the coating showed the formation of the such substances as orthoclase, barite, rutile, etc. Carbon contained in shungit and used as a filler for the fireproof paint wasn’t detected. This fact indicates carbon oxidation as the result of its burning out. The shielding efficiency of the composite coating after open flame exposure was measured for the frequency range 8…12 GHz with the use of the panoramic attenuation meter and voltage standing wave ratio meter YA2R-67-61 with a sweep generator and waveguides. After that the reflection and transmission coefficients were calculated. The results of measurements and calculations showed decrease of the reflection and transmission coefficients due to conductivity decrease and dielectric losses changes of the composite coating provided by silica content increase and carbon percentage decrease.

  5. To Enhance the Fire Resistance Performance of High-Speed Steel Roller Door with Water Film System

    Directory of Open Access Journals (Sweden)

    De-Hua Chung

    2015-01-01

    Full Text Available The structure of high-speed roller door with water film has improved in this study. The flameproof water film system is equipped with a water circulating device to reduce the water consumption of water film system. The water film is generated at the roller box of the high-speed roller door in this study. The heating test is done with the full-scale heating furnace. Both cases of the water film on unexposed surface and water film on exposed surface passed the fire resistance test based on ISO 834, proving that the high-speed roller door with water film system has 120A fire resistance period. The main findings indicate that the water film on exposed surface shows that as the amount of water film evaporated by high temperature inside the furnace must be greater than the evaporation capacity of water film on unexposed surface, the required water supply is 660 L more than the water film on unexposed surface.

  6. Alkali resistant Cu/zeolite deNOx catalysts for flue gas cleaning in biomass fired applications

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    to investigate the redox and acidic properties of the catalysts. The poisoning resistivity seems to be due to a combination of high surface area and strong acidity of the Cu/zeolite catalysts. The catalysts might be attractive alternatives to conventional catalysts for deNOx of flue gases from biomass fired...... power plants and other stationary industrial installations....

  7. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5.

    Science.gov (United States)

    Broggini, Giovanni A L; Wöhner, Thomas; Fahrentrapp, Johannes; Kost, Thomas D; Flachowsky, Henryk; Peil, Andreas; Hanke, Maria-Viola; Richter, Klaus; Patocchi, Andrea; Gessler, Cesare

    2014-08-01

    The fire blight susceptible apple cultivar Malus × domestica Borkh. cv. 'Gala' was transformed with the candidate fire blight resistance gene FB_MR5 originating from the crab apple accession Malus × robusta 5 (Mr5). A total of five different transgenic lines were obtained. All transgenic lines were shown to be stably transformed and originate from different transgenic events. The transgenic lines express the FB_MR5 either driven by the constitutive CaMV 35S promoter and the ocs terminator or by its native promoter and terminator sequences. Phenotyping experiments were performed with Mr5-virulent and Mr5-avirulent strains of Erwinia amylovora, the causal agent of fire blight. Significantly less disease symptoms were detected on transgenic lines after inoculation with two different Mr5-avirulent E. amylovora strains, while significantly more shoot necrosis was observed after inoculation with the Mr5-virulent mutant strain ZYRKD3_1. The results of these experiments demonstrated the ability of a single gene isolated from the native gene pool of apple to protect a susceptible cultivar from fire blight. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship Mr5-E. amylovora. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Constructive fire protection of steel corrugated beams of buildings and other structures

    Directory of Open Access Journals (Sweden)

    Ilyin Nikolay

    2017-01-01

    Full Text Available The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting property. The suggested methodology introduces the system of actions aimed to design constructive fire protection of steel corrugated beams of buildings. Technological effect is achieved by conducting firing tests of steel construction by non-destructive methods; the evaluation of fire resistance of fire-proof elements of corrugated beams (corrugated web, upper and lower shelves is identified by the least fire-proof element of a welded I-beam. In this methodology fire resistance duration of the constituent elements of a welded I-beam with account of its fire protection ability is described with an analytic function taken as variables. These variables are intensity strength of stresses and the degree of fire protection of a compound element.

  9. Fire resistivity of irradiated nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Shimada, Hirohisa

    1975-01-01

    The fire resistance of lead-lined casks was examined and compared with that of a cask without lead lining. Three cask models with 1/8 radius of actual casks and one with 1/4 radius were used, each one is composed of three layers, i.e. steel outer shell, lead shield, and stainless steel inner shell. The models were heated in an oil furnace only from their side at 800 0 C and cooled in the furnace. During the experiment, the temperature in the furnace and of the models were recorded continuously. The lead shield of the models started to melt 5--7 min after the start of heating. The temperature difference between the outer shell and the lead shield of the models was larger in case of the model without lead lining treatment than the models with it, and it is attributable to the low heat conductivity of the gap between the outer shell and the lead shield. The heat transfer property of casks was affected by the fabricating method of the casks. The temperature at the outer shell and that at the lead shield were calculated, and the results agreed considerably well with the experimental values, when 180 and 1800 kcal/m 2 h 0 C were employed as the heat conductivity of the gaps of the models. The gaps were estimated as 0.23 mm and 0.023 mm, respectively. In order to dissipate effectively the heat generated by contained fuel, lead lining treatment is necessary before pouring molten lead for shielding, but when the casks with the lead lining treatment are exposed to fire, the lead shield cannot keep its integrity. (Kako, I.)

  10. A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion

    International Nuclear Information System (INIS)

    Hao Long; Zhang Sixun; Dong Junhua; Ke Wei

    2012-01-01

    Highlights: ► The rusting evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated. ► The rusting evolution of the steel is related to the rust composition, structure, and electrochemical characteristics. ► Increased content of α-FeOOH and decreased γ-FeOOH and Fe 3 O 4 indicate the enhanced resistance of the rust. ► Mo and Cu are involved in the formation of molybdate and Cu(I)-bearing compounds in the rust. - Abstract: The corrosion evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated by corrosion weight gain, XRD, EPMA, XPS, and polarization curves. The results indicate that the corrosion kinetics is closely related to the rust composition and electrochemical properties. As the corrosion proceeds, the relative content of γ-FeOOH and Fe 3 O 4 decreases and α-FeOOH increases, and the rust layer becomes compact and adherent to steel substrate. Molybdenum and copper enrich in the inner rust layer, especially at the bottom of the corrosion nest, forming non-soluble molybdate and Cu(I)-bearing compounds responsible for enhanced corrosion resistance of the rust layer.

  11. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 4: Sandwich panel decorative ink development

    Science.gov (United States)

    Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.

    1983-01-01

    Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.

  12. Behavior of one-way reinforced concrete slabs subjected to fire

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-12-01

    Full Text Available A finite difference analysis was performed to investigate the behavior of one-way reinforced concrete slabs exposed to fire. The objective of the study was to investigate the fire resistance and the fire risk after extinguishing the fire. Firstly, the fire resistance was obtained using the ISO834 standard fire without cooling phase. Secondly, the ISO834 parametric fire with cooling phase was applied to study the effect of cooling time. Accordingly, the critical time for cooling was identified and the corresponding failure time was calculated. Moreover, the maximum risk time which is the time between the fire extinguishing and the collapse of slab was obtained. Sixteen one-way reinforced concrete slabs were considered to study the effect of important parameters namely: the concrete cover thickness; the plaster; and the live load ratio. Equations for heat transfer through the slab thickness were used in the fire resistance calculations. Studying the cooling time revealed that the slabs are still prone to collapse although they were cooled before their fire resistance. Moreover, increasing the concrete cover thickness and the presence of plaster led to an increase in the maximum risk time. However, the variation in the live load ratio has almost no effect on such time.

  13. Evaluation of performance under fire of compressed earth blocks

    OpenAIRE

    Buson, M.; Lopes, N.; Varum, H.; Sposto, R. M.; Real, P. Vila

    2012-01-01

    In this paper are presented and discussed the main results of fire resistance tests on walls made of soil-cement and Kraftterra compressed earth blocks (CEB). Within this research it was intended to evaluate the fire resistance of walls made with CEB, with and without cellulose pulp incorporation deriving from recycling of cement sacks. Firstly, it is described the Kraftterra production processes and the fire resistance test campaign. Then, the performance of the blocks under anal...

  14. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  15. Overview of fire curtains in construction

    Directory of Open Access Journals (Sweden)

    Nedryshkin Oleg

    2016-01-01

    Full Text Available A fire curtain is use where, if there is a fire, it is necessary to create a temporary barrier within an opening, which seals off the area on fire. The curtain descends and prevents any fire and smoke from spreading from one area to another. It also allows people access to protected escape routes without any loss of fire resistance. The paper aims to presents the results of analysis of the scientific literature on the subject of fire curtains.

  16. Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests

    Directory of Open Access Journals (Sweden)

    Luna-Galiano, Y.

    2015-09-01

    Full Text Available This paper presents the results of a study about the effect of fire on geopolymer paste composed of fly ashes, metakaolin and sodium silicate. 2 cm thick, 28 cm high and 18 cm wide panels were filled with the paste obtained. After 28 days of curing at 20 °C and 45% of relative humidity, different tests were carried out in the geopolymers: physico-chemical (density, water absorption, porosity, mechanical (flexural and compressive strength, fire resistance and environmental (leaching and radioactivity. The panels manufactured have been compared with other commercial panels in order to determine the recycling possibilities of fly ashes in manufacturing new fire-insulating geopolymers. The panels obtained can be utilized for the production of interior wall materials, with a good physical, mechanical, fire resistant properties without any environmental problem.Este documento presenta los resultados de un estudio sobre el efecto del fuego sobre pastas de geopolímeros compuestas de cenizas volantes, metacaolín y silicato sódico. Con la pasta obtenida se han rellenado paneles de dimensiones 2 cm de espesor, 28 cm de altura y 18 cm de ancho. Tras 28 días de curado a 20 °C y un 45% de humedad relativa, diferentes ensayos fueron realizados en los geopolímeros obtenidos: fisicoquímicos (densidad, absorción de agua, porosidad, mecánicos (resistencia a compresión y a flexión, de resistencia al fuego y medioambientales (lixiviación y radioactividad. Los paneles fabricados han sido comparados con paneles comerciales para determinar las posibilidades de reciclaje de las cenizas volantes para la fabricación de nuevos productos geopoliméricos con propiedades aislantes al fuego. Los paneles obtenidos pueden ser utilizados para la producción de paredes interiores, con buenas propiedades físicas, mecánicas y de resistencia al fuego sin ningún problema medioambiental.

  17. Fire and heat resistant laminating resins based on maleimido substituted aromatic cyclotriphosphazene polymer

    Science.gov (United States)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  18. Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach.

    Science.gov (United States)

    Schlathölter, Ina; Jänsch, Melanie; Flachowsky, Henryk; Broggini, Giovanni Antonio Lodovico; Hanke, Magda-Viola; Patocchi, Andrea

    2018-03-14

    The approach presented here can be applied to reduce the time needed to introduce traits from wild apples into null segregant advanced selections by one-fourth. Interesting traits like resistances to pathogens are often found within the wild apple gene pool. However, the long juvenile phase of apple seedlings hampers the rapid introduction of these traits into new cultivars. The rapid crop cycle breeding approach used in this paper is based on the overexpression of the birch (Betula pendula) MADS4 transcription factor in apple. Using the early flowering line T1190 and 'Evereste' as source of the fire blight resistance (Fb_E locus), we successfully established 18 advanced selections of the fifth generation in the greenhouse within 7 years. Fifteen individuals showed the habitus expected of a regular apple seedling, while three showed very short internodes. The null segregants possessing a regular habitus maintained the high level of fire blight resistance typical for 'Evereste'. Using SSR markers, we estimated the percentage of genetic drag from 'Evereste' still associated with Fb_E on linkage group 12 (LG12). Eight out of the 18 selections had only 4% of 'Evereste' genome left. Since genotypes carrying the apple scab resistance gene Rvi6 and the fire blight resistance QTL Fb_F7 were used as parents in the course of the experiments, these resistances were also identified in some of the null segregants. One seedling is particularly interesting as, beside Fb_E, it also carries Fb_F7 heterozygously and Rvi6 homozygously. If null segregants obtained using this method will be considered as not genetically modified in Europe, as is already the case in the USA, this genotype could be a very promising parent for breeding new fire blight and scab-resistant apple cultivars in European apple breeding programs.

  19. 46 CFR 105.35-15 - Fire hose.

    Science.gov (United States)

    2010-10-01

    ... bronze or equivalent metal. (e) All fittings on fire hose shall be of brass, copper, or other suitable corrosion resistant metal. (f) A length of fire hose shall be attached to each fire hydrant at all times... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hose. 105.35-15 Section 105.35-15 Shipping COAST...

  20. Chapter 6: Fire damage of wood structures

    Science.gov (United States)

    B. Kukay; R.H. White; F. Woeste

    2012-01-01

    Depending on the severity, fire damage can compromise the structural integrity of wood structures such as buildings or residences. Fire damage of wood structures can incorporate several models that address (1) the type, cause, and spread of the fire, (2) the thermal gradients and fire-resistance ratings, and (3) the residual load capacity (Figure 6.1). If there is a...

  1. Hydrothermal Synthesis of Nanooctahedra MnFe₂O₄ onto the Wood Surface with Soft Magnetism, Fire Resistance and Electromagnetic Wave Absorption.

    Science.gov (United States)

    Wang, Hanwei; Yao, Qiufang; Wang, Chao; Ma, Zhongqing; Sun, Qingfeng; Fan, Bitao; Jin, Chunde; Chen, Yipeng

    2017-05-23

    In this study, nanooctahedra MnFe₂O₄ were successfully deposited on a wood surface via a low hydrothermal treatment by hydrogen bonding interactions. As-prepared MnFe₂O₄/wood composite (MW) had superior performance of soft magnetism, fire resistance and electromagnetic wave absorption. Among them, small hysteresis loops and low coercivity (magnetization-field curve of MW with saturation magnetization of 28.24 emu/g, indicating its excellent soft magnetism. The MW also exhibited a good fire-resistant property due to its initial burning time at 20 s; while only 6 s for the untreated wood (UW) in combustion experiments. Additionally, this composite revealed good electromagnetic wave absorption with a minimum reflection loss of -9.3 dB at 16.48 GHz. Therefore, the MW has great potential in the fields of special decoration and indoor electromagnetic wave absorbers.

  2. The economics of fire protection

    CERN Document Server

    Ramachandran, Ganapathy

    2003-01-01

    This important new book, the first of its kind in the fire safety field, discusses the economic problems faced by decision-makers in the areas of fire safety and fire precautions. The author considers the theoretical aspects of cost-benefit analysis and other relevant economic problems with practical applications to fire protection systems. Clear examples are included to illustrate these techniques in action. The work covers: * the performance and effectiveness of passive fire protection measures such as structural fire resistance and means of escape facilities, and active systems such as sprinklers and detectors * the importance of educating for better understanding and implementation of fire prevention through publicity campaigns and fire brigade operations * cost-benefit analysis of fire protection measures and their combinations, taking into account trade-offs between these measures. The book is essential reading for consultants and academics in construction management, economics and fire safety, as well ...

  3. Effect of Post-Fire Curing on the Residual Mechanical Properties of Fire-Damaged Self-Compacting Concrete

    NARCIS (Netherlands)

    Mirmomeni, M.; Heidarpour, A.; Schlangen, H.E.J.G.; Smith, S; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Concrete is recognized for being a fire-resistant construction material. At elevated temperatures concrete can, however, undergo considerable damage such as strength degradation, cracking, and explosive spalling. In recent decades, reuse of fire-damaged concrete structures by means of developing

  4. Prevention of cable fires in nuclear power plants

    International Nuclear Information System (INIS)

    Murota, George; Yajima, Kazuo

    1979-01-01

    Nuclear power generation is indispensable to secure required electric power, therefore double or triple safety measures are necessary to prevent serious accidents absolutely. As for the countermeasures to cable fires, interest grew rapidly with the fire in Browns Ferry Power Station in USA in 1975 as the turning point, because multi-strand grouped cables caused to promote the spread of fire. In Japan, also the fire prevention measures for wires and cables were more strengthened, and the measures for preventing the spread of cable fires with the agent preventing the spread of fires have occupied the important position. When multi-strand cables are ignited by some cause, the fire spreads with very large combustion force along wirings to other rooms and installations, and electric systems are broken down. The harmful corrosive gas generated from the burning coating materials of cables diffuses very quickly. In nuclear power stations, the cables which are very hard to burn are adopted, fire prevention sections are established positively, the fire-resisting capability of fire prevention barriers is reviewed, and fire-resisting and smoke-preventing treatments are applied to the parts where cables penetrate walls, floors or ceilings. The paint and the sealing material which prevent the spread of fires are introduced. (Kako, I.)

  5. Fire-resistance, physical, and mechanical characterization of particleboard containing Oceanic Posidonia waste

    Directory of Open Access Journals (Sweden)

    Saval, J. M.

    2014-06-01

    Full Text Available In this work, particleboards manufactured with Oceanic Posidonia waste and bonded with cement are investigated. The particleboards are made with 3/1.5/0.5 parts of cement per part of Posidonia waste. The physical properties of bulk density, swelling, surface absorption, and dimensional changes due to relative humidity as well as the mechanical properties of modulus of elasticity, bending strength, surface soundness, perpendicular tensile strength and impact resistance are studied. In terms of the above properties, the best results were obtained for particleboards with high cement content and when the waste “leaves” are treated (crushed before board fabrication, due to internal changes to the board structure under these conditions. Based on the results of fire tests, the particleboard is non-flammable without any fire-resistant treatment.En esta investigación se han diseñado y fabricado tableros con residuo de Posidonia Oceánica y cemento. Los tableros se han fabricado con 3/1.5/0.5 partes de cemento por cada parte de Posidonia estudiándose sus propiedades físicas (densidad, hinchazón, absorción superficial, variaciones dimensionales por humedad y mecánicas (módulo de elasticidad, resistencia a flexión, al arranque de superficie, al arranque de tornillo, a la tracción perpendicular y al choque. Se observa una mejora de los resultados de resistencia mecánica con el incremento de la cantidad de cemento y si la hoja del residuo es previamente tratada ya que proporciona una mejor estructura interna en el tablero. Además, tras los ensayos de reacción al fuego, se observa que el material es no inflamable sin ningún tipo de tratamiento ignifugante.

  6. Fire resistant behaviour of cellulosic textile functionalized with wastage plant bio-molecules: A comparative scientific report.

    Science.gov (United States)

    Basak, Santanu; Wazed Ali, S

    2018-07-15

    Three different wastage plant based bio-molecules named banana peel powder (Musa acuminata) (BPP), coconut shell (Cocos nucifera) extract (CSE) and pomegranate rind (Punica granatum) extract (PRE) have been explored as fire resistant material on the cellulosic polymer (cotton fabric). To this end, extracts have been applied to the cotton fabric in different concentration at elevated temperature for specific time period. Treated cotton fabric showed 6 (BPP), 8.5 (CSE) and 12 (PRE) times lower vertical burning rate compared to the control cotton fabric. Thermo-gravimetry (TG) curves and the limiting oxygen index (LOI) value revealed that the PRE extract (LOI: 32) treated fabric encompassed more thermal stability compared to the BPP (LOI:26) and the CSE (LOI: 27) treated fabric as it showed higher oxygen index and more weight retention (40%) at higher temperature 450°C. Moreover, the carbonaceous samples remained after the burning of the extracts and the treated fabrics showed structural integration and more carbon content [65.6 (PRE extract) and 76.3% (PRE treated cotton)] compared to the fragile, net like char of the control cotton fabric, having less carbon content (49.8%). Gas Chromatography Mass spectroscopy (GC-MS) of the different extracts (CSE, PRE, BPP) used for the study showed the presence of high molecular weight aromatic phenolic compounds, tannin based compound and the nitrogen containing alkaloids, responsible for fire resistant effect of the different extract treated fabric. Besides fire retardancy, all the treated fabric showed attractive natural colour (measured by colour strength values) and there has been no adverse effect on the tensile strength property of the fabric after the treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Design of fire resistant concrete structures, using validated Fem models

    NARCIS (Netherlands)

    Erich, S.J.F.; Overbeek, van A.B.M.; Heijden, van der G.H.A.; Pel, L.; Huinink, H.P.; Vervuurt, A.H.J.M.; Schlangen, E.; Schlutter, de G.

    2008-01-01

    Fire safety of buildings and structures is an important issue, and has a great impact on human life and economy. One of the processes negatively affecting the strength of a concrete building or structure during fire is spalling. Many examples exists in which spalling of concrete during fire has

  8. Development of a Midscale Test for Flame Resistant Protection

    Science.gov (United States)

    2016-08-01

    Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin, which provides both radiant and convective heat...TEST METHODS FIRE RESISTANT MATERIALS TORCHES SIMULATION TEST EQUIPMENT FLAME RESISTANT CLOTHING PERFORMANCE(ENGINEERING... fabric during a fire , and even after the fire has been extinguished. The best known full scale transmitted heat flux test is the "ASTM F1930

  9. Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire.

    Science.gov (United States)

    Dunivin, Taylor K; Miller, Justine; Shade, Ashley

    2018-01-01

    Arsenic (As), a toxic element, has impacted life since early Earth. Thus, microorganisms have evolved many As resistance and tolerance mechanisms to improve their survival outcomes given As exposure. We isolated As resistant bacteria from Centralia, PA, the site of an underground coal seam fire that has been burning since 1962. From a 57.4°C soil collected from a vent above the fire, we isolated 25 unique aerobic As resistant bacterial strains spanning seven genera. We examined their diversity, resistance gene content, transformation abilities, inhibitory concentrations, and growth phenotypes. Although As concentrations were low at the time of soil collection (2.58 ppm), isolates had high minimum inhibitory concentrations (MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most isolates were capable of arsenate reduction. We screened isolates (PCR and sequencing) using 12 published primer sets for six As resistance genes (AsRGs). Genes encoding arsenate reductase (arsC) and arsenite efflux pumps (arsB, ACR3(2)) were present, and phylogenetic incongruence between 16S rRNA genes and AsRGs provided evidence for horizontal gene transfer. A detailed investigation of differences in isolate growth phenotypes across As concentrations (lag time to exponential growth, maximum growth rate, and maximum OD590) showed a relationship with taxonomy, providing information that could help to predict an isolate's performance given As exposure in situ. Our results suggest that microbiological management and remediation of environmental As could be informed by taxonomically-linked As tolerance, potential for resistance gene transferability, and the rare biosphere.

  10. Improvement of fire fighting means for NPPs

    International Nuclear Information System (INIS)

    Viktorov, V.V.

    1993-01-01

    The problems dealing with testing of flame dampers for NPP ventilation systems are considered. The characteristics of the Darmatt fire-resistant material developed for protection of cable lines and equipment against fire effects are given

  11. Resistance of eastern hardwood stems to fire injury and damage

    Science.gov (United States)

    Kevin T. Smith; Elaine Kennedy Sutherland

    2006-01-01

    This paper reviews the protective features and defensive responses of eastern hardwood species exposed to fire. Trees survive fire through protective features such as thick bark and the induced defenses of compartmentalization. Dissection of trees exposed to prescribed fire in an oak forest in southern Ohio highlights the need to distinguish between bark scorch, stem...

  12. Development of highly fire-retardant irradiated polyolefin cables

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji; Inui, Toshifumi; Uda, Ikujiro (Sumitomo Electric Industries Ltd., Osaka (Japan))

    1982-12-01

    In recent years, motors, automobiles, heaters, etc., have been made into light weight and compact form in view of labour-saving and energy-saving. For this purpose, the wires for the electrical appliances used for these equipment are required to reduce insulation thickness and to improve heat resistance. On the other hand, the requirement for fire-retardant property has become severer than before from the viewpoint of safety. As an insulation for the wires which meets such requirement, the polyolefin cross-linked by irradiation was investigated, and the heat-resistant, highly fire-retardant, polyolefin-insulated wires have been developed, which have passed vertical combustion test (VW-1) and have the insulation thickness of 0.4 mm (voltage rating 300V) and UL standard 125 deg C and 150 deg C grades. Fire-retardant polyolefin resin is normally obtained by adding halogen series flame retarders. The selection of flame retarders requires the investigation on high thermal stability, high flame retardation, no impedance to cross-linking, and good dispersion into polymers. The evaluation of heat resistance performed on two points, thermal aging and thermal deformation. The use of oxidation inhibitors is indispensable to improve the anti-thermal aging capability, but it is important to balance the requirements well by combining oxidation inhibitors, considering thermal deformation, colouring and discolouration. By comparative test with silicone rubber, cross-linked polyethylene and cross-linked PVC-insulated wires, the characteristics of highly fire-retardant wires, insulated with polyethylene cross-linked by irradiation, are described about the fire retardation, thermal deformation, thermal aging resistance, electrical characteristics and oil resistance.

  13. Fire resistant aircraft seat materials

    Science.gov (United States)

    Trabold, E. L.

    1978-01-01

    The establishment of a technical data base for individual seat materials in order to facilitate materials selections is reviewed. The thermal response of multi-layer constructions representative of the basic functional layers of a typical future seat is examined. These functional layers include: (1) decorative fabric cover; (2) slip sheet (topper); (3) fire blocking layer; (4) cushion reinforcement; and (5) cushioning layer. The implications for material selection for full-scale seats are discussed.

  14. Fire and the Design of Educational Buildings. Building Bulletin 7. Sixth Edition.

    Science.gov (United States)

    Department of Education and Science, London (England).

    This bulletin offers guidance on English school premises regulations applying to safety protection against fires in the following general areas: means of escape in case of fire; precautionary measures to prevent fire; fire warning systems and fire fighting; fire spreading speed; structures and materials resistant to fires; and damage control. It…

  15. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    Science.gov (United States)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  16. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?

    Science.gov (United States)

    van Mantgem, Phillip J.; Caprio, Anthony C.; Stephenson, Nathan L.; Das, Adrian J.

    2016-01-01

    Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs).  It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought.  Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed fire may help forests adapt to a future of more frequent and severe drought.During the third year of drought, in 2014, we surveyed 9950 trees in 38 burned and 18 unburned mixed conifer forest plots at low elevation (accounting for differences in individual tree diameter, common conifer species found in the burned plots had significantly reduced probability of mortality compared to unburned plots during the drought.  Stand density (stems ha-1) was significantly lower in burned versus unburned sites, supporting the idea that reduced competition may be responsible for the differential drought mortality response.  At the time of writing, we are not sure if burned stands will maintain lower tree mortality probabilities in the face of the continued, severe drought of 2015.  Future work should aim to better identify drought response mechanisms and how these may vary across other forest types and regions, particularly in other areas experiencing severe drought in the Sierra Nevada and on the Colorado Plateau.

  17. Tactical Firefighter Teams: Pivoting Toward the Fire Service’s Evolving Homeland Security Mission

    Science.gov (United States)

    2016-09-01

    Kevlar, strong, lightweight fabrics that withstand punctures and abrasions in addition to being fire - resistive .140 A vapor barrier follows and provides...characteristic of the work is that it addresses and counters many of the common arguments posed by fire and EMS personnel who resist the rescue task...will be needed to determine whether the ballistic helmet is fire resistive or can 138 Dodson

  18. Fire and smoke retardants

    Science.gov (United States)

    Drews, M. J.

    Despite a reduction in Federal regulatory activity, research concerned with flame retardancy and smoke suppression in the private sector appears to be increasing. This trend seem related to the increased utilization of plastics for end uses which traditionally have employed metal or wood products. As a result, new markets have appeared for thermally stable and fire resistance thermoplastic materials, and this in turn has spurred research and development activity. In addition, public awareness of the dangers associated with fire has increased as a result of several highly publicized hotel and restaurant fires within the past two years. The consumers recognition of flammability characteristics as important materials property considerations has increased. The current status of fire and smoke retardant chemistry and research are summarized.

  19. Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Krivtcov Artem

    2016-01-01

    Full Text Available This article is devoted to fireproof processing of steel structures. The main task is to consider different types of sections of rod elements and to choose the most effective section for a steel column from the point of view of fire protection. For the solution of this task the steel columns with various cross sections working in identical entry conditions were considered. All necessary calculations for all types of sections were carried out. Results of calculations were presented in the summary table according to which the comparative analysis was made. At the end of work the conclusion that the compound section from four equal corners is the most effective from the point of view of fire protection.

  20. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  1. The influence of fire retardants on the properties of beech and poplar veneers and plywood

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2005-01-01

    Full Text Available Rising demands for fire resistance properties of wood construction and elements matching new standards have been an important part of building codes during the last decade. On the other side, lack of more detailed research on interaction between wood species and selected fire retardant chemicals even with basically one is evident. This is particularly truth with domestic wood species. In this research, beech and poplar veneers were immersed in 25% solutions of monoammonium phosphate (MP and sodium acetate (SA and impregnated for different periods of time. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermo gravimetric (DTG methods were used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed. The next properties of impregnated and no impregnated veneers and plywood were determined: absorption of imp regnant solution (A, weight percent gain (WPG of imp regnant, equilibrium moisture content (EMC, pH values, and in the case of plywood, strength and fire resistance. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardant, monoammonium phosphate, had the same result as TG/DTG analyses, which pointed out the validity of TG methods in predicting fire resistance of future products.

  2. Fire propagation over combustible exterior facades exposed to intensified flame in Japan

    Directory of Open Access Journals (Sweden)

    Nishio Yuhei

    2016-01-01

    Full Text Available With regard to fire safety for exterior walls of a building, fire-resistance performance is considered, according to the current Building Standard Law of Japan. And it was revealed that the fire safety is not specifically regulated from the viewpoint of reaction-to-fire performance, such as fire propagation caused by combustible materials or products installed on the exterior side of fire-resistant load-bearing walls. Actual fire incidents in the world have shown that massive façade fire could occur at the exterior side of building wall even when the wall itself is fire resistant. In previous studies of the authors, a test method of façade fire was proposed for evaluating the vertical fire propagation over an external wall within the same building [1,2]. Based on these studies, new domestic standard test method was established in Japan as JIS A 1310: 2015, “Test method for fire propagation over building façades” at the end of January 2015 [3]. But there was the argument that heat output of burner inside the combustion chamber was not sufficiently high in the previous study. In this paper, results of fire tests on combustible façades are discussed from the viewpoints of different strength of flame exposing facade. In this research, it was clearly found that JIS A 1310 with heat output of 900kW could be applicable for evaluating fire propagation behaviour over various types of combustible exterior façades.

  3. Connective Heating Improvement for Emergency Fire Shelters (CHIEFS): Composition and Performance of Fire Shelter Concepts at Close-Out

    Science.gov (United States)

    Fody, Joshua M.; Daryabeigi, Kamran; Bruce, Walter E., III; Wells, John M.; Wusk, Mary E.; Calomino, Anthony M.; Miller, Steve D.

    2018-01-01

    Summary of highlights of the Convective Heating Improvement for Emergency Fire Shelters (CHIEFS) taskunder NASA. CHIEFS was tasked with providing the US Forest Service with an emergency fire shelter forimproved resistance to flame contact. Emphasis is on the final shelter designs at task close-out (end of FY17).

  4. Solution of Fire Protection in Historic Buildings

    Science.gov (United States)

    Iringová, Agnes; Idunk, Róbert

    2016-12-01

    The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.

  5. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    Science.gov (United States)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  6. Fire safety requirements for electric cables and lines in deep coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1982-01-07

    In the case of a mine fire, an additional hazard from combustible cable material is likely to arise only in those few areas of the mine where special circumstances might help the fire to spread along the cables. It is more important to preserve the functional integrity of cables in the outbye roads which are affected by fire gases then at the actual seat of the fire. Mine cables with better fire-resistant properties should be made from materials which do not propagate fires, do not release burning drops, develop the lowest possible fume density and/or will permanently resist gas temperatures of 200 to 300/sup 0/C. Fire test specifications should be defined for such special cables, based on corresponding draft VDE directives. In proposing these measures the proviso is made then improvement in safety can be clearly demonstrated.

  7. Analysis of Fire Data in Oman

    Directory of Open Access Journals (Sweden)

    K.S. Al-Jabri

    2003-06-01

    Full Text Available The aim of this study is to illustrate the problem of fire accidents in the Sultanate of Oman and their causes in order to find out how the existing data could be used as a base to improve fire resistance, to detect the weak points (vulnerability to fire in existing structures, and to minimize fire occurrences in places where it is high. This will also provide useful recommendations with regard to fire safety including causes, people’s awareness and education, etc.  Fire data in Oman were collected from two sources: The Directorate General of Civil Defence (Public Relations Department and Sultan Qaboos University library. The collected data represent the number of fires in Oman during the last decade.  It also includes fire distribution by type and averages.  The analysis shows that there is a linear increase in the number of fire accidents in the last decade with time.  Many factors are included as potential sources, which are explained in the paper, and suggestions are made for possible control.

  8. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  9. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    Directory of Open Access Journals (Sweden)

    M. C. Yew

    2014-01-01

    Full Text Available This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I=4.3 and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  10. Terminology and biology of fire scars in selected central hardwoods

    Science.gov (United States)

    Kevin T. Smith; Elaine Kennedy Sutherland

    2001-01-01

    Dendrochronological analysis of fire scars requires tree survival of fire exposure. Trees survive fire exposure by: (1) avoidance of injury through constitutive protection and (2) induced defense. Induced defenses include (a) compartmentalization processes that resist the spread of injury and infection and (b) closure processes that restore the continuity of the...

  11. Performance and damages of R.C. slabs in fire

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Gentili, Filippo

    2015-01-01

    Contrary to a common misconception, concrete structures are particularly vulnerable to fire, as witnesses by several cases of fire-induced collapses of buildings with a primary concrete structural system. Even when no collapse occurs, concrete elements are permanently damaged by the fire and may...... on the vulnerability of the slab to the fire action and can be used for optimizing the design on the basis of the required class of resistance or for choosing between different slab alternatives....

  12. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  13. Development of flame retardant, radiation resistant insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M.

    1984-01-01

    On the cables used for nuclear power stations, in particular those ranked as IE class, flame retardation test, simulated LOCA environment test, radiation resistance test and so on are imposed. The results of the evaluation of performance by these tests largely depend on the insulating materials mainly made of polymers. Ethylene propylene copolymer rubber has been widely used as cable insulator because of its electrical characteristics, workability, economy and relatively good radiation resistance, but it is combustible, therefore, in the practical use, it is necessary to make it fire resistant. The author et al. have advanced the research on the molecular design of new fire retarding materials, and successfully developed acenaphthylene bromide condensate, which is not only fire resistant but also effective for improving radiation resistance. The condition of flame retardant, radiation resistant auxiliary agents is explained, and there are additive type and reaction type in fire retarding materials. The synthesis of acenaphthylene bromide condensate and its effect of giving flame retardant and radiation resistant properties are reported. The characteristics of the cables insulated with the flame retardant ethylene propylene rubber containing acenaphthylene bromide condensate were tested, and the results are shown. (Kako, I.).

  14. FREEZE-THAW AND FIRE RESISTANCE OF GEOPOLYMER MORTAR BASED ON NATURAL AND WASTE POZZOLANS

    Directory of Open Access Journals (Sweden)

    F.Nurhayat Degirmenci

    2017-12-01

    Full Text Available The purpose of this research was to investigate the resistance of pozzolan-based geopolymer mortars subjected to high temperatures and freeze-thaw cycles. Low calcium fly ash and granulated blast furnace slag as waste pozzolans and natural zeolite as a natural pozzolan were used as base materials for producing geopolymer mortar. The other purpose the research was to study the effect of alkaline activator ratio (Na₂SiO₃/NaOH on the performance of pozzolan-based geopolymer mortar specimens subjected to extreme temperatures. The influence of high temperatures on the properties of mortars was investigated at 300°C, 600°C, and 900°C. Fire and freeze-thaw and resistance of mortars were investigated in terms of visual appearance, weight loss and residual compressive strength. The minimal values of the residual compressive strength were obtained at 900°C for all mixtures. The residual compressive strength of all specimens was lower than the values obtained for specimens not subjected to any freeze-thaw resistance test, except those containing GGBS. The Na₂SiO₃/NaOH ratios of the alkaline activator solution used to prepare the geopolymer mortars have an effect on the weight losses and residual compressive strengths of the specimens subjected to high temperatures and freeze-thaw cycles. As the Na2SiO3/NaOH ratios increased, the weight and strength losses decreased.

  15. Selection and use of fire-resistant hydraulic fluids for underground mining equipment. [Oil-in-water emulsions; water-in-oil emulsions; phosphate esters; chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A J

    1981-02-01

    During the initial introduction of fire-resistant fluids to the Canadian underground mining industry, all hydraulic systems for which they were being considered were originally designed for operation with mineral oil. This meant that each system had to be individually examined and assessed with regard to its suitability in terms of acceptable component life and operation, at the same time as the selection of a fluid was being undertaken. Fluid selection by cost differential, toxicity content and fire resistancy was narrowed to types HFB and HFC, with HFB water-in-oil emulsion being the preferred fluid based on performance characteristics. By incorporating British mining industry experience and superior fluid types with practical trials, it was found that by modifing the design of some systems and slightly derating the operational parameters of individual components, it was possible to obtain a system performance comparable to that obtained when mineral oil was being used.

  16. Fire Response of Concrete Filled Hollow Steel Sections

    DEFF Research Database (Denmark)

    Nyman, Simon; Virdi, Kuldeep

    2011-01-01

    Advanced and simplified methods of analysis and design for the fire resistance of structural elements and assemblages of structures have been developed in recent years. Some simplified methods for the fire design of concrete filled tubes have appeared in Eurocode 4 part 1.2. Experience to date in...... hollow sections....

  17. Practical fire design of partially encased composite steel-concrete columns according to Eurocode 4

    Directory of Open Access Journals (Sweden)

    Sadaoui Arezki

    2014-04-01

    Full Text Available A practical method based on Campus-Massonet criteria which is developed initially to steel structures with combined compression and bending is adapted for the calculation of the buckling resistance of eccentrically loaded columns. The latter at room temperature or in fire situation is expressed by a simple formula as a function of an equivalent buckling coefficient taking into account the amount the eccentricity of the compressive applied load. The method proposed combines accuracy, efficiency and convenience obviating the need of M-N interaction diagrams and long iteration process. Otherwise, the estimation of the fire resistance for a given loading is made on the assumption based on the linearity with the level applied compressive load. It was found that the fire resistance of a column subjected to an eccentric load decreases gradually with the increase in the load level (ƞ , the slenderness ratio (λ or the amount of the eccentricity. For a fire resistance of one hour, time enough to evacuate the building of all its occupants, it recommended to use η≤ 0.5 and λ ≤45. The range of values of reinforcement cover (u suggested by Eurocode 4 leads to a better fire resistance except for u = 60 mm where there is a decline of the about 10%.

  18. Review of the IAEA fire symposium

    International Nuclear Information System (INIS)

    Fischer, J.

    1991-01-01

    The IAEA Symposium on Fire Protection and Fire Fighting in Nuclear Installations covered a large scope in the field in order to provide the opportunity for screening all aspects of present technology, research and development, standardization, licensing and fire fighting practices. Although application to any nuclear facility was within its scope, the majority of presentations concerned nuclear power plants. The approach to fire protection is the classical one in all plant designs: reduction of fire loads, appropriate zoning, manual and automatic extinguishment. However, methods of analysis and consequence prediction are changing. Computerized fire modelling is becoming a powerful tool in this area; probabilistic analytical methods are being improved, though they are not yet used widely for fire hazards. Differences in opinion were revealed in the definition of barrier resistance, the prediction of cable insulation behaviour and the optimal design of extinguishing systems. Greater international co-operation, especially in these areas, may be a good way of optimizing results with limited resources. Discussion contributions showed interest in exchange of experience in more specialized topics and encouraged the IAEA to increase its activity in the area of fire protection. (orig.)

  19. 30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.

    Science.gov (United States)

    2010-07-01

    ... nozzles of each fire suppression device shall, where practicable, be located so as to take advantage of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Capacity of fire suppression devices; location... Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment...

  20. Resistance to fire of walls constituted by hollow blocks: Experiments and thermal modeling

    International Nuclear Information System (INIS)

    Al Nahhas, F.; Ami Saada, R.; Bonnet, G.; Delmotte, P.

    2007-01-01

    The thermo-mechanical behavior of masonry walls is investigated from both experimental and theoretical points of view. Fire tests have been performed in order to evaluate the thermo-mechanical resistance of masonry wall submitted to a vertical load (13 ton/m) and exposed to temperatures ranging from 20 to 1200 o C. As a result we measure the temperature evolution inside the wall and evaluate the vertical and lateral displacements of this wall during heating for a period of 6 h. These results are affected significantly by phase-change phenomena which appeared as a plateau around o C in temperature-time curves. A theoretical model was then developed to describe the experimental results taking in to account convection, conduction and radiation phenomena inside the wall. In addition, liquid water migration using an enthalpic method is considered

  1. Temperature calculation in fire safety engineering

    CERN Document Server

    Wickström, Ulf

    2016-01-01

    This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...

  2. Small Scale Hydrocarbon Fire Test Concept

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2017-11-01

    Full Text Available In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation methodology does, however, require more space that may not be available when refurbishing older process plants. Relocating structural elements would introduce much hot work, which should be minimized in live plants. It is also costly. The aim of the present study is therefore to develop a test concept for testing fire resistance of equipment protected with only air-gap and thermal insulation, i.e., without the fire-protective insulation. The present work demonstrates a conceptual methodology for small scale fire testing of mockups resembling a section of a distillation column. The mockups were exposed to a small-scale propane flame in a test configuration where the flow rate and the flame zone were optimized to give heat flux levels in the range 250–350 kW/m2. Results are presented for a mockup resembling a 16 mm thick distillation column steel wall. It is demonstrated that the modern distance insulation in combination with the heat capacity of the column wall indicates 30+ minutes fire resistance. The results show that this methodology has great potentials for low cost fire testing of other configurations, and it may serve as a set-up for product development.

  3. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    Science.gov (United States)

    Nolan W. Brewer; Alistair M.S. Smith; Jeffery A. Hatten; Philip E. Higuera; Andrew T. Hudak; Roger D. Ottmar; Wade T. Tinkham

    2013-01-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is...

  4. 78 FR 17140 - Upholstered Furniture Fire Safety Technology; Meeting and Request for Comments

    Science.gov (United States)

    2013-03-20

    ... retardant (FR) chemicals, specialty fibers/fabrics without FR chemicals, inherently fire resistant materials... Furniture Fire Safety Technology; Meeting and Request for Comments AGENCY: Consumer Product Safety... Commission (CPSC, Commission, or we) is announcing its intent to hold a meeting on upholstered furniture fire...

  5. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  6. Nonlinear phased analysis of reinforced concrete tunnels under fire exposure

    NARCIS (Netherlands)

    Lilliu, G.; Meda, A.

    2013-01-01

    Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material degradation. Temperature increase in the tunnel is the cause of thermal expansion of the lining, which is resisted by the soil pressure.

  7. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  8. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    Science.gov (United States)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were

  9. Land uses, fire, and invasion: Exotic annual Bromus and human dimensions

    Science.gov (United States)

    Pyke, David A.; Chambers, Jeanne C.; Beck, Jeffrey L.; Brooks, Matthew L.; Mealor, Brian A.

    2016-01-01

    Human land uses are the primary cause of the introduction and spread of exotic annual Bromusspecies. Initial introductions were likely linked to contaminated seeds used by homesteading farmers in the late 1880s and early 1900s. Transportation routes aided their spread. Unrestricted livestock grazing from the 1800s through the mid-1900s reduced native plant competitors leaving large areas vulnerable to Bromus dominance. Ecosystems with cooler and moister soils tend to have greater potential to recover from disturbances (resilience) and to be more resistant to Bromusinvasion and dominance. Warmer and drier ecosystems are less resistant to Bromus and are threatened by altered fire regimes which can lead to Bromus dominance, impacts to wildlife, and alternative stable states. Native Americans used fire for manipulating plant communities and may have contributed to the early dominance of Bromus in portions of California. Fire as a tool is now limited to site preparation for revegetation in most ecosystems where Bromus is a significant problem. Once Bromus dominates, breaking annual grass/fire cycles requires restoring fire-tolerant perennial grasses and forbs, which can compete with Bromus and resist its dominance. Current weed management policies often lack regulations to prevent further expansion of Bromus. Research is needed on how and where livestock grazing might help increase perennial grass and forb cover and density to create ecosystems that are more resistant to Bromus. Also, studies are needed to ascertain the role, if any, of oil and gas development in contributing to the spread of Bromus.

  10. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...

  11. Recent operating experience in Europe and the Soviet Union with fire resistant turbine lubricants

    International Nuclear Information System (INIS)

    Vilyanskaya, G.D.; Lysko, V.V.; Phillips, W.D.

    1990-01-01

    Power station fires are of continuing concern to the electricity generation industry. Statistics on their frequency and severity are however difficult to obtain and it is suspected that many fires are not officially reported unless they result in a forced outage or casualties are involved. It is well known that fires in power stations can be extremely expensive incidents. Not only is the cost of repairing equipment very high but outage costs can amount to millions of dollars. A recent publication listed the financial cost (where known) of seven major fires in the USA occurring between 1985--89. The author of the article commented that In many cases fixed fire suppression systems were non-existent, incomplete or inaccessible. The fire emergency planning proved to be generally ineffective and in some cases non-existent

  12. High severity fires, positive fire feedbacks and alternative stable states in Athrotaxis rainforest ecosystems in western Tasmania.

    Science.gov (United States)

    Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.

    2016-12-01

    Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.

  13. Specifics of fire-preventing arrangements in the forests of Baikal region

    Directory of Open Access Journals (Sweden)

    M. D. Evdokimenko

    2017-10-01

    Full Text Available Fire risk in major forest types and concomitant vegetation complexes across all altitudinal belts has been analyzed. High fire risk in woodlands is determined by domination of light needle coniferous stands in their structure and specific climate with continuous spring-summer droughts. Thus, the risk of landscape wildfires is high. The most drastic situations occur in very dry years of climatic cycles during forest pyrogenic anomalies when fire spreads across the main landscapes in several nature areas. Current fire-frequency is incompatible with high biosphere status of nature complex of Lake Baikal as an object of the World nature heritage. Extensive forest exploitation is unacceptable as well. Fire-prevention measures in the area require modernization. According to the results of many years of comparative studies of fire risk in phytocenoses with different species composition and structure of tree layers, the techniques of making fire stopping barriers were developed. The scheme of dividing the managed forests into isolated cells separated by special obstacles and fire-resistant forest borders combined with commonly used fire barriers is suggested. Fire-resistant barriers should be formed on both sides of main roads, passing through the intensively exploited woodlands dominating with common pine Pinus sylvestris L., Siberian stone pine Pinus sibirica Du Tour, Siberian spruce Picea obovata Ledeb., and Siberian fir Abies sibirica Ledeb. tree species. Such barriers are intended to stop the fire front of crown fires. The barrier width is determined by the cell order. The barriers are bordered with clearings with scarified soil strips of 3–4 meters in width. Trees and shrubs damaged in the process are removed during clutter cleaning. In places where the barrier passes through coniferous tree stands longitudinal corridors with scarified soil strips every 20–30 meters should be made. Reforestation and thinning are supposed to be combined with

  14. Progressive Collapse of High-Rise Buildings from Fire

    Directory of Open Access Journals (Sweden)

    Pershakov Valerii

    2016-01-01

    Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.

  15. Technologies for Protection and Resistance Enhancement of Critical Infrastructures againstExtreme Fire

    Science.gov (United States)

    2014-05-01

    involving hydrocarbon fires, such as gasoline or crude oil carried in a tanker truck/train, or any other fuel fire of equivalent intensity. Examples of...and impact of weather exposure on the insulation, as well as possible health risk by inhalation (mainly concern for interior application), application

  16. The role of the fire dampers in the event of fire in a nuclear facility. Selection criteria for devices

    International Nuclear Information System (INIS)

    Savornin, J.; Laborde, J.C.

    1989-10-01

    In nuclear facilities, where unacceptable quantities of radioactive aerosols could be spread in the event of a fire, the ventilation system must be designed so that an underpressure is maintained under such circumstances. This is the reason why the extracting ventilation of the room in which the fire has broken out has generally to be kept going as long as possible. This prevents smoke and radioactive aerosols from spreading to accessways and adjacent rooms. Consequently, the various devices of the ventilation network need to have high fire resistance. Fire dampers can be applied to exhaust air to delay the heat build-up of a major fire. Specialized qualification testing is required for these dampers. The criteria we have used as a basis for specifying the required qualities of installations are defined. The tests that have been performed, or are now in progress, are described. The results obtained so far are given. Devices and arrangements are suggested

  17. Heat resistant protective hand covering

    Science.gov (United States)

    Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)

    1984-01-01

    A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.

  18. 41 CFR 102-74.360 - What are the specific accident and fire prevention responsibilities of occupant agencies?

    Science.gov (United States)

    2010-07-01

    ... other hanging materials that are made of non-combustible or flame-resistant fabric; (f) Use only... resistant; (g) Cooperate with GSA to develop and maintain fire prevention programs that provide the maximum... accident and fire prevention responsibilities of occupant agencies? 102-74.360 Section 102-74.360 Public...

  19. Low resistivity contacts to YBa2Cu3O(7-x) superconductors

    Science.gov (United States)

    Hsi, Chi-Shiung; Haertling, Gene H.

    1991-01-01

    Silver, gold, platinum, and palladium metals were investigated as electroding materials for the YBa2Cu3O(7-x) superconductors. Painting, embedding, and melting techniques were used to apply the electrodes. Contact resistivities were determined by: (1) type of electrode; (2) firing conditions; and (3) application method. Electrodes fired for long times exhibited lower contact resistivities than those fired for short times. Low-resistivity contacts were found for silver and gold electrodes. Silver, which made good ohmic contact to the YBa2Cu3O(7-x) superconductor with low contact resistivities was found to be the best electroding material among the materials evaluated in this investigation.

  20. High Temperature Corrosion on Biodust Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi

    The high content of alkali metals and chlorine in biomass gives rise to fouling/slagging and corrosion of heat exchange components, such as superheaters, in biomass fired power plants. Increasing the lifetime of these components, and in addition, preventing unwarranted plant shutdowns due...... to their failure, requires understanding of the complex corrosion mechanisms, as well as development of materials that are resistant to corrosion under biomass firing conditions, thereby motivating the current work. To understand the mechanisms of corrosion attack, comprehensive analysis of corrosion products...... by the combined use of complementary information from microscopy, energy dispersive X-ray spectroscopy and various X-ray diffraction characterization techniques. In light of the wide variation in operating conditions in biomass fired power plants, systematic and well-controlled, but realistic laboratory scale...

  1. Comments on Simplified Calculation Method for Fire Exposed Concrete Columns

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    1998-01-01

    The author has developed new simplified calculation methods for fire exposed columns. Methods, which are found In ENV 1992-1-2 chapter 4.3 and in proposal for Danish code of Practise DS411 chapter 9. In the present supporting document the methods are derived and 50 eccentrically loaded fire expos...... columns are calculated and compared to results of full-scale tests. Furthermore 500 columns are calculated in order to present each test result related to a variation of the calculation in time of fire resistance....

  2. A new design method for industrial portal frames in fire

    OpenAIRE

    Song, YY; Huang, Z; Burgess, IW; Plank, RJ

    2009-01-01

    For single-storey steel portal frames in fire, especially when they are situated close to a site perimeter, it is imperative that the boundary walls stay close to vertical, so that fires which occur are not allowed to spread to adjacent properties. A current UK fire design guide requires either that the whole frame be protected as a single element, or that the rafter may be left unprotected if column bases and foundations are designed to resist the forces and moments generated by rafter colla...

  3. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. The importance of verifiable fire protection design

    Energy Technology Data Exchange (ETDEWEB)

    Medonos, Sava [Petrellus Ltd. (United Kingdom)]. E-mail: smm@petrellus.co.uk; Geddes, Paul [Global Solutions UK Ltd. (United Kingdom)]. E-mail: paul@globalsolutionsuk.com

    2004-07-01

    Simplistic methods based on the Hp/A ratio between the heated surface area and volume or a 2-dimensional analysis may be sufficient for the determination of fire protection coatings for simple components. For the optimization of fire protection of pressure systems and load bearing structures, however, they have proved to be inadequate, as they do not represent the response taking place. This often leads to over-protection or inadequate fire resistance. In the past 10 years there have been claims in petrochemical industry of 'methods' for fire protection 'optimization' based on a walk-down through a topside or plant, or a heat-up calculation of a few cross sections with no regard to stress. These methods are wrong. In the best case these 'methods of optimization' lead to high unnecessary costs and in the worst case in an explosion of a vessel, structural collapse, domino effects and cataclysmic fire throughout the plant. The operator or design contractor should always require a Method Statement including a proof of verification to obtain the adequate quality of fire protection. (author)

  5. Parametric Study of Fire Performance of Concrete Filled Hollow Steel Section Columns with Circular and Square Cross-Section

    Science.gov (United States)

    Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin

    2018-03-01

    Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.

  6. Modelling initial mortality of Abies religiosa in a crown fire in Mexico

    Directory of Open Access Journals (Sweden)

    Salomé Temiño-Villota

    2016-04-01

    Full Text Available Aim of study: The objectives of this work were to determine which morphological and fire severity variables may help explain the mortality of adult Abies religiosa (Kunth Schltdl. & Cham., to model the probability of this species after being affected by crown fire, and to obtain more elements to classify the sacred fir in terms of fire resistance. This type of studies are relevant to estimate the impact of crown fires on the climax forests that forms this species.Area of study: The burned forest was located in the southern Mexico City, borough.Material and methods: Morphological variables and fire severity indicators were collected for 335 Abies religiosa trees burned by a mixed severity fire. Logistic regression was used to analyze data and develop models that best explained tree mortality.Main results: Survival was 26.9%. The models for height (p≤0.0001, diameter at breast height (p=0.0082, crown length (p≤0.0001 and crown base height (p≤0.0001 were significant, with a negative relationship between each one of these variables and probability of mortality. The significant severity variables were lethal scorch height (p≤0.0001 and crown kill (p≤ 0.0001, which have a direct relationship with probability of mortality.Highlights: This species is moderately fire-resistant. Crown kill ≥ 70% markedly increases mortality. Silvicultural activities such as pruning, thinning and fuel management can reduce the risk of crown fires.

  7. Modelling initial mortality of Abies religiosa in a crown fire in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Temiño-Villota, S.; Rodríguez-Trejo, D.A.; Molina Terrén, D.M.; Ryan, K.

    2016-07-01

    Aim of the study: The objectives of this work were to determine which morphological and fire severity variables may help explain the mortality of adult Abies religiosa (Kunth) Schltdl. & Cham., to model the probability of this species after being affected by crown fire, and to obtain more elements to classify the sacred fir in terms of fire resistance. This type of studies are relevant to estimate the impact of crown fires on the climax forests that forms this species. Area of study: The burned forest was located in the southern Mexico City, borough. Material and methods: Morphological variables and fire severity indicators were collected for 335 Abies religiosa trees burned by a mixed severity fire. Logistic regression was used to analyze data and develop models that best explained tree mortality. Main results: Survival was 26.9%. The models for height (p≤0.0001), diameter at breast height (p=0.0082), crown length (p≤0.0001) and crown base height (p≤0.0001) were significant, with a negative relationship between each one of these variables and probability of mortality. The significant severity variables were lethal scorch height (p≤0.0001) and crown kill (p≤ 0.0001), which have a direct relationship with probability of mortality. Highlights: This species is moderately fire-resistant. Crown kill ≥ 70% markedly increases mortality. Silvicultural activities such as pruning, thinning and fuel management can reduce the risk of crown fires. (Author)

  8. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  9. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    Science.gov (United States)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  10. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  11. 14 CFR 23.1359 - Electrical system fire protection.

    Science.gov (United States)

    2010-01-01

    ... procedures must be fire-resistant. (c) Insulation on electrical wire and electrical cable must be self... this part, or other approved equivalent methods. The average burn length must not exceed 3 inches (76...

  12. Noise characteristics of resistors buried in low-temperature co-fired ceramics

    International Nuclear Information System (INIS)

    Kolek, A; Ptak, P; Dziedzic, A

    2003-01-01

    The comparison of noise properties of conventional thick film resistors prepared on alumina substrates and resistors embedded in low-temperature co-fired ceramics (LTCCs) is presented. Both types of resistors were prepared from commercially available resistive inks. Noise measurements of LTCC resistors below 1 kHz show Gaussian 1/f noise. This is concluded from the calculations of the second spectra as well as from studying the volume dependence of noise intensity. It has occurred that noise index of LTCC resistors on average is not worse than that of conventional resistors. A detailed study of co-fired surface resistors and co-fired buried resistors show that burying a resistor within LTCC substrate usually leads to (significant) enhancement of resistance but not of noise intensity. We interpret this behaviour as another argument in favour of tunnelling as the dominant conduction mechanism in LTCC resistors

  13. Review of fire behavior during passage of Sandy Lake Fire 13 (NWT) across a Northwest Territories Power Corporation transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.; Thomasson, J.

    2009-03-15

    The Sandy Lake Fire 13 of July 2008 was an intense forest fire that burned up to and across a power line right-of-way in the Northwest Territories, approximately 160 km northwest of Fort Smith. The terrain in the area is flat and vegetation is characterized by boreal pine and black spruce uplands with black spruce and tamarack in lower areas and adjacent to wetlands. This report documented post fire conditions at locations where the fire crossed the power line. The towers on this line were made from an aluminum alloy and may not have had the same resistance to heat damage as steel towers, more commonly used on major transmission lines. The transmission line was de-energized during the fire. Therefore, the effects of fire on power transmission were not documented. Although the intense wildfire crossed sections of the power line, it did not result in observable damage to the towers or lines. Fire intensity was likely greater than 40,000 kw/m along some sections of the right-of-way. Although the management of the right-of-way may have reduced heat exposure to the transmission towers, it did not stop the fire. Pine mixed with an aspen component greater than 50 per cent had a mitigating effect on fire behaviour. The fire did not result in any immediate damage to the power line infrastructure. It was concluded that the use of power lines for fire operations should consider right-of-way width in order to assess equipment maneuverability, especially around tower guy wires. 5 refs., 1 tab., 12 figs.

  14. Still a hot issue. US fire protection 20 years on

    International Nuclear Information System (INIS)

    Hathaway, L.R.

    1995-01-01

    Current fire protection concerns in the US nuclear industry are reviewed. Twenty years ago, a fire at the Brown's Ferry nuclear plant triggered a vigorous programme of regulation by the US Nuclear Regulatory Commission (NRC) and a still active response by power plant operators in seeking protection measures to meet the NRC criteria. The largest fire protection issue facing the industry concerns Thermo-Lag, a product formed from resins, subliming materials and fibreglass. This fire resistant wrap was installed in about 75 plants to provide a barrier between safety related cable systems. The Brown's Ferry fire has re-emphasised the importance of the separation criteria between redundant safety systems. Since 1989, however, there have been doubts about the adequacy of Thermo-Lag barriers and a major testing and analysis project addressing the problem is currently being sponsored by six utilities. Other regulatory- related issues facing the industry are the recently proposed defence-in-depth fire protection methodology, and for the future, fire protection strategies to cover shutdown, turbine generators and penetration seals through fire barriers. (UK)

  15. Wildland fire limits subsequent fire occurrence

    Science.gov (United States)

    Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird

    2016-01-01

    Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...

  16. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Jomaas, Grunde

    2015-01-01

    An elaborate survey of the chemical modification methods for endowing highly flammable SBS with increased fire resistant properties by means of chemical modification of the polymer backbone with phosphorus containing fire retardant species is presented. Optimal conditions for free radical addition...

  17. Lightweight, fire-retardant, crashworthy aircraft seat cushioning

    Science.gov (United States)

    Haslim, Leonard A.; Mcdonough, Paul T.

    1991-01-01

    A two page discussion of non-aerospace seating applications and the design of NASA's safety seat cushioning (SSC) is presented. The SSC was designed for both safety and comfort in order to replace polyurethane cushioning which is flammable and produces lethal fumes upon combustion. The SSC is composed of advanced fabric reinforced composites and is lightweight, fire-retardent, and crashworthy. The seat design consists of central elliptical tubular spring supports made of fire-resistant and fatigue-durable composites surrounded by a fire-blocking sheath. The cushioning is made crashworthy by incorporating energy-absorbing, viscoelastic layers between the nested, elliptical-hoop springs. The design is intended to provide comfortable seating that meets aircraft-loading requirements without using the conventional polyurethane materials. The designs of an aircraft seat and structural components of the SSC are also presented.

  18. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

    2012-10-10

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

  19. Differences in the motor unit firing rates and amplitudes in relation to recruitment thresholds during submaximal contractions of the first dorsal interosseous between chronically resistance trained and physically active men.

    Science.gov (United States)

    Sterczala, Adam J; Miller, Jonathan D; Trevino, Michael A; Dimmick, Hannah L; Herda, Trent J

    2018-02-26

    Previous investigations report no changes in motor unit (MU) firing rates during submaximal contractions following resistance training. These investigations did not account for MU recruitment or examine firing rates as a function of recruitment threshold (REC).Therefore, MU recruitment and firing rates in chronically resistance trained (RT) and physically active controls (CON) were examined. Surface electromyography signals were collected from the first dorsal interosseous (FDI) during isometric muscle actions at 40% and 70% maximal voluntary contraction (MVC). For each MU, force at REC, mean firing rate (MFR) during the steady force, and MU action potential amplitude (MUAPAMP) were analyzed. For each individual and contraction, the MFRs were linearly regressed against REC, whereas, exponential models were applied to the MFR vs. MUAPAMP and MUAPAMP vs. REC relationships with the y-intercepts and slopes (linear) and A and B terms (exponential) calculated. For the 40% MVC, the RT group had less negative slopes (p=0.001) and lower y-intercepts (p=0.006) of the MFR vs. REC relationships and lower B terms (p=0.011) of the MUAPAMP vs. REC relationships. There were no differences in either relationship between groups for the 70% MVC. During the 40% MVC, the RT had a smaller range of MFRs and MUAPAMPS in comparison to the CON, likely due to reduced MU recruitment. The RT had lower MFRs and recruitment during the 40% MVC that may indicate a leftward shift in the force-frequency relationship, and thus require less excitation to the motoneuron pool to match the same relative force.

  20. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Science.gov (United States)

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  1. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  2. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  3. A Review of Fire Interactions and Mass Fires

    Directory of Open Access Journals (Sweden)

    Mark A. Finney

    2011-01-01

    Full Text Available The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.

  4. Predictions of fire behavior and resistance to control: for use with photo series for the ponderosa pine type, ponderosa pine and associated species type, and lodgepole pine type.

    Science.gov (United States)

    Franklin R. Ward; David V. Sandberg

    1981-01-01

    This publication presents tables on the behavior of fire and the resistance of fuels to control. The information is to be used with the publication, "Photo Series for Quantifying Forest Residues in the Ponderosa Pine Type, Ponderosa Pine and Associated Species Type, Lodgepole Pine Type" (Maxwell, Wayne G.; Ward, Franklin R. 1976. Gen. Tech. Rep. PNW-GTR-052....

  5. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach

    Science.gov (United States)

    Jeanne C. Chambers; David A. Pyke; Jeremy D. Maestas; Mike Pellant; Chad S. Boyd; Steven B. Campbell; Shawn Espinosa; Douglas W. Havlina; Kenneth E. Mayer; Amarina Wuenschel

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2...

  6. Identifying the location of fire refuges in wet forest ecosystems.

    Science.gov (United States)

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  7. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  8. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    Science.gov (United States)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  9. Current trends towards a new regulation and evolution of fire protection systems technologies in nuclear power plants

    International Nuclear Information System (INIS)

    Rodriguez Sanjuan, G.

    1996-01-01

    For some time now, the field of Fire Protection in Nuclear Power Plants has, with its own peculiarities in an otherwise general process, been the centre of some controversy caused by tendencies to reduce regulatory inflexibility by transforming what was originally a prescriptive, pro grammatical and deterministic regulatory system into a system based on risk assessment and operating experience. Such tendencies include: Cost Beneficial Licensing Actions (CBLA) Use of the Probabilistic Safety Analysis (PSA) as a tool for evaluating the impact of postulated fires in nuclear safety Improvement of communications between the regulatory body and the industry These trends have coincided with the arduous process of requalifying passive fire-resistant protection materials, such as Thermo lag and others, which are used to separate redundant Safe Shutdown trains with fire-resistance ranges of one (1) hour or three (3) hours, in compliance with some of the alternatives that Appendix R to 10 CFR 50 offers. The process has involved a lot of effort and financial cost in requalification and in employing compensatory measures until operability of the fire-resistant materials is reestablished. A new test methodology has been created for these barriers (GL 86-10, Supplement 1) and new materials have become available and are currently undergoing qualification. (Author)

  10. Does browsing reduce shrub survival and vigor following summer fires?

    Science.gov (United States)

    Fulbright, Timothy E.; Dacy, Emily C.; Drawe, D. Lynn

    2011-01-01

    Periodic fire is widely hypothesized to limit woody plant encroachment in semiarid grasslands. In southern Texas, however, most of the woody plants that have invaded grasslands during the past two centuries are resistant to fire. We hypothesized that browsing by Odocoileus virginianus increases mortality of palatable shrubs and reduces vigor of shrubs following fire. We randomly selected ten pairs of each of three shrub species -Condalia hookeri, Acacia farnesiana, and Celtis ehrenbergiana - in each of three locations before prescribed burns during summer 2001. Following burns, we used a wire fence to protect one shrub of each pair from browsing. We estimated intensity of O. virginianus browsing and number and height of sprouts 4, 12, 20, 30, 38, and 47 weeks post-fire. We determined shrub height, survival, and biomass one year post-fire. Averaged across species, browsing intensity on unfenced shrubs was greater (LS Means, P 0.05) one year post-burn. Browsing by O. virginianus at the intensity in our study does not increase mortality or reduce vigor of C. hookeri, A. farnesiana, and Condalia ehrenbergiana producing new growth following destruction of aboveground tissues by a single fire compared to shrubs that are not browsed following fire.

  11. Fire propagation equation for the explicit identification of fire scenarios in a fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Moon, Joo Hyun

    2011-01-01

    When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a 2x3 rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification

  12. Connection Temperatures during the Mokrsko Fire Test

    Directory of Open Access Journals (Sweden)

    J. Chlouba

    2009-01-01

    Full Text Available The Mokrsko fire test focused on the overall behaviour of the structure, which cannot be observed on the separate elements, and also on the temperature of connections with improved fire resistance. During the test, measurements were made of the temperature of the gas and of the elements, the overall and relative deformations, gas pressure, humidity, the radiation of the compartment to structural element and the external steel column, transport of the moisture through the walls, and also the climatic conditions. The results of the test show the differences between the behaviour of the element and the behaviour of the structure exposed to high temperatures during a fire. The collapse of the composite slab was reached. The results of the numerical simulations using the SAFIR program compared well with the measured temperature values in the structure and also in the connections. 

  13. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  14. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    Science.gov (United States)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  15. Parametric study for the fire safety design of steel structures

    DEFF Research Database (Denmark)

    Aiuti, Riccardo; Giuliani, Luisa

    2013-01-01

    the considered time of fire exposure. A deeper knowledge on the failure mode of steel structure is however important in order to ensure the safety of the people and properties outside the building. Aim of this paper is to analyze the behaviour of single elements, sub-assemblies and frames exposed to fire...... or hindered thermal expansion induced on the element by the rest of the structure. Nevertheless, restrained thermal expansion is known to significantly affect the behaviour of steel structures in fire, and the compliance with a prescribed resistance class doesn’t ensure the integrity of the building after...... and find out the basic collapse mechanisms of structural elements in fire conditions, considering the rest of the construction with appropriate constraints. The analysis is carried out taking into account material and geometrical nonlinearities as well as the degradation of steel properties at high...

  16. Thermal tests on UF6 containers and valves modelisation and extrapolation on real fire situations

    International Nuclear Information System (INIS)

    Duret, B.; Warniez, P.

    1988-12-01

    From realistic tests on containers or on valves, we propose a modelisation which we apply to 3 particular problems: resistance of a 48 Y containers, during a fire situation. Influence of the presence of a valve. Evaluation of a leakage through a breach, mechanically created before a fire

  17. Comparison of the characteristics of fire and non-fire households in the 2004-2005 survey of fire department-attended and unattended fires.

    Science.gov (United States)

    Greene, Michael A

    2012-06-01

    Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 pfire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.

  18. Chemical Solutions of Fire Protection Problems

    Directory of Open Access Journals (Sweden)

    Vakhitova, L.M.

    2015-11-01

    Full Text Available The modern approaches to the creation of fire protective coatings by modifying intumescent systems by nanomaterials with study of the chemical reaction mechanisms under the high temperatures influence were considered. A systematic study of the interactions of components of polyphosphate type intumescent blend were carried out, a well-defined correlations between the directions of chemical processes and fire retardant properties of intumescent coatings were found. Efficient ways to simultaneous increase of fireprotective efficiency and performance characteristics of intumescent coatings (operatin life, resistance to environmental factors and bioсontamination were proposed. The results of fundamental research allowed to develop new formulations of flame retardant compositions, whose properties have been confirmed by tests in accordance with existing standardized methods, these results were introduced into production.

  19. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  20. Integrated Control of Fire Blight with Antagonists and Oxytetracycline

    Science.gov (United States)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory activity of o...

  1. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  2. Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight.

    Science.gov (United States)

    Halbwirth, Heidrun; Fischer, Thilo C; Roemmelt, Susanne; Spinelli, Francesco; Schlangen, Karin; Peterek, Silke; Sabatini, Emidio; Messina, Christian; Speakman, John-Bryan; Andreotti, Carlo; Rademacher, Wilhelm; Bazzi, Carlo; Costa, Guglielmo; Treutter, Dieter; Forkmann, Gert; Stich, Karl

    2003-01-01

    Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves. This compound is closely related to natural phytoalexins in sorghum. The approach does not only provide a safe method to control fire blight: Resistance against different pathogens is also induced in other crop plants.

  3. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  4. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Lucek, Heather; Bouchard, Jim

    2011-01-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: Development of time-dependent fire heat release rate profiles (required as input to CFAST), Calculation of fire severity factors based on CFAST detailed fire modeling, and Calculation of fire non-suppression probabilities.

  5. Evidence for nonuniform permafrost degradation after fire in boreal landscapes

    Science.gov (United States)

    Minsley, Burke J.; Pastick, Neal J.; Wylie, Bruce K.; Brown, Dana R.N.; Kass, M. Andy

    2016-01-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface electrical resistivity and nuclear magnetic resonance data indicate locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also areas where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Results show that postfire impacts on permafrost can be variable and depend on multiple factors such as fire severity, soil texture, soil moisture, and time since fire.

  6. A review of fire interactions and mass fires

    Science.gov (United States)

    Mark A. Finney; Sara S. McAllister

    2011-01-01

    The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire...

  7. Fire characteristics charts for fire behavior and U.S. fire danger rating

    Science.gov (United States)

    Faith Ann Heinsch; Pat Andrews

    2010-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...

  8. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  9. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Directory of Open Access Journals (Sweden)

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  10. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

    OpenAIRE

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-01-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In t...

  11. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time

  12. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time.

  13. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  14. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  15. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  16. Evaluation of Imminent Fire Hazards of Inheritance Ancestral Temple and Mansion in Georgetown, Penang

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Fire hazards of the inheritance buildings are often been neglected, causing fire to take place. Most of the heritage buildings are of large scale, flammable priceless contents and large numbers of visitors, however, the existing structures are weak in fire resistance. There are a few factors that contribute to the fire in these unique yet vulnerable structures Therefore, fire risk assessment plays an important role as many historic buildings in Penang are significant in their architectural value and historically importantt and their destructions by fire are great irreplaceable losses. Thus, this study is intended to identify the current fire emergency plan of heritage temples and mansions in Penang which includes 4 buildings such as Khoo Kongsi, Cheah Kongsi, Hock Teik Chen Shin Temple and Teochew Temple. The possible fire risks of these heritage buildings will be identified and evaluated comprehensively. The previous fire cases will be considered as well in order to discover the common factors contributing to the fire cases at heritage buildings. Time and again, people do not record their findings upon completing the fire risk assessment. Hence this particular research will prepare a complete record of the fire risk assessment. Having a fire risk assessment in the heritage building in Penang can be an interesting study to find out the current situation of heritage building fire protection awareness.

  17. Integrated Control of Fire Blight with Bacterial Antagonists and Oxytetracycline

    Science.gov (United States)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora were prevalent. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory acti...

  18. Intumescent Coatings as Fire Retardants

    Science.gov (United States)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  19. Laboratory fire behavior measurements of chaparral crown fire

    Science.gov (United States)

    C. Sanpakit; S. Omodan; D. Weise; M Princevac

    2015-01-01

    In 2013, there was an estimated 9,900 wildland fires that claimed more than 577,000 acres of land. That same year, about 542 prescribed fires were used to treat 48,554 acres by several agencies in California. Being able to understand fires using laboratory models can better prepare individuals to combat or use fires. Our research focused on chaparral crown fires....

  20. Temporary fire sealing of penetrations on TFTR

    International Nuclear Information System (INIS)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications

  1. Wildland fire in ecosystems: effects of fire on flora

    Science.gov (United States)

    James K. Brown; Jane Kapler Smith

    2000-01-01

    VOLUME 2: This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community...

  2. Thermal characterization of intumescent fire retardant paints

    International Nuclear Information System (INIS)

    Calabrese, L; Bozzoli, F; Rainieri, S; Pagliarini, G; Bochicchio, G; Tessadri, B

    2014-01-01

    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect

  3. Thermal characterization of intumescent fire retardant paints

    Science.gov (United States)

    Calabrese, L.; Bozzoli, F.; Bochicchio, G.; Tessadri, B.; Rainieri, S.; Pagliarini, G.

    2014-11-01

    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect.

  4. The importance of fire simulation in fire prediction

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje B.

    2014-01-01

    Full Text Available The appearance of fire in objects with lot of humans inside represents very possible real situation that could be very danger and could cause destructive consequences on human lives and material properties. Very important influence in fire prediction, fire protection, human and material properties safety could be a fire simulation in object. This simulation could give many useful information of possible fire propagation; possible and existed evacuation routes; possible and exited placing of fire, smoke, temperature conditions in object and many other information of crucial importance for human lives and material properties, such as the best places for sensors position, optimal number of sensors, projection of possible evacuation routes etc. There are many different programs for fire simulation. This paper presents complete fire simulation in Electrotechnical school Nikola Tesla in Niš in FDS.

  5. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  6. Thermal Behaviour of a Gypsum Fibre Board Associated with Rigid Polyurethane Foam under Standard Fire Conditions

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Jensen, Rasmus Lund; Kolding, Klaus

    2015-01-01

    Due to its low thermal conductivity (λ ≈ 20 mW/m.K), rigid polyurethane (PUR) foam has the potential to improve the thermal performance of buildings without increasing the thickness of construction elements. Nevertheless, PUR foam has the drawback of having a low resistance to fire: non-flaming t......Due to its low thermal conductivity (λ ≈ 20 mW/m.K), rigid polyurethane (PUR) foam has the potential to improve the thermal performance of buildings without increasing the thickness of construction elements. Nevertheless, PUR foam has the drawback of having a low resistance to fire: non...

  7. FIRE RESISTANCE OF DOUGLAS FIR [Pseudotsuga menziesii (Mirb. Franco] WOOD TREATED WITH SOME CHEMICALS

    Directory of Open Access Journals (Sweden)

    M. Kemal YALINKILIÇ

    1998-02-01

    Full Text Available Combustible properties of treated douglas wood specimens and fire-retardancy of some preservatives were tested in this study. Crib test of ASTM E 160-150 was followed. Results indicated that, aqueous solutions of boric acid (BA, borax (Bx (Na2BO7 10H2O or BA + Bx mixture (7: 3, w: w had fire retardant efficacy (FRE over untreated wood and reduced the combustibility of vinil monomers (Styrene and methylmetacrylate which were applied as secondary treatment.

  8. Estimates of fire environments in ship holds containing radioactive material packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Cole, J.K.; Hohnstreiter, G.F.; Wix, S.D.

    1995-01-01

    Fire environments that occur on cargo ships differ significantly from the fire environments found in land transport. Cargo ships typically carry a large amount of flammable fuel for propulsion and shipboard power, and may transport large quantities of flammable cargo. As a result, sea mode transport accident records contain instances of long lasting and intense fires. Since Irradiated Nuclear Fuel (INF) casks are not carried on tankers with large flammable cargoes, most of these dramatic, long burning fires are not relevant threats, and transport studies must concentrate on those fires that are most likely to occur. By regulation, INF casks must be separated from flammable cargoes by a fire-resistant, liquid-tight partition. This makes a fire in an adjacent ship hold the most likely fire threat. The large size of a cargo ship relative to any spent nuclear fuel casks on board, however, may permit a severe, long lasting fire to occur with little or no thermal impact on the casks. Although some flammable materials such as shipping boxes or container floors may exist in the same hold with the cask, the amount of fuel available may not provide a significant threat to the massive transport casks used for radioactive materials. This shipboard fire situation differs significantly from the regulatory conditions specified in 10 CFR 71 for a fully engulfing pool fire. To learn more about the differences, a series of simple thermal analyses has been completed to estimate cask behavior in likely marine and land thermal accident situations. While the calculations are based on several conservative assumptions, and are only preliminary, they illustrate that casks are likely to heat much more slowly in shipboard hold fires than in an open pool fire. The calculations also reinforce the basic regulatory concept that for radioactive materials, the shipping cask, not the ship, is the primary protection barrier to consider

  9. Fire performance, mechanical strength and dimensional stability of wood flour–polyethylene composites under the influence of different fire retardants

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2017-05-01

    Full Text Available Flammability is one of the most important parameters that often limit the application range of wood plastic composites. Therefore, the improvements of retardancy performance of these products have a considerable impact. The aim of this work was to evaluate the influence of expandable graphite (EG and its combination with aluminum tirhydroxide (ATH, inorganic phosphate (IP and melamine borate (MB on the flammability of wood flour–polyethylene composites. Composites were prepared by the melt compounding method and cone calorimetry as well as limited oxygen index (LOI tests was employed to study their flammability properties. Also, the effect of different fire retardants on the mechanical strength and water uptake of samples were investigated. Cone calorimetry characterization indicated that with incorporation of fire retardans heat release rate and burning rate decrease and char residual as well as the time to ignition increase. These findings ascribed to formation of char layer by fire retardants. The combination of EG and other fire retardants yielded better improvements in flame retardancy in comparison to the sample that has just EG as flame retardant. The LOI test was used to determine the lowest concentration of oxygen at which a material will maintain combustion in a flowing mixture of oxygen and nitrogen. The results showed that inclusion of fire retardants improve the LOI of sample. Furthermore, the presence of fire retardants decreased the tensile and flexural resistance (strength and modules and impact strength of samples, and increased the water absorption as well as thickness swelling. Generally, among the different treatments examined, the EG–ATH retardancy system showed highest potential in flame retardancy of composites.

  10. Behavior and monitoring of air filters of high efficiency during fire

    International Nuclear Information System (INIS)

    Chappellier, Andre; Chappellier, Simonne.

    1980-07-01

    High efficiency filters were submitted to dynamic tests at graduated temperatures. As compared to the case of fire taking place in a high activity building equiped with such purifying system, these tests can be considered as significant. The tested filters were found out to resist to three ranges of temperatures: (1) 130 0 C during one hour, (ii) 250 0 C during one hour, (iii) 400 0 C during at least two hours. Some observed phenomenons, as for instance, the smoke emission due to glues, or building materials pyrolysis will progress the conception doctrine of fire detection network in ventilation sheath. Moreover these tests demonstrated that thermal fire detectors well chosen and correctly put into operation can be useful in these sheaths [fr

  11. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  12. Risk assessment of main control board fire using fire dynamics simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol; Yoo, Seong Yeon

    2015-01-01

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk

  13. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  14. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  15. Fire Perimeters

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  16. Fire History

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  17. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  18. Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires - RxCADRE 2012

    Science.gov (United States)

    Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin. Hiers

    2016-01-01

    The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...

  19. Community participation in fire management planning: The Trinity county fire safe council's fire plan

    Science.gov (United States)

    Yvonne Everett

    2008-01-01

    In 1999, Trinity County CA, initiated a participatory fire management planning effort. Since that time, the Trinity County Fire Safe Council has completed critical portions of a fire safe plan and has begun to implement projects defined in the plan. Completion of a GIS based, landscape scale fuels reduction element in the plan defined by volunteer fire fighters, agency...

  20. Managing wildland fires: integrating weather models into fire projections

    Science.gov (United States)

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  1. Fire Regimes of Remnant Pitch Pine Communities in the Ridge and Valley Region of Central Pennsylvania, USA

    Directory of Open Access Journals (Sweden)

    Joseph M. Marschall

    2016-10-01

    Full Text Available Many fire-adapted ecosystems in the northeastern U.S. are converting to fire-intolerant vegetation communities due to fire suppression in the 20th century. Prescribed fire and other vegetation management activities that increase resilience and resistance to global changes are increasingly being implemented, particularly on public lands. For many fire-dependent communities, there is little quantitative data describing historical fire regime attributes such as frequency, severity, and seasonality, or how these varied through time. Where available, fire-scarred live and remnant trees, including stumps and snags, offer valuable insights into historical fire regimes through tree-ring and fire-scar analyses. In this study, we dated fire scars from 66 trees at two sites in the Ridge and Valley Province of the Appalachian Mountains in central Pennsylvania, and described fire frequency, severity, and seasonality from the mid-17th century to 2013. Fires were historically frequent, of low to moderate severity, occurred mostly during the dormant season, and were influenced by aspect and topography. The current extended fire-free interval is unprecedented in the previous 250–300 years at both sites.

  2. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  3. Enhancing adaptive capacity for restoring fire-dependent ecosystems: the Fire Learning Network's Prescribed Fire Training Exchanges

    Directory of Open Access Journals (Sweden)

    Andrew G. Spencer

    2015-09-01

    Full Text Available Prescribed fire is a critical tool for promoting restoration and increasing resilience in fire-adapted ecosystems, but there are barriers to its use, including a shortage of personnel with adequate ecological knowledge and operational expertise to implement prescribed fire across multijurisdictional landscapes. In the United States, recognized needs for both professional development and increased use of fire are not being met, often because of institutional limitations. The Fire Learning Network has been characterized as a multiscalar, collaborative network that works to enhance the adaptive capacity of fire management institutions, and this network developed the Prescribed Fire Training Exchanges (TREXs to address persistent challenges in increasing the capacity for prescribed fire implementation. Our research was designed to investigate where fire professionals face professional barriers, how the TREX addresses these, and in what ways the TREX may be contributing to the adaptive capacity of fire management institutions. We evaluated the training model using surveys, interviews, focus groups, and participant observation. We found that, although the training events cannot overcome all institutional barriers, they incorporate the key components of professional development in fire; foster collaboration, learning, and network building; and provide flexible opportunities with an emphasis on local context to train a variety of professionals with disparate needs. The strategy also offers an avenue for overcoming barriers faced by contingent and nonfederal fire professionals in attaining training and operational experience, thereby increasing the variety of actors and resources involved in fire management. Although it is an incremental step, the TREX is contributing to the adaptive capacity of institutions in social-ecological systems in which fire is a critical ecological process.

  4. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    Science.gov (United States)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  5. The action of the fire on the components of the concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2011-06-01

    Full Text Available The concrete is a composed material where different materials constitute that it do not react ahead in the same way of the action of high temperatures, becoming the effect of the fire on the concrete structures a problem clearly. The time of exposition to the fire, reached level of temperature and the trace of the concrete, will influence in the alteration degree that could be produced in the concrete affected for these factors. To study the effect of the fire, where a fire is different of the other, it is necessary to carry through a fire real, due to the different variable. The effect produced for the fire in the armed concrete can be analyzed observing the results gotten in the mortar, the steel, the entailing enter both in the armed concrete, the consequences of the when hindered dilatations total or partially and production of resultant efforts of fires. The effect of the rise of the temperature in cylindrical bodies of mortar test had been analyzed, kept in humid chamber, to air, during 7 days. It was used siliceous sand of river and Portland cement CP-V, submitted to the rise of temperature in muffle. The concrete ones submitted to the action of the fire lose considerably its resistance, where, as the temperature increase increases its loss, and its elasticity is below of the desired levels, as it can confirm these data gotten through the bibliographical revision.

  6. US Fire Administration Fire Statistics

    Data.gov (United States)

    Department of Homeland Security — The U.S. Fire Administration collects data from a variety of sources to provide information and analyses on the status and scope of the fire problem in the United...

  7. Experimental study of fire barriers preventing vertical fire spread in ETISs

    Directory of Open Access Journals (Sweden)

    Xin Huang

    2013-11-01

    Full Text Available In recent years, the external thermal insulation system (ETIS has been applied increasingly in a large amount of buildings for energy conservation purpose. However, the increase use of combustible insulation materials in the ETIS has raised serious fire safety problems. Fires involving this type of ETIS have caused severe damage and loss. In order to improve its fire safety, fire barriers were suggested to be installed. This paper introduces fire experiments that have been done to study the effects of fire barriers on preventing vertical fire spread along the ETIS. The experiments were performed according to BS 8414-1:2002 “Fire performance of external cladding systems – Part 1: Test method for non-loadbearing external cladding systems applied to the face of the building”. The test facility consists of a 9 m high wall. The fire sources were wood cribs with a fire size of 3 ± 0.5 MW. The insulation materials were expanded polystyrene foam (EPS. The fire barrier was a horizontal strip of rockwool with a width of 300 mm. Thermocouples were used to measure temperatures outside and inside the ETIS. A series of experiments with different fire scenarios were done: no fire barrier, two fire barriers and three fire barriers at different heights. Test results were compared. The results show that the ETIS using EPS without fire barriers almost burned out, while the ETIS with fire barriers performed well in preventing fire spread. The temperatures above the fire barrier were much lower than those below the fire barrier, and most of the insulation materials above the top fire barrier stayed in place.

  8. A study for disaster prevention in the case of the underground fire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    There are three categories of possible disaster or hazard in workings where diesel equipment are operating. 1) Disasters by exhaust pollutants: The equipment specially designed for underground use are strongly recommended. Workings using diesel equipment should be properly ventilated all the time to maintain the gas concentration bellow the permissible level. The fume diluter is recommended as the most practical after treatment device in Korean mines. 2) Underground fire: The main cause of diesel fire is over heated engine and spillage of hydraulic liquid. Therefore, protecting the over heat of engine, using fire resistive hydraulic liquid and high flash point fuel is requested. Fuel and the other oils are recommended to be stored at surface. To protect the smoke return in case of underground fire, the ventilation velocity must be kept more than 1.5m/sec. The fire smoke starts to return on 1.5m/sec and stops to return on 2.0m/sec. The fire smoke flows through upper half of the tunnel and it`s temperature is 10 degrees higher than ventilation air flow. For taking an immediate measure on fire, keeping the updated simulation is essential matter. 3) Other disasters. (author). 9 tabs., 15 figs.

  9. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    Science.gov (United States)

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  10. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  11. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    Science.gov (United States)

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced Fire Events Database to Support Fire PRA

    International Nuclear Information System (INIS)

    Baranowsky, Patrick; Canavan, Ken; St. Germain, Shawn

    2010-01-01

    This paper provides a description of the updated and enhanced Fire Events Data Base (FEDB) developed by the Electric Power Research Institute (EPRI) in cooperation with the U.S. Nuclear Regulatory Commission (NRC). The FEDB is the principal source of fire incident operational data for use in fire PRAs. It provides a comprehensive and consolidated source of fire incident information for nuclear power plants operating in the U.S. The database classification scheme identifies important attributes of fire incidents to characterize their nature, causal factors, and severity consistent with available data. The database provides sufficient detail to delineate important plant specific attributes of the incidents to the extent practical. A significant enhancement to the updated FEDB is the reorganization and refinement of the database structure and data fields and fire characterization details added to more rigorously capture the nature and magnitude of the fire and damage to the ignition source and nearby equipment and structures.

  13. Documentation for Calculations of Standard Fire Resistance of Slabs and Walls of Concrete with Expanded Clay Aggregate

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection with the calcula......A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection...... with the calculation methods used for other load cases. In addition the methods are shown to be valid for heavy concrete constructions by cooperation with tests for beams and columns, and a few slabs and walls. The two test series phase 1 and 2 of this report can therefore be seen as a necessary supplement to show...... that the methods are applicable for slabs and walls of light weight aggregate concrete. It is shown that the temperatures for standard fire exposed cross sections can be calculated, that the ultimate moment capacity can be calculated for slabs, and that the anchorage capacity and the shear tension capacity can...

  14. Fire Behavior (FB)

    Science.gov (United States)

    Robert E. Keane

    2006-01-01

    The Fire Behavior (FB) method is used to describe the behavior of the fire and the ambient weather and fuel conditions that influence the fire behavior. Fire behavior methods are not plot based and are collected by fire event and time-date. In general, the fire behavior data are used to interpret the fire effects documented in the plot-level sampling. Unlike the other...

  15. Interaction diagrams for composite columns exposed to fire

    Directory of Open Access Journals (Sweden)

    Milanović Milivoje

    2014-01-01

    Full Text Available The bearing capacity of the cross section of composite column in fire conditions through changes in the interaction diagram 'bending moment-axialforce' were analyzed in this paper. The M-N interaction diagram presents the relationship between the intensities of the bending moment and the axial force as actions on the column cross section, or the relationship between the design value of the plastic resistance to axial compression of the total cross-section Npl, Rd and the design value of the bending moment resistance Mpl, Rd. It is well known that the temperature increase causes decrease of the load-bearing characteristics of the constitutive materials. This effect directly reflects on the reduction of the axial force and the bending moment that could be accepted by the column cross section. Interaction diagrams for three different types of column cross sections for five different maximal temperatures developed during the fire action were defined. For that purpose the software package SAFIR was used. The columns, materials and load characteristics, as well as all other terms and conditions, were taken in accordance with the relevant Eurocodes and the theory of composite columns.

  16. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    Science.gov (United States)

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  17. The effect of leaf beetle herbivory on the fire behaviour of tamarisk (Tamarix ramosissima Lebed.)

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Brooks, Matthew L.; Matchett, John R.

    2012-01-01

    The non-native tree, Tamarix spp. has invaded desert riparian ecosystems in the south-western United States. Fire hazard has increased, as typically fire-resistant native vegetation is replaced by Tamarix. The tamarisk leaf beetle, Diorhabda carinulata Desbrochers, introduced for biological control, may affect fire behaviour by converting hydrated live Tamarix leaves and twigs into desiccated and dead fuels. This potentially increases fire hazard in the short term before native vegetation can be re-established. This study investigates how fire behaviour is altered in Tamarix fuels desiccated by Diorhabda herbivory at a Great Basin site, and by herbivory simulated by foliar herbicide at a Mojave Desert site. It also evaluates the influence of litter depth on fire intensity. Fire behaviour was measured with a fire intensity index that integrates temperature and duration (degree-minutes above 70°C), and with maximum temperature, duration, flame lengths, rates of spread and vegetation removal. Maximum temperature, flame length and rate of spread were enhanced by foliar desiccation of Tamarix at both sites. At only the Mojave site, there was a trend for desiccated trees to burn with greater fire intensity. At both sites, fire behaviour parameters were influenced to a greater degree by litter depth, vegetation density and drier and windier conditions than by foliar desiccation.

  18. Fire-driven alien invasion in a fire-adapted ecosystem

    Science.gov (United States)

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  19. Fire-driven alien invasion in a fire-adapted ecosystem.

    Science.gov (United States)

    Keeley, Jon E; Brennan, Teresa J

    2012-08-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  20. Study of fire-resistance of reinforced concrete slab of a new type

    Directory of Open Access Journals (Sweden)

    Kalmykov Oleg

    2017-01-01

    Full Text Available Reinforced concrete structures with complex inner geometry under the effect of high temperatures considering void former materials were examined. The analysis of strain-stress state of new type of architectural and construction system ‘Monofant’ under the effect of high temperature heating in standard fire mode, considering the change of design pattern was carried out. Numerical study of concrete slab with given reinforcement and complex inner geometry was carried out with use of software packages based on finite element method. Temperature fields throughout the depth of cross section of the slab of new type of architectural and construction system ‘Monofant’ upon heating in standard fire mode for time interval 0-240 min. were obtained. The carrying capacity of sections exposed to high temperatures was determined by deformation method. Offered the algorithm that considers the transformation of design patterns depending on temperature values and excessive pressure in thermal insulation cavities taking into account influence of deformation fields on temperature distribution.

  1. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  2. Development of a new composite system: fire resistant and highly structural

    Directory of Open Access Journals (Sweden)

    González, J.

    2010-06-01

    Full Text Available Infrastructure and rail sectors share two singularities in terms of materials: highly structural performance and strict fire requirements. Moreover, there is a common growing interest in both sectors: the use of organic matrix composite materials due to their high performance, lightweight and in-service behavior. Traditionally, fire fillers have been added to the matrix, decreasing its mechanical performance in a critical way. A study about composite materials formed by three different matrices and four different carbon fibers will be presented in this paper. A number of laminates have been manufactured by using these composite materials in order to analyze both the resin processing and the compatibility of the different matrices and fibers. This study is a need due to the fact that these matrices are fire-related and therefore further problems may arise in comparison with standard matrices.

    Los sectores de la construcción y del ferrocarril tienen dos aspectos en común en el ámbito de los materiales: la utilización de materiales altamente estructurales y la aplicación de estrictos requerimientos de fuego. Asimismo, en ambos sectores existe un interés creciente en el uso de materiales compuestos de matriz orgánica por sus excelentes prestaciones, ligereza y comportamiento en servicio. Tradicionalmente, se han aplicado cargas anti-fuego a la matriz orgánica, disminuyendo sus propiedades mecánicas de forma importante. En este artículo se presentará un estudio de materiales compuestos formados por tres matrices orgánicas diferentes y cuatro tipos de fibras de carbono. Con estos constituyentes se han fabricado diferentes laminados para analizar, por un lado, la procesabilidad de estas resinas, y, por otro, la compatibilidad de estas resinas con las fibras de refuerzo utilizadas. Este estudio es necesario debido a que al tratarse de resinas formuladas con características frente a fuego y humos, su fabricabilidad puede

  3. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    Science.gov (United States)

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  4. Faunal responses to fire in chaparral and sage scrub in California, USA

    Science.gov (United States)

    van Mantgem, Elizabeth; Keeley, Jon E.; Witter, Marti

    2015-01-01

    Impact of fire on California shrublands has been well studied but nearly all of this work has focused on plant communities. Impact on and recovery of the chaparral fauna has received only scattered attention; this paper synthesizes what is known in this regard for the diversity of animal taxa associated with California shrublands and outlines the primary differences between plant and animal responses to fire. We evaluated the primary faunal modes of resisting fire effects in three categories: 1) endogenous survival in a diapause or diapause-like stage, 2) sheltering in place within unburned refugia, or 3) fleeing and recolonizing. Utilizing these patterns in chaparral and sagescrub, as well as some studies on animals in other mediterranean-climate ecosystems, we derived generalizations about how plants and animals differ in their responses to fire impacts and their post fire recovery. One consequence of these differences is that variation in fire behavior has a much greater potential to affect animals than plants. For example, plants recover from fire endogenously from soil-stored seeds and resprouts, so fire size plays a limited role in determining recovery patterns. However, animals that depend on recolonization of burned sites from metapopulations may be greatly affected by fire size. Animal recolonization may also be greatly affected by regional land use patterns that affect colonization corridors, whereas such regional factors play a minimal role in plant community recovery. Fire characteristics such as rate of spread and fire intensity do not appear to play an important role in determining patterns of chaparral and sage scrub plant recovery after fire. However, these fire behavior characteristics may have a profound role in determining survivorship of some animal populations as slow-moving, smoldering combustion may limit survivorship of animals in burrows, whereas fast-moving, high intensity fires may affect survivorship of animals in above ground refugia or

  5. A Method of Fire Scenarios Identification in a Consolidated Fire Risk Analysis

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Joon Eon

    2010-01-01

    Conventional fire PSA consider only two cases of fire scenarios, that is one for fire without propagation and the other for single propagation to neighboring compartment. Recently, a consolidated fire risk analysis using single fault tree (FT) was developed. However, the fire scenario identification in the new method is similar to conventional fire analysis method. The present study develops a new method of fire scenario identification in a consolidated fire risk analysis method. An equation for fire propagation is developed to identify fire scenario and a mapping method of fire scenarios into internal event risk model is discussed. Finally, an algorithm for automatic program is suggested

  6. Fire and fire ecology: Concepts and principles

    Science.gov (United States)

    Mark A. Cochrane; Kevin C. Ryan

    2009-01-01

    Fire has been central to terrestrial life ever since early anaerobic microorganisms poisoned the atmosphere with oxygen and multicellular plant life moved onto land. The combination of fuels, oxygen, and heat gave birth to fire on Earth. Fire is not just another evolutionary challenge that life needed to overcome, it is, in fact, a core ecological process across much...

  7. Forest fires

    International Nuclear Information System (INIS)

    Fuller, M.

    1991-01-01

    This book examines the many complex and sensitive issues relating to wildland fires. Beginning with an overview of the fires of 1980s, the book discusses the implications of continued drought and considers the behavior of wildland fires, from ignition and spread to spotting and firestorms. Topics include the effects of weather, forest fuels, fire ecology, and the effects of fire on plants and animals. In addition, the book examines firefighting methods and equipment, including new minimum impact techniques and compressed air foam; prescribed burning; and steps that can be taken to protect individuals and human structures. A history of forest fire policies in the U.S. and a discussion of solutions to fire problems around the world completes the coverage. With one percent of the earth's surface burning every year in the last decade, this is a penetrating book on a subject of undeniable importance

  8. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Science.gov (United States)

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  9. Browns Ferry fire

    International Nuclear Information System (INIS)

    Harkleroad, J.R.

    1983-01-01

    A synopsis of the March 22, 1975 fire at Browns Ferry Nuclear Plant is discussed. Emphasis is placed on events prior to and during the fire. How the fire started, fire fighting activities, fire and smoke development, and restoration activities are discussed

  10. Overview of the 2013 FireFlux II grass fire field experiment

    Science.gov (United States)

    C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer

    2014-01-01

    In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...

  11. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  12. Fire severity and ecosytem responses following crown fires in California shrublands.

    Science.gov (United States)

    Keeley, Jon E; Brennan, Teresa; Pfaff, Anne H

    2008-09-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a

  13. Fire Extinguisher Training for Fire Watch and Designated Workers, Course 9893

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  14. Fire Extinguisher Designated Worker and Fire Watch: Self-Study Course 15672

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-08

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  15. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol

    2013-01-01

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  16. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    Science.gov (United States)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.

  17. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  18. Fire Research Enclosure

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Simulates submarine fires, enclosed aircraft fires, and fires in enclosures at shore facilities .DESCRIPTION: FIRE I is a pressurizable, 324 cu m(11,400 cu...

  19. Fire protection for launch facilities using machine vision fire detection

    Science.gov (United States)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  20. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Institutional fire safety policies and fire statistics... fire statistics. (a) Additional definitions that apply to this section. Cause of fire: The factor or...; however, it does not include indirect loss, such as business interruption. (b) Annual fire safety report...

  1. All fired up

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Members of the Directorate and their support staff took part in a fire-fighting course organised by the CERN Fire Brigade just before the end-of-year break.  The Bulletin takes a look at the fire-fighting training on offer at CERN.   At CERN the risk of fire can never be under-estimated. In order to train personnel in the use of fire extinguishers, CERN's fire training centre in Prévessin acquired a fire-simulation platform in 2012. On the morning of 17 December 2012, ten members of the CERN directorate and their support staff tried out the platform, following in the footsteps of 400 other members of the CERN community who had already attended the course. The participants were welcomed to the training centre by Gilles Colin, a fire-fighter and instructor, who gave them a 30-minute introduction to general safety and the different types of fire and fire extinguishers, followed by an hour of practical instruction in the simulation facility. There they were able to pract...

  2. Fire patterns in the range of the greater sage-grouse, 1984-2013 — Implications for conservation and management

    Science.gov (United States)

    Brooks, Matthew L.; Matchett, John R.; Shinneman, Douglas J.; Coates, Peter S.

    2015-09-10

    Fire ranks among the top three threats to the greater sage-grouse (Centrocercus urophasianus) throughout its range, and among the top two threats in the western part of its range. The national research strategy for this species and the recent U.S. Department of the Interior Secretarial Order 3336 call for science-based threats assessment of fire to inform conservation planning and fire management efforts. The cornerstone of such assessments is a clear understanding of where fires are occurring and what aspects of fire regimes may be shifting outside of their historical range of variation. This report fulfills this need by describing patterns of fire area, fire size, fire rotation, and fire season length and timing from 1984 to 2013 across the range of the greater sage-grouse. This information need is further addressed by evaluating the ecological and management implications of these fire patterns. Analyses are stratified by major vegetation types and the seven greater sage-grouse management zones, delineated regionally as four western and three eastern management zones. Soil temperature and moisture indicators of resilience to fire and resistance to cheatgrass invasion, and the potential for establishment of a grass/fire cycle, are used as unifying concepts in developing fire threat assessments for each analysis strata.

  3. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  4. Influence of reinforcement type on the mechanical behavior and fire response of hybrid composites and sandwich structures

    Science.gov (United States)

    Giancaspro, James William

    Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both

  5. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  6. The role of fuels for understanding fire behavior and fire effects

    Science.gov (United States)

    E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien

    2018-01-01

    Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...

  7. Fire Problems in High-Rise Buildings. California Fire Service Training Program.

    Science.gov (United States)

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Resulting from a conference concerned with high-rise fire problems, this manual has been prepared as a fire department training manual and as a reference for students enrolled in fire service training courses. Information is provided for topics dealing with: (1) Typical Fire Problems in High-Rise Buildings, (2) Heat, (3) Smoke and Fire Gases, (4)…

  8. Forest fires in Pennsylvania.

    Science.gov (United States)

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  9. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  10. Fire safety assessment for the fire areas of the nuclear power plant using fire model CFAST

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kim, Jong Hoon

    2005-03-01

    Now the deterministic analysis results for the cable integrity is not given in case of performing the fire PSA. So it is necessary to develop the assessment methodology for the fire growth and propagation. This document is intended to analyze the peak temperature of the upper gas layer using the fire modeling code, CFAST, to evaluate the integrity of the cable located on the dominant pump rooms, and to assess the CCDP(Conditional Core Damage Probability) using the results of the cable integrity. According to the analysis results, the cable integrity of the pump rooms is maintained and CCDP is reduced about two times than the old one. Accordingly, the fire safety assessment for the dominant fire areas using the fire modeling code will capable to reduce the uncertainty and to develop a more realistic model

  11. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  12. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China

    Science.gov (United States)

    Xiao, Xiayun; Haberle, Simon G.; Shen, Ji; Xue, Bin; Burrows, Mark; Wang, Sumin

    2017-06-01

    A high-resolution, continuous 18.5 kyr (1 kyr = 1000 cal yr BP) macroscopic charcoal record from Qinghai Lake in southwestern Yunnan Province, China, reveals postglacial fire frequency and variability history. The results show that three periods with high-frequency and high-severity fires occurred during the periods 18.5-15.0, 13.0-11.5, and 4.3-0.8 ka, respectively. This record was compared with major pollen taxa and pollen diversity indices from the same core, and tentatively related to the regional climate proxy records with the aim to separate climate- from human-induced fire activity, and discuss vegetation-fire-climate interactions. The results suggest that fire was mainly controlled by climate before 4.3 ka and by the combined actions of climate and humans after 4.3 ka. Before 4.3 ka, high fire activity corresponded to cold and dry climatic conditions, while warm and humid climatic conditions brought infrequent and weak fires. Fire was an important disturbance factor and played an important role in forest dynamics around the study area. Vegetation responses to fire after 4.3 ka are not consistent with those before 4.3 ka, suggesting that human influence on vegetation and fire regimes may have become more prevalent after 4.3 ka. The comparisons between fire activity and vegetation reveal that evergreen oaks are flammable plants and fire-tolerant taxa. Alnus is a fire-adapted taxon and a nonflammable plant, but density of Alnus forest is a key factor to decide its fire resistance. The forests dominated by Lithocarpus/Castanopsis and/or tropical trees and shrubs are not easy to ignite, but Lithocarpus/Castanopsis and tropical trees and shrubs are fire-sensitive taxa. Fire appears to be unfavourable to plant diversity in the study area.

  13. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  14. Fire Propagation Tracing Model in the Explicit Treatment of Events of Fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Jun Eon

    2010-01-01

    The fire propagation model in a fire PSA has not been considered analytically instead a simplified analyst's intuition was used to consider the fire propagation path. A fire propagation equation is developed to trace all the propagation paths in the fire area in which a zone is defined to identify various fire ignition sources. An initiation of fire is assumed to take place in a zone. Then, the propagation is modeled with a Boolean equation. Since the explicit fire PSA modeling requires an exclusive event set to sum up the..., exclusive event sets are derived from the fire propagation equation. As an example, we show the exclusive set for a 2x3 rectangular fire zone. Also, the applicability the developed fire equation is discussed when the number of zone increases including the limitation of the explicit fire PSA modeling method

  15. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  16. Determination of critical breakage conditions for double glazing in fire

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Ke; Su, Yanfei; Lu, Wei; Wang, Qingsong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2017-01-01

    Highlights: • Critical heat fluxes of exposed and ambient panes are 6 kW/m"2 and 25 kW/m"2. • Critical temperature difference of fire side pane is around 60 °C. • The ambient pane survives three times longer due to radiation filter and air gap. • Heat transfer in double glazing is revealed by a heat flux based theoretical model. - Abstract: Double glazing unit normally demonstrates better fire resistance than single glazing, but the knowledge on its thermal behavior and heat transfer mechanism during fire is limited. In this work, nine double glazing units were heated by a 500 × 500 mm"2 pool fire. The incident heat flux, temperature on four surfaces, breakage time and cracking behavior were obtained. The critical breakage conditions for interior and exterior panes were determined through gradually decreasing the glass-burner distance from 750 mm to 450 mm. It is established that in double glazing the pane at ambient side can withstand significantly more time than the pane exposed to fire. The critical temperature difference for interior pane is 60 °C; the critical temperature of exterior pane breakage is much higher due to no frame-covered area. In addition, the heat flux at the time of crack initiation is 6 kW/m"2 for the pane at fire side, while more than 25 kW/m"2 for ambient side pane. To reveal the heat transfer mechanism in glazing-air-glazing, theoretical and numerical investigations are also performed, which agrees well with the experimental results.

  17. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.

    Science.gov (United States)

    Arbellay, Estelle; Daniels, Lori D; Mansfield, Shawn D; Chang, Alice S

    2017-12-01

    Both mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins and fire leave scars with similar appearance on lodgepole pine Pinus contorta Dougl. ex Loud. var. latifolia Engelm. that have never been compared microscopically, despite the pressing need to determine the respective effects of MPB and fire injury on tree physiology. We analysed changes in wood formation in naturally caused scars on lodgepole pine, and tested the hypotheses that (i) MPB and fire injury elicit distinct anomalies in lodgepole pine wood and (ii) anomalies differ in magnitude and/or duration between MPB and fire. Mountain pine beetle and fire injury reduced radial growth in the first year post-injury. Otherwise, radial growth and wood density increased over more than 10 years in both MPB and fire scars. We found that the general increase in radial growth was of greater magnitude (up to 27%) and of longer duration (up to 5 years) in fire scars compared with MPB scars, as shown in earlywood width. We also observed that the increase in latewood density was of greater magnitude (by 12%) in MPB scars, but of longer duration (by 4 years) in fire scars. Crystallinity decreased following MPB and fire injury, while microfibril angle increased. These changes in fibre traits were of longer duration (up to 4 years) in MPB scars compared with fire scars, as shown in microfibril angle. We found no significant changes in carbon and nitrogen concentrations. In conclusion, we stress that reduced competition and resistance to cavitation play an important role alongside cambial injury in influencing the type and severity of changes. In addition, more research is needed to validate the thresholds introduced in this study. Our findings serve as a foundation for new protocols to distinguish between bark beetle and fire disturbance, which is essential for improving our knowledge of historical bark beetle and fire regimes, and their interactions. © The Author 2017. Published by Oxford University Press. All

  18. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    Science.gov (United States)

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes

  19. Humans, Fires, and Forests - Social science applied to fire management

    Science.gov (United States)

    Hanna J. Cortner; Donald R. Field; Pam Jakes; James D. Buthman

    2003-01-01

    The 2000 and 2002 fire seasons resulted in increased political scrutiny of the nation's wildland fire threats, and given the fact that millions of acres of lands are still at high risk for future catastrophic fire events, the issues highlighted by the recent fire seasons are not likely to go away any time soon. Recognizing the magnitude of the problem, the...

  20. EPS insulated façade fires from a fire and rescue perspective

    Directory of Open Access Journals (Sweden)

    Kumm M.

    2013-11-01

    Full Text Available This paper highlights the challenges the fire and rescue services can meet at façade fires involving EPS insulation during construction and use of a building. The EPS characteristics are discussed in respect to the fire and rescue operation and results from orientating fire tests performed at a fire and rescue services training and test field are presented. Types of evacuation solutions, involving the fire and rescue services, where façade fires can delay or completely rule out the possibilities for safe evacuation, are presented. The restrictions in the Swedish building codes regarding use of combustible insulation are analysed and reflections over the practical problems with following the instructions to keep an EPS insulated façade safe through the building's whole lifespan are made. A number of occurred fires involving EPS are discussed and analysed from a fire and rescue perspective. Finally, recommendations are given for the fire and rescue services and future research fields are proposed.

  1. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  2. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Science.gov (United States)

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be

  3. OECD-FIRE PR02. OECD-FIRE database record structure

    International Nuclear Information System (INIS)

    Kolar, L.

    2005-12-01

    In the coding guidelines, the scope, format, and details of any record required to input a real fire event at a nuclear reactor unit to the international OECD-FIRE database are described in detail. The database was set up in the OECD-FIRE-PR02 code

  4. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  5. Fire protection at hot laboratories: Prevention, surveillance and fire-fighting

    International Nuclear Information System (INIS)

    Chappellier, A.M.

    1976-01-01

    After pointing out that fire in a hot laboratory can be an important factor contributing to a radioactivity accident, the author briefly recalls the items to be taken into account in a fire hazard analysis. He then describes various important aspects of prevention, detection and fire-fighting which - at the French Commissariat a l'Energie Atomique - are governed by already defined rules or by guidelines which are sufficiently advanced to give a clear idea of the final conclusions to be drawn therefrom. From the point of view protection, the concept of fire sector has been evolved, at hot laboratories, becomes the fire and contamination sector, so as to ensure under all circumstances the containment of any radioactive materials dispersed in the premises on fire. Regarding fire detection, a study should be made on the constraints specific to the facility and liable to affect detector operation. These include ventilation, radiations, neutral or corrosive atmosphere, etc. As regards fire-fighting, two particular aspects are dealt with, namely the question of using water in case of fire and action to be taken concerning ventilation. A practical example - the protection of a ventilation system - is described. In conclusion the paper refers to the need for a thorough analysis specific to each hot laboratory, and to the importance of preparing an operational plan so as to avoid any dangerous improvisations in case of an accident. (author)

  6. The contribution of natural fire management to wilderness fire science

    Science.gov (United States)

    Carol Miller

    2014-01-01

    When the federal agencies established policies in the late 1960s and early 1970s to allow the use of natural fires in wilderness, they launched a natural fire management experiment in a handful of wilderness areas. As a result, wildland fire has played more of its natural role in wilderness than anywhere else. Much of what we understand about fire ecology comes from...

  7. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  8. Gypsum plasterboards enhanced with phase change materials: A fire safety assessment using experimental and computational techniques

    Directory of Open Access Journals (Sweden)

    Kolaitis Dionysios I.

    2013-11-01

    Full Text Available Phase Change Materials (PCM can be used for thermal energy storage, aiming to enhance building energy efficiency. Recently, gypsum plasterboards with incorporated paraffin-based PCM blends have become commercially available. In the high temperature environment developed during a fire, the paraffins, which exhibit relatively low boiling points, may evaporate and, escaping through the gypsum plasterboard's porous structure, emerge to the fire region, where they may ignite, thus adversely affecting the fire resistance characteristics of the building. Aiming to assess the fire safety behaviour of such building materials, an extensive experimental and computational analysis is performed. The fire behaviour and the main thermo-physical physical properties of PCM-enhanced gypsum plasterboards are investigated, using a variety of standard tests and devices (Scanning Electron Microscopy, Thermo Gravimetric Analysis, Cone Calorimeter. The obtained results are used to develop a dedicated numerical model, which is implemented in a CFD code. CFD simulations are validated using measurements obtained in a cone calorimeter. In addition, the CFD code is used to simulate an ISO 9705 room exposed to fire conditions, demonstrating that PCM addition may indeed adversely affect the fire safety of a gypsum plasterboard clad building.

  9. Fire risk in California

    Science.gov (United States)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger

  10. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  11. Synthesis and Characterization of Chlorinated Bisphenol-Based Polymers and Polycarbodiimides as Inherently Fire-Safe Polymers

    National Research Council Canada - National Science Library

    Stewart, Jennifer

    2000-01-01

    .... The first class, 1,1-dichloro-2,2-(4-hydroxyphenyl)ethylidene (bisphenol C) based polymers, were found to be among the most fire- resistant polymers with peak heat release capacities as low as 20 J/g-K...

  12. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    International Nuclear Information System (INIS)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future

  13. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  14. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    OpenAIRE

    Otto Dvořák

    2016-01-01

    This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  15. Resistance to invasion and resilience to fire in desert shrublands of North America

    Science.gov (United States)

    Matthew L. Brooks; Jeanne C. Chambers

    2011-01-01

    Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective...

  16. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  17. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  18. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Science.gov (United States)

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  19. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  20. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Science.gov (United States)

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  1. Wildland fire in ecosystems: effects of fire on fauna

    Science.gov (United States)

    Jane Kapler Smith

    2000-01-01

    VOLUME 1: Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals' ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal...

  2. Wildland fire in ecosystems: effects of fire on soils and water

    Science.gov (United States)

    Daniel G. Neary; Kevin C. Ryan; Leonard F. DeBano

    2005-01-01

    This state-of-knowledge review about the effects of fire on soils and water can assist land and fire managers with information on the physical, chemical, and biological effects of fire needed to successfully conduct ecosystem management, and effectively inform others about the role and impacts of wildland fire. Chapter topics include the soil resource, soil physical...

  3. Using resistance and resilience concepts to reduce impacts of annual grasses and altered fire regimes on the sagebrush ecosystem and sage-grouse- A strategic multi-scale approach

    Science.gov (United States)

    Chambers, Jeanne C.; Pyke, David A.; Maestas, Jeremy D.; Boyd, Chad S.; Campbell, Steve; Espinosa, Shawn; Havlina, Doug; Mayer, Kenneth F.; Wuenschel, Amarina

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat requirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and the most appropriate management treatments.

  4. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    Numerous fire PSAs (probabilistic safety assessments) have shown that fire can be a major contributor to nuclear power plant risk. However, there are considerable uncertainties in the results of these assessments, due to significant gaps in current abilities to perform realistic assessments. These gaps involve multiple aspects of fire PSA, including the estimation of the probability of important fire scenarios, the modeling of fire growth and suppression, the prediction of fire-induced damage to equipment (including the effects of smoke), and the treatment of plant and operator responses to the fire. In response to recommendations of /VIR 93/, CSNI/PWG5 established a Task Group to review the present status and maturity of current methods used in fire risk assessments for operating nuclear power plants. The Task Group issued a questionnaire in May 1997 to all nuclear power generating OECD countries. The prime focus of the questionnaire (see Appendix A) was on a number of important issues in fire PSA: Fire PSA methodology and applications; Fire simulation codes; Ignition and damageability data; Modeling of fire spread on cables or other equipment; Modeling of smoke production and spread; Impact of smoke and heat on instrumentation, electronics, or other electrical equipment; Impact of actual cable fires on safety systems. The questionnaire requested specific information on these topics (e.g., computer codes used in fire PSAs, the physical parameters used to model ignition). Responses to the questionnaire were provided by Finland, France, Germany, Hungary, Japan, Spain, Switzerland, United Kingdom, and the USA. This report summarizes the questionnaire responses and thereby: a) provides a perspective on the current fire PSA state of the art (SOAR) with respect to the issues listed above, and b) provides numerous references for more detailed information regarding these issues. The main responsibility for writing different chapters of this report was divided between some

  5. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    Science.gov (United States)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  6. Crown Fire Potential

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Crown fire potential was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The...

  7. Application of Composite Materials in the Fire Explosion Suppression System

    Institute of Scientific and Technical Information of China (English)

    REN Shah

    2012-01-01

    In order to lighten the weight of the special vehicles and improve their mobility and flexibility, the weight of all subsystems of the whole vehicle must be reduced in the general planning. A fire explosion suppression system is an important subsystem for the self-protection of vehicle, protection of crews and safety of a vehicle. The performances of the special vehicles determine their survival ability and combat capability. The composite bottle is made of aluminum alloy with externally wrapped carbon fiber ; it has been proven by a large number of tests that the new type explosion suppression fire distinguisher made of such composite materials applied in the special vehicle has reliable performance, each of its technical indexes is higher or equal to that of a steel distinguisher, and the composites can also optimize the assembly structure of the bottle, and improve the reliability and corrosion resistance. Most important is that the composite materials can effectively lighten the weight of the fire explosion suppression system to reach the target of weight reduction of the subsystem in general planning.

  8. Operating room fire prevention: creating an electrosurgical unit fire safety device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-08-01

    To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.

  9. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  10. Development of the fire PSA methodology and the fire analysis computer code system

    International Nuclear Information System (INIS)

    Katsunori, Ogura; Tomomichi, Ito; Tsuyoshi, Uchida; Yusuke, Kasagawa

    2009-01-01

    Fire PSA methodology has been developed and was applied to NPPs in Japan for power operation and LPSD states. CDFs of preliminary fire PSA for power operation were the higher than that of internal events. Fire propagation analysis code system (CFAST/FDS Network) was being developed and verified thru OECD-PRISME Project. Extension of the scope for LPSD state is planned to figure out the risk level. In order to figure out the fire risk level precisely, the enhancement of the methodology is planned. Verification and validation of phenomenological fire propagation analysis code (CFAST/FDS Network) in the context of Fire PSA. Enhancement of the methodology such as an application of 'Electric Circuit Analysis' in NUREG/CR-6850 and related tests in order to quantify the hot-short effect precisely. Development of seismic-induced fire PSA method being integration of existing seismic PSA and fire PSA methods is ongoing. Fire PSA will be applied to review the validity of fire prevention and mitigation measures

  11. Loft fire protection

    International Nuclear Information System (INIS)

    White, E.R.; Jensen, J.D.

    1980-01-01

    Quantified criteria that was developed and applied to provide in-depth fire protection for the Loss of Fluid Test (LOFT) Facility are presented. The presentation describes the evolution process that elevated the facility's fire protection from minimal to that required for a highly protected risk or improved risk. Explored are some infrequently used fire protection measures that are poorly understood outside the fire protection profession

  12. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  13. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  14. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  15. The OECD FIRE database

    International Nuclear Information System (INIS)

    Angner, A.; Berg, H.P.; Roewekamp, M.; Werner, W.; Gauvain, J.

    2007-01-01

    Realistic modelling of fire scenarios is still difficult due to the scarcity of reliable data needed for deterministic and probabilistic fire safety analysis. Therefore, it has been recognized as highly important to establish a fire event database on an international level. In consequence, several member countries of the Nuclear Energy Agency of the OECD have decided in 2000 to establish the International Fire Data Exchange Project (OECD FIRE) to encourage multilateral co-operation in the collection and analysis of data related to fire events at nuclear power plants. This paper presents the OECD FIRE project objectives, work scope and current status of the OECD FIRE database after 3 years of operation as well as first preliminary statistical insights gained from the collected data. (orig.)

  16. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  17. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  18. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  19. Fire protection in ventilation systems and in case of fire operating ventilation systems

    International Nuclear Information System (INIS)

    Zitzelsberger, J.

    1983-01-01

    The fire risks in ventilation systems are discussed. It follows a survey of regulations on fire prevention and fire protection in ventilation systems and smoke and heat exhaust systems applicable to nuclear installations in the Federal Republic of Germany. Fire protection concepts for normal systems and for systems operating also in case of fire will be given. Several structural elements for fire protection in those systems will be illustrated with regard to recent research findings

  20. Quantitative comparison of fire danger index performance using fire activity

    CSIR Research Space (South Africa)

    Steenkamp, KC

    2012-07-01

    Full Text Available parameters such as flame length or rate of spread can be physically measured or modeled. Fire danger indices are not designed to describe the characteristics of a fire but rather the potential of a fire taking place in an area of interest [5]. Several...

  1. The Pictorial Fire Stroop: A Measure of Processing Bias for Fire-Related Stimuli

    Science.gov (United States)

    Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele

    2009-01-01

    Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and…

  2. Fighting Fire with Fire: Surgical Options for Patients with Drug-Resistant Epilepsy.

    Science.gov (United States)

    Bayer, Alina D; Blum, Andrew S; Asaad, Wael F; Roth, Julie; Toms, Steven A; Deck, Gina M

    2018-03-01

    While antiepileptic drugs (AEDs) provide adequate seizure control for most patients with epilepsy, ~30% continue to have seizures despite treatment with two or more AEDs.1 In addition to direct harm from seizures, poor epilepsy control correlates with higher mortality, morbidity, 2, 3 and cost to the healthcare system.4 In the subset of patients with persistent seizures despite medical management, surgical intervention and neuromodulation may be more effective. Primary care physicians and general neurologists should be aware of non-AED treatment options that are standard of care for drug- resistant epilepsy (DRE). [Full article available at http://rimed.org/rimedicaljournal-2018-03.asp].

  3. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  4. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    International Nuclear Information System (INIS)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-01-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  5. Infrared thermography of solid surfaces in a fire

    International Nuclear Information System (INIS)

    Meléndez, J; Foronda, A; Aranda, J M; López, F; López del Cerro, F J

    2010-01-01

    Fire resistance tests are commonplace in industry. The aerospace sector is particularly active in this area, since the behaviour of advanced materials, such as composites, when in a fire is not fully understood yet. Two of the main obstacles are the inherent difficulty of direct surface measurements in such a harsh environment (especially on the exposed side of the specimens) and the lack of spatial resolution of the usual measuring devices, namely thermocouples (TCs). This paper presents a way to overcome these problems by using an infrared (IR) camera to study the exposed side of composite plates exposed to fire. A method for minimizing the effect of the flame (thus making it as 'transparent' as possible) was developed, resulting in 2D temperature maps of the plate surface. The assumptions that the method relies on were verified by data analysis and ad hoc emission–transmission experiments. The errors associated with two slightly different versions of the method were studied, and comparisons with TC measurements were performed. It was found that the IR method provides better results than TCs, not only due to its spatial resolution capability but also because of the non-intrusive nature of IR thermography, as opposed to the local effects caused by TCs, which became evident during the experiments

  6. Fire protection: no fire without smoke. CCTV breakthrough in fire detection

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A new CCTV-based fire detection system uses advanced software to detect and locate smoke and vapour from a fire before it becomes visible to the human eye, but is intelligent enough to avoid false alarms due to steam, moving machinery or operating staff in the monitored area. The starting point for the development effort was video motion detection software as used in the security industry. (author)

  7. Advanced Fire Information System - A real time fire information system for Africa

    Science.gov (United States)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  8. Nuclear power plant fire protection: fire detection (subsystems study Task 2)

    International Nuclear Information System (INIS)

    Berry, D.L.

    1977-12-01

    This report examines the adequacy of fire detection in the context of nuclear power plant safety. Topics considered are: (1) establishing area detection requirements, (2) selecting specific detector types, (3) locating and spacing detectors, and (4) performing installation tests and maintenance. Based on a thorough review of fire detection codes and standards and fire detection literature, the report concludes that current design and regulatory guidelines alone are insufficient to ensure satisfactory fire detection system performance. To assure adequate fire detection, this report recommends the use of in-place testing of detectors under conditions expected to occur normally in areas being protected

  9. Fire Models and Design Fires

    DEFF Research Database (Denmark)

    Poulsen, Annemarie

    The aim of this project is to perform an experimental study on the influence of the thermal feedback on the burning behavior of well ventilated pre-flashover fires. For the purpose an experimental method has been developed. Here the same identical objects are tested under free burn conditions...... carried out by Carleton University and NRC-IRC performed on seven different types of fire loads representing commercial premises, comprise the tests used for the study. The results show that for some of the room test the heat release rate increased due to thermal feedback compared to free burn for a pre......-flashover fire. Two phenomena were observed, that relate well to theory was found. In an incipient phase the heat release rate rose with the temperature of the smoke layer/enclosure boundaries. This increase was also found to depend on the flammability properties of the burning object. The results also...

  10. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Science.gov (United States)

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  11. Fire Ant Bites

    Science.gov (United States)

    ... Favorite Name: Category: Share: Yes No, Keep Private Fire Ant Bites Share | Fire ants are aggressive, venomous insects that have pinching ... across the United States, even into Puerto Rico. Fire ant stings usually occur on the feet or ...

  12. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  13. Ecological fire use for ecological fire management: Managing large wildfires by design

    Science.gov (United States)

    Timothy Ingalsbee

    2015-01-01

    Past fire exclusion policies and fire suppression actions have led to a historic "fire deficit" on public wildlands. These sociocultural actions have led to unprecedented environmental changes that have created conditions conducive to more frequent large-scale wildfires. Politicians, the newsmedia, and agency officials portray large wildland fires as...

  14. Fire Safety (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Fire Safety KidsHealth / For Parents / Fire Safety What's in ... event of a fire emergency in your home. Fire Prevention Of course, the best way to practice ...

  15. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  16. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  17. The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems

    Directory of Open Access Journals (Sweden)

    Talita Zupo

    2016-01-01

    Full Text Available ABSTRACT Seed germination in many species from fire-prone ecosystems may be triggered by heat shock and/or temperature fluctuation, and how species respond to such fire-related cues is important to understand post-fire regeneration strategies. Thus, we tested how heat shock and daily temperature fluctuations affect the germination of four species from fire-prone ecosystems; two from the Cerrado and two from the Mediterranean Basin. Seeds of all four species were subjected to four treatments: Fire (F, temperature fluctuations (TF, fire+temperature fluctuations (F+TF and control (C. After treatments, seeds were put to germinate for 60 days at 25ºC (dark. Responses differed according to species and native ecosystem. Germination percentage for the Cerrado species did not increase with any of the treatments, while germination of one Mediterranean species increased with all treatments and the other only with treatments that included fire. Although the Cerrado species did not respond to the treatments used in this study, their seeds survived the exposure to heat shock, which suggests they possess tolerance to fire. Fire frequency in the Cerrado is higher than that in Mediterranean ecosystems, thus traits related to fire-resistance would be more advantageous than traits related to post-fire recruitment, which are widespread among Mediterranean species.

  18. National and international standards and recommendations on fire protection and fire safety assessment

    International Nuclear Information System (INIS)

    Berg, H.P.

    2007-01-01

    Experience feedback from events in nuclear facilities worldwide has shown that fire can represent a safety significant hazard. Thus, the primary objectives of fire protection programmes are to minimize both the probability of occurrence and the consequences of a fire. The regulator body expects that the licensees justify their arrangements for identifying how fires can occur and spread, assess the vulnerability of plant equipment and structures, determine how the safe operation of a plant is affected, and introduce measures to prevent a fire hazard from developing and propagating as well as to mitigate its effects in case the fire cannot be prevented. For that purpose usually a comprehensive regulatory framework for fire protection has been elaborated, based on national industrial regulations, nuclear specific regulations as well as international recommendations or requirements. Examples of such national and international standards and recommendations on fire protection and fire safety assessment as well as ongoing activities in this field are described. (orig.)

  19. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  20. Fire tests to study heat insulation scenario of galvanized rolling shutters sprayed with intumescent coatings

    International Nuclear Information System (INIS)

    Chuang, Ying-Ji; Chuang, Ying-Hung; Lin, Ching-Yuan

    2009-01-01

    The purpose of this study, through standard furnace fire tests and a natural fire test, is to analyze the heat insulation behavior of galvanized rolling shutters sprayed with intumescent coatings. The following experiments and associated estimations demonstrated that in the 1-h standard fire-resisting tests, the radiant heat flux at a measuring point horizontally 1 m away from the center of an unexposed surface the radiation could reach 4.64 W/cm 2 for the traditional uninsulated galvanized rolling shutter, and that the radiant heat flux would be substantially decreased to 0.22 W/cm 2 for one with intumescent coating of 0.3 mm target thickness, which, during the heating process, expanded about 100 times in volume and then generated a certain insulation effect. Therefore the intumescent coatings on galvanized rolling shutters have been proved by this study to be a feasible method of insulation, which can be applied in the future fire compartment design of buildings.

  1. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    Science.gov (United States)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  2. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Science.gov (United States)

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  3. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  4. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard

    2012-01-01

    Ion transport in porous materials has been subject of study for several decades. However, the interaction between the pores and the overall pore system make it complicated to obtain a clear picture and predict diffusion and electromigration (transport induced by an applied electric field). Specific...... to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion...... the pore system to contribute to an overall understanding of ion transport in porous materials.The pore system in bricks are influenced by the firing degree, clay mixture composition and ion content. The present paper focuses on the pore system and effects from clay mixture composition and ion content were...

  5. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    Science.gov (United States)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  6. Forest fire occurrence and silvicultural-economic prerequisites for protection improvement in forest regions of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    V. V. Furyaev

    2017-10-01

    Full Text Available The territory of the Krasnoyarsk Krai is substantially diverse in terms of climatic, silvicultural and economic conditions owing to its sufficient spread from the North to the South. These differences were to some extent taken into account when the forest fund of the Krasnoyarsk Krai was divided into seven forest regions: forest tundra of Central Siberia, highland taiga of Central Siberia, plain taiga of West Siberia, Angara region, subtaiga forest steppe of Central Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe. The regions show different levels of fire occurrence and different fire effects that require different levels of protection from forest fires. Optimization of the protection is based on activities that combine prevention and timely detection of fires depending on development of forest regions and intensity of forest management. The main focus of the paper is on possibility or inadvisability of prescribed fires, fire-use fires (fires that started naturally but were then managed for their beneficial effects and the system of activities increasing fire resistance of the most valuable forests. It is justified that taking into account the effects of forest fires, selective protection of forests is expedient in forest-tundra Middle Siberia and highland taiga of Middle Siberia regions. The whole area of plain taiga of West Siberia region should be subject to protection but with various levels of intensity in different parts of it. The forest fund of Angara, subtaiga forest steppe of Middle Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe regions should be protected on the whole area. Application of prescribed fires is relevant in the subzone of South taiga, in the forest steppe zone as well as in the submontane and lowland taiga belts. Fire-use fires are admissible on limited areas in the subzones of Middle and North taiga.

  7. Past, Present, and Future Old Growth in Frequent-fire Conifer Forests of the Western United States

    Directory of Open Access Journals (Sweden)

    Scott R. Abella

    2007-12-01

    -establishing old growth typical of presettlement forests resistant to crown fires.

  8. Fires in Chile

    Science.gov (United States)

    2002-01-01

    On February 5, 2002, the dense smoke from numerous forest fires stretched out over the Pacific Ocean about 400 miles south of Santiago, Chile. This true-color Moderate-resolution Imaging Spectroradiometer (MODIS) image shows the fires, which are located near the city of Temuco. The fires are indicated with red dots (boxes in the high-resolution imagery). The fires were burning near several national parks and nature reserves in an area of the Chilean Andes where tourism is very popular. Southeast of the fires, the vegetation along the banks of the Rio Negro in Argentina stands out in dark green. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  9. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  10. Fire Risk Scoping Study: Investigation of nuclear power plant fire risk, including previously unaddressed issues

    International Nuclear Information System (INIS)

    Lambright, J.A.; Nowlen, S.P.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    An investigation of nuclear power plant fire risk issues raised as a result of the USNRC sponsored Fire Protection Research Program at Sandia National Laboratories has been performed. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments (PRAs) in light of updated data bases made available as a result of USNRC sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. In performance of the fire risk scenario requantifications several important insights were gained. It was found that utilization of a more extensive operational experience base resulted in both fire occurrence frequencies and fire duration times (i.e., time required for fire suppression) increasing significantly over those assumed in the original works. Additionally, some thermal damage threshold limits assumed in the original works were identified as being nonconservative based on more recent experimental data. Finally, application of the COMPBRN III fire growth model resulted in calculation of considerably longer fire damage times than those calculated in the original works using COMPBRN I. 14 refs., 2 figs., 16 tabs

  11. Designing fire safe interiors.

    Science.gov (United States)

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. 14 CFR 29.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.952 Fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... of fuel fires to occupants following an otherwise survivable impact (crash landing), the fuel systems...

  13. 14 CFR 27.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.952 Fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... of fuel fires to occupants following an otherwise survivable impact (crash landing), the fuel systems...

  14. Review of UCN 5,6 Fire PSA Model based on ANS Fire PRA Standard

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Lee, Yoon Hwan

    2006-12-01

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). This approach uses the fire risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In fire risk informed/performance-based decision/operation, fire PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of fire PSA. ANS (American Nuclear Society) has developed a guidance called 'ANS Fire PRA Methodology Standard'. However, in Korea, there have been no attempts to evaluate the quality of fire PSA model itself. Therefore, we cannot be sure about the quality of fire PSA whether or not the present fire PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of fire PSA model quality is the basis for the fire risk informed/performance-based decision/operation. In this report, we have evaluated the quality of fire PSA model for Ulchin 5 and 6 units based on the ANS Fire PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of fire PSA model and how it can be improved. This report can be used as the base of the fire risk informed/performance-based decision/operation work in Korea

  15. Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: cluster randomized controlled study.

    Science.gov (United States)

    Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles

    2012-04-01

    In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Laboratory and gas-fired furnace performance tests of epoxy primers for intumescent coatings

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Catala, Pere

    2014-01-01

    , either to ensure adhesion of the intumescent coating to the steel or to provide corrosion resistance. It is essential to document the performance of the intumescent coating together with the primer to ensure the overall quality of coating system. In the present work, two epoxy primers were used...... to a gas-fired furnace following the ISO834 fire curve (a so-called cellulosic fire), one of the primers selected performed well and the other poorly. From tests in the electrically heated oven, it was found that both primers were sensitive to the film thickness employed and the presence of oxygen....... At oxygen-rich conditions, higher primer thicknesses gave weaker performance. In addition, a color change from red to black was observed in nitrogen, while the color remained red in the oxygen-nitrogen mixture. In summary, the results suggest that an adequate choice of primer, primer thickness...

  17. Fire test database

    International Nuclear Information System (INIS)

    Lee, J.A.

    1989-01-01

    This paper describes a project recently completed for EPRI by Impell. The purpose of the project was to develop a reference database of fire tests performed on non-typical fire rated assemblies. The database is designed for use by utility fire protection engineers to locate test reports for power plant fire rated assemblies. As utilities prepare to respond to Information Notice 88-04, the database will identify utilities, vendors or manufacturers who have specific fire test data. The database contains fire test report summaries for 729 tested configurations. For each summary, a contact is identified from whom a copy of the complete fire test report can be obtained. Five types of configurations are included: doors, dampers, seals, wraps and walls. The database is computerized. One version for IBM; one for Mac. Each database is accessed through user-friendly software which allows adding, deleting, browsing, etc. through the database. There are five major database files. One each for the five types of tested configurations. The contents of each provides significant information regarding the test method and the physical attributes of the tested configuration. 3 figs

  18. Studies about pressure variations and their effects during a fire in a confined and forced ventilated enclosure: safety consequences in the case of a nuclear facility

    International Nuclear Information System (INIS)

    Hugues Pretrel; Laurent Bouilloux; Jerome Richard

    2005-01-01

    Full text of publication follows: In a nuclear facility, the cells are confined and forced ventilated and some of them are equipped with isolation devices designed to close in case of a fire. So, if a fire occurred, the pressure variations in the cell could be important. This contribution presents the safety concerns related to pressure variation effects (propagation of smokes and/or flames through the fire barriers, propagation of radioactive material) and the research works carried out by the french 'Institut de Radioprotection et de Surete Nucleaire' (IRSN) on this topic. These research works are composed of two different studies. The first study permits to quantify the overpressure and depression levels and to reveal the influence of the fire heat release rate (HRR), of the characteristics of the cell, of the ventilation layout (especially the airflow resistances of the ventilation branches) and of the control of the fire dampers. This study is based on three sets of experimental tests performed in three large-scale facilities of various dimensions (3600 m3, 400 m3 and 120 m3 in volume) and with several settings of the ventilation network. The analysis focuses on the conditions that lead to significant overpressure and depression peaks and identifies the level of fire HRR and airflow resistances for which pressure peaks may become a safety concern. The second study allows to characterise the behaviour of sectorisation and containment equipments subject to pressure stresses. The mechanical resistance of some equipments (doors, fire dampers) subject to pressure stresses as well as the aeraulic behaviour of this equipment (gas leak rates) are determined in order to assess the potential transfer of contamination in the ventilation networks. (authors)

  19. Millennials in the Fire Service: The Effectiveness of Fire Service Recruiting, Testing, and Retention

    Science.gov (United States)

    2017-12-01

    Administration/US-fire-department-profile. 50 Taro Yamane, Statistics : An Introductory Analysis, 2nd ed. (New York: Harper and Rowe, 1967), 886. 15...241096018-Is-there-a-better-approach-for-fire-department-testing/. Yamane, Taro. Statistics : An Introductory Analysis, 2nd ed. New York: Harper and...Fire Protection Association, January 2016), 21, http://www.nfpa.org/News-and-Research/Fire- statistics - and-reports/Fire- statistics /The-fire-service

  20. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  1. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  2. 75 FR 221 - Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire...

    Science.gov (United States)

    2010-01-05

    ... Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire Extinguishers as Installed... specification, have been supplied to the aviation industry for use in fire extinguishing equipment. * * * * * * * * * * * This Halon 1211 has subsequently been used to fill certain FFE [Fire Fighting Enterprises] portable...

  3. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  4. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  5. Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection

    Directory of Open Access Journals (Sweden)

    Kwangjae Lee

    2017-02-01

    Full Text Available A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD technique is used to make the highly porous structure such as nanocolumns (NCs of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO2, WO3 and In2O3 NCs is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides (PVC decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C, the resistances of the metal-oxide NCs are abruptly changed and SnO2 NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p-type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C. The response time of SnO2 NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.

  6. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  7. The interactive effects of fire and diversity on short-term responses of ecosystem processes in experimental mediterranean grasslands.

    Science.gov (United States)

    Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y

    2006-06-01

    We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.

  8. Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2000-01-01

    Quantitative fire risk assessment can serve as an additional tool to assess the safety level of a nuclear power plant (NPP) and to set priorities for fire protection improvement measures. The recommended approach to be applied within periodic safety reviews of NPPs in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis using a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. Results of the first quantitative fire risk studies performed in Germany are reported. (author)

  9. The role of fire severity, distance from fire perimeter and vegetation on post-fire recovery of small-mammal communities in chaparal

    Science.gov (United States)

    Jay Diffendorfer; Genie M. Fleming; Scott Tremor; Wayne Spencer; Jan L. Beyers

    2012-01-01

    Chaparral shrublands in southern California, US, exhibit significant biodiversity but are prone to large, intense wildfires. Debate exists regarding fuel reduction to prevent such fires in wildland areas, but the effects of these fires on fauna are not well understood. We studied whether fire severity and distance from unburned fire perimeter influenced recovery of the...

  10. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  11. Building 431 fire tests

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Ford, H.W.; Magee, M.W.

    1977-01-01

    An extensive discussion of considerations for fire protection in the LLL mirror fusion test facility (MFTF) is presented. Because of the large volume and high bays of the building, sufficient data on fire detection is unavailable. Results of fire detection tests using controlled fire sources in the building are presented. Extensive data concerning the behavior of the building atmosphere are included. Candidate fire detection instrumentation and extinguishing systems for use in the building are briefly reviewed

  12. The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents.

    Science.gov (United States)

    Folz, David H; Shults, Chris

    Cigarettes are a leading cause of civilian deaths in home fires. Over the last decade, state fire service leaders and allied interest groups succeeded in persuading state lawmakers to require manufacturers to sell only low-ignition strength or "fire safe" cigarettes as a strategy to reduce these fatalities and the injuries and losses that stem from them. This article examines whether the states' fire safe cigarette laws actually helped to save lives, prevent injuries, and reduce the incidence of home fires ignited by cigarettes left unattended by smokers. Controlling for the effects of key demographic, social, economic, and housing variables, this study finds that the states' fire-safe cigarette policies had significant impacts on reducing the rate of smoking-related civilian fire deaths and the incidence of fires started by tobacco products. The findings also suggest that the states' fire safe cigarette policies may have helped to reduce the rate of smoking-related fire injuries. The study shows that collective actions by leaders in the fire service across the states can result in meaningful policy change that protects lives and advances public safety even when a political consensus for action is absent at the national level.

  13. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  14. Accelerated weathering of fire-retardant-treated wood for fire testing

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-retardant-treated products for exterior applications must be subjected to actual or accelerated weathering prior to fire testing. For fire-retardant-treated wood, the two accelerated weathering methods have been Method A and B of ASTM D 2898. The rain test is Method A of ASTM D 2898. Method B includes exposures to ultraviolet (UV) sunlamps in addition to water...

  15. Rx fire laws: tools to protect fire: the `ecological imperative?

    Science.gov (United States)

    Dale Wade; Steven Miller; Johnny Stowe; James Brenner

    2006-01-01

    The South is the birthplace of statutes and ordinances that both advocate and protect the cultural heritage of woods burning, which has been practiced in this region uninterrupted for more than 10,000 years. We present a brief overview of fire use in the South and discuss why most southern states recognized early on that periodic fire was necessary to sustain fire...

  16. THE REACTION TO FIRE TEST FOR FIRE RETARDANT AND FOR COMBUSTIBLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Adelaida FANFAROVÁ

    2016-12-01

    Full Text Available Currently the natural materials become popular building material for houses, buildings and recreational property. The risk of fires in residential timber construction or eco houses cannot be completely ruled out, therefore there is a need for proper and correct implementing preventive measures and application of all available solutions, which may reduce the risk of fire as far as possible, to slow down the combustion process, to protect the life of people, animals and also the building itself until arrival members of the Fire and Rescue Services. Fireproofing of combustible materials is a specific area of fire protection. For scientific research as well as for real-life practice, not only their structural and physical properties, but also fire-technical characteristics are really important. The present researchers mostly focus on fire-retardant treatment of wood that is why the authors of this contribution focused on a different combustible material. This research article presents the experimental testing and examination of the reaction to fire test of the selected thermal insulation of hemp fiber that was impregnated by the selected fire retardant in laboratory conditions.

  17. Coal fly ash-containing sprayed mortar for passive fire protection of steel sections

    Directory of Open Access Journals (Sweden)

    Vilches, L. F.

    2005-09-01

    Full Text Available The present article addresses the possible use of coal fly ash as the chief component of sprayed mortars to fireproof steel structures. A pilot wet-mix gunning rig was specifically designed and built to spray different pastes on to sheet steel and sections with different surface/volume ratios. After gunning, the specimens were placed in a furnace and subjected to standard fire resistance testing. Product fire resistance was calculated from the test results. The mortar used in this study, with a high fly ash content, was found to have acceptable mechanical properties as well as afire resistance potential comparable to those of commercial passive fire protection products.

    En este artículo se estudia el posible uso de las cenizas volantes procedentes de la combustión del carbón como constituyente principal de morteros que pueden ser proyectados sobre estructuras metálicas, para protegerlas contra el fuego. Con objeto de estudiar el proceso de proyección, se ha construido una planta piloto de gunitado por vía húmeda. La pasta se ha proyectado sobre placas metálicas y perfiles metálicos con diferentes relaciones superficie/volumen. Tras el gunitado, las probetas proyectadas se colocan en un horno y se someten a un programa de calentamiento según la norma de resistencia al fuego. A partir de los datos obtenidos se ha podido realizar una estimación de la resistencia al fuego del producto. Los resultados muestran que el material proyectado usado en este estudio, que contiene una alta proporción de cenizas volantes, tiene unas propiedades mecánicas aceptables y unas características potenciales de resistencia al fuego comparables a las de otros productos comerciales utilizados en la protección pasiva contra el fuego.

  18. Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling

    Directory of Open Access Journals (Sweden)

    Paul-Antoine Santoni

    2011-01-01

    Full Text Available This work presents the extension of a physical model for the spreading of surface fire at landscape scale. In previous work, the model was validated at laboratory scale for fire spreading across litters. The model was then modified to consider the structure of actual vegetation and was included in the wildland fire calculation system Forefire that allows converting the two-dimensional model of fire spread to three dimensions, taking into account spatial information. Two wildland fire behavior case studies were elaborated and used as a basis to test the simulator. Both fires were reconstructed, paying attention to the vegetation mapping, fire history, and meteorological data. The local calibration of the simulator required the development of appropriate fuel models for shrubland vegetation (maquis for use with the model of fire spread. This study showed the capabilities of the simulator during the typical drought season characterizing the Mediterranean climate when most wildfires occur.

  19. Forest fires are changing: let’s change the fire management strategy

    Directory of Open Access Journals (Sweden)

    Bovio G

    2017-08-01

    Full Text Available Forest fires in Italy are changing. More frequent heatwaves and drought increase the flammability of the vegetation; the abandonment of rural land produces 30.000 ha of newly afforested areas each year; and the wildland-urban interface is expanding with the sprawl of urbanized areas. However, forest fires are rarely understood and managed in their complexity. The public opinion is often misinformed on the causes and consequences of fires in the forest. Moreover, fire management relies almost exclusively on extinction and emergency response, resulting in high costs and limited efficacy versus extreme fire seasons. We advocate to increase the role and investments in wildfire prevention, which can be carried out by fuel-oriented silviculture, such as facilitating less flammable species or prescribed burning, in order to reduce the flammability of the vegetation and mitigate fire intensity in high-leverage areas. A centralized structure is necessary to implement such a strategy and coordinate the competences and actions of all local administrations and actors involved.

  20. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. However, the remit of the CERN fire brigade goes well beyond fire-fighting. It ranges from monitoring confined spaces to dealing with flooding and preventing chemical hazards. A wide range of equipment enables them to fulfil thei...

  1. Fire Source Accessibility of Water Mist Fire Suppression Improvement through Flow Method Control

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Ho; Kim, Hyeong Taek; Kim, Yun Jung; Park, Mun Hee [KHNP CRI, Daejeon (Korea, Republic of)

    2013-10-15

    Recently, nuclear power plants set CO{sub 2} fire suppression system. However it is hard to establish and to maintain and it also has difficulties performing function test. Therefore, it needs to develop a new fire suppression system to replace the existing CO{sub 2} fire suppression systems in nuclear power plant. In fact, already, there exist alternatives - gas fire suppression system or clean fire extinguishing agent, but it is hard to apply because it requires a highly complicated plan. However, water mist fire suppression system which has both water system and gas system uses small amount of water and droplet, so it is excellent at oxygen displacement and more suitable for nuclear power plant because it can avoid second damage caused by fire fighting water. This paper explains about enclosure effect of water mist fire suppression. And it suggests a study direction about water mist fire source approach improvement and enclosure effect improvement, using flow method control of ventilation system. Water mist fire suppression can be influenced by various variable. And flow and direction of ventilation system are important variable. Expectations of the plan for more fire source ventilation system is as in the following. It enhances enclosure effects of water mists, so it improves extinguish performance. Also the same effect as a inert gas injection causes can be achieved. Lastly, it is considered that combustible accessibility of water mists will increase because of descending air currents.

  2. Factors controlling seedling germination after fire in Mediterranean gorse shrublands. Implications for fire prescription.

    Science.gov (United States)

    De Luis, M; Raventós, J; González-Hidalgo, J C

    2005-07-01

    In Western Mediterranean areas, fires are frequent in forests established on old croplands where woody resprouting species are scarce and post-fire regeneration is limited to obligate-seeder species, such as Mediterranean gorse (Ulex parviflorus), that accumulate a great deal of fine dry fuel, increasing the risk of other severe fires. Under these conditions, fuel control techniques are required in order to prevent fires of high intensity and severity and the subsequent economic and ecological damage. Prescribed fires present an alternative to fuel control, and recent studies demonstrate that, under optimum climatic conditions, fire-line intensity values fall within the limits of those recommended for fire prescription. However, a better understanding of the consequences of fire on the regeneration of vegetation is needed in order to evaluate the suitability of prescribed fires as a technique for fuel reduction in Mediterranean gorse ecosystems. This paper analyses the factors controlling seedling germination after fire to make an evaluation from an ecological perspective of whether fire prescription is a suitable technique for fuel control in mature Mediterranean gorse shrublands. The results show that small differences in the composition of vegetation play a decisive role in fire behaviour, and have a decisive influence on the system's capacity for regeneration. Fire severity is low in mixed Mediterranean gorse communities with a low continuity of dead fine fuel (including Cistus sp., Rosmarinus sp., etc.) and fire creates a wide range of microhabitats where seedling emergence is high. In contrast, where U. parviflorus is more dominant, fire severity is higher and the regeneration of vegetation could be hindered. Our conclusions suggest that detailed studies of the composition of plant communities are required in order to decide whether prescribed burning should be applied.

  3. Cinema Fire Modelling by FDS

    International Nuclear Information System (INIS)

    Glasa, J; Valasek, L; Weisenpacher, P; Halada, L

    2013-01-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  4. Cinema Fire Modelling by FDS

    Science.gov (United States)

    Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.

    2013-02-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  5. How to generate and interpret fire characteristics charts for surface and crown fire behavior

    Science.gov (United States)

    Patricia L. Andrews; Faith Ann Heinsch; Luke Schelvan

    2011-01-01

    A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by...

  6. Aerosol generation from Kerosene fires

    International Nuclear Information System (INIS)

    Jordan, S.; Lindner, W.

    1981-01-01

    The course of solvent surface fires is dependent on the surface area on fire; depth of pool and solvent composition do not influence the fire rate. But the fire rate increases rapidly with the burning area. The residual oxygen concentration after a fire in a closed container is dependent on the violence of the fire, i.e. on the burning surface. Moreover the ending of the fire is influenced by the TBP-concentration of the solvent. With sufficient supply of solvent the TBP-concentration changes only slightly during the fire, so that a fire at 14% O 2 -concentration is extinguished within the container. With the TBP-concentration changing considerably, i.e. little mass, a fire with a similar burning surface is already extinguished at an O 2 -content of 18%. The aerosol generation depends on the fire rate, and so it is higher in free atmosphere than in closed containers. The soot production in the mixture fire (kerosene /TBP 70/30) is higher by a factor 7 than in the pure kerosene fire. Primary soot-particles have a diameter of approximately 0,05 μm and agglomerate rapidly into aggregates of 0,2-0,4 μm. (orig.) [de

  7. Fire safety engineering

    International Nuclear Information System (INIS)

    Smith, D.N.

    1989-01-01

    The periodic occurrence of large-scale, potentially disastrous industrial accidents involving fire in hazardous environments such as oilwell blowouts, petrochemical explosions and nuclear installations highlights the need for an integrated approach to fire safety engineering. Risk reduction 'by design' and rapid response are of equal importance in the saving of life and property in such situations. This volume of papers covers the subject thoroughly, touching on such topics as hazard analysis, safety design and testing, fire detection and control, and includes studies of fire hazard in the context of environment protection. (author)

  8. Fires, ecological effects of

    Science.gov (United States)

    W. J. Bond; Robert Keane

    2017-01-01

    Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...

  9. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  10. A study on fire spreading model for the safety distance between the neighborhood occupancies and historical buildings in Taiwan

    Science.gov (United States)

    Chen, C. H.; Chien, S. W.; Ho, M. C.

    2015-08-01

    Cultural heritages and historical buildings are vulnerable against severe threats from fire. Since the 1970s, ten fire-spread events involving historic buildings have occurred in Taiwan, affecting a total of 132 nearby buildings. Developed under the influence of traditional Taiwanese culture, historic buildings in Taiwan are often built using non-fire resistant brick-wood structure and located in proximity to residential occupancies. Fire outbreak in these types of neighborhood will lead to severe damage of antiquities, leaving only unrecoverable historical imagery. This study is aimed to investigate the minimal safety distance required between a historical building and its surroundings in order to reduce the risk of external fire. This study is based on literature analysis and the fire spread model using a Fire Dynamics Simulator. The selected target is Jingmei Temple in Taipei City. This study explored local geography to identify patterns behind historical buildings distribution. In the past, risk reduction engineering for cultural heritages and historical buildings focused mainly on fire equipment and the available personnel with emergency response ability, and little attention was given to external fire risks and the affected damage. Through discussions on the required safety distance, this research provides guidelines for the following items: management of neighborhoods with historical buildings and consultation between the protection of cultural heritages and disaster prevention, reducing the frequency and extent of fire damages, and preserving cultural resource.

  11. Sodium fires in nuclear facilities

    International Nuclear Information System (INIS)

    Menzenhauer, P.

    1974-01-01

    The work deals with the behaviour of liquid sodium when it comes into contact with air, especially in the course of fires in technical plants. The most important fire procedures are constructed as realistically as possible, that is to say that the fires were not only carried out on a laboratory scale but with quantities of up to 200 kg sodium at temperatures of up to 800 0 C. The following was investigated: 1) the course of the fire in rooms, 2) restriction of the fire, 3) removal of the burnt remains, 4) protection measures. The fire was varied in its most important physical appearance such as surface fire, spurt fire and fire on isolated pipe lines. The fires were checked by precautionary, contructive measures - it was not necessary to place persons at the site of the fire - and by active measures such as for example by covering with extinguishing powder. All important test phases were captured in film and slides series. Visible material is thus available for the operation team of sodium plants and fire brigades who might possibly be called upon. (orig./LH) [de

  12. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  13. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  14. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  15. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  16. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  17. WRF-Fire Applied in Bulgaria

    OpenAIRE

    Dobrinkova, Nina; Jordanov, Georgi; Mandel, Jan

    2010-01-01

    WRF-Fire consists of the WRF (Weather Research and Forecasting Model) coupled with a fire spread model, based on the level-set method. We describe a preliminary application of WRF-Fire to a forest fire in Bulgaria, oportunities for research of forest fire models for Bulgaria, and plans for the development of an Environmental Decision Support Systems which includes computational modeling of fire behavior.

  18. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  19. The fire brigade renovates

    CERN Multimedia

    2002-01-01

    The new fire engine at CERN's Fire Station. A shiny brand-new fire engine is now attracting all the attention of the members of CERN's fire brigade. Since the beginning of last week this engine has taken over from an 18-year-old one, which has now been 'retired' from service. This modern vehicle, built in Brescia, Italy, is much lighter and more powerful than the old one and is equipped to allow the fire service to tackle most call-outs without the support of at least one other vehicle, as is currently necessary. The new fire engine is designed to transport six fire-fighters, 2000 litres of water, and is equipped not only for fire fighting actions but also to respond initially to any other kind of call-out, such as traffic accidents, chemical incidents, pollution, lightning, etc. It goes almost without saying that it is provided with the most modern safety measures, a low centre of gravity, as well as a special chassis and a combination pump (low and high pressure), which improve the safety and performance ...

  20. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  1. Effect of Firing Temperature on Humidity Sensing Properties of SnO2 Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    R. Y. Borse

    2009-12-01

    Full Text Available Thick films of SnO2 were prepared using standard screen printing technique. The films were dried and fired at different temperatures. Tin-oxide is an n-type wide band gap semiconductor, whose resistance is described as a function of relative humidity. An increasing firing temperature on SnO2 film increases the sensitivity to humidity. The parameters such as sensitivity, response times and hysteresis of the SnO2 film sensors have been evaluated. The thick films were characterized by XRD, SEM and EDAX and grain size, composition of elements, relative phases are obtained.

  2. Specialists' meeting on sodium fires

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Kuznetsova, R.I.

    1989-01-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires

  3. Specialists' meeting on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Kuznetsova, R I [eds.

    1989-07-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires.

  4. Cable fire tests in France

    International Nuclear Information System (INIS)

    Kaercher, M.

    2000-01-01

    Modifications are being carried out in all French nuclear power plants to improve fire safety. These modifications are based on a three level defense in depth concept: fire preventing, fire containing and fire controlling. Fire containing requires many modifications such as protection of cable races and assessment of fire propagation which both need R and D development. On one hand, cable wraps made with mineral wool were tested in all configurations including effect of aging, overheating and fire and qualified for the use as protection from common failure modes. On the other hand, cables races in scale one were subject to gas burner or solvent pool fire to simulate ignition and fire propagation between trays and flash over situations. These tests have been performed under several typical lay out conditions. The results of the tests can be used as input data in computer modelling for validation of fire protection measures. (orig.) [de

  5. Enhancing fire science exchange: The Joint Fire Science Program's National Network of Knowledge Exchange Consortia

    Science.gov (United States)

    Vita Wright; Crystal Kolden; Todd Kipfer; Kristine Lee; Adrian Leighton; Jim Riddering; Leana Schelvan

    2011-01-01

    The Northern Rocky Mountain region is one of the most fire-prone regions in the United States. With a history of large fires that have shaped national policy, including the fires of 1910 and 2000 in Idaho and Montana and the Yellowstone fires of 1988, this region is projected to have many large severe fires in the future. Communication about fire science needs and...

  6. Fire as Technology

    Science.gov (United States)

    Rudolph, Robert N.

    2011-01-01

    In this article, the author describes a project that deals with fire production as an aspect of technology. The project challenges students to be survivors in a five-day classroom activity. Students research various materials and methods to produce fire without the use of matches or other modern combustion devices, then must create "fire" to keep…

  7. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  8. Post-fire regeneration of vegetation on sandy oligotrophic soil, in Itabaiana, Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Túlio Vinicius Paes Dantas

    2015-07-01

    Full Text Available Two models of post-disturbance regeneration of vegetation in areas of oligotrophic soils have been proposed for temperate regions. The first model is characterized by rapid recovery of the floristic composition, due to the fire resistance of plants; while in the second model, the fire causes extensive mortality and the recovery occurs by recruitment from the seed bank. Since these models have been rarely tested in tropical oligotrophic environments, we applied them in the analysis of floristic compositions in three areas with different post-fire regeneration times in Sergipe State, Brazil. The regeneration followed the seed bank recruitment model in places of bare ground, with a progressive increase in plant density and changes in the relative abundance and dominance of the populations along the successional process. The parameters that best allowed the succession evaluation were the floral similarity, plant height and density, which increased as regeneration progressed. The stem diameter and tillering were inconclusive as parameters for assessing the regeneration progress.

  9. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  10. Fire Protection Program Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  11. Pool fires in a large scale ventilation system

    International Nuclear Information System (INIS)

    Smith, P.R.; Leslie, I.H.; Gregory, W.S.; White, B.

    1991-01-01

    A series of pool fire experiments was carried out in the Large Scale Flow Facility of the Mechanical Engineering Department at New Mexico State University. The various experiments burned alcohol, hydraulic cutting oil, kerosene, and a mixture of kerosene and tributylphosphate. Gas temperature and wall temperature measurements as a function of time were made throughout the 23.3m 3 burn compartment and the ducts of the ventilation system. The mass of the smoke particulate deposited upon the ventilation system 0.61m x 0.61m high efficiency particulate air filter for the hydraulic oil, kerosene, and kerosene-tributylphosphate mixture fires was measured using an in situ null balance. Significant increases in filter resistance were observed for all three fuels for burning time periods ranging from 10 to 30 minutes. This was found to be highly dependent upon initial ventilation system flow rate, fuel type, and flow configuration. The experimental results were compared to simulated results predicted by the Los Alamos National Laboratory FIRAC computer code. In general, the experimental and the computer results were in reasonable agreement, despite the fact that the fire compartment for the experiments was an insulated steel tank with 0.32 cm walls, while the compartment model FIRIN of FIRAC assumes 0.31 m thick concrete walls. This difference in configuration apparently caused FIRAC to consistently underpredict the measured temperatures in the fire compartment. The predicted deposition of soot proved to be insensitive to ventilation system flow rate, but the measured values showed flow rate dependence. However, predicted soot deposition was of the same order of magnitude as measured soot deposition

  12. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  13. Reduced firing rates of high threshold motor units in response to eccentric overload.

    Science.gov (United States)

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Ih equalizes membrane input resistance in a heterogeneous population of fusiform neurons in the dorsal cochlear nucleus.

    Directory of Open Access Journals (Sweden)

    Cesar Celis Ceballos

    2016-10-01

    Full Text Available In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir. In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.

  15. Econometric analysis of fire suppression production functions for large wildland fires

    Science.gov (United States)

    Thomas P. Holmes; David E. Calkin

    2013-01-01

    In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews, dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire suppression inputs...

  16. Fire simulation of pool fire with effects of a ventilation controlled compartment by using a fire model, CFAST

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Matsuyama, Ken

    2015-01-01

    The basic performance for numerical analysis of fire parameters in a compartment by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings, was examined. Special attentions were paid to the effects of compartment geometry under poor ventilation conditions with mechanical systems. The simulations were carried out under conditions corresponding to previous experiments, in which fire parameters have been precisely measured. The comparison between numerical simulations and experiments indicated that the CFAST principally has a capability to represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment, by applying the proper boundary conditions. These results suggest that numerical analysis for time-series of air temperature and smoke concentration in compartments must be a powerful tool for discussion on validity of fire protection schemes. (author)

  17. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  18. Post-fire regeneration in a Mediterranean pine forest with historically low fire frequency

    Science.gov (United States)

    Buhk, Constanze; Götzenberger, Lars; Wesche, Karsten; Gómez, Pedro Sánchez; Hensen, Isabell

    2006-11-01

    Species of Mediterranean vegetation are known to regenerate directly after fire. The phenomenon of autosuccession (direct regeneration) has been found to be often combined with an increase of species richness during the first years after fire due to the high abundance of short-lived herbaceous plants facilitated by plentiful nutrients and light. The high degree of vegetation resilience, which is expressed in terms of autosuccession, has been explained by the selective pressure of fire in historic times. According to existing palaeoecological data, however, the Pinus halepensis forests in the Ricote Mountains (Province of Murcia, SE Spain) did not experience substantial fire impact before the presence of man nor are they especially fire-prone today. Therefore, we studied post-fire regeneration to find out if direct succession is present or if species from pre-fire vegetation are absent during the post-fire regeneration stages. Patterns of succession were deduced from observations made in sample plots on sites of a known regeneration age as well as in adjacent unburnt areas. The results of the vegetation analyses, including a Detrended Correspondence Analysis, indicate that Pinus halepensis forest regeneration after fire resembles autosuccession. As regards the presence of woody species, there is a high percentage similarity on north (83%) and south (70%) facing slopes during the first year after fire vs. reference areas which is due, for example, to direct regeneration of the resprouting Quercus coccifera or seeders like Pinus halepensis or Fumana laevipes. However, if herbaceous species are included in the comparison, the similarity on north-facing sites decreases (to 53%) with the presence of additional species, mainly ruderals like Anagallis arvensis or Reseda phyteuma, and even woody species on the burnt plots. This effect indicates "enhanced autosuccession", which was not found on south-facing sites where overall species richness was very high irrespective of

  19. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    Science.gov (United States)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning

  20. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    Science.gov (United States)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher

  1. Analysis of sodium pool fire in SFEF for assessing the limiting pool fire

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Ramesh, S.S.; Nashine, B.K.; Kasinathan, N.; Chellapandi, P.

    2011-01-01

    Accidental sodium leaks and resultant sodium fires in Liquid Metal Fast Breeder Reactor (LMFBR) systems can create a threat to the safe operation of the plant. To avoid this defence-in depth approach is implemented from the design stage of reactor itself. Rapid detection of sodium leak and fast dumping of the sodium into the storage tank of a defective circuit, leak collection trays, adequate lining of load bearing structural concrete and extinguishment of the sodium fire are the important defensive measures in the design, construction and operation of a LMFBR for protection against sodium leaks and their resultant fires. Evaluation of sodium leak events and their consequences by conducting large scale engineering experiments is very essential for effective implementation of the above protection measures for sodium fire safety. For this purpose a Sodium Fire Experimental Facility (SFEF) is constructed at SED, IGCAR. SFEF is having an experimental hall of size 9 m x 6 m x 10 m with 540 m 3 volume and its design pressure is 50 kPa. It is a concrete structure and provided with SS 304 liner, which is fixed to the inside surfaces of walls, ceiling and floor. A leak tight door of size (1.8 m x 2.0 m) is provided to the experimental hall and the facility is provided with a sodium equipment hall and a control room. Experimental evaluation of sodium pool fire consequences is an important activity in the LMFBR sodium fire safety related studies. An experimental program has been planned for different types of sodium fire studies in SFEF. A prior to that numerical analysis have been carried out for enclosed sodium pool fires using SOFIRE-II sodium pool fire code for SFEF experimental hall configuration to evaluate the limiting pool fire. This paper brings out results of the analysis carried out for this purpose. Limiting pool fire of SFEF depends on the exposed surface area of the pool, amount of sodium in the pool, oxygen concentration and initial sodium temperature. Limiting

  2. Fire management in central America

    Science.gov (United States)

    Andrea L. Koonce; Armando González-Cabán

    1992-01-01

    Information on fire management operations in Central America is scant. To evaluate the known level of fire occurrence in seven countries in that area, fire management officers were asked to provide information on their fire control organizations and on any available fire statistics. The seven countries surveyed were Guatemala, Belize, Honduras, El Salvador, Nicaragua,...

  3. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    Science.gov (United States)

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly

  4. Fire regime in Mediterranean ecosystem

    Science.gov (United States)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  5. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  6. Little Bear Fire Summary Report

    Science.gov (United States)

    Sarah McCaffrey; Melanie Stidham; Hannah. Brenkert-Smith

    2013-01-01

    In June 2012, immediately after the Little Bear Fire burned outside Ruidoso, New Mexico, a team of researchers interviewed fire managers, local personnel, and residents to understand perceptions of the event itself, communication, evacuation, and pre-fire preparedness. The intensity of fire behavior and resulting loss of 242 homes made this a complex fire with a...

  7. Effect of High Temperature or fire on heavy weight concrete properties used in nuclear facilities

    International Nuclear Information System (INIS)

    Sakr, K.

    2003-01-01

    In the present work the effect of different duration (1, 2 and 3 hours) of high temperatures (250 degree C, 500 degree C, 750 degree C and 950 degree C) on the physical and mechanical properties of heavy concrete shields were studied. The effect of fire fitting systems on ordinary concrete was investigated. The work was extended to determine the effect of high temperature or accidental fire on the radiation properties of heavy weight concrete. Results showed that ilmenite concrete had the highest density, absorption, and modulus of elasticity when compared to the other types of studied concrete and it had also higher values of compressive, tensile, bending and bonding strength than ordinary or baryte concrete. Ilmenite concrete had the highest attenuation of transmitted gamma rays in comparing to gravel concrete and baryte concrete. Ilmenite concrete was more resistant to elevated temperature than gravel concrete and baryte concrete. Foam or air as a fire fitting system in concrete structure that exposed to high temperature or accidental fire proved that better than water

  8. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    Science.gov (United States)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  9. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  10. The Joint Fire Science Program Fire Exchange Network: Facilitating Knowledge Exchange About Wildland Fire Science Across the U.S.

    Science.gov (United States)

    York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.

    2014-12-01

    The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.

  11. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline

  12. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    Science.gov (United States)

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing

  13. Fire fighting at Chernobyl and fire protection at UK nuclear power stations

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1987-01-01

    The fire fighting measures undertaken by the fire crews at the Chernobyl reactor accident are described. This information highlights the need to develop engineering equipment which will give a far greater degree of personnel protection to fire crews and others in radiological accidents. The British position on fire protection at nuclear power stations is outlined. The general levels of radiation exposure which would be used as a guide to persons in the vicinity of a radiation accident are also given. (UK)

  14. High-fire-risk behavior in critical fire areas

    Science.gov (United States)

    William S. Folkman

    1977-01-01

    Observations of fire-related behavior of wildland visitors were made in three types of areas-wilderness, established campground, and built-up commercial and residential areas-within the San Bernardino National Forest, California. Interviews were conducted with all persons so observed. Types of fire-related behavior differed markedly from one area to another, as did the...

  15. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.

    Science.gov (United States)

    Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine

    2016-10-01

    Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly

  16. Assessing European wild fire vulnerability

    Science.gov (United States)

    Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.

    2012-04-01

    Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However

  17. A new forest fire paradigm: The need for high-severity fires

    Science.gov (United States)

    Monica L. Bond; Rodney B. Siegel; Richard L. Hutto; Victoria A. Saab; Stephen A. Shunk

    2012-01-01

    Bond, Monica L.; Siegel, Rodney B.; Hutto, Richard L.; Saab, Victoria A.; Shunk, Stephen A. 2012. A new forest fire paradigm: The need for high-severity fires. The Wildlife Professional. Winter 2012: 46-49. During the 2012 fire season from June through August, wildfires in the drought-stricken western and central United States burned more than 3.6 million acres of...

  18. National Fire Protection Association

    Science.gov (United States)

    ... closed NFPA Journal® NFPA Journal® Update (newsletter) Fire Technology ... die from American home fires, and another 13,000 are injured each year. This is the story of fire that the statistics won't show ...

  19. The human and fire connection

    Science.gov (United States)

    Theresa B. Jain

    2014-01-01

    We refer to fire as a natural disturbance, but unlike other disturbances such as forest insects and diseases, fire has had an intimate relationship with humans. Fire facilitated human evolution over two million years ago when our ancestors began to use fire to cook. Fire empowered our furbearers to adapt to cold climates, allowing humans to disperse and settle into...

  20. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    Science.gov (United States)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  1. An assessment of the impact of home safety assessments on fires and fire-related injuries: a case study of Cheshire Fire and Rescue Service.

    Science.gov (United States)

    Arch, B N; Thurston, M N

    2013-06-01

    Deaths and injuries related to fires are largely preventable events. In the UK, a plethora of community-based fire safety initiatives have been introduced over the last 25 years, often led by fire and rescue services, to address this issue. This paper focuses on one such initiative--home safety assessments (HSAs). Cheshire Fire and Rescue Service (in England) implemented a uniquely large-scale HSA intervention. This paper assesses its effectiveness. The impact of HSAs was assessed in relation to three outcomes: accidental dwelling fires (ADFs), ADFs contained and injuries arising from ADFs. A two-period comparison in fire-related rates of incidences in Cheshire between 2002 and 2011 was implemented, using Poisson regression and adjusting for the national temporal trend using a control group comprising the 37 other English non-metropolitan fire-services. Significant reductions were observed in rates of ADFs [incidence rate ratios (IRR): 0.79, 95% confidence interval (CI): 0.74-0.83, P fires contained to room of origin. There is strong evidence to suggest that the intervention was successful in reducing domestic fires and related injuries.

  2. Rheological behaviour and thermal dilation effects of alumino-silicate adhesives intended for joining of high-temperature resistant sandwich structures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Chlup, Zdeněk; Strachota, Adam; Schweigstillová, Jana; Svítilová, Jaroslava; Halasová, Martina

    2017-01-01

    Roč. 37, č. 5 (2017), s. 2209-2218 ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 ; RVO:68081723 ; RVO:61389013 Keywords : Sandwich * Inorganic adhesive * Si-O-C ceramics * Ceramic foam * Ceramic fibre Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; CD - Macromolecular Chemistry (UMCH-V); JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) OBOR OECD: Ceramics; Polymer science (UMCH-V); Ceramics (UFM-A) Impact factor: 3.411, year: 2016

  3. A method for mapping fire hazard and risk across multiple scales and its application in fire management

    Science.gov (United States)

    Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds

    2010-01-01

    This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...

  4. Back to Basics: Preventing Surgical Fires.

    Science.gov (United States)

    Spruce, Lisa

    2016-09-01

    When fires occur in the OR, they are devastating and potentially fatal to both patients and health care workers. Fires can be prevented by understanding the fire triangle and methods of reducing fire risk, conducting fire risk assessments, and knowing how to respond if a fire occurs. This Back to Basics article addresses the basics of fire prevention and the steps that can be taken to prevent fires from occurring. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  5. Fire safety at home

    Science.gov (United States)

    ... over the smoke alarm as needed. Using a fire extinguisher can put out a small fire to keep it from getting out of control. Tips for use include: Keep fire extinguishers in handy locations, at least one on ...

  6. Fire-retardant-treated strandboard : properties and fire performance

    Science.gov (United States)

    Jerrold Winandy; Qingwen Wang; Robert H. White

    2008-01-01

    This study evaluated a series of single-layer, randomly oriented strandboard panels made with one resin type, a single resin loading level, and four fire-retardant-treatment levels. The fire retardant (FR) evaluated was a pH-buffered combination of boric acid and organic phosphate. Siberian larch strands were separated into five batches. One batch of strands served as...

  7. Developing fire management mixes for fire program planning

    Science.gov (United States)

    Armando González-Cabán; Patricia B. Shinkle; Thomas J. Mills

    1986-01-01

    Evaluating economic efficiency of fire management program options requires information on the firefighting inputs, such as vehicles and crews, that would be needed to execute the program option selected. An algorithm was developed to translate automatically dollars allocated to type of firefighting inputs to numbers of units, using a set of weights for a specific fire...

  8. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  9. Mitigating operating room fires: development of a carbon dioxide fire prevention device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-04-01

    Operating room fires are sentinel events that present a real danger to surgical patients and occur at least as frequently as wrong-sided surgery. For fire to occur, the 3 points of the fire triad must be present: an oxidizer, an ignition source, and fuel source. The electrosurgical unit (ESU) pencil triggers most operating room fires. Carbon dioxide (CO2) is a gas that prevents ignition and suppresses fire by displacing oxygen. We hypothesize that a device can be created to reduce operating room fires by generating a cone of CO2 around the ESU pencil tip. One such device was created by fabricating a divergent nozzle and connecting it to a CO2 source. This device was then placed over the ESU pencil, allowing the tip to be encased in a cone of CO2 gas. The device was then tested in 21%, 50%, and 100% oxygen environments. The ESU was activated at 50 W cut mode while placing the ESU pencil tip on a laparotomy sponge resting on an aluminum test plate for up to 30 seconds or until the sponge ignited. High-speed videography was used to identify time of ignition. Each test was performed in each oxygen environment 5 times with the device activated (CO2 flow 8 L/min) and with the device deactivated (no CO2 flow-control). In addition, 3-dimensional spatial mapping of CO2 concentrations was performed with a CO2 sampling device. The median ± SD [range] ignition time of the control group in 21% oxygen was 2.9 s ± 0.44 [2.3-3.0], in 50% oxygen 0.58 s ± 0.12 [0.47-0.73], and in 100% oxygen 0.48 s ± 0.50 [0.03-1.27]. Fires were ignited with each control trial (15/15); no fires ignited when the device was used (0/15, P fire prevention device can be created by using a divergent nozzle design through which CO2 passes, creating a cone of fire suppressant. This device as demonstrated in a flammability model effectively reduced the risk of fire. CO2 3-dimensional spatial mapping suggests effective fire reduction at least 1 cm away from the tip of the ESU pencil at 8 L/min CO2 flow

  10. Cork Oak Vulnerability to Fire: The Role of Bark Harvesting, Tree Characteristics and Abiotic Factors

    Science.gov (United States)

    Catry, Filipe X.; Moreira, Francisco; Pausas, Juli G.; Fernandes, Paulo M.; Rego, Francisco; Cardillo, Enrique; Curt, Thomas

    2012-01-01

    Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems. PMID:22787521

  11. Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors.

    Directory of Open Access Journals (Sweden)

    Filipe X Catry

    Full Text Available Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees that occurred in three southern European countries (Portugal, Spain and France, covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals and decreased with increasing bark thickness until cork was 3-4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems.

  12. Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors.

    Science.gov (United States)

    Catry, Filipe X; Moreira, Francisco; Pausas, Juli G; Fernandes, Paulo M; Rego, Francisco; Cardillo, Enrique; Curt, Thomas

    2012-01-01

    Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3-4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems.

  13. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  14. Post-fire rill and gully formation, Schultz Fire 2010, Arizona, USA

    Science.gov (United States)

    Daniel G. Neary; Karen A. Koestner; Ann Youberg; Peter E. Koestner

    2011-01-01

    The Schultz Fire burned 6,100 ha on the eastern slopes of the San Francisco Peaks, a dormant Middle Pliocene to Holocene aged stratovolcano in northern Arizona (Figure 1). The fire burned in the Coconino National Forest between June 20th and 30th, 2010, across moderate to very steep ponderosa pine and mixed conifer watersheds. About 40% of the fire area was classified...

  15. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-01

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  16. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  17. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    Science.gov (United States)

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  18. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  19. Analytical model for cable tray fires

    International Nuclear Information System (INIS)

    Clarke, R.K.

    1975-09-01

    A model for cable tray fires based on buoyant plume theory is presented. Using the model in conjunction with empirical data on size of natural fires and burning rate of cellulosic materials, estimates are made of the heat flux as a function of vertical and horizontal distance from a tray fire. Both local fires and fires extending along a significant length of tray are considered. For the particular set of fire parameters assumed in the calculations, the current tray separation criteria of five feet vertical and three feet horizontal are found to be marginal for local fires and too small to prevent fire spread for extended tray fires. 8 references. (auth)

  20. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  1. Large scale fire experiments in the HDR containment as a basis for fire code development

    International Nuclear Information System (INIS)

    Hosser, D.; Dobbernack, R.

    1993-01-01

    Between 1984 and 1991 7 different series of large scale fire experiments and related numerical and theoretical investigations have been performed in the containment of a high pressure reactor in Germany (known as HDR plant). The experimental part included: gas burner tests for checking the containment behaviour; naturally ventilated fires with wood cribs; naturally and forced ventilated oil pool fires; naturally and forced ventilated cable fires. Many results of the oil pool and cable fires can directly be applied to predict the impact of real fires at different locations in a containment on mechanical or structural components as well as on plant personnel. But the main advantage of the measurements and observations was to serve as a basis for fire code development and validation. Different types of fire codes have been used to predict in advance or evaluate afterwards the test results: zone models for single room and multiple room configurations; system codes for multiple room configurations; field models for complex single room configurations. Finally, there exist codes of varying degree of specialization which have proven their power and sufficient exactness to predict fire effects as a basis for optimum fire protection design. (author)

  2. Effects of weathering on performance of intumescent coatings for structure fire protection in the wildland-urban interface

    Science.gov (United States)

    Bahrani, Babak

    The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known

  3. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    Science.gov (United States)

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  4. Synthesis of knowledge of extreme fire behavior: volume I for fire managers

    Science.gov (United States)

    Paul A. Werth; Brian E. Potter; Craig B. Clements; Mark A. Finney; Scott L. Goodrick; Martin E. Alexander; Miguel G. Cruz; Jason A. Forthofer; Sara S. McAllister

    2011-01-01

    The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is...

  5. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. V. Zhovna

    2008-01-01

    Full Text Available The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these documents is to ensure the required level of  fire safety. On the basis of the obtained results concerning  economic analysis of efficiency optimization directions are defined for selection of technical means of fire-fighting protection at objects of industrial purpose.

  6. Pipeline oil fire detection with MODIS active fire products

    Science.gov (United States)

    Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.

    2017-12-01

    We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.

  7. Integrated approach to fire safety at the Krsko nuclear power plant - fire protection action plan

    International Nuclear Information System (INIS)

    Lambright, J.A.; Cerjak, J.; Spiler, J.; Ioannidi, J.

    1998-01-01

    Nuclear Power Plant Krsko (NPP Krsko) is a Westinghouse design, single-unit, 1882 Megawatt thermal (MWt), two-loop, pressurized water nuclear power plant. The fire protection program at NPP Krsko has been reviewed and reports issued recommending changes and modifications to the program, plant systems and structures. Three reports were issued, the NPP Krsko Fire Hazard Analysis (Safe Shout down Separation Analysis Report), the ICISA Analysis of Core Damage Frequency Due to Fire at the NPP Krsko and IPEEE (Individual Plant External Event Examination) related to fire risk. The Fire Hazard Analysis Report utilizes a compliance - based deterministic approach to identification of fire area hazards. This report focuses on strict compliance from the perspective of US Nuclear Regulatory Commission (USNRC), standards, guidelines and acceptance criteria and does not consider variations to comply with the intent of the regulations. The probabilistic analysis methide used in the ICISA and IPEEE report utilizes a risk based nad intent based approach in determining critical at-risk fire areas. NPP Krsko has already completed the following suggestions/recommendations from the above and OSART reports in order to comply with Appendix R: Installation of smoke detectors in the Control Room; Installation of Emergency Lighting in some plant areas and of Remote Shout down panels; Extension of Sound Power Communication System; Installation of Fire Annunciator Panel at the On-site Fire Brigade Station; Installation of Smoke Detection System in the (a) Main Control Room Panels, (b) Essential Service Water Building. (c) Component Cooling Building pump area, chiller area and HVAC area, (d) Auxiliary Building Safety pump rooms, (e) Fuel Handling room, (f) Intermediate Building AFFW area and compressor room, and (g) Tadwaste building; inclusion of Auxiliary operators in the Fire Brigade; training of Fire Brigade Members in Plant Operation (9 week course); Development of Fire Door Inspection and

  8. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  9. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    OpenAIRE

    Tineke Kraaij; Richard M. Cowling; Brian W. van Wilgen; Diba R. Rikhotso; Mark Difford

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South A...

  10. Fire tests and their relevance

    International Nuclear Information System (INIS)

    Malhotra, H.L.

    1984-01-01

    Background information is provided about the nature of fire tests in general, not specifically designed for testing nuclear flasks. Headings are: brief history (including various temperature/time fire curves); the current position; types of tests; validation of fire tests; fire safety system. (U.K.)

  11. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. CERN firemen simulate the backdraft phenomena for training. The demonstration, which you will have the opportunity to observe, on the next Discovery Monday, is spectacular. However, the remit of the CERN fire brigade goes well b...

  12. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  13. Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

    Science.gov (United States)

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...

  14. Holocene fire dynamics in Fennoscandia

    Science.gov (United States)

    Clear, Jennifer; Seppa, Heikki; Kuosmanen, Niina; Molinari, Chiara; Lehsten, Veiko; Allen, Katherine; Bradshaw, Richard

    2015-04-01

    Prescribed burning is advocated in Fennoscandia to promote regeneration and to encourage biodiversity. This method of forest management is based on the perception that fire was much more frequent in the recent past and over a century of active fire suppression has created a boreal forest ecosystem almost free of natural fire. The absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce) with the successive spruce dominated forest further reducing fire ignition potential. However, humans have altered the natural fire dynamics of Fennoscandia since the early- to mid-Holocene and disentangling the anthropogenic driven fire dynamics from the natural fire dynamics is challenging. Through palaeoecology and sedimentary charcoal deposits we are able to explore the Holocene spatial and temporal variability and changing drivers of fire and vegetation dynamics in Fennoscandia. At the local-scale, two forest hollow environments (history are compared to identify unique and mutual changes in disturbance history. Pollen derived quantitative reconstruction of vegetation at both the local- and regional-scale identifies local-scale disturbance dynamics and large-scale ecosystem response. Spatio-temporal heterogeneity and variability in biomass burning is explored throughout Fennoscandia and Denmark to identify the changing drives of fire dynamics throughout the Holocene. Palaeo-vegetation reconstructions are compared to process-based, climate driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Early-Holocene fire regimes in Fennoscandia are driven by natural climate variations and fuel availability. The establishment and spread of Norway spruce is driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. The expansion of spruce led to a step-wise reduction in regional biomass

  15. Intelligent buildings, automatic fire alarm and fire-protection control system

    International Nuclear Information System (INIS)

    Tian Deyuan

    1999-01-01

    The author describes in brief the intelligent buildings, and the automatic fire alarm and fire-protection control system. On the basis of the four-bus, three-bus and two-bus, a new transfer technique was developed

  16. Fire management of California shrubland landscapes

    Science.gov (United States)

    Keeley, Jon E.

    2002-01-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  17. Fire science at LLNL: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K. (ed.)

    1990-03-01

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  18. 75 FR 66735 - National Fire Protection Association (NFPA): Request for Comments on NFPA's Codes and Standards

    Science.gov (United States)

    2010-10-29

    ... 59A Standard for the P Production, Storage, and Handling of Liquefied Natural Gas (LNG). NFPA 75... Horizontally in Fire Resistance-Rated Floor Systems. NFPA 385 Standard for Tank P Vehicles for Flammable and Combustible Liquids. NFPA 497 Recommended Practice P for the Classification of Flammable Liquids, Gases, or...

  19. The Fire Effects Information System - serving managers since before the Yellowstone fires

    Science.gov (United States)

    Jane Kapler Smith; Janet L. Fryer; Kristin Zouhar

    2009-01-01

    This presentation will describe the current status of the Fire Effects Information System (FEIS) and explore lessons learned from this 23-yearold project about the application of science to fire management issues. FEIS contains literature reviews covering biology and fire ecology for approximately 1,100 species in North America: plants and animals, native and nonnative...

  20. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.

    2018-02-01

    We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.