WorldWideScience

Sample records for finned tube performance

  1. Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review

    Directory of Open Access Journals (Sweden)

    Sandip S. Kale

    2014-09-01

    Full Text Available The plate fin-and-tube heat exchangers are widely used in variety of industrial applications, particularly in the heating, air-conditioning and refrigeration, HVAC industries. In most cases the working fluid is liquid on the tube side exchanging heat with a gas, usually air. It is seen that the performance of heat exchangers can be greatly increased with the use of unconventionally shaped flow passages such as plain, perforated offset strip, louvered, wavy, vortex generator and pin. The current study is focused on wavy-fin. The wavy surface can lengthen the path of airflow and cause better airflow mixing. In order to design better heat exchangers and come up with efficient designs, a thorough understanding of the flow of air in these channels is required. Hence this study focuses on the heat transfer and friction characteristics of the air side for wavy fin and tube heat exchanger.

  2. Performance Prediction of Cross-finned Tube Heat Exchangers

    Science.gov (United States)

    Kondou, Chieko; Senshu, Takao; Matsumura, Kenji; Oguni, Kensaku

    An important issue in heat pumps is increasing their efficiency, in order to achieve a significant optimization for heat exchangers. Techniques to simulate the flow length averaged heat transfer coefficient and static pressure drop through the flow passage are presented in this paper. In addition, an analytical evaluation of the cost reduction for a cross-fined tube heat exchanger of outdoor heat pump units is instantiated. The dimensionless factors, Colburn's factor j and Fanning's friction factor f, express the heat transfer performance and frictional characteristics, as a function of Reynolds number. These depend on slit possession, an original parameter used in this study. Further, this paper describes an approximate expression of the fin efficiency, which can be used for to survey the fin parameters. The above three concepts were necessary to forecast the performance on the airside. In the results, the cost minimum point was obtained with a comparable performance.

  3. Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each...

  4. Experimental and numerical investigation to evaluate the performance of triangular finned tube heat exchanger

    Directory of Open Access Journals (Sweden)

    Vinous M. Hameed, Bashar Muslem Essa

    2015-01-01

    Full Text Available Experimental and numerical investigation has been performed in this work to evaluate the performance for triangular finned tube heat exchanger. Experimental work included designing and manufacturing of shaped triangular fins from copper material of (10mm length, (10mm height, (1mm thickness, (22 mm distance between every two fins shaped and (15mm pitch between each two of fins which are install on the straight copper tube of (2m length having (20mm inner diameter and (22mm outer diameter. The inner tube is inserted inside the Perspex tube of (54mm inner diameter and (60mm outer diameter. Cold Air and hot water are used as working fluids in the shell side and tube side, respectively. Air at various mass flow rates (0.001875 to 0.003133 kg/sec flows through annuli and water at Reynold's numbers ranging from (10376.9 to 23348.03 flows through the inner tube. Performance of (smooth and finned tube heat exchanger was investigated experimentally. Experimental results showed that the enhancement of heat dissipation for triangular finned tube is (3.252 to4.502 times than that of smooth tube respectively. Numerical simulation has been carried out on present heat exchanger to analyze flow field and heat transfer using COMSOL computational fluid dynamic (CFD package model. The comparison between experimental work and numerical results showed good agreement.

  5. Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

    Institute of Scientific and Technical Information of China (English)

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN

    2008-01-01

    Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500-6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and ffactors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.

  6. Performance study of a fin and tube heat exchanger with different fin geometry

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    and pressure loss characteristics such as Nusselt number, Euler number, and efficiency index are determined and utilized to compare the performance of different fin geometries. The results obtained from the models are verified using experimentally developed correlations. The results obtained from the numerical...

  7. Indoor test for thermal performance evaluation of seven Elcam fin-tube solar collector configurations

    Science.gov (United States)

    1979-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on seven Elcam fin-tube solar collector configurations under simulated conditions are described. These tests were made using the Marshall Space Flight Center solar facilities. The Elcam fin-tube (liquid) solar collectors each consist of an absorber plate 5.9 inches wide by 83 inches long and a type M copper tube of 0.569 inch nominal inside diameter. No cover plate was used with any of the specimens. The uniqueness of each of the seven configurations is described, and tests were performed on each separate configuration.

  8. An improved model for predicting performance of finned tube heat exchanger under frosting condition, with frost thickness variation along fin

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P. [Multimedia University, Jalan Ayer Keroh Lama, Melaka (Malaysia). Faculty of Engineering and Technology; Cheng, Y.C.; Lai, A.C.K. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Aerospace Engineering

    2006-01-15

    Frost accumulation on a heat exchanger, a direct result of combined heat and mass transfer between the moist air flowing across a cold surface, causes heat transfer performance degradation due to the insulating effect of frost layer and the coil blockage as the frost grows. The complex geometry of finned tube heat exchangers leads to uneven wall and air temperature distribution inside the coil, and causes variations of frost growth rate and densification along the coil. In this study, a general distributed model with frost formation was developed. The equations for finned tube heat exchanger were derived in non-steady-state manner and quasi-steady state in the frost model. In order to make the model more realistic, the variation of frost along fin due to uneven temperature distribution was included. The presented model is able to predict the dynamic behavior of an air cooler both under non-frost and frost condition. Comparisons were made based on the frost mass accumulation, pressure drop across coil and energy transfer coefficient, and results were found to agree well with reported experimental results. (author)

  9. A numerical analysis on heat transfer performance from various gap size between finned tube module and side-wall in finned tube evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Yoon; Shin, Seung Won [Hongik Univ, Seoul (Korea, Republic of); Ahn, Joon [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    Recently, Heat Recovery Steam Generator(HRSG) is widely used in various commercial places such as hospital, restaurant, and sauna for steam generation equipment due to increasing demand on steam usage for disinfection or fumigation. In HRSG, finned tube type evaporator is usually utilized to enhance heat transfer performance for higher steam generation. Most previous research so far has been focused on heat transfer enhancement aspect from geometry of each individual fin such as pitch distance, length, and thickness. In current study, we have tried to identify the effect from gap size between tube module and side wall on overall heat transfer. We found out that the gap size has considerable effect on total heat transfer rate. We also observed that both heat transfer performance and pressure drop is decreasing with increasing gas size.

  10. Fin-tube solar collectors

    Science.gov (United States)

    1980-01-01

    Report presents test procedures and results of thermal-performance evaluation of seven commercial fin tube (liquid) solar collector-absorber plates. Tests were conducted indoors at Marshall Space Flight Center Solar simulator. Results are graphically shown along with supporting test data and summary, indicating efficiency as function of collector inlet temperature.

  11. Numerical analysis on the frosting performance of a fin-tube evaporator for a refrigerator

    International Nuclear Information System (INIS)

    The objective of this study is to provide numerical and experimental data that can be used to investigate the performance characteristics of a flat plate fin-tube evaporator in household and commercial refrigerators under frosting conditions. Computer simulations with variations of operating conditions such as air inlet temperature, relative humidity, and geometries were performed to find out optimal design parameters of a fin-tube evaporator for household and commercial refrigerators. The tube-by-tube method was used in the simulation and the frost growth model was considered under frosting conditions. The developed analytical model predicted the decreasing rates of heat transfer capacity and air flow rate ratio within ± 10% compared to the experimental results for a refrigerator under real operating conditions. As a result, the frost thickness at 3 .deg. C and 80% is increased 40% than that of -3 .deg. C and 80%, and the frost thickness at 3 .deg. C and 90% is increased 30% than that of 3 .deg. C and 60%. Accordingly, the operating time of the evaporator in the refrigerator was reduced with the increase of the decreasing rate of air flow rate ratio at each condition

  12. An experimental investigation on air-side performances of finned tube heat exchangers for indirect air-cooling tower

    Directory of Open Access Journals (Sweden)

    Du Xueping

    2014-01-01

    Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.

  13. Experimental Performance of a Finned-tube Silica Gel Adsorption Chiller for Air-Conditioning Application

    Directory of Open Access Journals (Sweden)

    Mohammed A. Atiya

    2014-09-01

    Full Text Available This work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP and the coefficient of performance (COP are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.

  14. Effect of refrigerant mal-distribution in fin-and-tube evaporators on system performance

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2009-01-01

    Refrigerant mal-distribution in fin-and-tube evaporators for residential air-conditioning (RAC) is investigated numerically in this paper. A model of the system is developed in the object-oriented modeling language Modelica. Themodels of the compressor and expansion valve are static, whereas...... the condenser is a dynamic moving boundary model. The evaporator model is a dynamic distributed one-dimensional homogeneous equilibrium model, in order to capture the distribution phenomena. Fin-and-tube heat exchangers usually have a complex circuitry, however the evaporator will be simplified to be two...

  15. Experimental Study of the Airside Performance for Interrupted Fin-and-tube Heat Exchanger with Hydrophilic Coating under Dehumidifying Conditions

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-kui; DING Guo-liang; ZHANG Yuan-ming

    2009-01-01

    The airside heat transfer and friction characteristics of seven interrupted fin-and-tube heat exchangers with hydrophilic coating under dehumidifying conditions are experimented. The effects of number of tube rows, fin pitch and inlet relative humidity on airside performance are analyzed. The test results show that the influence of fin pitch on the friction characteristic under dehumidifying conditions is similar to that under dry surface, and the friction factors decrease slightly with the increase of number of tube rows. The heat transfer performance decreases as fin pitch and number of tube rows increases. The heat transfer performance and the friction characteristic are independent of inlet relative humidity. Based on the test results, heat transfer and friction correlations in terms of the Colburn j factor and Fanning f factor, are proposed to describe the airside performance of the interrupted fin geometry with hydrophilic coating under dehumidifying conditions. The correlation of the Colburn j factor gives a mean deviation of 9.7%, while the correlation of the Fanning f factor shows a mean deviation of 7.3%.

  16. Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system

    International Nuclear Information System (INIS)

    Highlights: • New-structure finned-tube adsorption bed for enhancing heat and mass transfer. • Temperatures on different parts of the adsorption tubes differ little. • Maximum COP of 0.122 and maximum daily ice-making of 6.5 kg are achieved by experiments. • Cooling efficiency of system with valve control higher than that without valve control. - Abstract: A large-diameter aluminum-alloy finned-tube absorbent bed collector was designed and optimized by enhancing the heat and mass transfer in the collector. The collection efficiency of the adsorbent bed collector was between 31.64% and 42.7%, and the temperature distribution in the absorbent bed was relatively uniform, beneficial to adsorption/desorption of the adsorbate in the absorbent bed. A solar-powered solid adsorption refrigeration system with the finned-tube absorbent bed collector was built. Some experiments corresponding to the adsorption/desorption process with and without a valve control were conducted in four typical weather conditions: sunny with clear sky, sunny with partly cloudy sky, cloudy sky and overcast sky. Activated carbon–methanol was utilized as the working pair for adsorption refrigeration in the experiments. The experiments achieved the maximum COP of 0.122 and the maximum daily ice-making of 6.5 kg. Under the weather conditions of sunny with clear sky, sunny with partly cloudy sky, and cloudy sky, ice-making phenomenon were observed. Even in the overcast-sky weather condition, the cooling efficiency of the system still reached 0.039 when the total solar radiation was 11.51 MJ. The cooling efficiency of the solar-powered adsorption refrigeration system with a valve control in the adsorption/desorption process was significantly higher than that without a valve control

  17. Numerical analysis of the influence of circuit arrangement on a fin-and-tube condenser performance

    Directory of Open Access Journals (Sweden)

    Cesare Maria Joppolo

    2015-09-01

    Full Text Available In the present paper a model for the steady-state simulation of fin-and-tube condenser is developed. The model is based on a finite volume approach that divides each tube into small elemental volumes where mass, momentum and energy conservation equations are solved using the effectiveness-NTU method and with appropriate correlations for void fraction, friction factor and heat transfer coefficient calculation. The model is validated against experimental data on two small condensers finding that the calculated heat transfer rate and refrigerant-side pressure drop agree within ±5% and ±21% respectively to the experimental values. The model is then used to numerically analyse the impact of different circuit arrangements on the condenser heat transfer rate, refrigerant-side pressure drop and refrigerant charge.

  18. Numerical Study on Heat Transfer Performance of Crossflow Fin-tube Heat Exchanger Depending on Different Fan Positions

    International Nuclear Information System (INIS)

    The convective heat transfer of a crossflow fin-tube heat exchanger was studied numerically. In order to investigate the dependence of the heat transfer performance on the fan position, several cases with different blowing and suction types were selected for the fan position. A staggered tube arrangement was used for the heat exchanger, and the temperatures of the tube wall and air were 50 .deg. C and 30 .deg. C, respectively. The three-dimensional flow structures were examined based on the results. In addition, the convective heat transfer coefficient and mean temperature difference between the inlet and outlet of the heat exchanger were analyzed for the various fan positions, and the heat transfer performance was investigated.

  19. Thermal Performance of a Single-row Fin-and-tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Sheng TANG; Kwang-Tzu YANG

    2005-01-01

    @@ Experiments were carried out to study the heat transfer characteristics of a single-row aluminum fin-and-tube crossflow heat exchanger with an emphasis in the regime of low flow rate of the in-tube fluid. The Chilton-Colburn analogy, in conjunction with the least-squares power-law technique, was used to correlate experimental data. Both air- and water-side heat transfer correlations were developed in the form of the Nusselt numbers as a function of Reynolds and Prandtl numbers. The experimental observations are quantitatively compared to the predictions of correlations available in the published literature. Different transfer mechanisms were found to be operative in the ranges of water-side Reynolds numbers based on the hydraulic diameter. In a range of Reynolds number from 1,200 to 6,000, the water-side thermal resistance accounts for less than ten percent of the overall thermal resistance. The dominant thermal resistance is always on the air-side. On the other hand, the thermal resistance of water-side is nearly equal to that of air-side in a Reynolds number range from 500 to 1,200.

  20. PHASE CHANGE AROUND A FINNED TUBE

    Directory of Open Access Journals (Sweden)

    Aytunç EREK

    2003-01-01

    Full Text Available This study presents the heat transfer enhancement in the thermal energy storage system by using radially finned tube. The solution of the system consists of the solving the equations of the heat transfer fluid (HTF, the pipe wall and fin, and the phase change material (PCM as one domain. The control volume finite difference approach and the semi implicit solver (SIS are used to solve the equations. Fully developed velocity distribution is taken in the HTF. Flow parameters (Re number and inlet temperature of coolant and fin parameters (the number of fins, fin length, fin thickness are found to influence solidification fronts and the total stored energy.

  1. Development of a High-Performance Fin-and-Tube Heat Exchanger with Vortex Generators for a Vending Machine

    Science.gov (United States)

    Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira

    The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.

  2. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model

    International Nuclear Information System (INIS)

    Research highlights: → A dynamic mathematical model is built to predict the performance of DCHE system. → Operation time in dehumidification is a crucial parameter to system performance. → Under ARI summer condition, the largest cooling power can reach to 2.6 kW. → Under ARI humid condition, the largest cooling power can reach to 3.4 kW. → System performs better with smaller fin distance and tube diameter. -- Abstract: Desiccant coated heat exchanger (DCHE) system can handle latent and sensible load simultaneously by removing the released adsorption heat in dehumidification process. The system can also be driven by low grade thermal energy such as solar energy. In this paper, a dynamic one-dimensional mathematical model validated by experimental data is established to predict the performance of DCHE system, using conventional silica gel as desiccant material. Cooling performance of DCHE system is calculated under ARI (American Air-conditioning and Refrigeration Institute) summer and humid conditions. Simulated results show that the operation time in dehumidification process is a crucial factor for cooling capacity of DCHE system, which can be enhanced by eliminating the initial period with higher outlet air temperature, the largest cooling power of DCHE system increase from 2.6 kW to 3.5 kW by eliminating first 50 s of operation time under ARI summer condition. The results also prove that the system can provide cooling power to indoor condition with selective operation time when regeneration temperature varies from 50 oC to 80 oC. Besides, the model is adopted to analyze the effects of some structural parameters on system performance under simulated condition. The system performs well in smaller cobber tube external diameter condition, while both transient heat and mass transfer capacity can be enhanced under the condition of smaller distance between the fins.

  3. CFD-Based Correlation Development For Air Side Performance Of Finned And Finless Tube Heat Exchangers With Small Diameter Tubes

    OpenAIRE

    Bacellar, Daniel; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Air-to-refrigerant heat exchangers are a key component in air-conditioning and heat pump systems. A great deal of effort is spent on the design and optimization of these heat exchangers. One path towards improving their performance is the transition to smaller hydraulic diameter flow channels. This is evident by the recent introduction of microchannel heat exchangers in the stationary HVAC market. Systematic analyses demonstrates a great potential for improvement in terms of size, weight, ref...

  4. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  5. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the ......In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM...

  6. Study on Thermo-Conductive Plastic Finned Tube Radiators

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper discusses thermo-conductive plastic finned tube radiators used in water saving type power stations.First,the development of thermo-conductive plastics is introduced.Second,in order to determine the rational geometric dimensions of thermo-conductive plastic finned tubes,an objective function which takes the minimum volume of the consumed material for making finned tubes as an object is introduced.On the basis of the function,the economy comparison between thermo-conductive plastic finned tubes and metal finned tubes is conducted.

  7. Validation of a Model for Ice Formation around Finned Tubes

    Directory of Open Access Journals (Sweden)

    Kamal A. R. Ismai

    2016-09-01

    Full Text Available Phase change materials although attaractive option for thermal storage applications its main drawback is the slow thermal response during charging and discharging processes due to their low thermal conductivity. The present study validates a model developed by the authors some years ago on radial fins as a method to meliorate the thermal performance of PCM in horizontal storage system. The developed model for the radial finned tube is based on pure conduction, the enthalpy approach and was discretized by the finite difference method. Experiments were realized specifically to validate the model and its numerical predictions.

  8. A characteristic correlation for heat transfer over serrated finned tubes

    International Nuclear Information System (INIS)

    Highlights: • Numerical investigation og heat transfer over serrated finned tubes. • Fins used on the outside of the tubes of a sodium to air heat exchanger. • RANS approach with RNG k–ε model to handle turbulence to handle closure. • Validation with in-house experiments. • Parametric studies culminating in a correlation for Nusselt number. - Abstract: Conjugate heat transfer from serrated fins on the outside of the tubes of a sodium to air tubular heat exchanger of sodium cooled fast breeder reactors, has been investigated by combined experimental and computational approaches. For the latter approach, the RNG k–ε model, which is applicable for a wide range of Reynolds numbers, was used for turbulence closure. The numerical model employed was validated by conducting in-house heat transfer experiments on a single serrated finned tube. A detailed parametric study has been carried out to investigate the effect of serration depth, fin pitch, fin height and fin thickness. In addition to pure cross flow, the effect of angle of attack of the flow on the heat transfer also has been studied. A correlation for determining the Nusselt number over a serrated finned tube has been proposed taking into account the serration parameters. This is expected to be useful in the design of sodium to air heat exchangers of fast breeder reactors

  9. Compensation of airflow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Tiedemann, Thomas

    2012-01-01

    Compensation of airflow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated with regards to circuitry design and control of individual channel superheats. In particularly, the interlaced and the face split circuitry designs are compared numerically using...... evaporator by modifying its U-bend connections. Furthermore, a 14% and 28% blockage of the face split evaporator is studied experimentally with control of individual channel superheats. It is shown that the face split circuitry with compensation gives the best performance in both dry and wet conditions...

  10. Numerical Analysis for Optimal Design of Fin and Tube Type Adsorber

    Science.gov (United States)

    Kariya, Keishi; Kuwahara, Ken; Shigeru, Koyama

    Adsorption cooling systems driven by low temperature waste heat (below 100°C) or renewable energy sources have gained considerable attention as one of the solutions for both energy and environment related problems. In this study, a two dimensional numerical analysis is carried out to evaluate the adsorption characteristics and to determine the performance of a fin and tube type adsorber/desorber heat exchanger; activated carbon fiber (ACF) of type A-20, which has relatively higher surface area, and ethanol are used as adsorbent/refrigerant pair. The effects of heat exchanger design configurations such as fin height, fin thickness, fin pitch, tube diameter and apparent density of ACF bed on the performance are examined numerically. The simulation results show that the cooling capacity can be optimized in the condition of fin height 15mm and fin pitch 5.5mm when other parameters are fixed.

  11. Numerical simulation of heat exchangers elliptical tubes and corrugated fins

    International Nuclear Information System (INIS)

    The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)

  12. Numerical Study on the Effect of Tube Rows on the Heat Transfer Characteristic of Dimpled Fin

    OpenAIRE

    Xuehong Wu; Lihua Feng; Dandan Liu; Hao Meng; Yanli Lu

    2014-01-01

    The dimpled fin has excellent heat transfer performance and has attracted a lot of attention to apply on the fin and tube heat exchanger. A study presents to investigate the effects of number of tube rows on the air-side heat transfer characteristics of dimpled fin for velocity ranging from 1 to 3 m/s. The Q/ΔP and Q/(ΔP×V) are used to evaluate the heat transfer performance of the heat exchanger. The results show that the dimpled arrangement can change the mainstream direction, increase the d...

  13. Numerical Analysis on Optimization of a Fin and Tube Type Adsorber/Desorber Heat Exchanger using ACF/C2H5OH Pair

    Science.gov (United States)

    Kariya, Keishi; Kuwahara, Ken; Koyama, Shigeru

    This study deals with a two dimensional numerical analysis of the fin and tube type adsorber/desorber heat exchanger design such as fin height, fin pitch, fin thickness and tube diameter effect on the performance of closed adsorption cooling system with activated carbon fiber (ACF) of type A-20, which has relatively higher surface area, and ethanol pair. The simulation results show that the fin tube diameter is effective on the performance of the heat exchanger. It is also found that the cycle COP can be optimized in the condition of fin pitch 4.5mm and fin height 20mm, respectively when other parameters are fixed.

  14. Experimental study of heat transfer and pressure drop characteristics on shell-side of pin-fin tube oil cooler

    International Nuclear Information System (INIS)

    The comparative experimental study for one smooth tube oil cooler and three pin-fin tube oil coolers was performed by using lubricating oil as heat transfer medium. The experimental results indicate that in the range of experimental study, total heat transfer coefficient of pin-fin tube oil coolers is about 1.4-2 times higher than that of the smooth tube oil cooler. The heat transfer and pressure drop characteristics are greatly different for different structures of pin-fin tube oil coolers. The effects of the structure of pin-fin tube and shell-side flow path number are dominant to influence heat transfer and pressure drop characteristics of oil coolers. In the range of experimental study, large pin-fin height is conducive to the oil flow disturbance, but not conducive to the heat transfer on the tube-base heat transfer surface of pin-fin tube; single-pass pin-fin tube oil cooler offers high total heat transfer coefficient and volumetric heat transfer capacity, the global heat transfer performance and the friction characteristics are better than that of two-pass pin-fin tube oil cooler. (authors)

  15. Finned double-tube PCM system as a waste heat storage

    Science.gov (United States)

    Alhamdo, M. H.; Theeb, M. A.; Golam, A. S.

    2015-11-01

    In this work, focus is taken on developing a waste heat recovery system for capturing potential of exhaust heat from an air conditioner unit to be reused later. This system has the ability to store heat in phase change material (PCM) and then release it to a discharge water system when required. To achieve this goal, a system of Finned, Water-PCM, Double tube (FWD) has been developed and tested. Different profiles of fins attached to the (FWD) system have been investigated for increasing the thermal conductivity of the PCM. These include using Circular Finned, Water-PCM, Double tube (CFWD) system; Longitudinal Finned, Water-PCM, Double tube (LFWD) system; Spiral Finned, Water-PCM, Double tube (SFWD) system; as well as; Without Fins, Water-PCM, Double tube (WFWD) system. An experimental test rig that attached to an air-conditioner unit has been built to include 32- tubes of the FWD systems for both vertical and horizontal layouts during charging and water discharging processes. Results show a significant performance improvement when using spiral and circular fins during charging process at vertical position. However, longitudinal and without fins showed better performance in horizontal position. Overall, the developed SFWD system in vertical position has been found to exhibit the most effective type due to the fastest PCM melting and solidification. As compared to the WFWD system, the FWD systems have been found to increase the PCM temperature gain of about 15.3% for SFWD system; 8.2% for CFWD; and 4.3% for LFWD system.

  16. Fin formation model during pre-roll ploughing of copper 3D outside fin tube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism of pre-roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre-roll ploughing feed and pre-roll ploughing depth have been achieved. With the increase of pre-roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre-roll ploughing. The pre-roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.

  17. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study asso...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  18. Fouling of HVAC fin and tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  19. Transient response of finned-tube condenser in household refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Porkhial, S. [Technical Department, Karaj Branch, Islamic Azad University, Tehran (Iran); Khastoo, B. [Mechanical Engineering Department, Amirkabir University, Tehran (Iran); Modarres Razavi, M.R. [Mechanical Engineering Department, Ferdowsi University, Mashhad (Iran)

    2006-10-15

    A distributed parameter model for prediction of the transient performance of a condenser is presented. The model is capable of predicting the refrigerant temperature distribution, tube wall temperature, quality of refrigerant, inventory mass of refrigerant as a function of position and time. An efficient two-level iteration method is proposed to obtain the numerical solution of the model without solving a large set of non-linear equations simultaneously. A finned tube condenser of 12ft{sup 3} refrigerator with R12 as working fluid was chosen as a sample and some tests were carried out to determine its transient response. The examination of results indicates that the theoretical model provides a reasonable prediction of dynamic response compared to the experimental data. Transient behavior of temperature, pressure, mass flow rate, mass of liquid and vapor of refrigerant, quality, heat transfer in household refrigerators have been presented. Also time-dependent displacement of interface between saturated and superheated regions has been shown. Extensive examinations of theoretical and experimental results show that with utilization of a controllable compressor, power consumption can be reduced. (author)

  20. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    Science.gov (United States)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2016-09-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  1. Influence of the degree of thermal contact in fin and tube heat exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    is simulated in the present study. The performance of the heat exchanger is characterized in terms of overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. Results obtained from numerical modeling are useful to examine the impact of the degree of thermal contact...... efficiency index of 9.131 and lower flow resistance factor of 0.123 among the cases investigated and highlights the need for perfect thermal contact between fin and tubes to meet the application based requirements.......Present work aims to investigate the significance of thermal contact area between fins and tubes in a heat exchanger. The heat exchanger type selected for the study is a liquid-gas fin and tube heat exchanger. Four different cases namely I, II, III, and IV, based on a variable degree of thermal...

  2. Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

    Directory of Open Access Journals (Sweden)

    M. V. Ghori

    2012-08-01

    Full Text Available Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of two-row plain Tube and Fin heat exchanger using FLUENT software. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created and meshed by using GAMBIT software. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models k-, and SST k-omega, with steady-state solvers to calculate pressure drop, flow, and temperature fields. Model validation is carried out by comparing the simulated value friction factor f and Colburn factor j to experimental results investigate by Wang. Reasonable agreement is found between the simulations and experimental data, and the fluent software has been sufficient for simulating the flow fields in tube-fin heat exchangers.

  3. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    OpenAIRE

    Stolecki M.; Bijok H.; Kowal Ł.; Adamiec J.

    2015-01-01

    This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, ...

  4. Absorber Tube with Internal Pin-Fins for Solar Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Kalidasan B.

    2016-01-01

    Full Text Available Solar parabolic trough collectors exploit solar energy for power generation in solar thermal power stations. These systems require long arrays of reflective troughs with absorber tube running along the axis of parabolic dish. A successful attempt to reduce the length of arrays was accomplished by experimentally analysing the modifications done in absorber tube. Two out of three tubes were fabricated and they were employed to obtain the performance parameters through experimentation conducted at VIT University, Vellore, India. Distilled water was used as the working fluid. Maximum efficiency of 39.12% was obtained at 451.6 W/m2 of direct normal irradiance (DNI for absorber tube with internal pin-fins and without glass tube (AFWGt compared to 8.15% obtained at same value of DNI and other conditions for simple absorber tube without glass cover (AWGt. Cylindrical parabolic trough available at the university was utilized, providing the basis for designing and fabrication of the tubes. Plots for varying mass flow rate at interval of 10 minutes were made against instantaneous thermal efficiency and heat utilized, for direct normal irradiance vs. temperature difference across the tubes and instantaneous thermal efficiency. Through the experimentation conducted, better performance was procured compared to earlier works. Thus, the proposal infers that absorber tube with internal fins has good scope for its application, both domestically as well as industrially. It also calls for further research and development of proposed techniques so as to achieve better performance curves.

  5. 螺旋内肋扭曲管换热与流阻性能研究%Research on Heat Exchange and Flow Resistance Performance of Spiral Inner Fin Twisted Tube

    Institute of Scientific and Technical Information of China (English)

    王定标; 谷帆江; 向飒; 邓静; 郑梦欣; 董桢; 张喜迎

    2016-01-01

    将两种现行的热流强化换热技术结合起来,提出螺旋内肋扭曲管这一新型强化换热管,利用ANSYS ICEM CFD对该强化换热管进行网格划分和网格独立性考核,利用Fluent分析比较了螺旋内肋扭曲管、扭曲管和圆管3种换热管的雷诺数Re在2300~50000范围内的换热和流阻性能,得出其努赛尔数Nu、阻力系数f、等泵功准则下综合评价指标PEC及热势容差-火积耗散ΔE的变化关系,结果表明,螺旋内肋扭曲管具有优于扭曲管的综合换热性能,具有较好的研发潜力和较高的工程应用前景.%Based on the combination of two existing heat flux enhanced heat exchange technology,a new spiral inner fin twisted enhanced heat exchange tube was put forward.Meshing and grid independence assessment was conducted by utilizing the ANSYS ICEM CFD software and the heat exchange and flow resistance performance of three kinds of heat exchange tubes including spiral inner fin twisted tube,twis-ted tube and round tube was compared for different Re number ranging from 2300 to 50000 by utilizing the Fluent software.The relationship between the Nu number,drag coefficient f,comprehensive evaluation index PEC based on equal pump power standard and thermal potential capacity difference ( entransy dissi-pation) ΔE was achieved.The result shows that the comprehensive heat exchange performance of spiral inner fin twisted tube is superior to that of twisted tube with stronger research and development potential and broader prospect in engineering application.

  6. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....... Fin-and-tube heat exchangers usually have a predefined circuitry, however, the evaporator model is simplified to have straight tubes, in order to perform a generic investigation. The compensation of flow maldistribution is performed by control of the superheat in the individual channels. Furthermore......, the effect of combinations of individual maldistribution sources is investigated for different evaporator sizes and outdoor temperatures. It is shown that a decrease in cooling capacity and coefficient of performance by flow maldistribution can be compensated by the control of individual channel superheat...

  7. Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks

    Directory of Open Access Journals (Sweden)

    Heng Chen

    2014-11-01

    Full Text Available H-type finned tube heat exchanger elements maintain a high capacity for heat transfer, possess superior self-cleaning properties and retain the ability to effect flue gas waste heat recovery in boiler renovations. In this paper, the heat transfer and pressure drop characteristics of H-type finned tube banks are studied via an experimental open high-temperature wind tunnel system. The effects of fin width, fin height, fin pitch and air velocity on fin efficiency, convective heat transfer coefficient, integrated heat transfer capacity and pressure drop are examined. The results indicate that as air velocity, fin height and fin width increase, fin efficiency decreases. Convective heat transfer coefficient is proportional to fin pitch, but inversely proportional to fin height and fin width. Integrated heat transfer capacity is related to fin efficiency, convective heat transfer coefficient and finned ratio. Pressure drop increases with the increase of fin height and fin width. Finally, predictive correlations of fin efficiency, Nusselt number and Euler Number are developed based on the experimental data.

  8. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    Science.gov (United States)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  9. 对具有复杂流路布置的翅片管换热器的性能仿真与分析%Numerical simulation and analysis of performance of fin-and-tube heat exchanger with complex circuit arrangement

    Institute of Scientific and Technical Information of China (English)

    刘建; 魏文建; 丁国良; 王凯建

    2005-01-01

    With the help of the description methods in graph theory and the adaptive adjustment metnod, a steady sate simulation model for fin-and-tube heat exchanger with complex circuit arrangement was developed. This model could provide better compatibility and accuracy for the design of heat exchanger with complex circuit arrangement. Using this model, six typical fin-and-tube heat exchangers with different circuit arrangements were analyzed. The counter flow arrangement could not always achieve the best performance. With appropriate compound arrangement, the performance of heat exchanger could be improved by 2%-4%.

  10. Efficient heat-transfer surfaces assembled from partially finned flat-oval tubes

    Science.gov (United States)

    Pis'mennyi, E. N.

    2011-04-01

    The state of finned convective heat-transfer surfaces and prospects for using them in power engineering and industry are briefly reviewed. The characteristics of a heat-recovery economizer made of partially finned flat-oval tubes are presented by way of comparing them with design versions employing known types of finned tubes, and the results gained from its operation downstream of a PTVM-30M boiler are given.

  11. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    OpenAIRE

    FAROUK TAHROUR; ABDELMOUMENE HAKIM BENMACHICHE; MOUNIR AKSAS; CHERIF BOUGRIOU

    2015-01-01

    The use of 3-D computational fluid dynamics (CFD) is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, th...

  12. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    cases are standard tube circuitry designs and these results are thus tube circuitry specific. In addition, a novel method of compensating flow maldistribution is analyzed, i.e. the discontinuous liquid injection principle. The method is based upon the recently developed EcoFlowTM valve by Danfoss A......This thesis is concerned with the effects of flow maldistribution in fin-and-tube A-coil evaporators for residential air-conditioning and compensation potentials with regards to system performance. The goal is to create a better understanding of flow maldistribution and the involved physical...... superheat by distributing individual channel mass flow rate continuously (perfect control). The compensation method is compared to the use of a larger evaporator in order to study their trade-off in augmenting system performance (cooling capacity and COP). The studies are performed by numerical modeling...

  13. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  14. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  15. A Prediction Model for Condensation on Single Horizontal Rectangular Fin Tube

    Institute of Scientific and Technical Information of China (English)

    LiuXijuan; MaTongze; 等

    1997-01-01

    A model was established to predict condensation heat transfer coefficient on horizontal rectangularfinned tube.Drop-Off zone at the tube bottom was considered and determined,the known Honda (and Owen) expression of retention angle was also modified as a result of considering drop-off zone.Heat flux on fin tips in the unflooded region,fin flanks,fin spacings and fin tips in the flooded region were analyzed respectively.COndensation on fin tips in emphasized by considering the variation of film thickness along circumference as well as horizontally.FIn efficiency was considered in calculation.The prediction results were compared with several researchers' experimental data for three kinds of working fluids on seven different tube geometries and for various temperature differences,These data under about 60 test conditions were predicted with discrepancy of ±10% .Prediction by the present model for steam and R-113 condensation were compared with previous models.

  16. Flow structure of natural dehumidification over a horizontal finned-tube

    Science.gov (United States)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  17. Flow structure of natural dehumidification over a horizontal finned-tube

    Science.gov (United States)

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2015-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  18. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  19. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  20. Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Ahmad Zaini

    2013-09-01

    Full Text Available Penambahan fin pada pipa penukar kalor merupakan suatu upaya memperbesar perpindahan kalor konduksi dan konveksi, dengan cara memperluas bidang geometri. Pada penelitian ini dianalisa secara analitik dan numerik perpindahan kalor pada fin dengan profil longitudinal tidak seragam atau berubah terhadap jarak dari dasar fin, dengan memvariasikan ketebalan ujung fin. Hasil dari kedua studi ini tidak jauh berbeda, pada keduanya menjelaskan bahwa fin dengan ketebalan ujung 0,9 mm (fin trapesium terbalik paling baik dari 5 variasi lainnya; serta perubahan temperatur paling besar terjadi pada sepertiga pertama dari panjang  fin, ini artinya pelepasan kalor terbesar terjadi pada daerah tersebut. Perbedaannya adalah pada persentase penurunan temperatur sepanjang  fin terhadap temperatur dasar fin, untuk ketebalan 0,9 mm pada studi analitik sebesar 91,92% dan pada studi numerik sebesar 91,78%. Hal ini berarti metode penyelesaian persamaan diferensial orde 2 dengan koefisien variabel dengan cara pembedahan koefisien variabel pada ODE, sudah benar dan valid. Namun bila ditinjau dari waktu yang diperlukan untuk komputasinya, studi analitik membutuhkan waktu lebih lama. Waktu yang diperlukan dalam komputasinya tergantung dari fungsi koefisien variabel.

  1. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  2. Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: Effect of twisted tape and micro-fin tube arrangements

    Institute of Scientific and Technical Information of China (English)

    EIAMSA-ARD S.; WONGCHAREE K.

    2013-01-01

    An experimental study was carried out to investigate the influence of double twisted-tape inserts (DTs) in micro-fin tubes (MFs) on heat transfer,friction factor and thermal performance factor characteristics of the compound devices in the following configurations:(1) twisted tapes acted in the same direction (for co-swirl) while MF and twisted tapes acted in the same (parallel) direction (MF-CoDTs:P),(2) twisted tapes acted in the same direction (for co-swirl) while micro-fin tube and twisted tapes acted in opposite directions (MF-CoDTs:O) and (3) twisted tapes acted in opposite directions for counter swirl (MF-CDTs).The MF alone and the MF equipped with a single twisted tape in parallel/opposite arrangement were also considered for comparison.The experiments were conducted for the flows with the Reynolds numbers between 5 650 and 17 000,under uniform heat flux condition.The experimental results indicate that MF-CDTs induce stronger swirl/turbulence flow,resulting in higher heat transfer rate,friction factor and thermal performance factor than other combined devices.The thermal performance factors associated with the use of MF-CDTs were found to be higher than those associated with the uses of MF-CoDTs:P,MF-CoDTs:O and MF alone up to 9.3%,6.5% and 56.4%,respectively.The empirical correlations developed using the present experimental data for the Nusselt number,friction factor and thermal performance factor are also reported.

  3. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    OpenAIRE

    Taqwim Ismail; Ary Bachtiar Khrisna Putra

    2014-01-01

    Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan...

  4. Comparative design evaluation of plate fin heat exchanger and coiled finned tube heat exchanger for helium liquefier in the temperature range of 300-80 K

    International Nuclear Information System (INIS)

    Present indigenous helium liquefaction system at RRCAT uses the cross-counter flow coiled-finned tube heat exchangers developed completely from Indian resources. These coiled-finned tube heat exchangers are mainly suitable up to medium capacity helium liquefiers. For large capacity helium liquefier, plate fin heat exchangers are more suitable options. This paper presents the comparative evaluation of the design of both types of heat exchangers in the temperature range of 300-80 K for helium liquefier. (author)

  5. Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps

    Directory of Open Access Journals (Sweden)

    Dong-Yeon Lee

    2012-09-01

    Full Text Available The objective of this study was to provide experimental data that could be used to predict frost growth and frost performance of a round plate fin-tube heat exchanger for low temperature heat pumps used in zero emission vehicles under cold weather conditions. In this study, round plate fin-tube heat exchangers were tested with variation of the fin space, air flow rate, relative humidity, and inlet air temperature. Frost height was measured and considered with the boundary layer interruption between fins. Frost height for 8.0 mm of fin space was increased by approximately 91.9% with an increase of relative humidity from 50.0% to 80.0%. The growth rate of frost height at 1.2 m3/min was observed to be 13.0% greater than that at 0.8 m3/min. Finally, the variation of the blockage ratio with fin space would be an important reference for designing advanced heat exchangers that operate under cold weather conditions.

  6. Performance Comparison Of Round Tubes Finned Heat Exchangers And Macro Micro-Channel Heat Exchangers In A Low Capacity Heat Pump

    OpenAIRE

    Zoughaib, A; Mortada, S; Khayat, F; Arzano-Daurelle, C; Teuillieres, C

    2014-01-01

    Micro-channel heat exchangers (MCHE) are used in automobile applications due to their low weight and high compactness. Those MCHE are just gaining interest in stationary application and they have a great potential for low heating capacity heat pumps to be installed in “passive houses” where the heating demand is 3 to 5 times lower than in the current new individual houses built in European countries. In this paper, a low capacity integrated air to air heat pump prototype is used to perform an...

  7. Numerical Investigation of Air-Side Heat Transfer and Pressure Drop in Circular Finned-Tube Heat Exchangers

    OpenAIRE

    Mon, Mi Sandar

    2009-01-01

    A three-dimensional numerical study is performed to investigate the heat transfer and pressure drop performance on the air-side of circular finned tube bundles in cross flow. New heat transfer and pressure drop correlations for the air-cooled heat exchangers have been developed with the Reynolds number ranging from 5000 to 70000. The heat transfer and pressure drop results agree well with several existing experimental correlations. In addition, the influence of the geometric parameters on the...

  8. Finned tube heat exchangers. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning theoretical studies and applications of finned tubing in a variety of heat exchanger design configurations. The effects of turbulent and laminar flow are presented in terms of heat transfer for both external and internal finned surfaces. Energy conservation and waste heat recovery systems are featured and the use of refrigerants is also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Performance enhancement of fin attached ice-on-coil type thermal storage tank for different fin orientations using constrained and unconstrained simulations

    Science.gov (United States)

    Kim, M. H.; Duong, X. Q.; Chung, J. D.

    2016-07-01

    One of the drawbacks in latent thermal energy storage system is the slow charging and discharging time due to the low thermal conductivity of the phase change materials (PCM). This study numerically investigated the PCM melting process inside a finned tube to determine enhanced heat transfer performance. The influences of fin length and fin numbers were investigated. Also, two different fin orientations, a vertical and horizontal type, were examined, using two different simulation methods, constrained and unconstrained. The unconstrained simulation, which considers the density difference between the solid and liquid PCM showed approximately 40 % faster melting rate than that of constrained simulation. For a precise estimation of discharging performance, unconstrained simulation is essential. Thermal instability was found in the liquid layer below the solid PCM, which is contrary to the linear stability theory, due to the strong convection driven by heat flux from the coil wall. As the fin length increases, the area affected by the fin becomes larger, thus the discharging time becomes shorter. The discharging performance also increased as the fin number increased, but the enhancement of discharging performance by more than two fins was not discernible. The horizontal type shortened the complete melting time by approximately 10 % compared to the vertical type.

  10. Experimental Investigation of Phase Change inside a Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Rahimi

    2014-01-01

    Full Text Available An experimental study is conducted in order to investigate melting and solidification processes of paraffin RT35 as phase change materials in a finned-tube. Therefore the effect of using fins in this study as well as some operational parameters is considered. The motivation of this study is to design and construct a novel storage unit and to compare it with a finless heat exchanger. A series of experiments are conducted to investigate the effect of increasing the inlet temperature and flow rate on the charging and discharging processes of the phase change material. It is shown that, using fins in phase change process enhances melting and solidification procedures. The trend of this variation is different for the heat exchangers; increasing the inlet temperature for the bare tube heat exchanger more effectively lowers melting time. Similarly, flow rate variation varies the solidification time more intensely for the bare tube heat exchanger.

  11. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Taqwim Ismail

    2014-03-01

    Full Text Available Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan sisi exhaust gas, yaitu 0.2, 0.3, dan 0.4 m/s untuk mengetahui unjuk kerja yang berbeda dari compact heat exchanger yang telah didesain.  Hasil yang didapatkan dari studi eksperimen ini adalah dimensi dari compact heat exchanger tipe louvered fin flat tube dan beberapa parameter yang menunjukkan unjuk kerja dari compact heat exchanger seperti nilai heat transfer baik dari sisi air maupun sisi exhaust gas, effectiveness, number of transfer unit (NTU, overall heat transfer coefficient, dan  ΔTLMTD dari compact heat exchanger.

  12. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    International Nuclear Information System (INIS)

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  13. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  14. Genetic algorithm optimization for finned channel performance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Compared to a smooth channel, a finned channel provides a higher heat transfer coefficient; increasing the fin height enhances the heat transfer. However, this heat transfer enhancement is associated with an increase in the pressure drop. This leads to an increased pumping power requirement so that one may seek an optimum design for such systems. The main goal of this paper is to define the exact location and size of fins in such a way that a minimal pressure drop coincides with an optimal heat transfer based on the genetic algorithm. Each fin arrangement is considered a solution to the problem(an individual for genetic algorithm). An initial population is generated randomly at the first step. Then the algorithm has been searched among these solutions and made new solutions iteratively by its functions to find an optimum design as reported in this article.

  15. Influence of fins on tractor-type podded propulsor performance

    Science.gov (United States)

    Xie, Xue-Shen; Huang, Sheng

    2009-09-01

    A mathematical model of podded propulsors was established in order to investigate the influence of fins. The hydrodynamic performance of podded propulsors with and without fins was calculated, with interactions between propellers and pods and fins derived by iterative calculation. The differential equation based on velocity potential was adopted and hyperboloidal panels were used to avoid gaps between surface panels. The Newton-Raphson iterative procedure was used on the trailing edge to meet the pressure Kutta condition. The velocity distribution was calculated with the Yanagizawa method to eliminate the singularity caused by use of the numerical differential. Comparisons of the performance of podded propulsors with different fins showed that the thrust of propeller in a podded propulsor with fins is greater. The resistance of the pod is also reduced because of the thrust of the fin. The hydrodynamic performance of a podded propulsor with two fins is found to be best, the performance of a podded propulsor with one fin is not as good as two fins, and the performance of the common type is the worst.

  16. RESULTS OF INVESTIGATIONS ON THERMAL CHARACTERISTICS OF AIR HEATER BUNDLE MADE OF BIMETALLIC FINNED TUBES

    Directory of Open Access Journals (Sweden)

    V. B. Kuntysh

    2014-01-01

    Full Text Available The paper presents a scheme and description of a new aerodynamic stand that has a 300x300 mm cross-section operating channel. The stand is used for studying thermal and aerodynamic characteristics of bundles made of finned tubes of actual dimensions in crossflow. The paper provides results of an exploratory test pertaining to heat transfer and resistance of four row staggered bundle made of tubes with aluminium spiral fins having outside diameter of 26 mm which are used in the systems of ventilation, air-conditioning and heating of buildings and also in transport heat exchangers.

  17. Comparative Study of Effect of Fin Arrangement on Propulsion Performance of Bio-inspired Underwater Vehicles with Multiple SMA Fins

    Directory of Open Access Journals (Sweden)

    Jian-hui He

    2015-09-01

    Full Text Available A biologically inspired underwater vehicle (BIUV was built using multiple lightweight bio inspired shape memory alloy (SMA fins. An unsteady 3D computational fluid dynamics (CFD method using an unstructured, grid-based, and unsteady Navier-Stokes solver with automatic adaptive re-meshing was adopted to compute unsteady flow. The hydrodynamics of multiple fins at a certain Reynolds number (Re = Uc/ν, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity was studied and simulated using CFD to estimate hydrodynamic forces and characterize flow and vortex patterns created by the fins. Two common arrangements of multiple fins on the BIUV were considered: a posterior fin that is parallel to the anterior fins (case 1 and a posterior fin that is perpendicular to the anterior fins (case 2. First, the influence of the distance between two anterior undulating fins on the propulsion performance of both arrangements of multiple fins on the BIUV was investigated. The effect of the distance between the anterior undulating fins and the posterior oscillating fin was also analysed. The length of the posterior oscillating fin was varied and the fin surface area was held constant (24 mm2 to illustrate the influence of this parameter. Finally, the effect of frequency, amplitude, and wave number of anterior undulating fins on the non-dimensional drag coefficient of the posterior oscillating fin was investigated. Based on the flow structures, the reasons for the different performances of the BIUV are discussed. BIUV performances largely depend on the arrangements of multiple fins and the gap between the fins. Dimension and kinematic parameters also affect the performance of the BIUV. The results provide a physical insight into the understanding of fin interaction in fish or BIUVs that are propelled by multiple fins.

  18. The role of flexibility on propulsive performance of flapping fins

    OpenAIRE

    Kancharala, Ashok Kumar

    2015-01-01

    The versatility of the fish to adapt to diverse swimming requirements has attracted the attention of researchers in studying bioinspired propulsion for developing efficient underwater robotics. The tail/caudal fin is a major source of thrust generation and is believed that the fish modulates its fin stiffness to optimize the propulsive performance. Inspired by the stiffness modulation of fish fins, the objective of this research is to predict and evaluate the effect of flexibility on propulsi...

  19. Boiling heat transfer correlations for refrigerant mixtures flowing inside micro-fin tubes

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan ZHANG; Xingqun ZHANG; Yunguang CHEN; Xiuling YUAN

    2008-01-01

    Based on experimental results of ternary non-azeotropic refrigerant mixture R417A flowing and boiling in one smooth and two internally grooved horizontal tubes with different geometrical parameters, a boiling heat transfer correlations was developed for refrigerant mix-tures flowing inside micro-fin tubes by applying the enhancement factor in the present modified-Kattan model which was modified by the experimental data of R417A in a smooth tube. The comparison between the calculation and the experimental results indicates that the prediction by the present correlations is in good agreement with the experiment of refrigerant mixtures inside different micro-fin tubes with a standard deviation of ± 30% for vapor qualities below 80%.

  20. Effects of Working Fluid,Tubeside Enhancement and Bundle Depth on the Optimized Fin Geometry of a Horizontal Condenser Tube

    Institute of Scientific and Technical Information of China (English)

    H.Honda; T.Fukuda

    1992-01-01

    A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module,Systematic numerical calculations of the vapor to coolant heat transfer coefficinet.Three dielctric fluids(R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing incresaed with increasing vertical bundle depth.

  1. Studi Eksperimen Analisa Performa Compact Heat Exchanger Circular Tubes Continuous Plate Fin Untuk Pemanfaatan Waste Energy

    OpenAIRE

    Rachmadi Gewa Saputra; Ary Bachtiar Khrisna Putra

    2014-01-01

    Harga minyak dunia cenderung mengalami peningkatan dalam beberapa tahun terakhir sehingga manusia berfikir untuk memanfaatkan setiap penggunaan minyak bumi. Dengan berkembangnya teknologi saat ini waste energy yang berupa gas hasil pembakaran pada engine dapat dimanfaatkan menjadi bentuk energi lain menggunakan heat recovery system. Pada tugas akhir ini dilakukan desain sebuah heat exchanger tipe circular tubes continuous plate fin dengan susunan tube aligned yang digunakan untuk menyerap was...

  2. Degradation of finned tubes heat exchangers in presence of non condensable gases and aerosols

    International Nuclear Information System (INIS)

    is formulated based on a diffusion layer modeling. Finally this paper presents a Monte Carlo method implemented in the Fortran code TAEROSOL that is able to compute the amount of aerosol mass that is deposited by impaction on the top of the finned tubes. The model results are compared with available experimental data of the CONGA European project. Finally we want to mention that Monte Carlo calculations and fluid flow calculations with the code TAEROSOL were performed to compute the amount of aerosols deposited on the top of the fins by impaction during the aerosol phase of Suckow et al. experiments. Also we compute the aerosol mass deposited by diffusiophoresis and settling. The calculations performed show that the mass deposited by settling is always smaller than 3 g in all the cases, and that impaction and diffusiophoresis mechanisms are the main deposition mechanisms for aerosols in CONGA experiments. (authors)

  3. Degradation of finned tubes heat exchangers in presence of non condensable gases and aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Jose L Munoz-Cobo; Pena, J. [Universidad Politecnica de Valencia, Department of Chemical and Nuclear Engineering, Camino de Vera 14, Valencia 46022 (Spain); Luis E Herranz [CIEMAT, Departmen of Nuclear Fision, Avenida Complutense 22, Madrid 28040 (Spain)

    2005-07-01

    is formulated based on a diffusion layer modeling. Finally this paper presents a Monte Carlo method implemented in the Fortran code TAEROSOL that is able to compute the amount of aerosol mass that is deposited by impaction on the top of the finned tubes. The model results are compared with available experimental data of the CONGA European project. Finally we want to mention that Monte Carlo calculations and fluid flow calculations with the code TAEROSOL were performed to compute the amount of aerosols deposited on the top of the fins by impaction during the aerosol phase of Suckow et al. experiments. Also we compute the aerosol mass deposited by diffusiophoresis and settling. The calculations performed show that the mass deposited by settling is always smaller than 3 g in all the cases, and that impaction and diffusiophoresis mechanisms are the main deposition mechanisms for aerosols in CONGA experiments. (authors)

  4. Burnout experiments on the externally-finned swirl tube for steady-state and high-heat flux beam stops

    International Nuclear Information System (INIS)

    An experimental study to develop beam stops for the next generation of neutral beam injectors was started, using an ion source developed for the JT-60 neutral beam injector. A swirl tube is one of the most promising candidates for a beam stop element which can handle steady-state and high-heat flux beams. In the present experiments, a modified swirl tube, namely an externally-finned swirl tube, was tested together with a simple smooth tube, an externally finned tube, and an internally finned tube. The major dimensions of the tubes are 10 mm in outer-diameter, 1.5 mm in wall thickness, 15 mm in external fin width, and 700 mm in length. The burnout heat flux (CHF) normal to the externally finned swirl tube was 4.1±0.1 kW/cm2, where the Gaussian e-folding half-width of the beam intensity distribution was about 90 mm, the flow rate of the cooling water was 30 l/min, inlet and outlet gauge pressures were about 1 MPa and 0.2 MPa, respectively, and the temperature of the inlet water was kept to 200C during a pulse. A burnout heat flux ratio, which is defined by the ratio of the CHF value of the externally-finned swirl tube to that of the externally-finned tube, turned out to be about 1.5. Burnout heat fluxes of the tubes with a swirl tape or internal fins increase linearly with an increase of the flow rate. It was found that the tube with external fins has effects that not only reduce the thermal stress but also improve the characteristics of boiling heat transfer. (orig.)

  5. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  6. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  7. NUMERICAL AND EXPERIMENTAL STUDIES OF INFLUENCE OF THE CAUDAL FIN SHAPE ON THE PROPULSION PERFORMANCE OF A FLAPPING CAUDAL FIN

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; SU Yu-min; WANG Zhao-li

    2011-01-01

    This article presents a comprehensive study of the effects of the caudal fin shape on the propulsion performance of a eandal fin in harmonic heaving and pitching.A numerical simulation based on an unsteady panel method was carried out to analyze the hydrodynamic performance of flapping caudal fins of three shapes (the whale caudal fin with the largest projected area, the dolphin caudal fin with the median projected area, and the tuna caudal fin with the smallest projected area).Then, a series of hydrodynamic experiments for three caudal fin shapes were performed.Both computational and experimental results indicate that the tuna caudal fin produces the highest efficiency.However the mean thrust coefficient of the tuna caudal fin is the smallest.It is found that although the mean thrust coefficient for the tuna caudal fin is not large, the input power of the tuna caudal fin is also quite small.So the tuna caudal fin achieves a high efficiency.

  8. High Temperature of Finned-tube Sodium-to-Air Heat Exchanger in the SELFA Test Loop

    International Nuclear Information System (INIS)

    A medium-scale sodium test loop named as the ‘SELFA’(Sodium Thermal‐hydraulic Experiment Loop for Finned‐tube Sodium‐to‐Air heat exchanger) for simulating thermal hydraulic behavior of the FHX (Finned-tube Sodium-to-Air heat Exchanger) in Korean prototype sodium-cooled fast reactor is planned to be constructed at KAERI (Korea Atomic Energy Research Institute). In this study, elevated temperature design for the FHX and creep-fatigue damage evaluation have been conducted according to the design codes of ASME section III subsection NH and RCC-MRx based on full 3D finite element analyses. Design optimization for the finned-tubes and tube arrangements in the scaled-down FHX mock-up has been performed. The materials of the FHX and piping systems are austenitic stainless steel 316, the design temperature and of the SELFA test loop is 600°C and design pressure is 1MPa. The damage evaluation results have shown that no creep-fatigue damage occurrs in the present design of the FHX under the intended test conditions. (author)

  9. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    Science.gov (United States)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  10. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    Science.gov (United States)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  11. Steam generator tube performance

    International Nuclear Information System (INIS)

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  12. Compound forming technology of outside 3D integral fin of copper tubes

    Institute of Scientific and Technical Information of China (English)

    XIANG Jian-hua; TANG Yong; YE Bang-yan; ZHOU Wei; YAN Hui; HU Zhi-hua

    2009-01-01

    Using rolling-ploughing-extrusion compound processing methods, a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion (P-E) depth were 0.2 mm, rotating speed was 50 r/min, feed speed was 0.16 mm/r, 3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove, and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth, and pitch and P-E depth, respectively. Based on the analysis of interaction of rolling and P-E processing, it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.

  13. Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xing; YANG Dong; CHEN Ting-kuan

    2006-01-01

    Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 ×4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s,the heat transfer rate ranged from 21.8 to 47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8°C. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are proposed based on the experimental results.

  14. Numerical calculation and measuring of transport phenomena as integral parameters in cross-flowed finned tube heat exchangers; Numerische Berechnung und Messung der Transportvorgaenge sowie integraler Kenngroessen in quer angestroemten Rippenrohrwaermeuebertragern

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, P.

    2003-07-01

    For the first row of extended finned tubes in cross flow, both the heat and mass transport and the integral pressure loss are determined. The tube shape, the dimensions of fin and tube, the positioning of tube and fin, the fin spacing, the thermal conductivity and the flow velocity are varied. For numerical simulation of the three-dimensional local transport phenomena, the balance equations for mass, momentum and energy are solved with the help of the commercial software FIDAP, taking account of the temperature-dependence of the material properties. From the resulting velocity, pressure and temperature fields in the configurations of the finned tube, derived characteristic parameters such as friction factor, integral fluid and fin temperature, fin efficiency, heat transfer coefficient, heat flux and fin-performance factor are determined with the help of self-developed evaluation programs. The numerical calculations of heat transfer and pressure loss show that a good correspondence with measured values in normal industrial applications for Re{<=}2000 is achieved. Local mass and heat transport in the fin duct is made visible via methods of convective mass transfer and is quantified for individual cases. For measurement purposes, enlarged models of the finned tubes are made of easily workable materials and set up in modular fashion so that tube shapes of very varied kinds can be investigated. Tube contours used in industrial applications are compared with a large number of new developments from the point of view of fluid dynamics and thermal properties. Local transport processes in the fin duct such as horseshoe vortices or separation areas which are of decisive significance for thermal performance can be made visible by means of the convective mass transfer method employed. The investigations have shown that finned tubes with large-radius of leading tube-profiles and large distances between the leading edge of the fin and the tube itself, as well as large fin

  15. Heat transfer and pressure drop characteristics of plain finned heat exchangers having 5.0 mm tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae Hyun; Ham, Jung Ho; Oh, Wang Ku [Incheon Univ., Incheon (Korea, Republic of); Choi, Yong Hwa; Gaku, Hayase [Samsung Electric Company, Suwon (Korea, Republic of)

    2007-07-01

    In this study, pressure drop and heat transfer characteristics of plain finned heat exchangers having 5.0 diameter (fin collar 5.3 mm) tubes were investigated. Six samples having different fin pitches and tube rows were tested. The fin pitch had a negligible effect on j and f factors. Both j and f factors decreased as the number of tube row increased, although the difference was not significant for the f factor. When compared with the previous 7.3 mm diameter data, both the present j and f factors yielded lower values. However, the j/f ratio was larger at low Reynolds numbers. Possible reasoning is provided from the flow pattern consideration. Comparison with existing correlations were made.

  16. Heat transfer and pressure drop characteristics of plain finned heat exchangers having 5.0 mm tubes

    International Nuclear Information System (INIS)

    In this study, pressure drop and heat transfer characteristics of plain finned heat exchangers having 5.0 diameter (fin collar 5.3 mm) tubes were investigated. Six samples having different fin pitches and tube rows were tested. The fin pitch had a negligible effect on j and f factors. Both j and f factors decreased as the number of tube row increased, although the difference was not significant for the f factor. When compared with the previous 7.3 mm diameter data, both the present j and f factors yielded lower values. However, the j/f ratio was larger at low Reynolds numbers. Possible reasoning is provided from the flow pattern consideration. Comparison with existing correlations were made

  17. Beneficial design of unbaffled shell-and-tube heat exchangers for attachment of longitudinal fins with trapezoidal profile

    Directory of Open Access Journals (Sweden)

    Balaram Kundu

    2015-03-01

    Full Text Available A parametric variation followed with Kern’s method of design of extended surface heat exchanger has been made for an unbaffled shell-and-tube heat exchanger problem. For this analysis, the rectangular and trapezoidal fin shapes longitudinally attached to the fin tubes are taken. In comparison with the attachment of trapezoidal fins, it is found that the heat transfer rate was lesser than the rectangular cross section by keeping a constant outer diameter of the shell along with all other constraints of a heat exchanger design, namely, number of passes, tube outer diameter, tube pitch layout, etc. But when the total volume of the fin over a tube was kept constraint, using trapezoidal fins the heat transfer rate is found to be increased and consequently the pressure drop decreases much more than in the case of fins with rectangular cross section. This optimization has shown beneficial results in all the cases of different constraints of heat exchanger design analysis.

  18. Experimental investigation of forced-convection in a finned rhombic tube of the flat-plate solar collectors

    DEFF Research Database (Denmark)

    Taherian, Hessam; Yazdanshenas, Eshagh

    2006-01-01

    Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat......-plate collectors used as the test section. Two correlations were proposed for the Nusselt number as a function of the Reynolds number and the Prandtl number based on hydraulic diameter for various heat fluxes. The temperature distribution along the finned tube for the fluid and the wall were also illustrated....

  19. Mathematical modeling and control of plate fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • A method for numerical modeling of plate fin and tube heat exchangers was proposed. • A numerical model of an automobile radiator was developed. • Numerical models of the radiator were compared with an exact analytical model. • A model-based control system of water outlet temperature was built and tested. • A digital proportional–integral–derivative controller of heat exchanger was tested. - Abstract: The aim of the study is to develop a new method for numerical modeling of tubular cross-flow heat exchangers. Using the method proposed in the paper, a numerical model of a car radiator was developed and implemented in a digital control system of the radiator. To evaluate the accuracy of the numerical method proposed in the paper, the numerical model of the car radiator was compared with an analytic model. The proposed method based on a finite volume method and integral averaging of gas temperature across a tube row is appropriate for modeling of plate fin and tube heat exchangers, especially for exchangers in which substantial gas temperature differences in one tube row occur. The target of control is to regulate the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a set value. Two control techniques were developed. The first is based on the numerical model of the heat exchanger developed in the paper while the second is a digital proportional–integral–derivative control. The first control method is very stable. The digital proportional–integral–derivative controller becomes unstable when the water volume flow rate varies considerably. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments show that the proportional–integral–derivative controller

  20. In-service inspection method for low-finned ferritic stainless steel tubes for new heat exchanger

    International Nuclear Information System (INIS)

    Conventional inner eddy current test cannot obtain sufficient evaluation for low finned ferritic stainless steel tube inspection. The authors tried various methods and developed special partial saturation eddy current method. This paper summarizes typical experimental results of fundamental studies and trials, and introduces developed ECT data acquisition and evaluation system. Moisture Separator Heater (MSH) used in ABWR (Advanced Boiling Water Reactor) plant is a new type heat exchanger to increase plant thermal efficiency. There are four single tubesheet heaters in a MSH vessel. Each heater has hundreds of low finned tubes made of ferritic stainless steel. In nuclear power plants, non-magnetic materials (austenitic stainless steel, titanium, aluminum brass, etc.,) are mainly used as heat exchanger tubes such as the tubes of feedwater heater, condenser, evaporator and so on. Conventional ECT (Eddy Current Test) method are easily applied for the inspection of these heat exchanger tubes. In recent years, the authors started using ferritic stainless steel tube for new heat exchangers such as MSH because of its superior heat transfer efficiency. However, high permeability of ferritic stainless steel prevents the inspection of these tubes using conventional ECT method. To inspect MSH tubes periodically is important to confirm and maintain reliability of MSH. They tried applying various inspection methods and have developed special ECT method for low finned ferritic stainless steel tubes

  1. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  2. Numerical Study on Hydrodynamic Performance of Bionic Caudal Fin

    Directory of Open Access Journals (Sweden)

    Kai Zhou

    2016-01-01

    Full Text Available In this work, numerical simulations are conducted to reveal the hydrodynamic mechanism of caudal fin propulsion. In the modeling of a bionic caudal fin, a universal kinematics model with three degrees of freedom is adopted and the flexible deformation in the spanwise direction is considered. Navier-Stokes equations are used to solve the unsteady fluid flow and dynamic mesh method is applied to track the locomotion. The force coefficients, torque coefficient, and flow field characteristics are extracted and analyzed. Then the thrust efficiency is calculated. In order to verify validity and feasibility of the algorithm, hydrodynamic performance of flapping foil is analyzed. The present results of flapping foil compare well with those in experimental researches. After that, the influences of amplitude of angle of attack, amplitude of heave motion, Strouhal number, and spanwise flexibility are analyzed. The results show that, the performance can be improved by adjusting the motion and flexibility parameters. The spanwise flexibility of caudal fin can increase thrust force with high propulsive efficiency.

  3. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  4. Experimental and numerical investigation of a louvered fin and elliptical tube compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Pooranachandran Karthik

    2015-01-01

    Full Text Available In the present work, an experimental investigation is carried out to analyze the heat transfer characteristics of a louvered fin and elliptical tube compact heat exchanger used as a radiator in an internal combustion engine. Experiments are conducted by positioning the radiator in an open-loop wind tunnel. A total of 24 sets of air, water flow rate combinations are tested, and the temperature drops of air and water were acquired. A numerical analysis has been carried out using Fluent software (a general purpose computational fluid dynamics simulation tool for three chosen data from the experiments. The numerical air-side temperature drop is compared with those of the experimental values. A good agreement between the experimental and numerical results validates the present computational methodology.

  5. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery

    International Nuclear Information System (INIS)

    Highlights: • An optimized finned-tube heat exchanger is modeled. • Artificial Neural Networks and Genetic Algorithm are applied. • Exergy recovery from exhaust of a diesel engine is studied. - Abstract: In this research, a multi objective optimization based on Artificial Neural Network (ANN) and Genetic Algorithm (GA) are applied on the obtained results from numerical outcomes for a finned-tube heat exchanger (HEX) in diesel exhaust heat recovery. Thirty heat exchangers with different fin length, thickness and fin numbers are modeled and those results in three engine loads are optimized with weight functions for pressure drop, recovered heat and HEX weight. Finally, two cases of HEXs (an optimized and a non-optimized) are produced experimentally and mounted on the exhaust of an OM314 diesel engine to compare their results in heat and exergy recovery. All experiments are done for five engine loads (0%, 20%, 40%, 60% and 80% of full load) and four water mass flow rates (50, 40, 30 and 20 g/s). Results show that maximum exergy recovers occurs in high engine loads and optimized HEX with 10 fins have averagely 8% second law efficiency in exergy recovery

  6. Non-Destructive Testing Methods Applied to Multi-Finned SAP Tubing for Nuclear-Fuel Elements

    International Nuclear Information System (INIS)

    The Danish Atomic Energy Commission has undertaken a design study oi an organic-cooled, heavy- water-moderated power reactor. The fuel element for the reactor is a 19-rod bundle; the fuel rods contain sintered uranium-dioxide pellets canned in 2-m long, helically-finned tubes of Sintered Aluminium Product (SAP). A very high quality of the canning tubes is necessary to obtain the optimum heat-transfer conditions and to maintain the integrity of the fuel element during reactor service. Two examples of tube design illustrate the narrow dimensional tolerances. In order to ensure an adequate quality of the canning tubes, a stringent quality control has been established, to a wide extent based upon non-destructive methods. An account is presented of the non-destructive techniques developed for measuring wall thickness and diameters and for detecting defects. The complex 24-finned cross-section prevents the application of ultrasonic or eddy-current methods for wall-thickness measurements. Therefore, a special recording beta-gauge has been developed, based upon the attenuation of beta radiation from a Sr90 source placed inside the tube. An ultrasonic immersion resonance method is used for the continuous recording of the wall thickness of the more simple 12-finned tube design. Inner and outer (across fin tips) diameters are continuously recorded by rapid air-gauge systems. Flaw detection is carried out by the ultrasonic pulse-echo immersion technique and by eddy-current inspection.. Transverse cracks can easily be detected by the ultrasonic method whereas inspection for longitudinal flaws has not appeared feasible with this method. Therefore, eddy-current inspection is applied in addition to the ultrasonic testing. (author)

  7. Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data

    Science.gov (United States)

    Chen, Han-Taw; Lu, Chih-Han; Huang, Yao-Sheng; Liu, Kuo-Chi

    2016-05-01

    This study applies a three-dimensional computational fluid dynamics commercial software in conjunction with various flow models to estimate the heat transfer and fluid flow characteristics of the two-row plate-finned tube heat exchanger in staggered arrangement. The effect of air speed and fin spacing on the results obtained is investigated. Temperature and velocity distributions of air between the two fins and heat transfer coefficient on the fins are determined using the laminar flow and RNG k-ɛ turbulence models. More accurate results can be obtained, if the heat transfer coefficient obtained is close to the inverse results and matches existing correlations. Furthermore, the fin temperature measured at the selected locations also coincides with the experimental temperature data. The results obtained using the RNG k-ɛ turbulence model are more accurate than those using the laminar flow model. An interesting finding is the number of grid points may also need to change with fin spacing and air speed.

  8. The Influence of the Punched Delta Wings on Flow Pattern and Heat Transfer Characteristic in a Fin-and-Oval-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Amnart Boonloi

    2015-01-01

    Full Text Available 3D numerical investigations are performed to study the heat transfer, friction factor, and thermal performance of a fin-and-oval heat exchanger with punched delta wings for a range of 500 ≤ Re ≤ 2500 (based on the hydraulic diameter. The influences of the punched angles, 20°, 30°, and 45°, flow directions, wing tips pointing downstream and upstream, and pitch ratios, 2, 3, 4, 5, and 6, are investigated. The results show that the use of the punched delta wings in the fin-and-oval-tube heat exchanger leads to an enhancement in the heat transfer and friction loss as compared to the plain fin for all cases (Nu/Nu0 and f/f0 higher than 1. The enhancements of the heat transfer and friction factor are around 1.01–1.22 and 1.37–2.65 times higher than the base case, respectively. The punched delta wings create the vortex flows through the test section that helps enhance the strength of the impinging flow on the tube walls. The impingement of the fluid flow is an important key to augment the heat transfer rate and thermal performance in the heat exchanger.

  9. Experimental Study on Heat Transfer and Pressure Drop Characteristics of Four Types of Plate Fin-and-Tube Heat Exchanger Surfaces

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    In this paper,air side heat transfer and pressure drop characteristics of twelve three-row plate fin-and-tube heat exchanger cores of four types of fin configurations have been experimentally investigated .The heat transfer and friction factor correlations for the twelve cores are provided in a wide range of Reynolds number.It is found that in the range of Reynolds number tested.the Nusselt number of the slotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbers of two types of wavy fins are somewhere in between.

  10. DRY/WET PERFORMANCE OF A PLATE-FIN AIR COOLED HEAT EXCHANGER WITH CONTINUOUS CORRUGATED FINS

    Science.gov (United States)

    The report describes work to (1) determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet or 'deluge' operation and (2) continue developing the deluge heat/mass transfer model. This work supports the improvement of power ...

  11. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  12. Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying conditions

    International Nuclear Information System (INIS)

    The air side heat transfer and friction characteristics of wavy fin and tube heat exchangers with and without hydrophilic coating are studied under dehumidifying conditions experimentally. The effects of a hydrophilic coating on air side performance are investigated. The results indicated that the influence of the hydrophilic coating on heat transfer performance is mainly related to the flow conditions of condensation water on the fin surface without hydrophilic coating. The hydrophilic coating can enhance the heat transfer performance when plenty of condensation water flows and weakens the heat transfer performance when little condensation water forms on the fin surface. The pressure drops for the hydrophilic coating surface are lower than those of the corresponding uncoated surface. A maximum 44% reduction is observed. The proposed heat transfer coefficient ratio correlation and pressure drop ratio have a mean deviation of 9.9% and 8.2% from experimental data and can predict 76.6% and 82.8% of the experimental data within the deviation limit of ±15%, respectively

  13. Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaokui; Ding, Guoliang; Zhang, Yuanming [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Wang, Kaijian [Fujitsu General Institute of Air Conditioning Technology Limited, 1116 Suenaga, Takatsu-Ku, Kawasaki 213-8502 (Japan)

    2007-09-15

    The air side heat transfer and friction characteristics of wavy fin and tube heat exchangers with and without hydrophilic coating are studied under dehumidifying conditions experimentally. The effects of a hydrophilic coating on air side performance are investigated. The results indicated that the influence of the hydrophilic coating on heat transfer performance is mainly related to the flow conditions of condensation water on the fin surface without hydrophilic coating. The hydrophilic coating can enhance the heat transfer performance when plenty of condensation water flows and weakens the heat transfer performance when little condensation water forms on the fin surface. The pressure drops for the hydrophilic coating surface are lower than those of the corresponding uncoated surface. A maximum 44% reduction is observed. The proposed heat transfer coefficient ratio correlation and pressure drop ratio have a mean deviation of 9.9% and 8.2% from experimental data and can predict 76.6% and 82.8% of the experimental data within the deviation limit of {+-}15%, respectively. (author)

  14. Flow and heat transfer in compact offset strip fin surfaces

    Institute of Scientific and Technical Information of China (English)

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN

    2008-01-01

    Experimental studies of air-side heat transfer and pressure drop characteristics of offset strip fins and flat tube heat exchangers were performed. A series of tests were conducted for 9 heat exchangers with different fin space, fin height, fin strip length and flow length, at a constant tube-side water flow rate of 2.5 m3/h. The char-acteristics of the heat transfer and pressure drop of differ-ent fin space, fin height and fin length were analyzed and compared. The curves of the heat transfer coefficients vs. The pumping power per unit frontal area were then plot-ted. Moreover, the enhanced heat transfer mechanism of offset strip fins was analyzed using field synergy theory. The results showed that fin length and flow length have more obviously effect on the thermal hydraulic character-istics of offset strip fins.

  15. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Directory of Open Access Journals (Sweden)

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  16. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  17. Optimization of triangular fins with/without longitudinal perforate for thermal performance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shadlaghni, A.; Tavakoli, M. R.; Farzaneh, M.; Salimpour, M. R. [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    This study aimed at determining a suitable pattern to allow for a better design of the fins used in heat sinks. Flow was considered laminar and steady, and the studied heat transfer mechanism was forced convection. Considering a fixed fin volume, the shape of fin cross section and its dimensions were optimized to maximize the heat transfer rate in a given physical condition. Numerical results showed that at a constant fin base area, heat transfer rate was higher in a fin with a triangular cross section compared to the fins with rectangular or trapezoidal cross sections. Investigation of optimum dimensional ratio in triangular fins showed that an increased height/thickness ratio enhanced the heat transfer rate. The effect of vertical position of the longitudinal perforations with different cross sections but similar volume ratios on the thermal performance of triangular fins was also examined. Results showed that perforation enhanced the thermal performance of the fins. Perforations with square and circular cross sections had almost identical thermal performances and dissipated more heat compared to those with triangular perforations.

  18. Replacing Finned Copper withCorrugated Stainless Steel, forthe Heat Exchangers of a SolarCombisystem Store : Performance and EconomicEvaluation

    OpenAIRE

    Troitiño Malavasi, Bruno Matias

    2015-01-01

    The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in ...

  19. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  20. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  1. The Effect of Circular Finned Tube Heat Transfer Enhancement by Using Longitudinal Vortex Generators%纵向涡发生器对圆形翅片管换热强化的影响

    Institute of Scientific and Technical Information of China (English)

    于恩播; 孙铁; 张素香

    2012-01-01

    The fluid flow and heat transfer process of circular finned tube with longitudinal vortex generators(LVGs) were numerically simulated with the CFD calculation software FLUENT, then compared with the normal circular finned tube. The simulation results show that the performance of circular finned tube with longitudinal vortex generators is far better than that of the normal circular finned tube. It can be explained from the view point of field synergy principle, which says that the longitudinal vortex generators can enhance effect of heat transfer because it reduces the angle between velocity and fluid temperature gradient.%利用CFD计算软件FLUENT对带有纵向涡发生器的圆形翅片管的流体流动和传热过程进行数值模拟,并与普通圆形翅片管加以对比.结果表明,带有纵向涡发生器的翅片管换热效果明显优于普通翅片管.应用场协同原理解释认为,纵向涡发生器使流体速度和温度梯度之间夹角减小,改善了速度场和温度场的协同性,从而增强了换热效果.

  2. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  3. 整体翅片管的劈切-挤压加工%Chopping-extrusion technique for making integral-fin tubes

    Institute of Scientific and Technical Information of China (English)

    夏伟; 吴斌; 汤勇; 李元元

    2001-01-01

    提出了一种新的整体翅片管的机械加工方法, 即 劈切挤压加工。 实验观察发现, 翅片的形成包括切入、 挤压和成形3个阶段。 实验结果表明, 影响翅片形成的主要因 素有刀具几何参数、 挤压深度、 进给量和劈切挤压速度; 对某一刀具, 在选 定挤压 速度时, 一定的挤压深度对应一个极限进给量, 一定的进给量对应一个极限挤压深度。 选择 合理的参数可保证翅片加工的连续性和获得接近最佳形状的翅片。 劈切挤压加 工在普 通车床上进行, 设备简单易操作, 翅片一次成形, 材料利用率高, 是一种能 降低加工成本、 提高生产率的加工方式。%A new method of machining integral-fin tubes ( IFT), chopping-extrusion technique, was presented. From the experimental obser vation, it was revealed that the processing of forming a unity of fins can be divided into three stages: ch opping, extrusion and forming. It was shown by experimental results that ther e a re four factors playing chief roles on processing of fin such as geometr ic parameters of cutting tool, depth of extrusion, feed and speed of choppin g-ex trusion. For a certain cutting tool, a limit feed was brought up with a defini te extrusion depth under given chopping-extrusion speed. Only given proper paramet e rs could continuous process of fin forming be carried out and the optimal shape of fins be obtained. Production costs will be reduced and productivity increased by employing this machining method because of easy performing and direct forming o f fins.

  4. Steam condensation model onto horizontal finned tubes: first approximation to the containment cooling system of advanced reactors European Designs

    International Nuclear Information System (INIS)

    European designs of advanced reactors, such as EPR pr SWR 1000, have considered the use of innovative passive safety systems to preserve containment integrity even in the case of a hypothetical accident. These systems consist of several units of bundles of quasi-horizontal finned tubes. Steam released into the containment atmosphere condenses onto these structures, which are internally cooled by water under natural circulation regime. The energy absorbed by the coolant is then discharged into a pool which acts as a heat sink for at least three days. This paper presents the work carried out under the auspices of European Union within the CONGA project to simulate steam condensation onto the above mentioned quasi-horizontal finned tubes. To date calculation methodologies have been pearly reviewed and and an approximation (''Nusselt type'') has been accepted to be the most suitable for safety studies, because of its mechanistic nature and its compatibility with current safety computation tools. Two versions of this approach have been properly adapted and subsequently implemented into independent codes for their validation. An experimental database built up from the open literature allowed to point out models accuracy, showing error well within the experimental uncertainly margin. Therefore, condensate film resistance to heat transfer has been modelled satisfactorily. Nevertheless, further work remains to be done to account for the effects of noncondensable gas presence and aerosol deposition onto heat transfer surfaces. (Author) 22 refs

  5. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Science.gov (United States)

    Konchada, Pavan Kumar; Pv, Vinay; Bhemuni, Varaprasad

    2016-06-01

    The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  6. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Paria

    2015-01-01

    Full Text Available An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF. The focus of this study was on the behavior of PCM for storage (charging or melting and removal (discharging or solidification, as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  7. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    Science.gov (United States)

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises. PMID:25879052

  8. Investigating the performance of SiGe embedded dual source p-FinFET architecture

    Science.gov (United States)

    Sinha, Kunal; Gupta, Partha Sarathi; Chattopadhyay, Sanatan; Rahaman, Hafizur

    2016-10-01

    In this work, a modified Fin shaped Field Effect Transistor (FinFET) structure has been proposed with dual SiGe embedded extended source regions. Comparative simulation studies with SiGe embedded source/drain conventional single Fin channel and dual Fin channel FinFET structure having similar device footprint area shows almost 3× and 1.5× improvement of drive current respectively and lower threshold voltage in the proposed architecture. The dual extended SiGe source regions and presence of Si drain in the vertical direction of the channel generate bi-axial channel stress which improves the channel charge density, which results in improvement in drive current significantly. Also it has been observed from various simulation studies that the separated gate regions increase the inversion current density in the channel which also leads to improvement of the device performance.

  9. Effect of an Artificial Caudal Fin on the Performance of a Biomimetic Fish Robot Propelled by Piezoelectric Actuators

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper addresses the design of a biomimetic fish robot actuated by piezoceramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fin characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fin area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.

  10. Performance assessment of nanoscale double- and triple-gate FinFETs

    Science.gov (United States)

    Kranti, Abhinav; Armstrong, G. Alastair

    2006-04-01

    Based on 3D simulations, we report a performance assessment of triple- and double-gate FinFETs for high performance (HP), low operating power (LOP) and low standby power (LSTP) logic technologies according to ITRS 65 nm node specifications. The impact of spacer width, lateral source/drain doping gradient, aspect ratio, fin thickness and height along with gate work function on the device performance has been analysed in detail and guidelines are presented to meet the ITRS projections. The design guidelines proposed for a 65 nm node are also examined for a 45 nm node for triple- and double-gate FinFETs. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimized to achieve low values of intrinsic delay. FinFETs should be designed with a higher aspect ratio (~4) along with lower values of fin thickness to achieve ITRS targets for off-current and intrinsic delay. Triple-gate FinFETs show greater design flexibility in selecting important technological and device parameters as compared to double-gate devices. A design window is presented to achieve ITRS targets for the three logic technology requirements with triple- and double-gate FinFETs.

  11. Heat transfer and pressure drop comparison of louver- and plain-finned heat exchangers where one fluid passes through flattened tubes

    Directory of Open Access Journals (Sweden)

    J.M. Gorman

    2015-03-01

    Full Text Available Louvered fins constitute a major methodology for heat transfer enhancement. Of critical significance in evaluating the worthiness of such fins is the comparison between the heat transfer and pressure drop for a thus-finned heat exchanger with the baseline case of a counterpart plain-finned heat exchanger. Up to the present, it appears that such comparisons are confined to heat exchangers in which one of the participating fluids passes through circular tubes. In another basic geometry in which louvered fins have been employed, the aforementioned participating fluid passes through flattened tubes which are virtually rectangular in cross section. The focus of the present paper is to obtain results for the latter basic geometry for both louver-fin-based heat exchangers and counterpart plain-fin-based heat exchangers. The results were obtained by means of numerical simulation over a range of Reynolds numbers spanning approximately a factor of five. Over this range, enhancements of the heat transfer rate ranged from factors of approximately 2.2–2.8. Over this same Reynolds number range, the pressure drop increased by factors of 2.3–3.6. This outcome is attributable to the fact that the rate of heat transfer is less sensitive to the velocity than is the pressure drop.

  12. Evaluación de Intercambiadores de Calor Compactos de Tubos Aletados Evaluation of Compact Finned-Tube Heat Exchangers

    Directory of Open Access Journals (Sweden)

    M.T. Martínez

    2004-01-01

    Full Text Available En este trabajo, se presenta el análisis térmico teórico de un intercambiador de calor compacto, con y sin condensación de agua en el lado del aire. El fenómeno de la condensación del vapor de agua en la corriente de aire entrante produce una película de agua en la superficie cubriéndola en forma parcial o completa. El análisis considera varias configuraciones geométricas con respecto a: la superficie de las aletas y a la forma de los tubos considerando la forma circular tradicional y también un caso para tubos planos. Los resultados obtenidos reflejan la eficiencia de la aleta en ambos casos: una aleta totalmente seca (sin condensación y a una totalmente húmeda es decir, totalmente cubierta por la película de condensado. Se concluye que la metodología propuesta es una buena alternativa de análisis y caracterización de un intercambiador, ya que los resultados obtenidos coinciden con los reportados en la literaturaThis study presents a theoretical thermal analysis of a compact heat exchanger, with and without water condensation on the air side. The phenomenon of condensation of water vapor in the entering air current produces a film of water on the surface, partially or completely covering the surface. The analysis considers various geometric configurations with respect to the surfaces of the fins and the form of the tubes, including the traditional round form as well as flattened tubes. The results obtained reflect the efficiency of the fins in both cases , including a completely dry fin (no condensation and a completely wet fin, that is completely covered with a film of condensate. It is concluded that the methodology proposed is a good alternative for the analysis and characterization of a heat exchanger since the results agree with those reported in the literature

  13. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Science.gov (United States)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  14. A robotic device with a passive undulating ribbon fin: kinematics and propulsive performance

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar

    2015-11-01

    Many aquatic animals swim with high maneuverability using undulating ribbon fins. In this type of swimming, the organism propels by sending one or multiple traveling waves along an elongated fin. In previous work, robotic models with fully actuated fins where the parameters of the traveling waves are fully prescribed have been used to study the propulsive performance and fluid dynamics of this type of propulsion. However, less work has been done in ribbon fins with passively undulating waves. In this work, we use a robotic device to study the kinematics and propulsive performance of a passively undulating ribbon fin. The physical model is composed of fifteen rays interconnected with a membrane. Only two rays are actuated while the other rays are free to rotate through a common axis. The robotic fin was tested in a flume at different flow conditions. In a series of experiments we measured fin kinematics, propulsive forces and power consumption. As the leading two rays are actuated, a traveling wave with decaying amplitude passes through the passive rays. As the frequency of the actuated rays increases, the enclosed area of the undulating wave and the traveling wave frequency increase while the wavelength decreases. Our data also show that the propulsive force generated by the fin scaled with the enclosed area and the square of the relative velocity between incoming flow and traveling wave. These results suggest that both natural swimmers and underwater vehicles using ribbon-fin-based propulsion can potentially take advantage of passive undulating waves. National Science Foundation Grant No. 1420774

  15. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  16. Validity of intra-particle models of mass transfer kinetics in the analysis of a fin-tube type adsorption bed

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Woo; Ahn, Sang Hyeok; Chung, Jae Dong [Sejong University, Seoul (Korea, Republic of); Kwon, Oh Kyung [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)

    2014-05-15

    This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube type adsorption bed using a two dimensional numerical model with silica-gel/water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of intra-particle models used to simulate mass transfer kinetics such as the equilibrium, LDF, and solid-diffusion models are examined, and the valid ranges of the diffusion ratio for each model are proposed. An intra-particle diffusion model should be carefully implemented; otherwise, seriously distorted results may be produced, i.e., over-estimation for the equilibrium model and under estimation for the LDF model.

  17. Comparative Study for Improving the Thermal and Fluid Flow Performance of Micro Channel Fin Geometries Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    S.Subramanian

    2015-07-01

    Full Text Available There is a continuous quest for improving the performance of micro channels for handling the increased dissipation of heat from electronics circuits. The Oblique fin micro channels are attractive as they perform better than plate fin & pin fin configurations. There are scopes for further improvements in oblique fin micro channels. Hence this work is about the investigation for the performance enhancement by modifying the oblique fin geometry. Seven variants of micro channel geometries have been explored using three dimensional numerical simulations. The variants are plate fin, in-line pin fin, staggered pin fin, oblique fin, oblique fin with two slit angles, oblique with nozzle type slit and improved oblique fin. The simulation results are validated using the published data. To ensure a common reference for comparison, hydraulic diameter, inlet flow conditions, heat loads and the boundary conditions are kept identical across all the geometries. The results of simulation are compared for the thermal & fluid flow performances. Heat transfer correlations have been developed using the simulation data. The proposed modification is found to enhance the performance significantly

  18. CFD simulation of propeller and rudder performance when using additional thrust fins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To analyse a possible way to improve the propulsion performance of ships, the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins.The pressure and velocity flow behind the propeller was calculated.The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller, which was then used by GAMMBIT to generate the calculation model.The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles.The results of the calculations agree fairly well with experimental data, which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.

  19. 3D-CFD simulation and neural network model for the j and f factors of the wavy fin-and-flat tube heat exchangers

    Directory of Open Access Journals (Sweden)

    M Khoshvaght Aliabadi

    2011-09-01

    Full Text Available A three dimensional (3D computational fluid dynamics (CFD simulation and a neural network model are presented to estimate the behaviors of the Colburn factor (j and the Fanning friction factor (f for wavy fin - and - flat tube (WFFT heat exchangers. Effects of the five geometrical factors of fin pitch, fin height, fin length, fin thickness, and wavy amplitude are investigated over a wide range of Reynolds number (600fins have significant effects on the j and f factors as a function of Reynolds number. The computational results have an adequate accuracy when compared to experimental data. The accuracy of the calculations of the j and f factors are evaluated by the values of the absolute average relative deviation (AARD, being respectively 3.8% and 8.2% for the CFD simulation and 1.3% and 1% for the neural network model. Finally, new correlations are proposed to estimate the values of the j and f factors with 3.22% and 3.68% AARD respectively.

  20. 空气外掠圆孔翅片管的流动与换热数值模拟%Numerically Simulation of Flowing and Heat Transfer with Airflow Over Holes Fins Tube

    Institute of Scientific and Technical Information of China (English)

    王厚华; 方赵嵩

    2009-01-01

    The performance of the flowing and heat transfer with airflow over the three symmetrical big-holes fins tube are studied by the numerical simulation in comparison with the plane fines.The distributions of the velocity,temperature and Nu(Nuselt number) on the surfaces of the plane fins and the three symmetrical big-holes fins at different Re numbers are obtained.The maximal error between the modeling result and experiment bats of the plane fins is less than 10%,which verifies the simulation method.The simulation results prove that when the air flow Re number changes from 1 610 to 6 440,the surface heat transfer of the three symmetrical big-holes fin is higher by over 25 percent in comparison with the plane fin.This kind of fin is applicable to the fin-tube cooling heat exchanger and the effect of heat transfer is perfect.%以矩形平翅片作为比较对象,采用数值模拟方法研究了空气外掠三对称大直径圆孔翅片表面的流动与传热性能,获得了不同Re(雷诺)数时矩形平翅片和三对称大直径圆孔翅片表面的速度场、温度场和Nu(努塞尔)数分布.平翅片的模拟结果与实验数据的最大误差小于10%,证明了该模拟方法的正确性.研究结果表明:当气流Re=1 610~6 440时,三对称大直径圆孔翅片的表面传热系数比平翅片提高25%以上.证明该圆孔翅片是一种适用于翅片管式制冷换热器且传热效果优越的片型.

  1. Hydrodynamic Performance of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion

    Directory of Open Access Journals (Sweden)

    Li Wen

    2013-01-01

    Full Text Available Both body undulation and caudal fin flapping play essential locomotive roles while a fish is swimming, but how these two affect the swimming performance and hydrodynamics of fish individually is yet to be known. We implemented a biomimetic robotic fish that travel along a servo towing system, which can be regarded as “treadmill” of the model. Hydrodynamics was studied as a function of the principal kinetic parameters of the undulatory body and caudal fin of the model in a self‐propelled condition, under which the time‐averaged measured axial net force becomes zero. Thrust efficiency was estimated from two‐dimensional digital particle image velocimetry (DPIV measurements in the horizontal and mid‐caudal fin plane. The Single‐Row Reverse Karman wake (2S is commonly observed in many previous studies of live fish swimming. However, we show that a Double‐Row Two‐Paired vortices (2P wake was generated by the robotic model for most kinetic parameter combinations. Interestingly, the 2S wake emerged within the results of a narrow range of robotic caudal fin pitch angles (0≤θ≤10°, occurring concurrently with enhanced thrust efficiency. We also show that, compared with the effect of body wavelength (λ, the wake structure behind the robotic swimmer is more sensitive to the Strouhal number (St and caudal fin pitch angle (θ.

  2. Three-dimensional numerical simulation of fluid flow and heat transfer in fin-and-tube heat exchangers at different flow regimes

    OpenAIRE

    Paniagua Sánchez, Leslye

    2014-01-01

    This thesis aims at unifying two distinct branches of work within the Heat Transfer Technological Center (CTTC). On one side, extensive experimental work has been done during the past years by the researchers of the laboratory. This experimental work has been complemented with numerical models for the calculation of fin and tube heat exchangers thermal and fluid dynamic behavior. Such numerical models can be referred to as fast numerical tool which can be used for industrial rating and design...

  3. Design Features of the Separate Effect Test Facility for a Forced-Draft Sodium-to-Air Heat Exchanger (FHX) with Helical Finned Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungmo; Eoh, Jaehyuk; Ko, Yung Joo; Cho, Youngil; Kim, Jong-Man; Lee, Hyeong-Yeon; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A sodium-cooled fast reactor (SFR) is one of the most promising options to pursue these purposes, and the Korea Atomic Energy Research Institute (KAERI) is currently developing a PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) with a pool-type reactor vessel. Among the many components in an SFR, a decay heat removal system (DHRS) is very important for a safety of nuclear power plants. The PGSFR adopted two different kinds of DHRS: an active and passive DHRS, and the decay heat from the primary sodium pool is moved to the two kinds of sodium-to-air heat exchangers as ultimate heat sinks through sodium-to-sodium decay heat exchangers (DHX). To verify the cooling performances and thermal-hydraulic characteristics of this type of heat exchanger, a separate effect sodium test facility named as SELFA (Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger) is being developed. The purposes of SELFA are verification and validation of the design code for FHX. For this, scales and configurations of SELFA are carefully defined as similarity with the FHX in the PGSFR. In this paper, we propose the key design features of SELFA including the model FHX (M-FHX) unit. To verify and validate a design code of the FHX in PGSFR, a separate effect test facility called as SELFA has being developed in KAERI.

  4. Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an ORC powered by an internal combustion engine

    International Nuclear Information System (INIS)

    Highlights: • New ORC HEX design. • Dedicated model. • On-road uses. • Simulations for real ICEs’ conditions. - Abstract: Waste heat recovery from exhaust gases of internal combustion engines (ICEs) is an interesting option to increase energy conversion efficiency, especially on on-road applications. Organic Rankine cycles (ORCs) fit well the temperature levels available. Current research interests are devoted to the definition of new design solutions to improve each part of the energy conversion process. Concerning the heat recovery, new concepts for heat exchangers are required to reduce their weight, the refrigerant charge and the related environmental concerns. At the same time, a high performance of the whole system must be kept. In this paper, a new design is introduced related to a shell and louvered fin mini-tubes heat exchanger. Modeling and simulation results are presented to define an optimal design in the whole map of working conditions for a heavy duty diesel engine and a light duty gasoline engine, in order to maximize the overall system efficiency (ORC+ICE). The length and weight of the heat exchanger are consistent with the use in automotive and truck applications, while an increase of the overall system efficiency up to 9% can be achieved

  5. Spallation performance of extracorporeal membrane oxygenation tubing.

    Science.gov (United States)

    Peek, G J; Thompson, A; Killer, H M; Firmin, R K

    2000-09-01

    During the prolonged roller pump use of extracorporeal membrane oxygenation (ECMO), tubing wear generates spallation. The spallation performance of Tygon S-65-HL was measured and compared with a potential new ECMO tubing, LVA (Portex 800-500-575). Spallation was measured by on-line laser diode particle counting (HIAC) during simulated ECMO. The effects of differing levels of occlusion and pump speed were examined, as was the effect of spallation over time. The spallation produced by Tygon S-65-HL was less than that seen with LVA during 24 h of simulated ECMO (p < 0.001), and after 72 h had fallen almost to zero. Spallation with Tygon tubing increases with increasing pump speed and decreases over time. There appears to be only a weak correlation with occlusion, which is surprising. The spallation performance of Tygon S-65-HL was variable and under some conditions exceeded that of LVA. Overall, however, Tygon S-65-HL produced less spallation than LVA. Therefore, LVA cannot be recommended for clinical ECMO use. PMID:11001170

  6. Performance of an adjustable, threaded inertance tube

    Science.gov (United States)

    Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.

    2015-12-01

    The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.

  7. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    International Nuclear Information System (INIS)

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  8. Desain Compact Heat Exchanger Tipe Fin And Tube Sebagai Alat Pendingin Motor Pada Boiler Feed Pump. Studi Kasus Pada Sebuah Perusahaan Pembangkit Tenaga Listrik

    Directory of Open Access Journals (Sweden)

    Luki Apriliasari

    2013-09-01

    Full Text Available Motor listrik penggerak boiler feed pump harus bekerja secara kontinyu, dan hanya boleh mati pada saat dilakukan maintenance, apabila tidak diberikan pendinginan maka akan terjadi overheating dan menyebabkan kerusakan pada motor. Hal ini sering terjadi di PLTU, motor listrik hanya didinginkan dengan dialiri udara bebas. System ini memiliki keterbatasan yaitu kotoran yang terkandung di udara bisa menempel di dinding motor, justru menyebabkan panas dalam motor tidak keluar dengan maksimal. Untuk mengatasi keterbatasan tersebut, maka diusulkan suatu metode pendinginan yaitu dengan mendesain heat exchanger tipe compact (fin and tube. Data – data operasi diambil dari suatu perusahaan pembangkit tenaga listrik yang dijadikan obyek study. Perhitungan desain heat exchanger dengan metode ∆TLMTD. Setelah mendapat dimensi yang sesuai dengan panas yang akan didinginkan, maka dilakukan analisa performansi yaitu nilai effectiveness terhadap perubahan beban. Hasil yang didapatkan dari penyelesaian study kasus ini adalah dimensi compact heat exchanger yang memiliki spesifikasi sesuai surface 7.75-5/8T dari Kays and London dengan panjang fin 1 meter, lebar fin 0,3 m, dan panjang tube 1 meter. Hasil analisa performansi (effectiveness terhadap variasi beban yaitu semakin tinggi pembebanan maka nilai effectiveness juga semakin tinggi.

  9. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, G.G.; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents

  10. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    OpenAIRE

    Padma Lochannayak; suvendumohanty

    2015-01-01

    The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46...

  11. Corrosion performance of tube support materials

    International Nuclear Information System (INIS)

    The problem of denting in steam generators leads to change in the conception of the tube support plates. A new material is now used for this component, a 13% Cr steel, which composition has been adjusted for weldability and mechanical resistance criteria. The geometry of trefoil support plate (TSP) has also been improved, using a broached TSP (quadrifoiled holes) instead of a drilled TSP. Tests have been performed on 13% Cr and C-steel broached TSP, and drilled TSP, to confirm the better resistance to denting of this new configuration

  12. Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology

    Science.gov (United States)

    Lingham-Soliar, Theagarten

    2005-05-01

    Allometric scaling analysis was employed to investigate the consequences of size evolution on hydrodynamic performance and ecology in the white shark Carcharodon carcharias. Discriminant analysis using the power equation y=axb was negative for caudal fin span (S) versus fork length (FL) in C. carcharias. In contrast in two delphinid species, Delphinus capensis and Tursiops aduncus, the span of the flukes versus fork length rises in positive allometric fashion, and strong positive allometry of S versus √A (area) was also recorded. The latter reflects a high lift/drag ratio. S versus √A in C. carcharias displays negative allometry and consequently a lower lift/drag ratio. A lower aspect ratio (AR) caudal fin in C. carcharias compared to that of the delphinids (mean 3.33 and 4.1, respectively) and other thunniform swimmers provides the potential for better maneuverability and acceleration. The liver in sharks is frequently associated with a buoyancy function and was found to be positively allometric in C. carcharias. The overall findings suggest that the negatively allometric caudal fin morphometrics in C. carcharias are unlikely to have deleterious evolutionary fitness consequences for predation. On the contrary, when considered in the context of positive liver allometry in C. carcharias it is hereby suggested that buoyancy may play a dominant role in larger white sharks in permitting slow swimming while minimizing energy demands needed to prevent sinking. In contrast hydrodynamic lift is considered more important in smaller white sharks. Larger caudal fin spans and higher lift/drag ratio in smaller C. carcharias indicate greater potential for prolonged, intermediate swimming speeds and for feeding predominantly on fast-moving fish, in contrast to slow-swimming search patterns of larger individuals for predominantly large mammalian prey. Such data may provide some answers to the lifestyle and widespread habitat capabilities of this still largely mysterious animal.

  13. Steam condensation on finned tubes, in the presence of non-condensable gases and aerosols: Influence of impaction, diffusiophoresis and settling on aerosol deposition

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Polytechnic University of Valencia, Department of Chemical and Nuclear Engineering, Camino de Vera 14, 46022 Valencia (Spain) and Institute for Energy Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)]. E-mail: jlcobos@iqn.upv.es; Pena, J. [Polytechnic University of Valencia, Department of Applied Mathematics, Camino de Vera 14, 46022 Valencia (Spain); Herranz, L.E. [CIEMAT, Department of Nuclear Fission, Avenida Complutense 22, Madrid 28040 (Spain); Perez-Navarro, A. [Institute for Energy Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2005-05-01

    This paper presents a mechanistic model to predict the steam condensation on containment finned tube heat exchangers in the presence of non-condensable gases (NC) and aerosols. The total thermal resistance from the bulk gas to the coolant is formulated as a parallel combination of the convective and condensation gas resistances coupled in series to those of condensate layer, the aerosol fouling layer, the wall, and the coolant. The condensate layer thermal resistance is calculated by means of an Adamek-based condensation model. The aerosol fouling layer is computed based on diffusiophoresis, settling and impaction mechanisms. The gas mixture (steam plus NC) thermal resistance is formulated based on a diffusion layer modeling. Finally, this paper presents a Montecarlo method implemented in the FORTRAN code TAEROSOL that is able to compute the amount of aerosol mass that is deposited by impaction on the top of the finned tubes. The model results are compared with the available experimental data of the CONGA European project.

  14. Steam condensation on finned tubes, in the presence of non-condensable gases and aerosols: Influence of impaction, diffusiophoresis and settling on aerosol deposition

    International Nuclear Information System (INIS)

    This paper presents a mechanistic model to predict the steam condensation on containment finned tube heat exchangers in the presence of non-condensable gases (NC) and aerosols. The total thermal resistance from the bulk gas to the coolant is formulated as a parallel combination of the convective and condensation gas resistances coupled in series to those of condensate layer, the aerosol fouling layer, the wall, and the coolant. The condensate layer thermal resistance is calculated by means of an Adamek-based condensation model. The aerosol fouling layer is computed based on diffusiophoresis, settling and impaction mechanisms. The gas mixture (steam plus NC) thermal resistance is formulated based on a diffusion layer modeling. Finally, this paper presents a Montecarlo method implemented in the FORTRAN code TAEROSOL that is able to compute the amount of aerosol mass that is deposited by impaction on the top of the finned tubes. The model results are compared with the available experimental data of the CONGA European project

  15. NUMERICAL SIMULATION OF THE HYDRODYNAMIC PERFORMANCE OF AN UNSYMMETRICAL FLAPPING CAUDAL FIN

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; SU Yu-min; WANG Zhao-li

    2012-01-01

    A comprehensive numerical simulation of the hydrodynamic performance of a caudal fin with unsymmetric flapping motion is carried out.The unsymmetrical motion is induced by adding a pitch bias or a heave bias.A numerical simulation program based on the unsteady panel method is developed to simulate the hydrodynamics of an unsymmetrical flapping caudal fin.A CFD code based on Navier-Stokes equations is used to analyze the flow field.Computational results of both the panel method and the CFD method indicate that the hydrodynamics are greatly affected by the pitch bias and the heave bias.The mean lateral force coefficient is not zero as in contrast with the symmetrical flapping motion.By increasing the pitch bias angle,the mean thrust force coefficient is reduced rapidly.By adding a heave bias,the hydrodynamic coefficients are separated as two parts:in one part,the amplitude is the heave amplitude plus the bias and in the other part,it is the heave amplitude minus the bias.Analysis of the flow field shows that the vortex distribution is not symmetrical,which generates the non-zero mean lateral force coefficient.

  16. Performance of a tapered pulse tube

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Allen, M.; Woolan, J.J. [Cryenco Inc., Denver, CO (United States)

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  17. The Effects of Caudal Fin Shape on the Propulsion Performance of Flapping Caudal Fin%尾鳍形状对摆动尾鳍推进性能的影响

    Institute of Scientific and Technical Information of China (English)

    张曦; 苏玉民; 王兆立

    2012-01-01

    研究了尾鳍形状对摆动尾鳍推进性能的影响.设计了一套摆尾仿生推进装置,实验分析了仿金枪鱼、仿海豚、仿白鲸3种尾鳍的推进性能.同时采用数值方法对尾鳍的水动力性能进行了计算.实验和数值结果表明,仿金枪鱼尾鳍的平均推力系数和输入功率系数最小,推进效率最高.对尾涡的分析表明,仿金枪鱼尾鳍尾涡强度最弱,分布范围最小.%A comprehensive study was presented on the effects of the caudal fin shape on the propulsion performance of a harmonically heaving and pitching caudal fin.A bio-caudal fin propulsion mechanics was designed and a series of hydrodynamic experiments for three caudal fin shapes(the whale caudal fin,the dolphin caudal fin,and the tuna caudal fin) were performed.Then numerical simulations were done.Both the experimental and computational results indicate that the tuna caudal fin produces the highest efficiency,although the mean thrust coefficient and input power coefficient of the tuna caudal fin was the smallest.The characteristics of wake were analyzed to find that not only the wake scale of the tuna caudal fin is the smallest,but also the vorticity magnitude of the tuna caudal fin is the weakest.

  18. Performance of AlGaN/GaN Nanowire Omega-Shaped-Gate Fin-Shaped Field-Effect Transistor.

    Science.gov (United States)

    Lee, Dong-Gi; Sindhuri, V; Jo, Young-Woo; Son, Dong-Hyeok; Kang, Hee-Sung; Lee, Jae-Hong; Lee, Jae-Hoon; Cristoloveanu, Sorin; Im, Ki-Sik; Lee, Jung-Hee

    2016-05-01

    The AlGaN/GaN nanowire omega-shaped-gate FinFET have been successfully fabricated demonstrating much improved performance compared to conventional AlGaN/GaN MISHFET. The AlGaN/GaN omega-shaped-gate FinFET exhibited the remarkable on-state performances, such as maximum drain current of 1.1 A/mm, low on-resistance, and low current collapse compared to that of the conventional device structure. In addition, the excellent off-state performances were measured: low off-state leakage current as low as -10(-10) mA, the theoretical SS value of -62 mV/dec, and high I(ON)/I(OFF) ratio (-10(9)). Improved dc performances were obtained for omega-shaped-gate structure due to the fully depletion of the active fin body and perfectly separation of the depleted fin from the underlying thick GaN buffer layer. Furthermore, the additional reason for the enhanced device performance of the proposed device is the improved gate controllability compared to the conventional MISHFET. The proposed nano-structure device is very promising candidate for the steep switching device applications.

  19. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    OpenAIRE

    Marek Rejman; Wojciech Wiesner; Piotr Silakiewicz; Andrzej Klarowicz; J. Arturo Abraldes

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with f...

  20. Numerical analysis of flow and heat transfer behavior in fin-tube flat-plate solar collector

    Institute of Scientific and Technical Information of China (English)

    Namory Camara; LU Hui-lin

    2007-01-01

    Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.

  1. A Comparative Study of Conventional and Tip-Fin Propeller Performance

    DEFF Research Database (Denmark)

    Andersen, Poul

    1997-01-01

    During more than a decade several attempts have been made to obtain higher propeller efficiencies by radically modifying the geometry in the tip region of the blade. In the tip-fin propeller a tip fin or winglet is attached to the blade tip and integrated into the blade in such a way that the blade...... tip is softly curved towards the suction side.Whereas the developments previously have been concentrated mainly on increasing the efficiency of the propeller, the emphasis of current efforts has been on both high efficiency as well as good cavitation properties. This has resulted in a design...... with a combination of skew and tip fin. To evaluate the design, open-water, self-propulsion and cavitation model tests have been carried out. The tests are done for the conventional propeller originally designed for the ship and for a tip-fin propeller designed for the same ship under the same operation conditions...

  2. Numerical and experimental study of the performance of a drop-shaped pin fin heat exchanger

    OpenAIRE

    Boulares, Jihed

    2003-01-01

    Approved for public release; distribution is unlimited. This research presents the results of a combined numerical and experimental study of heat transfer and pressure drop behavior in a compact heat exchanger (CHE) designed with drop-shaped pin fins. A numerical study using ANSYS was first conducted to select the optimum pin shape and configuration for the CHE. This was followed by an experimental study to validate the numerical model. The results indicate that the drop shaped pin fins ...

  3. An approximate analytical prediction about thermal performance and optimum design of pin fins subject to condensation of saturated steam flowing under forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.; Ghosh, G.K. [Department of Mechanical Engineering, Jadavpur University, Jadavpur, Kolkata 700 032, West Bengal (India)

    2009-08-15

    An approximate analytical method has been suggested for solving the governing equation for horizontal pin fins subject to condensation while saturated steam flowing over its under laminar forced convection. Adomian decomposition method is used for determination of the temperature distribution, performance and optimum dimensions of pin fins with temperature dependent thermal conductivity under the condensation of steam on the fin surface. From the results, a significant effect on the temperature distribution in the fin and its performances are noticed with the variation in fin-geometric parameters and thermo-physical properties of saturated vapor. Next, a generalized scheme for optimization has been demonstrated in such a way that either heat-transfer duty or fin volume can be taken as a constraint. Finally, the curves for the optimum design have been generated for the variation of different thermo-physical and geometric parameters, which may be helpful to a designer for selecting an appropriate design condition. (author)

  4. On the heat transfer in the pool boiling at tightly finned steel tubes; Zum Waermeuebergang beim Behaeltersieden an eng berippten Stahlrohren

    Energy Technology Data Exchange (ETDEWEB)

    Bujok, Patrick; Wang, Yabai; Luke, Andrea [Kassel Univ. (Germany). Lehrstuhl fuer Technische Thermodynamik

    2012-07-01

    from the laboratory scale (single tube, mini-bundle) to the technical scales. On this occasion, the authors investigate the impact of tightly finned steel tubes with trapezoidal cross-sectional ribs on the heat transfer during the boiling in case of free convection over a wide range of pressures from the beginning up to the fully developed nucleate boiling. Hydrocarbons such as n-pentane and i-octane as a natural refrigerant in the process industry are used as a boiling fluid. The results of the investigations at an electrically heated and horizontally placed test tube consisting of structural steel are compared with correlations from the literature. First results from a mixture of both hydrocarbons show that the heat transfer deteriorates if only a little amount of the heavier boiling component is added.

  5. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    Science.gov (United States)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  6. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  7. 双面犁法加工整体翅片管的成形数学模型%Mathematical Model of Forming Integral-fin Tubes by Double-ploughing Method

    Institute of Scientific and Technical Information of China (English)

    吴斌; 夏伟; 汤勇

    2001-01-01

    The mathematical model of forming integral-fin tubes by the double-ploughing method is established. The relationship between the geometric variables that characterize integral-fin tubes and the cutting data, tool geometry parameters is revealed theoretically. Based on this model, the optimal fin parameters for enhanced the heat transfer can be obtained. The theoretical analysis and the experiment results indicate that for a certain tool, the fin height and mean fin thickness increase with the increase of extrusion depth and feed.%建立了双面犁法加工整体翅片管的成形数学模型,推导了翅片结构参数与加工用量及刀具几何参数之间的关系,为优选翅片结构参数以达到最佳传热效果提供了理论依据。理论分析和试验结果均表明,对于某一刀具,翅片高度和平均翅厚均随挤压深度和进给量的增加而增大。

  8. Experimental study and numerical simulation of flow and heat transfer performance on an offset plate-fin heat exchanger

    Science.gov (United States)

    Du, Juan; Qian, Zuo-Qin; Dai, Zhong-yuan

    2016-09-01

    An experimental investigation of heat transfer and pressure drop characteristics of an offset plate-fin heat exchanger for cooling of lubricant oil is conducted. The empirical correlations for j-factor and f-factor are obtained by evaluating the experimental data with a modified Wilson plot method. A numerical simulation is performed and the comparison between numerical results and experimental data are presented and discussed. The results show that the simulation results are consistent with experimental data.

  9. The Special Ultrasonic Testing Technology for Fins Weld of Spiral Water Cooled Wall Tube%螺旋管圈水冷壁鳍片焊缝专用超声检测技术

    Institute of Scientific and Technical Information of China (English)

    严祯荣; 陈学东; 罗晓明

    2015-01-01

    针对螺旋管圈水冷壁鳍片焊缝裂纹的产生特性,开发了专用微型超声波检测探头和超声波检测仪器。在刻有近似鳍片裂纹和平底孔的螺旋管圈水冷壁试件上进行了验证性检测试验。在鳍片宽度仅5 mm 的狭长检测空间,通过鳍片单一面耦合,实现了双面鳍片焊缝缺陷检测,能够方便、有效地应用到超超临界锅炉螺旋管圈水冷壁检修环节。%For features of fins crack initiation of spiral water cooled wall tube,a special miniature ultrasonic probe and ultrasonic testing instrument were developed.The confirmatory tests were carried out on specimen of spiral water cooled wall tube,which were engraved with the approximate fins weld crack and flat bottom holes.The confirmatory tests have realized detection of the double fins weld defect in the long and narrow space detection of the only 5 mm fin width,through the fins of the single surface coupling,which can be conveniently and effectively applied to the overhaul of spiral water cooled wall tube of ultra supercritical boiler.

  10. Performance tests of Mn-added aluminum heat pipe with micro-sized inner fins and thermal fluid for cooling electronic device

    Science.gov (United States)

    Kim, M. R.; Choi, Y.

    2014-12-01

    Aluminum-5 wt % manganese alloy heat pipe with a nano-fluid of n-butanol and 0.2 wt % carbon nano-tubes was prepared by deep-drawing, and its mechanical and corrosion properties were determined to improve thermal conductivity performance. The heat pipe was designed to have micro-sized inner fins working at temperature higher than 200°C and simultaneously retaining a similar thermal conductivity to that of pure aluminum. The heat pipe formed by aluminum-5 wt % manganese alloys had improved mechanical properties such as 38% micro-hardness, 45.8% yield strength, and 53.5 wt % ultimate tensile strength due to grain size refinement and work hardening effects. The corrosion rate of the aluminum alloy in artificial sea water at room temperature decreased from 0.110 mpy to 0.102 mpy. The nano-fluid of n-butanol and 0.2 wt % carbon nano-tubes improved the thermal conductivity of the heat-pipe by about 250%.

  11. Effect of tube plugging in the thermalhydraulic performance of 'U' tube steam generators

    International Nuclear Information System (INIS)

    The thermalhydraulic performance of Angra II steam generator has been simulated using the model developed by Braga, C.V.M., 'Thermohydraulic model for steam generator of PWR power plants', in steady state, with plugging up to 40% of total number of tubes. (E.G.)

  12. Performance of TFET and FinFET devices applied to current mirrors for different dimensions and temperatures

    Science.gov (United States)

    Martino, M. D. V.; Martino, J. A.; Agopian, P. G. D.; Vandooren, A.; Rooyackers, R.; Simoen, E.; Thean, A.; Claeys, C.

    2016-05-01

    The goal of this work is to compare the behavior of a current mirror designed with Tunnel-FET and FinFET devices. The suitability of these technologies in such a basic circuit has been analyzed focusing on the susceptibility to output bias conditions, dimensions mismatching and temperature variations. In the experimental part, results revealed a similar channel width dependence, but a much more relevant channel length dependence for the circuit with FinFETs. Meanwhile, varying the output bias, it was observed that a wider range of output drain voltage results in a suitable mirrored current for the circuit with tunnel field effect transistors (TFETs). In the second part of this work, numerical simulations have been performed for different temperatures. The opposite trends observed for higher temperatures could be justified based on the different dominant transport mechanism in each circuit. Globally, current mirrors with TFETs presented the best results, with lower output current susceptibility to dimensions mismatching and temperature variation.

  13. Performance of TFET and FinFET devices applied to current mirrors for different dimensions and temperatures

    International Nuclear Information System (INIS)

    The goal of this work is to compare the behavior of a current mirror designed with Tunnel-FET and FinFET devices. The suitability of these technologies in such a basic circuit has been analyzed focusing on the susceptibility to output bias conditions, dimensions mismatching and temperature variations. In the experimental part, results revealed a similar channel width dependence, but a much more relevant channel length dependence for the circuit with FinFETs. Meanwhile, varying the output bias, it was observed that a wider range of output drain voltage results in a suitable mirrored current for the circuit with tunnel field effect transistors (TFETs). In the second part of this work, numerical simulations have been performed for different temperatures. The opposite trends observed for higher temperatures could be justified based on the different dominant transport mechanism in each circuit. Globally, current mirrors with TFETs presented the best results, with lower output current susceptibility to dimensions mismatching and temperature variation. (paper)

  14. Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Fakoor Pakdaman, M.; Lashkari, A.; Basirat Tabrizi, H.; Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    This paper deals with an experimental investigation to evaluate different thermal characteristics of a natural-convection flat-plate solar air-heater with longitudinal rectangular fins array. Having determined the thermal performance of the system a Nusselt number correlation is presented for such finned duct devices. In the presented empirical model which may have industrial applications, solar radiation and ambient temperature have been considered as independent parameters. Other characteristics of the system such as different dimensionless variables, plates and outflow temperatures, efficiency, and mass flow rate have been empirically modeled based on these variables. The particular difference in this study in comparison with the other similar studies is the presentation of an empirical model for rectangular-finned solar air-heaters. This model proposes design concepts and rules of thumb, and demonstrates the calculations of the design parameters. Based on the order of magnitude analysis, solar radiation has been found to be the main parameter which characterizes the thermal behavior of the system. Besides, exergy analysis has been carried out, and optimum conditions in which the system has the highest performance have been determined. (author)

  15. PLC在钉头管埋弧螺柱焊中的应用%The Application of Programmable Logical Controller (PLC) in Submerged Arc Stud Welding for Pin Finned Tube

    Institute of Scientific and Technical Information of China (English)

    周拨云; 梅强

    2011-01-01

    In order to accurately control pin finned tube welding procedure, the PLC was applied into the control of pin finned tube submerged arc stud welding. This article introduced SSAW for pin finned tube composition and control requirements of welding control system, this system selected Emerson EC10-2416BTA programmable logical controller, adopted Emerson Control Start software to workout control procedure, and realized automatic welding for pin finned tube submerged arc stud welding. This system is with high efficiency energy saving, it overcomes some disadvantages of manual welding,such as great labour intensity,bad quality of welding joints and low welding efficiency,at the same time, this system can identify failure, alarm and timely deal with, so it can ensure stable welding quality.%为了对钉头管焊接过程进行精确控制,将PLC应用于钉头管埋弧螺柱焊焊接控制.介绍了钉头管埋弧螺柱焊焊接控制系统的组成及控制要求,选用了艾默生EC10-2416BTA型可编程控制器,采用艾默生编程软件Control Start编制控制程序,实现了钉头管埋弧螺柱焊的自动化焊接.该系统高效节能,并克服了手工焊劳动强度大、接头质量差、焊接效率低等缺点,具有故障诊断和报警功能,并作出相应的处理,保证稳定焊接质量.

  16. Global Analysis and Structural Performance of the Tubed Mega Frame

    OpenAIRE

    ZHANG, Han

    2014-01-01

    The Tubed Mega Frame is a new structure concept for high-rise buildings which is developed by Tyréns. In order to study the structural performance as well as the efficiency of this new concept, a global analysis of the Tubed Mega Frame structure is performed using finite element analysis software ETABS. Besides, the lateral loads that should be applied on the structure according to different codes are also studied. From the design code study for wind loads and seismic design response spectrum...

  17. COMPARISON OF TEMPORAL PARAMETERS OF SWIMMING RESCUE ELEMENTS WHEN PERFORMED USING DOLPHIN AND FLUTTER KICK WITH FINS - DIDACTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Marek Rejman

    2012-12-01

    Full Text Available The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s or the flutter kick (tmean = 33.0s were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s was significantly faster when compared to the dolphin-kick (tmean = 52.8s. An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation. No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time

  18. Heat exchanger performance calculations for enhanced-tube condenser applications

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.

    1992-07-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  19. Heat exchanger performance calculations for enhanced-tube condenser applications

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.

    1992-01-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  20. Thermal Performance of Convective-Radiative Heat Transfer in Porous Fins

    Directory of Open Access Journals (Sweden)

    Majid SHAHBABAEI

    2014-01-01

    Full Text Available Forced and natural convection in porous fins with convective coefficient at the tips under radiation and convection effects are investigated in this paper. Aluminum and copper as fin materials are investigated. In forced and natural convection, air and water are applied as working fluids, respectively. In order to solve this nonlinear equation, Homotopy Perturbation Method (HPM and Variational Iteration Method (VIM are used. To verify the accuracy of the methods, a comparison is made to the exact solution (BVP. In this work, the effects of porosity parameter (, Radiation parameter (α and Temperature-Ratio parameter (µ on non-dimensional temperature distribution for both of the flows are shown. The results show that the effects of (α and (µ on temperature distribution in natural convection are based on porosity and in forced convection are uniform, approximately. Also, it is shown that both VIM and HPM are capable of being used to solve this nonlinear heat transfer equation.doi:10.14456/WJST.2014.64

  1. Analog performance of standard and uniaxial strained triple-gate SOI FinFETs under x-ray radiation

    Science.gov (United States)

    Bordallo, C. C. M.; Teixeira, F. F.; Silveira, M. A. G.; Martino, J. A.; Agopian, P. G. D.; Simoen, E.; Claeys, C.

    2014-12-01

    The influence of x-ray irradiation on the main digital and analog parameters of triple gate silicon-on-insulator FinFETs is investigated for unstrained and uniaxially strained devices. Comparing the p- and n-MuGFET response to radiation, x-rays can be more harmful for nMuGFETs than for the p-type counterparts due to the back-interface leakage current, which is generated by the positive charges trapped in the buried oxide. However, in pMuGFETs, the radiation tends to suppress the parasitic back-conduction, resulting in an improvement of the device performance.

  2. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement

    International Nuclear Information System (INIS)

    Highlights: • Thermal–hydraulic performance of a non-circular tube bundle has been investigated experimentally. • Tubes were mounted in staggered arrangement with two longitudinal pitch ratios 1.5 and 2. • Drag coefficient and Nusselt number of tubes in second row was measured. • Friction factor of this tube bundle is lower than circular tube bundle. • Thermal–hydraulic performance of this tube bundle is greater than circular tube bundle. - Abstract: Flow and heat transfer from cam-shaped tube bank in staggered arrangement is studied experimentally. Tubes were located in test section of an open loop wind tunnel with two longitudinal pitch ratios 1.5 and 2. Reynolds number varies in range of 27,000 ⩽ ReD ⩽ 42,500 and tubes surface temperature is between 78 and 85 °C. Results show that both drag coefficient and Nusselt number depends on position of tube in tube bank and Reynolds number. Tubes in the first column have maximum value of drag coefficient, while its Nusselt number is minimum compared to other tubes in tube bank. Moreover, pressure drop from this tube bank is about 92–93% lower than circular tube bank and as a result thermal–hydraulic performance of this tube bank is about 6 times greater than circular tube bank

  3. 纵向节距对锯齿螺旋翅片换热管特性影响的试验研究%Effects of Longitudinal Pitch on Heat Transfer and Flow Resistance Characteristics of Serrated Spiral-finned-tube Banks

    Institute of Scientific and Technical Information of China (English)

    马有福; 袁益超; 刘聿拯; 胡晓红

    2011-01-01

    Developed from the solid spiral-finned-tube, the serrated spiral-finned-tube has wide application prospects in large-scale heat-exchange facility due to its advantages such as easy manufacture, high fin ratio, high heat transfer coefficient and fin efficiency.In order to get known the effects of tube layout structures on heat transfer and flow resistance characteristics of serrated spiral-finned-tube banks (SSB), nine SSB with staggered layouts in terms of various transverse pitch (S1) and longitudinal pitch (S2) of tube banks are tested after an analysis of its influencing mechanism.Accordingly, the effects of S2 on heat transfer and flow resistance characteristics of SSB are obtained, and the corresponding correlations are put forward.The experimental results show that with the same Re number of fin-side and relative transverse pitch (S1/do), the Eu number decrease with the increasing of S2, while there is an optimum relative longitudinal pitch (S2/do) to make Nu number and comprehensive heat transfer performance index j/f (ratio of Colburn heat transfer factor and friction factor) of fin-side reach a maximum associated with a certain S1/do; on the premise of same Re number and S1/do, the appropriate selection of S2/do can make Nu number increase about 6% and Eu number decreases slightly in the test range ofS2/do= 2.41~3.07, and the j/f index can increase about 7%.%锯齿螺旋翅片管是在连续螺旋翅片管基础上发展而来的强化换热管型,具有易于制造、翅化比大,换热系数和翅片效率更高等优点,在大型气体换热设备中具有广泛的应用前景.为获得管束布置结构对锯齿螺旋翅片换热管特性的影响,在分析其影响机理的基础上对9个锯齿螺旋翅片管错列管束进行试验研究,获得纵向节距S2对锯齿螺旋翅片管束换热与阻力特性的影响规律,并提出相应的关联式.试验结果表明:在相同雷诺数Re和管束横向相对节距S1/do下存在

  4. Performance of Elliptical Pin Fin Heat Exchanger ‎with Three Elliptical Perforations

    Directory of Open Access Journals (Sweden)

    Pinakeswar Mahanta

    2011-10-01

    computational domain are presented and the overall performance, which is defined here as the heat transfer per unit pressure drop, of the heat exchanger is also assessed. The results show that the perforated elliptical pin fins perform better than the solid elliptical pin fin both in terms of heat transfer and pressure drop characteristics.

  5. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata).

    Science.gov (United States)

    Svendsen, Jon C; Banet, Amanda I; Christensen, Rune H B; Steffensen, John F; Aarestrup, Kim

    2013-09-15

    There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.

  6. Performance of the CMS Drift Tube Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    Studies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 microns, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.

  7. Experimental analysis on frosting characteristic of SK-type finned refrigerating heat exchanger with large-diameter circular holes

    International Nuclear Information System (INIS)

    This paper presents the construction of both a plane fin-and-tube heat exchanger and a SK-type fin-and-tube heat exchanger. Based on plane fin-and-tube heat exchanger, comparative industrial prototype experiments of SK-type fin-and-tube heat exchanger energy efficiency performance were carried out in the artificial climate chamber. Test results confirmed several findings: when the amount of the refrigerant charged is the same and face velocity u = 3.75 m s−1, SK-type fin-and-tube heat exchanger refrigeration capacity increases by an average of 9.13%; energy consumption reduces by an average of 11.25%, coefficient of performance (COP) of heat exchanger increases by an average of 22.65% with continuous operation during the first 2 h. Also, when the operation time exceeds 2 h, the COP of both types of heat exchangers are both less than 0.6, illustrating that under frost conditions, the defrost interval should not be too long, otherwise energy consumption may sharply spike. - Highlights: •The large holes of SK-type induced the generation of turbulence flow. •The refrigeration capacity and COP of SK-type exceeds that of plane one. •The SK-type fin-and-tube heat exchanger is a new kind of heat transfer equipment. •The defrost interval should not exceed 2 h under frost conditions

  8. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen;

    2013-01-01

    of reproductive traits, pectoral fin use and burse-assisted swimming on swimming metabolic rate, standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided...... by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF...

  9. Effect of the collector tube profile on Pitot pump performances

    Science.gov (United States)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  10. Performance of a lead radiator, gas tube calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Delchamps, S.W.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-03-13

    Design and performance of a 4.2 radiation length lead-sandwich, gas tube hodoscope are discussed. The device, measuring 1 /times/ 2 m/sup 2/ in area and 12 cm in depth, was employed in Fermi National Accelerator Laboratory experiment 705. Multiple samplings of anode wires situated within three-walled aluminum tubes were used to generate an X coordinate; similarly, capacitively coupled copper-clad strips were ganged together to yield a Y coordinate. The results reviewed are based on an analysis of electron calibration data taken during a recent six-month running period. In particular, position resolution (in millimeters) is seen to be 0.8 + 3.3/..sqrt..E + 31/E for the 9.92 mm spaced wires and 0.6 + 3.2/..sqrt..E + 32/E for the 12.5 mm strips, where E represents the electron beam energy in GeV. 5 refs., 6 figs.

  11. Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Ho-Ming; Ho, Chii-Dong [Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-Chuan Road, Tamsui, Taipei County 25137 (China)

    2009-05-15

    The influence of external recycle on the collector efficiency in solar air heaters with internal fins attached, has been investigated theoretically. The application of external recycle operation to solar air heaters actually has two conflict effects. One is the increase in fluid velocity to decrease the heat-transfer resistance, which is good for performance, while the other is lowering the driving force (temperature difference) of heat-transfer, due to the remixing at the inlet, which is bad for performance. It is found that considerable improvement in collector efficiency is obtainable if the operation is carried out with an external recycle, where the desirable effect overcomes the undesirable effect. The enhancement increases with increasing reflux ratio, especially for operating at lower air flow rate with higher inlet air temperature. (author)

  12. Design and Performance Analysis of 1-Bit FinFET Full Adder Cells for Subthreshold Region at 16 nm Process Technology

    Directory of Open Access Journals (Sweden)

    ‘Aqilah binti Abdul Tahrim

    2015-01-01

    Full Text Available The scaling process of the conventional 2D-planar metal-oxide semiconductor field-effect transistor (MOSFET is now approaching its limit as technology has reached below 20 nm process technology. A new nonplanar device architecture called FinFET was invented to overcome the problem by allowing transistors to be scaled down into sub-20 nm region. In this work, the FinFET structure is implemented in 1-bit full adder transistors to investigate its performance and energy efficiency in the subthreshold region for cell designs of Complementary MOS (CMOS, Complementary Pass-Transistor Logic (CPL, Transmission Gate (TG, and Hybrid CMOS (HCMOS. The performance of 1-bit FinFET-based full adder in 16-nm technology is benchmarked against conventional MOSFET-based full adder. The Predictive Technology Model (PTM and Berkeley Shortchannel IGFET Model-Common Multi-Gate (BSIM-CMG 16 nm low power libraries are used. Propagation delay, average power dissipation, power-delay-product (PDP, and energy-delay-product (EDP are analysed based on all four types of full adder cell designs of both FETs. The 1-bit FinFET-based full adder shows a great reduction in all four metric performances. A reduction in propagation delay, PDP, and EDP is evident in the 1-bit FinFET-based full adder of CPL, giving the best overall performance due to its high-speed performance and good current driving capabilities.

  13. Asynchronous CFD Simulation for Conjugate Heat Exchange of Full-size Single Row Finned Tube%全尺寸单排翅管耦合换热的异步CFD模拟

    Institute of Scientific and Technical Information of China (English)

    白焰; 邓慧; 李欣欣; 张东明

    2016-01-01

    火电厂空冷凝汽器普遍使用单排蛇形翅管作为换热器基管.由于蛇形翅管翅侧几何特征复杂,管内凝结有相变相随,蒸汽到空气的传热经过多个耦合面,用计算流体动力学(computational fluid dynamics,CFD)同步模拟翅管双侧换热,存在很多困难.提出液膜表面剪切力条件下的管内冷凝模型,分析蒸汽至空气的耦合换热过程和换热面平衡条件,给出耦合换热量的计算方法.将全尺寸翅管换热的数值模拟分解成282个边界条件关联的CFD模块,实现了全管耦合换热的异步计算.对比CFD解与实验数据,两者吻合良好,表明,冷凝模型能正确仿真蒸汽冷凝,异步CFD策略是模拟全尺寸翅管双侧换热的有效方法.基于CFD解,分析了翅侧空气和管内蒸汽的流场特性.%The single-row flat wave finned tube is widely applied as the unit tube by the direct air cooled condenser in power plants. Caused by the complicated body geometry in fin side, the vapour condensation involving phase transition, and the heat transfer from vapour zone to air zone conjugating on several interfaces, using computational fluid dynamics (CFD) method to simulate the heat transfer in both the vapour channel and the cooling air channel simultaneously, many challenges are encountered. A mathematical model to simulate the condensation of water vapour was developed counting the interfacial shear stress, the heat balance conditions on the interfacial boundaries of the conjugate heat were presented as well as the method to calculate the conjugate heat. The numerical simulation for the full-size finned tube was carefully separated to 282 CFD modules which share same boundaries each other. Based on the 282 CFD modules, the asynchronous strategy to calculate the conjugate heat of the finned tube in overall scale was successfully carried out. The results from the CFD simulations agree very well with the experimental results, which validates the proposed

  14. Influence of tube's diameter on boiling heat transfer performance in small diameter tubes

    Science.gov (United States)

    Gan, Chengjun; Wang, Weicheng; Zhang, Lining

    1998-03-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a, HCFC-22 and CFC-12 as working fluid. The results show that the evaporation heat transfer coefficient increases with the decreasing of inner diameter of tubes. A new concept of non-dimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient. And further, a convenient empirical correction method is presented.

  15. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  16. Compound Forming of Outside 3-Dimension Integral Fins on Stainless Steel Tubes%不锈钢三维整体外翅片管的复合成形

    Institute of Scientific and Technical Information of China (English)

    张小霞; 汤勇; 万珍平; 陆龙生; 何雅玲

    2011-01-01

    In this paper, a novel plowing/extrusion tool is proposed to develop a new compound forming technique of rolling-plowing/extrusion to machine outside 3-dimension integral fins on stainless steel tubes. The machining process is divided into two stages; to fabricate V-ribs by rolling and to machine 3-dimension integral fins on the V-ribs by plowing/extrusion. Moreover, the morphologies of the ribs and the fins under different processing conditions were experimentally analyzed, and the effect of the plowing/extrusion depth and feed rate on the fin height and pitch were investigated. The results show that the optimal fins are machined at a rolling depth of 1. 20 mm, a plowing/extrusion depth of 0. 25 ~0.45 mm and a feed rate of 2. 16 ~ 3. 92 mm/r.%设计开发了一种新型的犁切/挤压刀具,通过滚压-犁切/挤压复合成形技术,在不锈钢管外表面加工出三维整体翅片.翅片形成分为两个过程:首先滚压出V型沟槽,然后通过犁切/挤压在V型沟槽上生成三维整体翅片.实验分析了不同滚压条件下形成的沟槽形貌,以及不同犁切/挤压条件下形成的三维整体外翅片形貌;并探讨了犁切/挤压深度、进给量对翅片高度、翅片间距的影响.结果表明:当滚压深度为1.20mm、犁切/挤压深度为0.25~0.45 mm、进给量为2.16 ~3.92 mm/r时,可以在不锈钢管外表面加工出性能最优的三维整体翅片.

  17. Study of the thermal performance of external and internal finned plate-heat exchangers for nuclear steam generator application

    International Nuclear Information System (INIS)

    The present study points out two main categories of steam generators for nuclear plants with PWR reactor, on one side of the Babcok and Wilcox type, and on the other side of the Westinghouse type. The present study examines, from a recent patent, the possibility to add internal and external fins in the steam generator exchangers of PWR reactors. The finned-plate heat exchanger is first described. The thermal characteristics of a finned-plate and of an exchanger including these plates are tested. The theoretical study and the experiment are both presented. The study deals more particularly with the evaluation of the global heat exchange coefficient that the internal fins allow to improve. The experiment has been carried out for different flow rates and at different temperatures

  18. Performance of polypropylene and steel tubes in solar water heaters with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Riazi, M.R. [Kuwait Univ., Safat (Kuwait). Chemical Engineering Dept.; Razavi, J. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Chemical Engineering Dept.

    1997-02-01

    Performance of solar water heaters in thermosyphonic flow with polypropylene and steel tubes was studied experimentally. An experimental apparatus consisting of 36 south-facing parallel tubes was designed and built especially for this study. Experiments were performed at Sharif University of Technology in Tehran during July--August 1994 from 0900 to 1700, when the ambient temperature varied from 29 to 36 C. Overall, 30 experiments were conducted for both types of tubes. At first, it was found that the best collector slope for both types of tubes was 36{degree} and it is independent of tube type. Generally, it was found that polypropylene tubes under similar conditions can increase water temperature by 10 C more than steel tubes. Based on the results shown in this study, use of polypropylene tubes in solar water heating systems is recommended.

  19. Heat Transfer and Friction Characteristics of Wavy Fin with Hydrophilic Coating under Dehumidifying Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-ming; DING Guo-liang; MA Xiao-kui

    2007-01-01

    An experimental study on the airside heat transfer and friction characteristics of seven hydrophilic-coated wavy finned tube heat exchangers is performed under dehumidifying conditions. The effects of fin pitch, number of tube rows and inlet air relative humidity on the airside characteristics are investigated. The airside heat transfer and friction characteristics are presented in the form of Colburn factor and friction factor, respectively. The test results indicate that the Colburn factor and friction factor increase with decreasing fin pitch. The Colburn factor of 2tube row heat exchanger is higher than that of 3 row heat exchanger, while their friction factors are nearly equal. As the inlet relative humidity increases, the Colburn factor increases and the friction factor is almost unchanged. The airside heat transfer and friction correlations are proposed for the hydrophilic-coated wavy fin with mean deviations of 6.5% and 9.1%, respectively. They can be used to design or evaluate hydrophilic-coated wavy fin-and-tube heat exchangers.

  20. Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber

    Energy Technology Data Exchange (ETDEWEB)

    Omojaro, A.P.; Aldabbagh, L.B.Y. [Mechanical Engineering Dept., Eastern Mediterranean University, Gazimagusa, Mersin 10 (Turkey)

    2010-12-15

    Thermal performance of a single and double pass solar air heater with fins attached and using a steel wire mesh as absorber plate was investigated experimentally. The effects of air mass flow rate range between 0.012 kg/s and 0.038 kg/s on the outlet temperature and thermal efficiency was studied. The bed heights were 7 cm and 3 cm for the lower and upper channels respectively. Result shows that, the efficiency increase with increasing air mass flow rate. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 7-19.4%. Maximum efficiency obtained for the single and double pass air heater was 59.62% and 63.74% respectively for air mass flow rate of 0.038 kg/s. Moreover, the thermal efficiency further decreases by increasing the height of the first pass of the double pass solar air heater. The temperature difference between the outlet flow and the ambient, {delta}T, reduces as the air mass flow rate increase The result of a single or double solar air heater using steel wire mesh arrange in layers as an absorber plate and packing material when compared with a conventional solar air heater shows a much more substantial enhancement in the thermal efficiency. (author)

  1. Real gas features on the performance of pulse tube cryocoolers

    Science.gov (United States)

    Ju, Y. L.

    2002-05-01

    The working helium gas in a pulse tube cryocooler operating at temperatures down to 80 K is mainly assumed to be an ideal gas. Therefore, the time-variations of the temperature profiles and the position of the gas element traveling with pressure oscillations inside the pulse tube can be readily determined by the law of Poisson function. However, this is certainly invalid for the pulse tube cryocooler operating at temperature range of liquid helium, in which the thermal properties of the helium gas change drastically. The temperature profiles in the regenerator and the pulse tube are strongly affected by the real thermal properties of the helium gas. We derive in this paper, the respective expressions to follow the tracks of the gas elements as they move in the pulse tube, and to reveal the time dependence of the temperature profiles and the position of gas elements traveling with the pressure oscillations inside the pulse tube. The approach is based on the thermodynamic equations for the real gas. We will show that contrary to the ideal gas case there is another term which determines the dynamic behaviors of the temperature distributions and the position of the gas elements. A typical calculation is presented for visualizing the time dependence of the cooling-down processes of the temperature profiles in the pulse tube of a 4K two-stage pulse tube cryocooler from room temperature down to low temperature.

  2. Design aspects and performance of a settling tube system

    NARCIS (Netherlands)

    Slot, R.E.; Geldof, H.J.

    1979-01-01

    The DUST (Delft University Settling Tube) is a settling tube system intended to analyse particle size (settling velocity) of sand ranging from 0.06 mm to 2 mm, with the sample mass varying from 0.5 g to 20 g. The main parts of the system are (see fig. 1): a. the sample introduction device (venetian

  3. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    OpenAIRE

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen; Steffensen, John F.; Aarestrup, Kim

    2013-01-01

    There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a livebearing teleost, we examined the effects of reproductive traits, pectoral fin use and burse-assisted swimming on swimming metabolic rate, standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). Reproductive traits included repr...

  4. Thermal and friction drop characteristic of heat exchangers with elliptical tubes and smooth fins//Caracterización térmica e hidráulica de intercambiadores de calor con tubos elípticos y aletas lisas

    Directory of Open Access Journals (Sweden)

    Rubén Borrajo-Pérez

    2012-09-01

    Full Text Available Pressure drop and heat transfer are the most important parameters in compact heat exchanger. There is a lack of information in the literature about heat exchanger with elliptical tube. The objective of this work was the experimental characterization of compact heat exchangers models using elliptical tube with eccentricity of 0,5 and smooth fins. The Reynolds numbers and the spacing were varied and always inside laminar regime. The experiments were conducted in an open wind tunnel using sublimation of naphthalene and the heat and mass transfer analogy. As results, the average and local Nusselt number and friction factor for 36 models were obtained. Correlations for Colburn and friction factors were presented. This correlations were obtained for 200fins. These are the first correlations presented in the open literature covering a wider range of pitches. A baseline for future implementations of enhancement heattransfer techniques is presented.Key words: friction factor, heat transfer coefficient, elliptical tube, compact heat exchanger._______________________________________________________________________________Resumen:Caída de presión y transferencia de calor son importantes parámetros en intercambiadores de calor. Existe falta de información cuando de intercambiadores de calor y tubos elípticos se trata. El objetivo del trabajo fue caracterizar experimentalmente modelos de intercambiadores de calor con tubos elípticos yaletas lisas. El numero de Reynolds y los espaciamientos fueron variados, dentro del régimen laminar. Los experimentos fueron desarrollados en un túnel de viento de circuito abierto usando la sublimación de naftaleno y la analogía calor y masa. Los números de Nusselt medio, locales y el factor de fricción fueronobtenidos en forma de correlaciones de Factores de Fricción y Colburn. Las correlaciones, validas para 200

  5. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Chris; Tangorra, James [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Lauder, George [Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 (United States); Hale, Melina, E-mail: tangorra@coe.drexel.ed [Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 (United States)

    2010-09-15

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.

  6. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control

    International Nuclear Information System (INIS)

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.

  7. An integrated evaluation of the performance effects of steam generator tube plugging

    International Nuclear Information System (INIS)

    The integrity of the walls of a small number of steam generator tubes can degrade, with time, during normal operation of a Pressurized Water Reactor. In order to avoid the potential for unacceptable primary-to-secondary leakage, these steam generator tubes must be plugged. This paper presents an integrated evaluation of the impact of tube plugging on plant performance. Such an evaluation is recommended for determining the number of tubes that can be plugged without a significant adverse impact on plant steady state design performance and a large reduction in plant safety analyses margins

  8. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  9. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    Science.gov (United States)

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  10. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  11. Experimental Studies on the Effects of Transverse Pitch on Heat Transfer and Flow Resistance Characteristics of Serrated Spiral Finned Tube Banks%横向节距对锯齿螺旋翅片换热管特性影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    马有福; 袁益超; 刘聿拯; 胡晓红

    2011-01-01

    为获得管束布置结构对锯齿螺旋翅片换热管特性的影响,在分析其影响机制的基础上对9个锯齿螺旋翅片管错列管束进行了实验研究,获得了横向节距对锯齿螺旋翅片管束换热与阻力特性的影响规律,并提出相应的关联式.结果表明:在横向相对节距范围2.31~3.15,相同雷诺数Re和纵向节距下随横向节距增大,翅侧努谢尔数Nu变化在±3%内;欧拉数Eu减小约20%;综合传热性能j/f(科尔伯恩传热因子与范宁摩擦因子比值)增大约25%.通过与错列光管管束的比较,表明锯齿螺旋翅片管束强化换热性能较优,在大型气体换热设备中具有广泛的应用前景.%In the interest of the effects of tube layout structures on heat transfer and flow resistance characteristics of serrated spiral finned tube banks (SSFTB), nine SSFTB with staggered layouts in terms of various transverse pitch and longitudinal pitch of tube banks were tested after an analysis of its influencing mechanism. Accordingly, the effects of transverse pitch on heat transfer and flow resistance characteristics of SSFTB were performed, and the calculating correlations of heat transfer and flow resistance of SSFTB were put forward. The results from experimental studies are: in the range of relative transverse pitch of tested tube banks 2.31~3.15, with the increasing of transverse pitch the Nu number change slightly (<3%) and the Eu number evidently decrease about 20%, meanwhile the comprehensive heat transfer performance index jlf (ratio of Colbum heat transfer factor and Fanning friction factor) increase about 25% in the same Re number and longitudinal pitch. The comparisons of bare tube banks and staggered layouts indicate that SSFTB have outstanding performances of heat transfer enhancement, so it must have widely applied prospects in large-scale heat-exchange facility.

  12. 空温式翅片管气化器结霜模型及数值模拟%Frost model and numerical simulation of air-heating fin-tube vaporizer

    Institute of Scientific and Technical Information of China (English)

    陈叔平; 姚淑婷; 谢福寿; 常智新; 韩宏茵

    2011-01-01

    A two - dimentional model of frost formation and growth on the cryogenic surface of air - heating finned - tube vaporizer was proposed based on Diffusion Limited Aggregation (DLA) model, and the simulation of frost formation and growth on the cryogenic surface was carried out in this paper. The box counting dimension method was used to calculate the fractal dimension of the image of the frost formation and growth. The result showed that the fractal dimension of frost on the cryogenic surface was larger than the fractal dimension of frost on the general cold surface, and frost on the cryogenic surface had a more complex structure and a bigger ability of filling space. It is more significant to further understand the frost growth mechanism on the surface of cryogenic finned -tube vaporizer, to explore the effective defrosting methods and enhance heat transfer characteristics of the vaporizer.%以分形理论的DLA模型为基础,建立了空温式翅片管气化器深冷表面上霜晶生长的二维模型,模拟了深冷表面上的霜晶生长过程.采用计盒维数法对模拟出的霜晶生长图像进行了分形维数的计算,结果表明深冷表面上霜晶的分形维数较一般冷表面上的分形维数大,从而说明深冷表面上的霜晶具有更加复杂的结构,充满空间的能力更大.这对进一步理解空温式深冷翅片管气化器表面上霜层的生长机理,探索有效的气化器抑霜除霜方法,提高气化器换热特性有重要的指导意义.

  13. Ultrahigh performance of Ti-based glassy alloy tube sensor for Coriolis mass flowmeter

    Institute of Scientific and Technical Information of China (English)

    MA Chao-li; A. INOUE; ZHANG Tao

    2006-01-01

    Bulk metallic glasses (BMGs) have potential applications for both structural and functional components owing to their good mechanical properties. With the aim of demonstrating great engineering value of BMGs, a direct melt-forming technique based on suction casting for the production of glassy alloy tubes was developed. The fabrication, structure, geometry, properties and sensor performance of the tubes were examined. The results show that the Coriolis mass flowmeters using the Ti-based glassy alloy sensor tube exhibit excellent measurement sensitivity, viz. 28.5 times higher than that of the conventional flowmeter manufactured using stainless steel (SUS316) tube.

  14. Development and performance of resistive seamless straw-tube gas chambers

    Science.gov (United States)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-10-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220 μm is achieved, and an anode position resolution of 112 μm is also obtained.

  15. Analyses on RF Performances of Silicon-Compatible InGaAs-Based Planar-Type and Fin-Type Junctionless Field-Effect Transistors.

    Science.gov (United States)

    Seo, Jae Hwa; Yoon, Young Jun; Cho, Seongjae; Tae, Heung-Sik; Lee, Jung-Hee; Kang, In Man

    2015-10-01

    The InO.53Ga0.47As-based planar-type junctionless fieled-effect transistor (JLFET) and fin-type FET (FinFET) have been designed and characterized by technology computer-aided design (TCAD) simulations. Because of their attractive material characteristics, the combination of In0.53Ga0.47As and InP has been adopted in some of the most recent semiconductor devices. In particular, the In0.53Ga0.47As-based transistor using an InP buffer is highly attractive due to its superior electrostatic performance which results from the by particular characteristics of the In0.53Ga0.47As material. In this paper, we focus on using small-signal RF modeling and Y-parameter extraction methods th extract various RF characteristics, such as gate capacitance, transconductance (gm), cut-off frequency (fT), and maximum oscillation frequency (fmax). The proposed InO.53Ga0.47As-based FinFET exhibits an on-state current (Ion) of 1030 μA/μm and an off-state current (Ioff) of 1.2 x 10(-13) A/μm with a threshold voltage (Vth) of 0.1 V, and a subthreshold swing (S) of 96 mV/dec. In addition, fT and fmax are determined to be 243 GHz and 1.6 THz, respectively. PMID:26726384

  16. High Fin Width Mosfet Using Gaa Structure

    Directory of Open Access Journals (Sweden)

    S.L.Tripathi

    2012-10-01

    Full Text Available This paper describes the design and optimization of gate-all-around (GAA MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior sub threshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the simulations are performed on 3-D TCAD device simulator.

  17. High Fin Width Mosfet Using Gaa Structure

    Directory of Open Access Journals (Sweden)

    S.L.Tripathi

    2012-11-01

    Full Text Available This paper describes the design and optimization of gate-all-around (GAA MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior subthreshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the simulations are performed on 3-D TCAD device simulator.

  18. Performance of Closed Tow-Phase Thermosyphon With Double Tube Evaporator

    International Nuclear Information System (INIS)

    Experimental studies were carried out for the new thermosyphon type of double tube evaporator. thermosyphons are utilized for transporting large quantities of heat energy. thermosyphons have been widely used in energy and different industrial applications due to their simple construction , small thermal resistance, broad operating limits and low fabrication costs. thermal analysis of thermosyphons performance is experimentally presented in the steady state operation of the closed two-phase thermosyphon of double tube evaporator. the experimental study was performed by inserting an inner pipe into the evaporator of thermosyphon. this study aims to examine the thermosyphons performance against the traditional thermosyphon and analysis of the characteristics of double tube evaporator

  19. Heat transfer performance of condenser tubes in an MSF desalination system

    International Nuclear Information System (INIS)

    The present research examines the amount of condensed fresh water off the outer-side surface of heat exchangers in an MSF system. The quantitative modeling of condensed water on the outer surface of comparable tubes, enhanced and plain, in a simulated MSF technique is investigated. An adapted simulation design on a test-rig facility, accounting for the condenser tubing in actual industrial desalination plate-form, is used with corrugated and smooth aluminum-brass material tubes 1100mm long and 23mm bore. A single phase flow of authentic brine water that typifies real fouling is utilized to simulate the actual environmental life of a multi-stage flashing desalination system, with coolant flow velocity 0.1 m/s in the two delineated types of condenser tubing. It is demonstrated that the condensate water amount from the specified enhanced tube is about 1.22 times the condensate water amount from the smooth tube, adaptive for 140 running hours under deliberated constrains. The topic covers a comparative analysis of thermal performance. Comparing results with fresh water confirm the effect of fouling on significantly lowering the value of the overall heat transfer coefficient versus time. Fouling resistance Rf is reported with the critical coolant flow speed of 0.1 m/s. Comparison between the fouling resistance for both smooth and corrugated tubes versus time is performed. The fouling thermal resistance of the corrugated tube is 0.56 of the fouling thermal resistance of the smooth tube after140 running hours of the experiment are concluded. Overall, in the case of real brine, results prove that heat performance for the corrugated tube is superior to the plain tube over the studied time period (140 hrs) for the chosen range of flow speeds

  20. Numerical study on natural convection heat transfer of fin - tube air - heating vaporizer%空温式翅片管气化器自然对流换热的数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈叔平; 常智新; 韩宏茵; 谢福寿; 姚淑婷

    2011-01-01

    The natural convective heat transfer model on the air side of air - heating cryogenic finned - tube vaporizer was established. The natural convection heat transfer of vaporizer side air was simulated 3D - numerically used by fluent software,SST model and SIMPLEC algorithm for differentstructure parameters and inside wall temperature of the vaporizer. Based on the result of numerical simulation, the influence of different structure sizes and wall temperatures on natural convection heat transfer was analysed, and a calculation correlation of Nusselt number for the air side natural convection heat transfer of vaporizer was fitted, providing a reference for engineering practice.%建立了深冷空温式星形翅片管气化器的空气侧自然对流换热模型.利用fluent软件,采用SST k-ω湍流模型和SIMPLEC算法,对多组不同结构参数、不同内壁面温度的气化器空气侧自然对流换热进行了三维数值模拟.由数值模拟结果分析了气化器各结构尺寸大小与壁温对翅片管自然对流换热的影响,并拟合了气化器空气侧自然对流换热的Nu数的计算关联式,为工程实际供参考.

  1. 风速对空气源热泵翅片管换热器结霜特性影响%The effects of wind speed on frosting characteristics of fin - tube heat exchanger for air source heat pump

    Institute of Scientific and Technical Information of China (English)

    尹从绪; 陈轶光

    2011-01-01

    The effect of the wind velocity on the frosting characteristics of the fin - and - tube heat exchanger was investigated experimentally. The experimental results indicated that the frost mass accumulation doesn't increase linearly with the wind velocity, the minimum frost mass accumulation are formed at the air velocity of 1. 3m/s. The frost thickness decreased as the wind velocity increase, but the maximum heating capacity increased as the face velocity increase.%针对风速对空气源热泵翅片管室外换热器结霜特性的影响进行了实验研究.实验结果表明,结霜量随风速的增加不是成线形增长,在风速为1.3m/s时结霜量最小.霜层厚度随着风速的增加反而减小,而翅片管换热器的最大换热量随着风速的增加而增加.

  2. High Fin Width Mosfet Using Gaa Structure

    OpenAIRE

    S.L.Tripathi; Ramanuj Mishra; R. A. Mishra

    2012-01-01

    This paper describes the design and optimization of gate-all-around (GAA) MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior sub threshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the ...

  3. Performance comparison of high speed microchannel plate photomultiplier tubes

    Science.gov (United States)

    Varghese, Thomas; Selden, Michael; Oldham, Thomas

    1993-01-01

    The transit time spread characteristics of high speed microchannel photomultipliers has improved since the upgrade of the NASA CDSLR network to MCP-PMT's in the mid-1980's. The improvement comes from the incorporation of 6 micron (pore size) microchannels and offers significant improvement to the satellite ranging precision. To examine the impact on ranging precision, two microchannel plate photomultiplier tubes (MCP-PMT) were evaluated for output pulse characteristics and temporal jitter. These were a Hamamatsu R 2566 U-7 MCP-PMT (6 micron) and an ITT 4129f MCP-PMT (12 micron).

  4. FIN 200 UOP Course Tutorial / fin200dotcom

    OpenAIRE

    anil14

    2015-01-01

    FIN 200 Entire Course For more course tutorials visit   www.fin200.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPo...

  5. FIN 200 Uop Material-fin200dotcom

    OpenAIRE

    Sandywilliam6

    2015-01-01

    FIN 200 Entire Course For more course tutorials visit   www.fin200.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPo...

  6. FIN 415 Uop Material-fin415dotcom

    OpenAIRE

    Sandywilliam1

    2015-01-01

    FIN 415 Entire Course For more course tutorials visit www.fin415.com   FIN 415 Week 1 Individual Assignment Risk Management Overview Paper FIN 415 Week 2 Team Assignment Risk Management Identification and Assessment Paper FIN 415 Week 3 Individual Assignment Risk Management Techniques Paper FIN 415 Week 3 Individual Assignment Risk Management Problem, Set I FIN 415 Week 3 Team Assignment Risk Measurement Summary FIN 415 Week 4 Individual Assignment Ris...

  7. A Biologically Derived Pectoral Fin for Yaw Turn Manoeuvres

    Directory of Open Access Journals (Sweden)

    Jonah R. Gottlieb

    2010-01-01

    Full Text Available A bio-robotic fin has been developed that models the pectoral fin of the bluegill sunfish as the fish turned to avoid an obstacle. This work involved biological studies of the sunfish fin, the development of kinematic models of the motions of the fin's rays, CFD based predictions of the 3D forces and flows created by the fin, and the implementation of simplified models of the fin's kinematics and mechanical properties in a physical model. The resulting robotic fin produced the forces and flows that drove the manoeuvre and had a sufficiently high number of degrees of freedom to create a variety of non-biologically derived motions. The results indicate that for robotic fins to produce a level of performance on par with biological fins, both the kinematics and the mechanical properties of the biological fin must be modelled well.

  8. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Yoon, Sung Ho [Korea Institute of Nuclear Nonproliferation and Control, Daejeon 305-348 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2015-07-15

    Highlights: • Staggered arrangement affects the pressure drop but does not significantly affect to the heat transfer. • The total pressure drop is reduced, but the amount of acceleration pressure drop increases while that of frictional pressure drop decreases as the horizontal number increases. • For the vertical number, the total pressure drop decreases more largely than the horizontal number. • The objective function shows that the fully staggered arrangement shows best performance. - Abstract: One of the key issues of the PCHE technology in the supercritical CO{sub 2} Brayton cycle is to achieve an efficient and compact designs to be able to enhance heat transfer and reduce pressure drop. The issue is challenging due to the complex configuration of micro-channels in the PCHE. In this study, an innovative micro-channel equipped with an array of airfoil fins is analyzed to evaluate its performance. In so doing, sensitivity analysis with various design parameters is performed to configure the optimal arrangement of airfoil fins by using CFD analysis for Supercritical Carbon dioxide Integral Experimental Loop (SCIEL) in Korean Atomic Energy Research Institute (KAERI). Dominant geometric parameters of the fin arrangement that affects to the thermal and hydraulic performances are the horizontal, vertical and staggered pitches. ANSYS ICEM CFD and ANSYS CFX are used for the grid generation and the computational calculation. CO{sub 2} properties are used by using REFPROF software database. The inlet temperature of the hot side is 618 K and that of the cold side is 585 K. The reference mass flow rate is set as 1.2 g/s for the vertical number of 2.0, which is the Reynolds number of about 30,000. The mass flow rate changes from 0.4 to 4.8 g/s in order to investigate the Reynolds number effect. The k-ε model is selected as the turbulence model. In conclusions, the results show that the optimal arrangement of airfoil fins can be examined in terms of an objective

  9. Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles

    International Nuclear Information System (INIS)

    In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researchers finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

  10. Evaluation of the heat transfer performance of helical coils of non-circular tubes

    Institute of Scientific and Technical Information of China (English)

    Jundika C.KURNIA; Agus P.SASMITO; Arun S.MUJUMDAR

    2011-01-01

    This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e. g. , in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc. , are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.

  11. Evaluation of a Fin and Tube Type Adsorber/Desorber Heat Exchanger using =ACF/C2H5OH Pair

    Science.gov (United States)

    Kariya, Keishi; Makimoto, Naoya; Kuwahara, Ken; Koyama, Shigeru

    This study deals with the experiment to clarify the characteristics of adsorption refrigeration system employing activated carbon fiber (ACF) and ethanol pair and to evaluate the performance of adsorber/desorber heat exchanger defined by two kind of index to the system performance. The experiments are carried out by varying system running parameters such as regeneration temperature for adsorber, ethanol temperature in the evaporator, pre-heating/cooling cycle time, adsorption/desorption cycle time. Regeneration temperature for adsorber is from 60 to 90 °C and ethanol temperature is from 0 to 20 °C and pre-heating/cooling cycle time is 60 and 120 second and adsorption/desorption cycle time is from 120 to 300 second. Results show that the system can be operated with regeneration temperature of 60 °C and the system performance improves with increase of ethanol temperature. It is also found that the system performance is affected by regeneration temperature for adsorber and the pre-heating/cooling cycle time and adsorption/desorption cycle time.

  12. Planing process of fin heat sinks

    Institute of Scientific and Technical Information of China (English)

    TANG Yong; CHI Yong; LIU Xiao-kang; LIU Xiao-qing; WAN Zhen-ping; LIU Ya-jun; XIONG Cai-hua

    2005-01-01

    Based on analyzing the traditional process to manufacture fin heat sinks(FHS), the production of FHS by the planing process was proposed, the mechanism of the fins' curl was investigated and the fins' surface finish was analyzed. Through controlling chip curl based on the continuous strip chips, flat straight fins were processed.Compared with the traditional processes, this process makes full use of material and the processed FHS has better heat transfer capacity, higher heat transfer efficiency and more reliability. The tool geometrical parameters and processing performance affect the fins' curl. The optimum processing parameters are: a cutter edge inclination angle of 0°, a rake angle between 50° and 55°, and a planing depth from 0.2 mm to 0.3 mm. The planing speed has little effect on the fins' curl.

  13. Optimized transcritical CO{sub 2} heat pumps: Performance comparison of capillary tubes against expansion valves

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neeraj; Bhattacharyya, Souvik [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2008-05-15

    A capillary tube based CO{sub 2} heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. In the present study, a steady state simulation model has been developed to evaluate the performance of a capillary tube based transcritical CO{sub 2} heat pump system for simultaneous heating and cooling at 73 C and 4 C, respectively against optimized expansion valve systems. Capillary tubes of various configurations having diameters of 1.4, 1.5 and 1.6 mm along with internal surface roughness of 0.001-0.003 mm have been tested to obtain the optimum design and operating conditions. Subcritical and supercritical thermodynamic and transport properties of CO{sub 2} are calculated employing a precision in-house property code. It is observed that the capillary tube system is quite flexible in response to changes in ambient temperature, almost behaving to offer an optimal pressure control. System performance is marginally better with a capillary tube at higher gas cooler exit temperature. Capillary tube length turns out to be the critical parameter that influences system optimum conditions. A novel nomogram has been developed that can be employed as a guideline to select the optimum capillary tube. (author)

  14. Comparison of Analytical and Experimental Effectiveness of Four-Row Plate-Fin-Tube Heat Exchangers with Water, R-22, and R-410A

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V.D.; Chen, T.D.; Conklin, J.C.

    1998-11-15

    The analytical solutions of heat exchanger effectiveness for four-row crcmilow, cross-countertlow and cross-paralleltlow have been derived in the recent study. The main objective of this study is to investigate the etlkct of heat exchawger tlow conllguration on thermal performance with refrigerant mixtures. Difference of heat exchanger effectiveness for all flow arrangements relative to an analytical many-row solution has been analyzed. A comparison of four-row cross cou~ltet-ilow heat exchanger effectiveness between analytical solutions and experimental data with water, R-22, and R-4 10A is presented.

  15. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    International Nuclear Information System (INIS)

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasma facing components are identified and attributes of an experiment to close those gaps are presented

  16. Undulating fins produce off-axis thrust and flow structures.

    Science.gov (United States)

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin. PMID:24072799

  17. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  18. Small-bore chest tubes seem to perform better than larger tubes in treatment of spontaneous pneumothorax

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Ringbæk, Thomas

    2013-01-01

    The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). ......The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). ...

  19. Theory Study on Heat Transfer and Pressure Drop of Two Different Herringbone Wavy Fin and Tube Heat Exchangers%两种流路结构波纹翅片换热器换热与阻力特性的理论研究

    Institute of Scientific and Technical Information of China (English)

    严俗

    2015-01-01

    The influence of the way of refrigerant flow path on heat transfer and pressure drop characteristics of her-ringbone wavy fin and tube heat exchangers were investigated by simulation. The results show that the capacity of heat exchanger A is larger than that of heat exchanger B, but the resistance on refirigerant side of heat exchanger A is greatly more than that of heat exchanger B. By comparing the comprehensive performance of two dirrerent flow paths heat exchangers, it can be found that the way of refrigerant flow path of heat exchanger B is better than that of heat exchanger A and the way of refrigerant flow path is more important to research heat transfer and pressure drop charac-teristics.%本文模拟研究了两种换热流路结构的波纹翅片换热器的换热与阻力特性。模拟结果表明换热器A的换热量略大于换热器B换热量,而换热器A制冷剂侧阻力却远大于换热器B制冷剂侧阻力。综合来看,换热器B流路优于换热器A流路。因而流路形式对换热器的换热和阻力的影响很大。

  20. Performance tests of the 1MWt shell-and-tube heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.; Lorenz, J. J.; Hillis, D. L.; Yung, D. T.; Sather, N. P.

    1979-01-01

    Final test results are reported for the five 1 MWt shell-and-tube heat exchangers tested at Argonne National Laboratory. These five heat exchangers are the Union Carbide flooded-bundle evaporator, the Union Carbide sprayed-bundle evaporator, the Union Carbide enhanced-tube condenser, the Carnegie-Mellon vertical fluted-tube evaporator, and the Carnegie-Mellon vertical fluted-tube condenser. Performance parameters measured include the overall heat transfer coefficient (U/sub 0/), the water-side pressure drop, and the vapor quality. Also measured were operational characteristics of the heat exchangers such as repeatability of results and the dependence of U/sub 0/ on heat duty, ammonia flow rate, and subcooling. Individual water-side and ammonia-side coefficients were deduced using the Wilson Plot method.

  1. Thermal performance enhancement in tubes using helically twisted tape with alternate axis inserts

    Science.gov (United States)

    Yongsiri, K.; Thianpong, C.; Nanan, K.; Eiamsa-ard, S.

    2016-01-01

    This article presents an investigation on heat transfer enhancement in a round tube inserted with a helically twisted tape. The effects of a helically twisted tape with alternate axis (HTT-A) on heat transfer, friction factor, and thermal performance factor behaviours are reported for the turbulent regime. HTT-A geometries are tape pitch to tube diameter, P/D = 1.0, 1.5, and 2.0; alternate length to pitch length, l/P = 1.0, 1.5, and 2.0; twisted length to tape width, y/W = 3.0; and tape width to tube diameter, w/D = 0.2. The experiment has been performed by varying the volumetric air flow rate in order to adjust Reynolds number ranging from 6 000 to 20 000. The wall of the testing tube is uniformly heated as a constant heat flux while the tests are covered with thermal insulations to reduce heat loss to surroundings. Thermal performance is evaluated by comparing the present experimental results with the results of the modified HTT-A and also those obtained from previous study (conventional helically twisted tape, HTT). The thermal performance of tested tube with HTT-A is evaluated to obtain the degree of heat transfer enhancement and friction factor induced by HTT-A with respect to the plain tube under the same test conditions. Evenly, it is interesting to observe that the tube with HTT-A consistently possesses higher heat transfer and thermal performance factor than those with the HTT around 14.1% and 1.9%, respectively. The HTT-A with the smaller pitch ratio and adjacent twist length provides higher heat transfer rate and friction factor than the one with larger pitch ratio and alternate length as a result of a larger contact surface area, stronger swirl intensity and, thus, better fluid mixing near the tube wall. In the range determined, the tubes with the largest pitch ratio ( P/D = 2.0) and smallest alternate length ( l/P = 1.0) give the highest thermal performance factor at around 1.35. In addition, the empirical correlations of the Nusselt number, friction

  2. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  3. The Effect of the Capillary Tube Coil Number on the Refrigeration System Performance

    Directory of Open Access Journals (Sweden)

    Thamir K. Salim

    2012-06-01

    Full Text Available The capillary tube performance for (R134a is experimentally investigated. The experimental setup is a real vapor compression refrigeration system. All properties of the refrigeration system are measured for various mass flow rate from (13 – 23 kg/hr and capillary tube coil number (0-4 with fixed length (150 cm and capillary diameter(2.5mm.The results showed that the theoretical compression power increases by (65.8 % as the condenser temperature increases by (2.71%, also the theoretical compression power decreases by (10.3 % as the capillary tube coil number increases.The study shows also that the cooling capacity increases by (65.3% as the evaporator temperature increases by (8.4 %, and the cooling capacity increases by (1.6%as the capillary tube coil number increases in the range (0-4.The coefficient of performance decreases by (43.4 %, as the mass flow rateincreases by (76.9%, also the coefficient of performance increases by (13.51 % as thecapillary tube coil number increases in the range (0-4.Through this study, it was found that the best coil number in refrigeration cycle at the lowest mass flow rate (31 Kg/hr and at high mass flow rate (23 Kg/hr is (coil number = 4, this will give the highest performance, cooling capacity and lowest theoretical compression power.

  4. Shark's Fin Soup

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ingredients: 250g semi-finished shark's fin (removed of bone, skin and dipped in water), 100g ham, 100g chicken, 50g pork shoulder, 50g dried scallops, 100g bean sprouts, salt and MSG (optional). Method: 1. Scald the shark's fin in boiling water. 2. Fill a pot with water and add the chicken, pork and most of the

  5. Effects of draft tube on the hydraulic performance of a Francis turbine

    Science.gov (United States)

    Jeon, J. H.; Byeon, S. S.; Kim, Y. J.

    2013-12-01

    The draft tube is an important component of a Francis turbine which influences the hydraulic performance. It is located just under the runner and allowed to decelerate the flow velocity exiting the runner, thereby converting the excess of kinetic energy into static pressure. In this study, we have numerically investigated the hydraulic performance of a Francis turbine on the 15MW hydropower generation with various design parameters (three types of draft tube, thickness of guide vane) through a three-dimensional numerical method with the SST turbulent model. The vortex rope characteristics of the draft tube were confirmed. The results of the vortex flow fields and flow characteristics were graphically depicted with different design parameters and operating conditions.

  6. 基于分形理论的翅片管气化器霜层热导率%Thermal conductivity of frost layer on finned-tube vaporizer based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    陈叔平; 姚淑婷; 谢福寿; 韩宏茵; 常智新

    2012-01-01

    基于分形理论的DLA模型,数值模拟了翅片管气化器表面霜层生长过程,同时对霜层生长形态进行了实验观测,得到了不同时刻的霜层生长图像.计算了气化器表面霜层剖面孔隙面积分布分形维数与分形孔隙率,模拟图像与实验图像的对比表明两者取得良好的一致,验证了数值模拟的合理性.在此基础上建立了霜层导热的分形模型,采用热阻法给出了霜层热导率表达式.计算结果表明,用该方法确定的霜层热导率与实测得到的霜层有效热导率值域范围是相符的.并通过与其他导热模型的比较,验证了将剖面面积分布分形维数引入导热模型以确定霜层热导率的可行性,从而为霜层热导率的理论研究开辟了一条新路.%A numerical simulation for frost formation and growth on the surface of finned-tube vaporizer was carried out based on the diffusion limited aggregation model of fractal theory,and images of frost formation and growth at different stages were obtained by experimental observations. For the frost layer profile on the surface of vaporizer,fractal dimension of pore area distribution and fractal porosity were calculated. The simulation results are in good agreement with experiments. Then the fractal model for heat conduction through the frost layer was established and the thermal resistance method was used to get an expression for thermal conductivity of frost layer. The result shows that the calculated thermal conductivity of frost layer falls in the range of measured data. Compared with other thermal conductivity models,the introduction of profile area distribution fractal dimension into the thermal conductivity model is appropriate,which is a new method for the theoretical study for thermal conductivity of frost layer.

  7. Plastic Guidance Fins for Long Rod Projectiles .

    Directory of Open Access Journals (Sweden)

    Mark L. Bundy

    1997-10-01

    Full Text Available Projectile tail fins on long rod kinetic energy (KE penetrators serve the same purpose as fletchings (feathers on an arrow, namely, they help align the projectile axis with its velocity vector. This reduces the projectile's yaw and hence reduces its aerodynamic drag. In addition, a low yaw angle at target impact helps to maximise the projectile's target penetration. It is typical for projectiles to exit the gun muzzle and enter free flight at some ndn-zero yaw angle. Aerodynamic forces acting on yawed tail fins create a stabilising torque about the projectile's centre of gravity (CG. This torque can be increased by making the fin material lighter. Most conventional long rod penetrators fired from high performance guns have tail fins made from aluminium. However, aluminium can undergo catastrophic oxidation (rapid burning in-bore. Coating aluminium with Al/sub 2/O/sub 3/ {hardcoat prevents ignition of the substrate, provided solid propellant grain impacts do not chip the brittle hardcoat off the surface. Plastic is lighter than aluminium and less exothermic when oxidized. Therefore, other factors aside, it is conceivable that plastic fins could increase projectile stability while incurring less thermal erosion than aluminium. However, thermal loads are not the only concern when considering plastic as an alternative tail fin material. The mechanical strength of plastic is also a critical factor. This paper discusses some of the successes and failures of plastic fins, at least relatively thin fins, for use as KE stabilisers.

  8. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H;

    2012-01-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM ...... knee-extensions performed with elastic tubing and an isotonic strength training machine....

  9. Performance improvement of double-tube gas cooler in CO2 refrigeration system using nanofluids

    Directory of Open Access Journals (Sweden)

    Sarkar Jahar

    2015-01-01

    Full Text Available The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.

  10. The Effect of the Capillary Tube Coil Number on the Refrigeration System Performance

    OpenAIRE

    Thamir K. Salim

    2012-01-01

    The capillary tube performance for (R134a) is experimentally investigated. The experimental setup is a real vapor compression refrigeration system. All properties of the refrigeration system are measured for various mass flow rate from (13 – 23 kg/hr) and capillary tube coil number (0-4) with fixed length (150 cm) and capillary diameter(2.5mm).The results showed that the theoretical compression power increases by (65.8 %) as the condenser temperature increases by (2.71%), also the theoretical...

  11. Modeling of nonlinear thermal resistance in FinFETs

    Science.gov (United States)

    Krishna Kompala, Bala; Kushwaha, Pragya; Agarwal, Harshit; Khandelwal, Sourabh; Duarte, Juan-Pablo; Hu, Chenming; Singh Chauhan, Yogesh

    2016-04-01

    In this paper, self-consistent three-dimensional (3D) device simulations for exact analysis of thermal transport in FinFETs are performed. We analyze the temperature rise in FinFET devices with the variation in the number of fins (N fin), shape of fins and fin pitch (F pitch). We investigate that the thermal resistance R th has nonlinear dependency on N fin and F pitch. We formulate a model for thermal resistance behavior correctly with N fin and F pitch variation. The proposed formulation is implemented in industry standard Berkeley short-channel independent gate FET model for common multi-gate transistors (BSIM-CMG) and validated with both experimental data and TCAD simulations.

  12. QuantiFERON–TB Gold In-Tube test performance in Denmark

    DEFF Research Database (Denmark)

    Hermansen, Thomas; Lillebaek, Troels; Hansen, Ann-Brit E;

    2014-01-01

    BACKGROUND: Little is known about the QuantiFERON-TB Gold In-Tube Test (QFT) in extreme age groups. The test performance has been reported to be impaired in children and elderly, but reports are diverging. The aim of this study was to evaluate QFT performance in patients with and without Tubercul...... in children ≥ 1 years in low endemic regions but that the test should be used with care among the elderly.......BACKGROUND: Little is known about the QuantiFERON-TB Gold In-Tube Test (QFT) in extreme age groups. The test performance has been reported to be impaired in children and elderly, but reports are diverging. The aim of this study was to evaluate QFT performance in patients with and without...

  13. Numerical simulation on heat transfer performance of vertical U-tube with different borehole fill materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Heat exchange performance of vertical U-tube heat exchanger was studiedwith two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on the condition of continuous operation for 8 h in winter with inlet water temperature being 10 ℃. The results show that there is no obvious difference on heat exchanger performance between the two different borehole fill materials.

  14. Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube

    Science.gov (United States)

    Bogdanoff, D. W.; Miller, Robert J.

    1995-01-01

    Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.

  15. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Science.gov (United States)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  16. Wave-shaping of pulse tube cryocooler components for improved performance

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2014-11-01

    The method of wave-shaping acoustic resonators is applied to an inertance type cryogenic pulse tube refrigerator (IPTR) to improve its performance. A detailed time-dependent axisymmetric experimentally validated computational fluid dynamic (CFD) model of the PTR is used to predict its performance. The continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the PTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The wave-shaped regenerator and pulse tube studied have cone geometries and the effects of different cone angles and the orientation (nozzle v/s diffuser mode) on the system performance are investigated. The resultant spatio-temporal pressure, temperature and velocity fields in the regenerator and pulse tube components are evaluated. The performance of these wave-shaped PTRs is compared to the performance of a non wave-shaped system with cylindrical components. Better cooling is predicted for the cryocooler using wave-shaped components oriented in the diffuser mode.

  17. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  18. Synthesis and separation performance of silicalite-1 membranes on silica tubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High-performance silicalite-1 membranes were synthesized on silica tubes by in-situ hydrothermal synthesis. By using the "solution-filling (SF)" method, the average flux of membranes with the SF method was improved by about 25% compared to that of the membranes without using the SF method; the flux and the separation factor of the membranes prepared with the SF method for an ethanol/water mixture at 60 ℃ were 0.99 kg/(m2·h) and 73, respectively. It was found that the membranes synthesized on silica tubes exhibited high thermal stability and high reproducibility, and the relatively standard deviations (R.S.D.) of the average flux and separation factor were only 9.6% and 5.6%, respectively, which suggests that the silica support is more suitable than other kinds of supports for preparing high-performance silicalite-1 membranes.

  19. Improvements of the cyclone separator performance by down-comer tubes.

    Science.gov (United States)

    Ganegama Bogodage, Sakura; Leung, A Y T

    2016-07-01

    Enhancement of fine particle (PM2.5) separation is important for cyclone separators to reduce any extra purification process required at the outlet. Therefore, the present experimental research was performed to explore the performance of cyclone separators modified with down-comer tubes at solid loading rates from 0 to 8.0g/m(3) with a 10m/s inlet velocity. The study proved the effectiveness of down-comer tubes in reducing the particle re-entrainment and increasing the finer separation with acceptable pressure drops, which was pronounced at low solid loading conditions. The experimental results were compared with theories of Smolik and Muschelknautz. Theories were acceptable for certain ranges, and theory breakdown was mainly due to the neglect of particle agglomeration, re-entrainment and the reduction of swirling energy, as well as the increase of wall friction due to presence of particles. PMID:26967646

  20. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H;

    2012-01-01

    contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). RESULTS: When comparing...... muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. METHODS: 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric...... the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p

  1. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H;

    2012-01-01

    contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). RESULTS: When comparing...... the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM...... elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different...

  2. A model for the performance of a vertical tube condenser in the presence of noncondensable gases

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, A.D.S.

    1995-09-01

    Some proposed vertical tube condensers are designed to operate at high noncondensable fractions, which warrants a simple model to predict their performance. Models developed thus far are usually non self-contained as they require the specification of the wall temperature to predict the local condensation rate. The present model attempts to fill this gap by addressing the secondary side heat transfer as well. Starting with momentum balance which includes the effect of interfacial shear stress, a Nusselt-type algebraic equation is derived for the film thickness as a function of flow and geometry parameters. The heat and mass transfer analogy relations are then invoked to deduce the condensation rate of steam onto the tube wall. Lastly, the heat transfer to the secondary side is modelled to include cooling by forced, free or mixed convection flows. The model is used for parametric simulations to determine the impact on the condenser performance of important factors such as the inlet gas fraction, the mixture inlet flowrate, the total pressure, and the molecular weight of the noncondensable gas. The model performed simulations of some experiments with pure steam and air-steam mixtures flowing down a vertical tube. The model predicts the data quite well.

  3. Lightweight Radiator Fins for Space Nuclear Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate concept radiator fins that incorporate novel carbon materials for improved performance of segmented high temperature...

  4. A study on heat transfer enhancement using straight and twisted internal fin inserts

    Energy Technology Data Exchange (ETDEWEB)

    Tijing, Leonard D.; Pak, Bock Choon; Baek, Byung Joon [Chonbuk National Univ., Jeongju (Korea, Republic of); Cho, Young I. [Drexel Univ., Pennsylvania (United States)

    2005-07-01

    The present study investigated the effect of internal aluminum fins with a star shape cross section on the heat transfer enhancement and pressure drop in a counterflow heat exchanger. A concentric tube heat exchanger was used with water as the working fluid. The heat transfer rate increased by 12-51% over the plain tube value, depending on the internal fin configuration used. However, the pressure drop also increased substantially by an average of 286-338%. The results showed that a straight fin configuration is good enough to produce a heat transfer increase in a counterflow heat exchanger. Twisted fin configurations did not further increase the heat transfer rate.

  5. Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model.

    Science.gov (United States)

    Yang, Hongru; Wu, Lei; Wang, Xiaopeng; Chen, Chao; Yu, Bing; Yang, Bin; Yuan, Liang; Wu, Lipeng; Xue, Zhanli; Li, Gaoping; Wu, Baoning

    2012-12-20

    Streak tube imaging lidar (STIL) is an active imaging system using a pulsed laser transmitter and a streak tube receiver to produce 3D range and intensity imagery. The STIL has recently attracted a great deal of interest and attention due to its advantages of wide azimuth field-of-view, high range and angle resolution, and high frame rate. This work investigates the signal-to-noise performance of STIL systems. A theoretical model for characterizing the signal-to-noise performance of the STIL system with an internal or external intensified streak tube receiver is presented, based on the linear cascaded systems theory of signal and noise propagation. The STIL system is decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Expressions for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. The work presented here is useful for the design and evaluation of STIL systems. PMID:23262622

  6. Comparison of U-tube boreholes and a thermosiphon on heat pump performance in an aquifer

    Science.gov (United States)

    Workman, Christopher B.

    Reducing our energy consumption and dependence on fossil fuels has become a common social, political and engineering goal. Heating and cooling of buildings account for a large percentage of the energy consumption in the United States. Improving HVAC efficiency in buildings can play a major role in reducing energy use. Small scale geothermal systems that utilize low-grade heat have gained popularity as a way to reduce HVAC energy consumption. U-tubes and thermosiphons are two different technologies designed to transfer heat to and from the ground in order to provide building heating and cooling. This thesis presents a short and long term experimental analysis. The short term analysis compares the performance of these technologies. The long term analysis focuses on the U-tubes, looking at the COP of the overall system during the course of a heating season and comparing temperatures for a theoretical air source heat pump system.

  7. Low cyclic fatigue performance of concrete-filled steel tube columns

    Institute of Scientific and Technical Information of China (English)

    秦鹏; 谭杨; 肖岩

    2015-01-01

    Eight concrete-filled steel tubular (CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.

  8. Heat transfer performance during condensation of R-134a inside helicoidal tubes

    International Nuclear Information System (INIS)

    This paper reports an experimental investigation of condensation heat transfer and pressure drop of an ozone friendly refrigerant, R-134a, inside a helical tube for climatic conditioning of hot regions. This study concerns the condensation of R-134a flowing through annular helical tubes with different operating refrigerant saturated temperatures. The average pressure drop is measured and compared with data from relevant literature. The measurements of R-134a were performed on mass flow flux ranges from 50 to 680 kg/m2 s. The study provides experimental data that could be used for the design and development of more efficient condensers for refrigeration and air conditioning (A/C) systems working with the same refrigerant

  9. Thermal performance of capillary micro tubes integrated into the sandwich element made of concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of High Performance Concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating and cooling. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1 to 4°C. © (2013...

  10. Performance of the CMS drift-tube chamber local trigger with cosmic rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams.

  11. An approach to optimal fin diameter based on entropy minimization

    Directory of Open Access Journals (Sweden)

    Masoud Asadi

    2013-04-01

    Full Text Available Pin fin geometries provide a large surface area of heat transfer and reduce the thermal resistance of the package. One of the important features of this type of fins is that they often take less space and contribute less to the weight and cost of the product. Pin fin arrays are used widely in many applications such as gas turbine or electronic circuits cooling, where pin fin geometries use due to their low cost of manufacturing and easy installing. In gas turbine application heat transfer from the blade to the coolant air can be increased by installing pin fins. In fact, Pin fin arrays increase heat transfer by increasing the flow turbulence and surface area of the airfoil exposed to the coolant. The overall performance of a heat exchanger with pin-fin typically depends on a number of parameters including the fin diameter, dimensions of the baseplate and pin-fins, thermal joint resistance and location heat sources. These parameters have an impact on the optimal design of a heat exchanger. Fin diameter is a key parameter to determine overall heat exchanger efficiency and entropy generation. In this paper, our objective is introducing an Equation to calculate optimal fin diameter based on minimizing entropy generation.

  12. Estimation and optimization of thermal performance of evacuated tube solar collector system

    Science.gov (United States)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  13. CFD Study of Pectoral Fins of Larval Zebrafish: Effect of Reynolds Number and Fin Bending in Fluid Structures and Transport

    Science.gov (United States)

    Islam, Toukir; Curet, Oscar M.

    2015-11-01

    Zebrafish exhibits significant changes in fin morphology as well as fin actuation during its physical development. In larval stage (Re ~ 10), they beat pectoral fins asymmetrically during slow swimming and prey tracking and a hypothesis suggests pectoral fin motion enhances fluid mixing to assist respiration. We performed a series of computational simulations to study effect of Reynolds number (Re) and pectoral fin kinematics in the fluid dynamics and mixing around a larval zebrafish. The CFD algorithm is based on a constraint formulation where the kinematics of the zebrafish are specified. We simulated experimental zebrafish kinematics at different Re (17 to 300) and considered variations on the fin kinematics to evaluate role of fin deformation in the fluid structures generated by the pectoral fins. Using Lagrangian Coherent Structures and Lagrangian fluid tracers, we identified distinctly dynamic fluid regions and found that mixing around the pectoral fin significantly increases with Re and fin bending enhance fluid mixing at low Re. However, as zebrafish matures and its Re increases, the need to beat the pectoral fins to enhance mixing is reduced.

  14. Elimination of plume in laser welding of small diameter tubes with YAG high performance laser

    International Nuclear Information System (INIS)

    Bushing technique is the practical method for repairing the damaged tubes of the steam generators in operation. In this case, a bush of smaller diameter is inserted in a small diameter tube. The damaged place is in the supporting plate and on tube walls, and the welding must be carried out in very narrow space. The authors developed a YAG high performance welding system with optical fibers of 2 kW. The 2 kW YAG laser oscillator is placed outside the safety container, and laser beam is transmitted through optical fibers to the end part, therefore, it is very important to protect the optical components from the damage by plume arising at an adjoining place of welding. First, the behavior of plume was studied in Ar, Nz and He atmosphere by using a 20 kW CO2 laser. The action of O2 concentration in protecting gas on penetration depth was examined. The welding condition for YAG laser welding, the condition of gas to help eliminate plume, and the results of practical application of this laser welding of bushes are reported. (K.I.)

  15. Performance Improvement of Pulse Tube Refrigerator for Space Application with Helium-hydrogen mixture

    Science.gov (United States)

    Chen, G. B.; Yu, J. P.; Gan, Z. H.

    Weight or size of the cryocoolers used is a key factor in space applications This can be acquired by the selection of high efficiency cryocoolers or through the optimization of structural parameters. Given the type of regenerator, another way to improve the cooling performance is the adoption of gas mixture instead of pure helium as the working fluids. Gas mixtures have been proved very useful to J-T cryocoolers at 80K temperature range. In this paper, we do some theoretical and experimental study to probe into the possibility of using gas mixture to improve the coefficient of performance of regenerative cryocoolers such as pulse tube refrigerators. The performance comparison of regenerator using helium-hydrogen mixtures to pure helium gas is presented based on the analysis of the heat transfer and fluid flow. The pressure drop for helium-hydrogen mixture decreased more rapidly than the increase of thermal loss compared with pure helium, so the improvement of overall regenerator performance can be obtained. Experiments have been done with helium-hydrogen mixture in a coaxial valveless pulse tube refrigerator. Experimental results show that the cooling capacity with He-H2 mixture is 10~20 percent larger than that with pure helium, which is in coincidence with the theoretical analysis.

  16. 摆动尾鳍水动力性能的试验和数值研究%Experimental and numerical study on hydrodynamic performance of a flapping caudal fin

    Institute of Scientific and Technical Information of China (English)

    苏玉民; 张曦; 杨亮

    2012-01-01

    鱼类能够在水下高速度、低噪音、高效率地游动.鱼类出色的推进性能通过其摆动尾鳍实现.这种摆动尾鳍推进方式已经用在了水下无人航行器上.因此研究摆动尾鳍的水动力性能是非常有意义的.对摆动尾鳍的推进水动力性能进行了详尽的研究.设计、装配了一套仿尾鳍推进系统,并对其进行了相应的水动力试验.在试验中研究了运动参数对摆动尾鳍水动力性能的影响.与此同时,采用基于雷诺平均N-S方程的数值方法对摆动尾鳍的水动力性能进行了研究.在数值计算中采用了k-ω SST湍流模型和有限体积法.数值计算结果和水动力试验结果进行了比较.对尾鳍表面的压力分布和流场中的尾涡结构进行了分析.水动力试验和数值计算都表明摆动尾鳍可以产生推进力和较高的推进效率.%Fish can cruise under water with large speed, low noise, and high propulsion efficiency. The excellent propulsion performance is achieved by the flapping caudal fin of fish, which has been used in unmanned underwater vehicle. Therefore, it is significant to study the propulsion performance of the flapping caudal fin. This paper presents a comprehensive study on the hydrodynamic performance of a flapping caudal fin. A bionic caudal fin propulsion system is designed and installed. Hydrodynamic experiments are performed. Effects of motion parameters are shown in experimental results. Meanwhile, numerical simulations based on Reynolds Averaged Navier-Stokes equations are done. A k-ω SST turbulent model and a finite volume method are employed. Numerical results are compared with experimental results. Pressure distribution on the caudal fin and vorticity structure are analyzed in numerical results. Both experimental and numerical results indicate that thrust force with high propulsion efficiency can be generated by a flapping caudal fin

  17. Performance model of metallic concentric tube recuperator with counter flow arrangement

    Science.gov (United States)

    Sharma, Harshdeep; Kumar, Anoop; Goel, Varun

    2010-03-01

    A performance model for counter flow arrangement in concentric tube recuperator that can be used to utilize the waste heat in the temperature range of 900-1,400°C is presented. The arrangement consists of metallic tubular inner and outer concentric shell with a small annular gap between two concentric shells. Flue gases pass through the inner shell while air passes through the annular gap in the reverse direction (counter flow arrangement). The height of the recuperator is divided into elements and an energy balance is performed on each elemental height. Results give necessary information about surface, gas and air temperature distribution, and the influence of operating conditions on recuperator performance. The recuperative effectiveness is found to be increased with increasing inlet gas temperature and decreased with increasing fuel flow rate. The present model accounts for all heat transfer processes pertinent to a counterflow radiation recuperator and provide a valuable tool for performance considerations.

  18. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-02-01

    Full Text Available The thermohydraulic performance in a tube containing a modified twisted tape with alternate-axes and wing arrangements is reported. This work aims to investigate the effects of wing arrangements (opposite (O and parallel (P wings at different wing shapes (triangle (Tri, rectangular (Rec, and trapezoidal (Tra wings and on the thermohydraulic performance characteristics. The obtained results show that wing twisted tapes with all wing shape arrangements (O-Tri/O-Rec/O-Tra/P-Tri/P-Rec/P-Tra give superior thermohydraulic performance and heat transfer rate to the typical twisted tape. In addition, the tapes with opposite wing arrangement of O-Tra, O-Rec, and O-Tri give superior thermohydraulic performances to those with parallel wing arrangement of P-Tra, P-Rec, and P-Tri around 2.7%, 3.5%, and 3.2%, respectively.

  19. Numerical Study on the Thermal Performance of a Shell and Tube Phase Change Heat Storage Unit during Melting Process

    OpenAIRE

    Li, Wei; Kong, Chengcheng

    2014-01-01

    This work presents a numerical study of the thermal performance in a shell and tube phase change heat storage unit. Paraffin wax as phase change material (PCM) is filled in the shell space. The heat transfer fluids (HTFs: air and water) flow through the tube and transfer the heat to PCM. A mathematical model involving HTF and PCM is developed to analyze the thermal performance of the phase change heat storage unit and is validated with experimental data. Numerical investigation is conducted t...

  20. Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor

    Institute of Scientific and Technical Information of China (English)

    Yong-hua Zhang; Lai-bing Jia; Shi-wu Zhang; Jie Yang; K.H.Low

    2007-01-01

    Biomimetic design employs the principles of nature to solve engineering problems.Such designs which are hoped to be quick,efficient,robust,and versatile,have taken advantage of optimization via natural selection.In the present research.an environment-friendly propulsion system mimicking undulating fins of stingray was built.A non-conventional method was considered to model the flexibility of the fins of stingray.A two-degree-of-freedom mechanism comprised of several linkages was designed and constructed to mimic the actual flexible fin.The driving linkages were used to form a mechanical fin consisting of several fin segments,which are able to produce undulations,similar to those produced by the actual fins.Owing to the modularity of the design of the mechanical fin,various undulating patterns can be realized.Some qualitative observations,obtained by experiments,predicted that the thrusts produced by the mechanical fin are different among various undulating patterns.To fully understand this experimental phenomenon is very important for better performance and energy saving for our biorobotic underwater propulsion system.Here,four basic undulating patterns of the mechanical fin were performed using two-dimensional unsteady computational fluid dynamics(CFD)method.An unstructured,grid-based,unsteady Navier-Stokes solver with automatic adaptive re-meshing was used to compute the unsteady flow around the fin through twenty complete cycles.The pressure distribution on fin surface was computed and integrated to provide fin forces which were decomposed into lift and thrust.The pressure force and friction force were also computed throughout the swimming cycle.Finally,vortex contour maps of these four basic fin undulating patterns were displayed and compared.

  1. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins

    KAUST Repository

    Diab, Amer El Hajj

    2014-12-01

    We report the temperature dependence of the core electrical parameters and transport characteristics of a flexible version of fin field-effect transistor (FinFET) on silicon-on-insulator (SOI) with sub-20-nm wide fins and high-k/metal gate-stacks. For the first time, we characterize them from room to high temperature (150 °C) to show the impact of temperature variation on drain current, gate leakage current, and transconductance. Variation of extracted parameters, such as low-field mobility, subthreshold swing, threshold voltage, and ON-OFF current characteristics, is reported too. Direct comparison is made to a rigid version of the SOI FinFETs. The mobility degradation with temperature is mainly caused by phonon scattering mechanism. The overall excellent devices performance at high temperature after release is outlined proving the suitability of truly high-performance flexible inorganic electronics with such advanced architecture.

  2. Performance comparisons of enhanced tubes with discrete and wavy disruption shapes

    Energy Technology Data Exchange (ETDEWEB)

    Arman, B.; Rabas, T.J.

    1993-08-01

    This paper presents comparisons of the friction factors and heat-transfer coefficients obtained with enhanced tubes with transverse discrete and almost transverse wavy two-dimensional disruptions. Both experimental data and numerical predictions were used for the comparisons. For the latter a two-layer turbulence model incorporated in a body-fitted, finite-volume method was used. The disruption shape, discrete or wavy, depends on the manufacturing process. If an extrusion process is used, discrete disruptions (ribs) of various profiles are obtained that are separated from each other by a flat or unaltered inside diameter. If a spirally indenting process is used, a wavy proflie is obtained with a continuously varying inside diameter between two adjacent disruption peaks. These disruptions are transverse or almost transverse to the tube axis and separated by a distance that exceeds the reattachment length. Based on these comparisons, the following conclusions are obtained: (1) the disruption shape is not an important correlating parameter for discrete disruptions, (2) only the friction factor is influenced by the shape for wavy disruptions, and (3) there are major differences between both the friction-factor and heat-transfer performance of discrete and wavy disruptions with the same maximum disruption height and spacing. However, the most important finding is that the groove radius of spirally indented tubes should be increased because of the substantial reduction of the friction factor but only a small decrease in the thermal performance. Additional comparisons of predicted results were made to obtain a fundamental understanding of the influence of these different shapes.

  3. Improvements To Progressive Wave Tube Performance Through Closed-Loop Control

    Science.gov (United States)

    Rizzi, Stephen A.

    2000-01-01

    This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.

  4. Effect of evaporation temperature on boiling heat transfer in horizontal ribbed and embossing finned tube pool%蒸发温度对水平正反齿压花齿型肋管池沸腾换热的影响

    Institute of Scientific and Technical Information of China (English)

    张吉礼; 陈敬东; 马志先; 王永辉

    2016-01-01

    随着节能减排的大力推广,管外沸腾强化传热技术得到了广泛的研究和发展。设计建立了水平双侧强化管管外沸腾试验系统,以R134a为循环工质试验研究了不同热通量工况下,蒸发温度对正反齿压花齿型三维肋管池沸腾换热特性影响,并结合试验结果分析探讨了其理论描述方法。结果表明:蒸发传热系数随蒸发温度变化趋势线的斜率随热通量呈现非线性变化;在同一蒸发温度下,管表面传热系数均随热通量单调递增,但增长率随热通量增加而逐步降低;回归分析获得不同热通量下蒸发温度对正反齿压花齿型蒸发管表面传热系数影响的统一表达式;等热通量工况强化传热因子在热通量超过10 kW·m−2后升至2以上,在热通量接近20 kW·m−2时达到极大值2.588,但在热通量接近5 kW·m−2时接近1;蒸发温度及其与热通量合同对正反齿压花齿型蒸发管表面传热系数的作用机理与理论描述方法有待进一步深入研究。%Under a promotion of energy conservation and emission reduction, efforts on research and development of the technologies related to boiling heat transfer enhancement of outer tube have been conducted extensively. In this article, a testing system for boiling heat transfer outside the horizontal double-side enhanced tubes was established. Using R134a as a cyclic working medium, the effect of evaporation temperature on the characteristics of boiling heat transfer in three-dimensional ribbed and embossing finned tube under conditions of varied heat flux was investigated, on basis of which theoretical descriptive method was discussed. It showed that , the curve slope of evaporation heat transfer coefficient as a function of evaporation temperature is non-linearly related to the heat flux. At the same evaporation temperature, it shows a monotonic increase in the heat transfer coefficient on tube surface with the heat flux

  5. Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available In the present article, six symmetric compound parabolic solar concentrators (CPCs with all-glass evacuated solar tubes (EST as the receiver are designed, and a comparative study on their optical performance is performed based on theoretical analysis and ray-tracing simulations. In terms of optical loss through gaps of CPCs and optical efficiency averaged for radiation over the acceptance angle, CPC-6, designed based on a fictitious “hat”-shaped absorber with a “V” groove at the bottom, is the optimal design, and CPC-1, designed based on the cover tube, is the worst solution, whereas from the point of view of the annual collectible radiation on the EST, it is found that CPC-4, designed based on a fictitious “ice-cream” absorber, is the optimal design and CPC-1 is the worst solution. CPC-6, commonly regarded as the best design in the past, is not an optimal design in terms of annual collectible radiation after truncation. Results also indicate that, for high temperature applications, CPC-6 and CPC-4 are advisable due to the high solar flux on the EST resulting from the high optical efficiency for radiation within the acceptance angle.

  6. FIN 200 (UOP) course tutorial/tutorialoutlet

    OpenAIRE

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     FIN 200 Week 1 CheckPoint Financial Management Goals (UOP) FIN 200 Week 1 Assignment Cash Flow Preparation (UOP) FIN 200 Week 2 Checkpoint Financial Ratios (UOP) FIN 200 Week 2 DQ 1 & DQ 2 (UOP) FIN 200 Week 3 CheckPoint Financial Forecasting (UOP) FIN 200 Week 3 Assignment Pro Forma Statements (UOP) FIN 200 Week 4 Checkpoint Break Even Analysis (UOP) FIN 200 Week 4 DQ 1 & ...

  7. Boiling of HFE-7100 on a Straight Pin Fin

    Institute of Scientific and Technical Information of China (English)

    Z. W. Liu; W.W. Lin; D.J. Lee; J.P. Hsu

    2001-01-01

    This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS)branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation.

  8. The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.D.; Yeh, H.M.; Cheng, T.W.; Chen, T.C.; Wang, R.C. [Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University Tamsui, Taipei 251 (China)

    2009-09-15

    A new device for inserting an absorber plate to divide a flat-plate channel into two parts with fins attached by baffles and external recycling at the ends is presented. The proposed device substantially improves the heat-transfer efficiency. Experimental and theoretical investigations into the device efficiency are presented. The theoretical prediction agreement with the measured values from the experimental results is good. The experimental and theoretical results are represented graphically and compared with data from the downward-type single-pass solar air heaters of the same size without recycling. Considerable heat-transfer improvement is obtained by employing baffled double-pass operations with external recycling and fin attached over and under the absorber plate. The recycle ratio and absorber plate location influences on the heat-transfer efficiency and on the power consumption increment are also discussed. (author)

  9. Enhanced Heat Exchanger with Offset Spine Fin Design

    OpenAIRE

    Kempiak, Michael; Junge, Brent

    2014-01-01

    An Offset Spine Fin Spine (segmented) fin coils have been used in certain applications as a result of their effective use of coil material. One can improve coil heat transfer performance by adding more fins per inch (FPI). This comes at the expense of air side pressure drop, which requires more fan energy to achieve the same air flow. When this type of fin is used in an evaporator, there is a secondary penalty associated with the fan heat that must be removed by the refrigeration system. Also...

  10. Improvement of high-voltage performance of acceleration tubes by cleaning the walls with a high-pressure water jet

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, S. E-mail: takeuchi@tandem.tokai.jaeri.go.jp; Nakanoya, T.; Kabumoto, H.; Yoshida, T

    2003-11-11

    We cleaned electrostatic accelerator tubes by applying a high-pressure water jet and examined their high-voltage performances at 1 and 3 MV. The cleaning was very effective in reducing discharge activities at their rated voltages. We did some experimental investigations with the tubes and their ceramic insulators. We found that removal of microparticles loosely bound on the vacuum-side ceramic surfaces had an important effect in eliminating the discharge activities.

  11. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...... and cooling purposes of future low energy buildings. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1–4 °C....

  12. A Three-Dimensional Kinematics Analysis of a Koi Carp Pectoral Fin by Digital Image Processing

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Min Xu; Bo Liu; Kin Huat Low; Jie Yang; Shiwu Zhang

    2013-01-01

    Pectoral fins fascinate researchers for their important role in fish maneuvers.By possessing a complicated flexible structure with several fin rays made by a thin film,the fin exhibits a three-dimensional (3D) motion.The complex 3D fin kinematics makes it challenging to study the performance of pectoral fin.Nevertheless,a detailed study on the 3D motion pattern of pectoral fins is necessary to the design and control ofa bio-inspired fin rays.Therefore,a highspeed photography system is introduced in this paper to study the 3D motion of a Koi Carp by analyzing the two views of its pectoral fin simultaneously.The key motions of the pectoral fins are first captured in both hovering and retreating.Next,the 3D configuration of the pectoral fins is reconstructed by digital image processing,in which the movement of fin rays during fish retreating and hovering is obtained.Furthermore,the method of Singular Value Decomposition (SVD) is adopted to extract the basic motion patterns of pectoral fins from extensive image sequences,i.e.expansion,bending,cupping,and undulation.It is believed that the movement of the fin rays and the basic patterns of the pectoral fins obtained in the present work can provide a good foundation for the development and control of bionic flexible pectoral fins for underwater propeller.

  13. Fully-Implicit Navier-Stokes (FIN-S)

    Science.gov (United States)

    Kirk, Benjamin S.

    2010-01-01

    FIN-S is a SUPG finite element code for flow problems under active development at NASA Lyndon B. Johnson Space Center and within PECOS: a) The code is built on top of the libMesh parallel, adaptive finite element library. b) The initial implementation of the code targeted supersonic/hypersonic laminar calorically perfect gas flows & conjugate heat transfer. c) Initial extension to thermochemical nonequilibrium about 9 months ago. d) The technologies in FIN-S have been enhanced through a strongly collaborative research effort with Sandia National Labs.

  14. Study of the performance of the ATLAS monitored drift tube chambers under the influence of heavily ionizing $\\alpha$-particles

    CERN Document Server

    Sampsonidis, Dimitrios; Liolios, Anastasios; Manolopoulou, Metaxia; Petridou, C

    2004-01-01

    The MDT chambers of the ATLAS Muon Spectrometer will operate in a heavy LHC background environment mainly from photons and neutrons. The ionization produced by neutron recoils is much higher than the one from photons or muons and can be simulated by the use of alpha particles. A systematic study of the behavior of the ATLAS Monitored Drift Tubes (MDTs) under controlled irradiation has been performed. The presence of alpha particles results in the reduction of the gas gain due to space charge effects. The gas gain reduction has been studied in a single tube set up using a well controlled radium (/sup 226/Ra) source in order to enrich the tube gas (Ar/CO/sub 2/) with the alpha emitter /sup 220/Rn and irradiate the tubes internally. The results are confronted with Garfield simulations.

  15. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    Science.gov (United States)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  16. Successful euthanasia of a juvenile fin whale.

    OpenAIRE

    Daoust, P Y; Ortenburger, A I

    2001-01-01

    A stranded juvenile fin whale was successfully euthanized with an intravenous injection of sedative and cardioplegic drugs. Veterinarians may face a number of serious difficulties if called to perform this task, and advance preparation is required for successful euthanasia of these animals.

  17. Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids

    Science.gov (United States)

    Shahrul, I. M.; Mahbubul, I. M.; Saidur, R.; Khaleduzzaman, S. S.; Sabri, M. F. M.

    2016-08-01

    This study is about the performance evaluation of a shell and tube heat exchanger operated with nanofluid. Thermal conductivity, viscosity, and density of the nanofluids were increased, but the specific heat of the nanofluids was decreased with increasing the concentrations of the particles. The convective heat transfer coefficient was found to be 2-15 % higher than that of water at 50 kg/min of both side fluid. Nevertheless, energy effectiveness has improved about 23-52 % for the above-mentioned nanofluids. As, energy effectiveness (ɛ) is strongly depends on the density and specific heat of the operating fluids therefore, maximum ɛ has obtained for ZnO-W nanofluid and lowest found for SiO2-W nanofluid.

  18. Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure

    Institute of Scientific and Technical Information of China (English)

    Nurhayati Mellon; Azmi M. Shariff

    2011-01-01

    The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight.However,very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals.Performance assessment was usually done at a low operating pressure using either air-water,air-fine particle mixtures or dense gas such as SF6.This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure.

  19. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller

    OpenAIRE

    Rezk, Ahmed; Al-Dadah, R.K.; Mahmoud, S.; Elsayed, A.

    2013-01-01

    Recently interest in adsorption cooling systems has increased due to their capability to utilise low grade heat sources and environmentally friendly refrigerants. Currently, most of the commercially available adsorption cooling systems utilise granular packed adsorbent beds. Enhancing the heat transfer process inside the adsorbent bed will improve the overall efficiency of the adsorption system. Using recently developed empirical lumped analytical simulation model for a 450 kW two-bed silica ...

  20. Inspection performance of eddy current probe for in-service inspection of HTTR intermediate heat exchanger tubes

    International Nuclear Information System (INIS)

    An experimental study was carried out to clarify the inspection performance of an eddy current probe for the inservice inspection of the intermediate heat exchanger (IHX) tubes of the high-temperature engineering test reactor. Test tubes were made of the same material (Hastelloy XR) and dimensions as those of the IHX, and had artificial discontinuities with reference to the standards of steam generator tubes in ASME Boiler and Pressure Vessel Code which were conservative for the IHX tubes. It was confirmed that the inspection performance of the probe satisfied the ASME standards in the base metal. The probe also could detect discontinuities such as a 90deg circumferential groove with 0.5 mm in width and 20% through from the outer tube surface, and a 100% through-wall hole with 0.5 mm in diameter. The inspection performance was lowered for discontinuities in the welded joint, and flat bottom holes with 1.7 mm in diameter were not detected. The inspection limit of 90deg circumferential grooves with 1.5 mm in width, was above 60% in depth for outer surface and 20% in depth for inner surface in the welded joint. (author)

  1. Influence of Tube‘s Diameter on Boling Heat Transfer Performance in Small Diameter Tubes

    Institute of Scientific and Technical Information of China (English)

    GanChengjun; WangWeicheng; 等

    1998-01-01

    This paper reports the experiments of evaporation study in 6 mm inner copper diameter tubes using HFC-134a,HCFC-22 and CFC-12 as working fluid.The results show that the evaporation heat transfer cofeeicient increasese with the decreasing of inner diameter of tubes,A new concept of nondimensional tube diameter U is proposed in this paper for correction of the influence of the tube diameter on the evaporation heat transfer coefficient.And further,a conveinent empirical correction method is preseted.

  2. The Hot Corrosion Performance of NiCr-Cr3 C2 Cermet Coating to Boiler Tube

    Institute of Scientific and Technical Information of China (English)

    DINGZhang-xiong; TUGuo-fu

    2004-01-01

    Three kinds of NiCr-Cr3 C2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comt)arison with 102G,20G boiler tube steel, FeCrAl, NiCrTi, Ni5OCr and NiCrAIMoFe-Cr3 C2 coatings, which are widely used at present for protection of boiler tubes. Meanwhile, the influence of sealer on the hot corrosion resistance of warious coatings and the mechanisms of coating corrosion were explored.

  3. Design and performance characterization of the LCOGTN One-Meter Telescope optical tube assembly

    Science.gov (United States)

    Haldeman, Benjamin J.; Haynes, Rachel M.; Posner, Vincent; Tufts, Joseph R.; Pickles, Andrew J.; Dubberley, Matthew A.

    2010-07-01

    Scientific performance specifications, a necessity for ease of commissioning and minimal maintenance, and a desire for automated sensing and remote collimation have led to novel designs and features in LCOGT's one-meter Optical Tube Assembly (OTA). We discuss the design and performance of the quasi-RC optical system with 18 point whiffletree and radial hub mount. Position probes and IR temperature sensors on the primary and secondary mirrors give feedback for active collimation and thermal control. A carbon fiber/epoxy composite truss, with unique spherical node connections, mounts to parallel and offset Invar vanes. A flexure based, closed loop, 3-DOF secondary mirror mechanism is used for tip/tilt collimation. The optics and deflections of the OTA components were iteratively designed for passive collimation with a changing gravity vector. We present the FEA predictions, measured deflections, and measured hysteresis for many of the components. Vibration modes, amplitudes, and damping of the system are presented with an FFT frequency analysis. Thermal CTE effects on loading and focal position are quantified. All of these system effects are then related to the overall scientific performance of the 1.0 m telescope.

  4. Heat transfer and thermal performance characteristics of heat exchanger tube fitted with perforated twisted-tapes

    Science.gov (United States)

    Thianpong, Chinaruk; Eiamsa-ard, Petpices; Eiamsa-ard, Smith

    2012-06-01

    Twisted tape insert was applied as a swirling flow generator for the passive heat transfer enhancement in the present work. The influences of the perforated twisted tapes (PTs) on the heat transfer, pressure loss and thermal performance characteristics were investigated experimentally. The experiments were performed under uniform wall heat flux condition by using PTs with y/W = 3, 4 and 5, d/W = 0.11, 0.14 and 0.17 and s/W = 0.4, 0.6 and 0.8 where y is a twist length, d is a perforation hole diameter, s is a spacing between holes (pitch) and W is a tape width. The experimental results reveal that Nusselt number increased with decreasing s/W and y/W and increasing d/W. For the present range, the maximum heat transfer was obtained by utilizing the tape with s/W = 0.4, d/W = 0.17 and y/W = 3, which is higher than those obtained from the plain tube with and without typical twisted tape by around 27.4 and 86.7%, respectively. In addition, the empirical correlations for Nusselt number, friction factor and thermal performance are also proposed in the present paper.

  5. Simulating the Effects of Structural Parameters on the Hydraulic Performances of Venturi Tube

    Directory of Open Access Journals (Sweden)

    Yanqi Sun

    2012-01-01

    Full Text Available The effects of Venturi structural parameters on its hydraulic performance were studied, which provided theoretical basis for the design of Venturi injector. With an inlet diameter of 50 mm, based on the method of computational fluid dynamics (CFD, the effects of the structural parameters (such as throat taper, throat contraction ratio, and throat length on their hydraulic performance (such as outlet faceted average velocity, minimum pressure, and critical pressure were studied under different inlet pressures and pressure differences between inlet and outlet. A power function relationship existed between the mean velocity in outlet section and pressure difference, with an approximate flow stance index of 0.53. Minimum pressure occurred in the throat inlet wall and there was a linear relationship between the minimum pressure and the pressure difference at the inlet and outlet. The throat contraction ratio was the main factor on the effect of Venturi injector performance, which was positively correlated with outlet velocity, negatively to critical pressure, the minimal in-tube pressure, coefficient of local head loss, and fertilizer absorption ratio. For designing Venturi injector, contraction ratio should be reasonably selected according to the coefficient of local head loss and fertilizer absorption ratio.

  6. Disruption shape effects on the performance of enhanced tubes with the separation and reattachment mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Arman, B.; Rabas, T.J.

    1992-01-01

    A non-orthogonal, body-fitted numerical code is used to determine the thermo-hydraulic performance of enhanced tubes with transverse periodic sine-, semicircle-, arc-, and trapezoid-shaped disruptions. The turbulence closure was achieved with a two-layer turbulence model. It is shown that there is a tradeoff of the heat-transfer and pressure-drop performances when the disruption shape becomes more contoured; that is, both the heat transfer and the pressure drop increase. The local heat transfer is strongly dependent on the shape in the vicinity of the disruption but it is less dependent in the downstream recirculation region and in the boundary layer development zone. With increasing pitch, effect of the shape on the heat-transfer performance becomes less important. The pressure drop is more dependent on the disruption shape and it continues to decrease when the disruptions become less contoured because of the reduced form drag which is by far the major contribution to the total pressure drop. 27 refs.

  7. Disruption shape effects on the performance of enhanced tubes with the separation and reattachment mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Arman, B.; Rabas, T.J.

    1992-08-01

    A non-orthogonal, body-fitted numerical code is used to determine the thermo-hydraulic performance of enhanced tubes with transverse periodic sine-, semicircle-, arc-, and trapezoid-shaped disruptions. The turbulence closure was achieved with a two-layer turbulence model. It is shown that there is a tradeoff of the heat-transfer and pressure-drop performances when the disruption shape becomes more contoured; that is, both the heat transfer and the pressure drop increase. The local heat transfer is strongly dependent on the shape in the vicinity of the disruption but it is less dependent in the downstream recirculation region and in the boundary layer development zone. With increasing pitch, effect of the shape on the heat-transfer performance becomes less important. The pressure drop is more dependent on the disruption shape and it continues to decrease when the disruptions become less contoured because of the reduced form drag which is by far the major contribution to the total pressure drop. 27 refs.

  8. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  9. Application of Wireless Local Area Network Technology in Mobile Robot for Finned Tube Inspection%带鳍片的热交换管道检测机器人的研制

    Institute of Scientific and Technical Information of China (English)

    王光荣; 马培荪; 曹曦; 孙红; 李彦明

    2004-01-01

    This paper introduces a novel robot for outer surface inspection of boiler tubes. The paper describes the hardware system,wireless communication strategy, communication procedure and system software of the robot. The WLAN technology is used in the robot. It solves the problem of shielding generated by iron boiler and 11Mbps bandwidth made it possible for video and control stream real-time transmit within the same channel. Though TCP/IP protocol is robust, serial server is a transparent channel but cannot detect error and retransmit the data. In order to improve the reliability of serial communication, a new communication protocol is proposed.

  10. FIN 200 UOP COURSE Tutorial/UOPHELP

    OpenAIRE

    sdfghj

    2015-01-01

    For more course tutorials visit www.uophelp.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPoint Long-Term and Short-Term Financin...

  11. Toward quantum FinFET

    CERN Document Server

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  12. Research on swimming by undulatory long dorsal fin propulsion

    Institute of Scientific and Technical Information of China (English)

    WANG Gnangming; SHEN Lincheng; WU Yonghui

    2007-01-01

    The kinematics of steady forward swimming of Gymnarchus niloticus is described. The geometric features of the body and locomotive characteristic and parameters of the flexible dorsal fin are discussed. On the basis of observation and experimental data, a simplified kinematic model on loco- motion of the undulatory long dorsal fin propulsion is pro- moted. The hydromechanical performances of the undulatory long dorsal fin propeller of G. Niloticus are estimated with the large-amplitude elongated-body theory. The hydromechani- cal efficiency of the undulatory long dorsal fin system ranged from 81.664% to 86.420% over a speed range of 0.728- 0.985 length·s-1. It is suggested that the undulatory long dorsal fin propulsion is an adaptation to swimming with high hydromechanical efficiency.

  13. Numerical and Experimental Research on Modular Oscillating Fin

    Institute of Scientific and Technical Information of China (English)

    Yong-hua Zhang; Yan Song; Jie Yang; K. H. Low

    2008-01-01

    Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fins. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carr yout theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Fluid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.

  14. Performance of the ATLAS Muon Drift-Tube Chambers at High Background Rates and in Magnetic Fields

    CERN Document Server

    Dubbert, J; Legger, F; Kortner, O; Kroha, H; Richter, R; Valderanis, Ch; Rauscher, F; Staude, A

    2016-01-01

    The ATLAS muon spectrometer uses drift-tube chambers for precision tracking. The performance of these chambers in the presence of magnetic field and high radiation fluxes is studied in this article using test-beam data recorded in the Gamma Irradiation Facility at CERN. The measurements are compared to detailed predictions provided by the Garfield drift-chamber simulation programme.

  15. Experimental Validation of Elliptical Fin-Opening Behavior

    Directory of Open Access Journals (Sweden)

    James M. Garner

    2003-01-01

    Full Text Available An effort to improve the performance of ordnance has led to the consideration of the use of folding elliptical fins for projectile stabilization. A second order differential equation was used to model elliptical fin deployment history and accounts for: deployment with respect to the geometric properties of the fin, the variation in fin aerodynamics during deployment, the initial yaw effect on fin opening, and the variation in deployment speed based on changes in projectile spin. This model supports tests conducted at the Transonic Experimental Facility, Aberdeen Proving Ground examining the opening behavior of these uniquely shaped fins. The fins use the centrifugal force from the projectile spin to deploy. During the deployment, the fin aerodynamic forces vary with angle-of-attack changes to the free stream. Model results indicate that projectile spin dominates the initial opening rates and aerodynamics dominate near the fully open state. The model results are examined to explain the observed behaviors, and suggest improvements for later designs.

  16. DEVELOPMENT OF A REPRODUCIBLE SCREENING METHOD TO DETERMINE THE MECHANISM AND EFFECT OF ORGANIC ACIDS AND OTHER CONTAMINANTS ON THE CORROSION OF ALUMINUM-FINNED COPPER-TUBE HEAT EXCHANGE COILS

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Corbett; Dave Severance

    2005-02-01

    Formicary corrosion is an insidious form of localized pitting corrosion. Notoya (1997b) wrote, ?In Japan, this type of corrosion is found in approximately 10% of cases of premature failure of copper tubes.? Attack characteristically features very small surface pits which are not visible to the un-aided eye, and random directional changes in the underlying copper metal. Attack is rapid. Failures have occurred before installation, shortly thereafter, or within several years later. Objectives of this Research Project Conduct an in depth literature search on the subject of formicary corrosion. Define the corrosion mechanism. Develop a test method that will reproduce formicary corrosion. Develop a test method for screening candidate materials that could cause formicary corrosion.

  17. Use of image analysis on the prediction of coal burnout performance in a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    R. Barranco; M. Cloke; E. Lester [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, SChEME

    2003-07-01

    An experimental investigation in a drop-tube furnace (DTF) into the combustion burnout performance of some South American coals was carried out. The coal samples, mainly from Colombia, were crushed and screened into three size fractions: 53-75 {mu}m, 106-125 {mu}m, and 150-180 {mu}m. These samples were characterised by standard tests along with a specially developed image analysis technique (grey-scale histogram). Pyrolysis of these samples was performed at a temperature of 1300{sup o}C, in a 1% of oxygen in nitrogen atmosphere for 200 ms. The chars obtained were then re-fired in the same apparatus, at the same temperature, at various residence times, in an atmosphere containing 5% of oxygen in nitrogen. The changes in the characteristics of the chars produced were assessed using a number of different techniques including intrinsic reactivity test and automatic char analysis. Despite the fact that all the coals used in this study were vitrinite-rich, variations in char morphology were evident. This demonstrated that it was impossible to assign any one char type to a single maceral group. It was apparent that vitrinite generates a wide range of char types depending upon the rank of the parent coal and on the maceral associations within the coal. In addition, a reactivity parameter, derived from the grey-scale histogram obtained by image analysis of the coal, was found to be important in the prediction of coal combustion behaviour. Some properties of the re-fired chars were compared with morphology and intrinsic reactivity data of the pyrolysed chars. The results showed that the poor burnout of one of the coals was clearly due to the formation of some particular chars during pyrolysis. This confirms the usefulness of high temperature pyrolysis chars as a predictor of burnout performance. 18 refs., 8 figs., 2 tabs.

  18. The dependency of different stress-level SiN capping films and the optimization of D-SMT process for the device performance booster in Ge n-FinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.-H., E-mail: mhliaoa@ntu.edu.tw; Chen, P.-G. [Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-08-17

    The capping stressed SiN film is one of the most important process steps for the dislocation stress memorization technique (D-SMT), which has been used widely in the current industry, for the electron mobility booster in the n-type transistor beyond the 32/28 nm technology node. In this work, we found that the different stress-level SiN capping films influence the crystal re-growth velocities along different directions including [100] and [110] directions in Ge a lot. It can be further used to optimize the dislocation angle in the transistor during the D-SMT process and then results in the largest channel stress distribution to boost the device performance in the Ge n-FinFETs. Based on the theoretical calculation and experimental demonstration, it shows that the Ge three dimensional (3D) n-FinFETs device performance is improved ∼55% with the usage of +3 GPa tensile stressed SiN capping film. The channel stress and dislocation angle is ∼2.5 GPa and 30°, measured by the atomic force microscope-Raman technique and transmission electron microscopy, respectively.

  19. The Experimental Studies on Behavior of Ultrahigh-Performance Concrete Confined by Hybrid Fiber-Reinforced Polymer Tubes

    Directory of Open Access Journals (Sweden)

    Zong-cai Deng

    2015-01-01

    Full Text Available This paper conducts axial compression test of ultrahigh performance concrete- (UHPC- filled hybrid FRP (HFRP tubes, using the alternating hybrid technology to improve the deformation capacity of FRP tube and measure the axial compressive responses of ultimate strength, strains, and stress-strain curve of confined specimens. The test results show that the local rupture of HFRP tubes did not lead to explosive failure of UHPC cylinder, and its ductility is better than that of UHPC confined by only one type of FRP tube; HFRP tube can effectively improve the compressive strength and ultimate strain of UHPC specimens; the stress-strain curves divide into three distinct regions: linear phase, transition phase, and linear strengthening phase. None of the models provided a reasonable prediction for strength and strain of HFRP-confined UHPC specimen; therefore, a new ultimate strength and strain perdition model considering the confinement effectiveness of different hybrid FRP series was proposed. The new proposed model presented the best fitting results. The stress-strain responses predicted by the existing models are all below the experimental curves; therefore, a new three-stage constitutive model was proposed, which relatively fits the test curves better than the existing models.

  20. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to

  1. Score-stoveTM Performance with modified resonating tube shape and layouts

    Science.gov (United States)

    Hossain, Md. M.; Malek, M. I.; Ehsan, Md.; Riley, P. H.

    2016-07-01

    An electricity-generating stove using thermo-acoustic phenomena was introduced by SCORE team UK in 2007 and later a modified version of the stove was adopted by BUET SCORE team in 2013 which could use both pressurized kerosene burner and wood. The prototype was first tested in the laboratory and then demonstrated to potential end users in several rural communities. The feedback from the stakeholders showed great interest towards electricity generating stoves but identified - stove size, longer cooking time, cost of the stove and maintenance issues to be challenges needed to be addressed to make it truly feasible for use in Bangladesh. Further research is being carried out in these aspects to improve the acceptability of this new technology. This paper states the work carried out in order to reduce the overall dimensions of the stove in which orientation of the resonating tubes play a major part. The straight PVC pipes of original design were replaced by corrugated flexible PVC pipes in order to make the stove compact and space efficient. Corrugated flexible pipes give more flexibility in layout design with small change in resonance characteristics. After parametric study and successive test runs, suitable orientation layouts for corrugated flexible pipes were identified, without much compromising the stove performance. Use of the flexible piping and fixed angle PVC bends could successfully reduce the overall stove dimensions as well as improve compactness and aesthetics of the stove. Incorporating the present findings in Score-Stove design could improve its feasibility and acceptability to the end users.

  2. Performance of landfill leachate treatment system with disc-tube reverse osmosis units

    Institute of Scientific and Technical Information of China (English)

    Yanping LIU; Xiujin LI; Baozhen WANG; Shuo LIU

    2008-01-01

    Reverse osmosis system with the disc-tube module (DT-RO) was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill, Chongqing City, China. In the first six-mouth operation phase, the treatment performance of DT-RO system had been excel-lent and stable. The removal rate of chemical oxygen demand (COD), total organic carbon (TOC), electrical con-ductivity (EC), and ammonia nitrogen (NH3-N) reached 99.2-99.7%, 99.2%, 99.6%, and over 98%, respectively. The rejection of Ca2+,Ba2+, and Mg2+ was over 99.9%, respectively. Suspended solid (SS) was not detected in prod-uct water. Effective methods had been adopted to control membrane fouling, of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-RO system. The DT-RO system is cleaned in turns with Cleaner A and Cleaner C. At present, the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and 500 h, respectively, depending on raw the water quality.

  3. Prediction of the burnout performance of some South American coals using a drop-tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Richelieu Barranco; Michael Cloke; Edward Lester [University of Nottingham, Nottingham (United Kingdom). Fuel Technology Centre, School of Chemical, Environmental and Mining Engineering

    2003-10-01

    An experimental investigation into the combustion burnout behaviour of some South American coals was carried out in a drop-tube furnace. The samples, in two size fractions, were initially pyrolysed at a temperature of 1300{sup o}C, in a 1% of oxygen in nitrogen atmosphere for 200 ms. The re-firing of these pyrolysed chars was performed in the same apparatus, at the same temperature, during 400 ms, in an atmosphere containing 5% of oxygen in nitrogen. The coal samples used in this study were characterised by standard tests along with a specially developed image analysis technique (grey-scale histogram). Data of intrinsic reactivity, morphology, and burnout of the chars were correlated with maceral content of the feed coal by mean of linear regressions. In most cases, the results showed a poor correlation. Subsequently, when the rank of the coals was included in the regressions, the correlations remarkably improved in all cases. When further regressions of char properties with the grey-scale histogram of the coals were carried out, much better correlations were achieved. Therefore, the results indicate that the grey-scale histogram analysis provides a simple and objective technique to predict the combustion behaviour of these coals. 17 refs., 6 figs., 4 tabs.

  4. Thermal performance of solar air collector with transparent honeycomb made of glass tube

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiQiang; ZUO Ran; LI Ping; SU WenJia

    2009-01-01

    Transparent honeycomb structure with thin-walled glass tube as the honeycomb unit is designed and applied to a flat-plate solar air collector.Experiments are performed for solar collectors with six different honeycomb sizes.The emphasis is to study the effects of diameter and aspect ratio of the honeycomb unit on the transmittance and efficiency of the solar collector.It is shown that for the same diameter but different aspect ratios,there are large temperature differences between the collector's exits;the smaller the aspect ratio,the larger the exit temperature,with a maximum difference of 10℃;for the same aspect ratio but different diameters,the temperature differences are small;the maximum temperature difference between the collectors with and without honeycombs is 12℃.A theoretical expression for the honeycomb transmittance is derived with a simplified method.The result shows that the honeycomb transmittance is only related with the aspect ratio and the materials' optical properties but not the actual size of the honeycomb.

  5. Thermal performance of solar air collector with transparent honeycomb made of glass tube

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transparent honeycomb structure with thin-walled glass tube as the honeycomb unit is designed and applied to a flat-plate solar air collector. Experiments are performed for solar collectors with six different honeycomb sizes. The emphasis is to study the effects of diameter and aspect ratio of the honeycomb unit on the transmittance and efficiency of the solar collector. It is shown that for the same diameter but different aspect ratios, there are large temperature differences between the collector’s exits; the smaller the aspect ratio, the larger the exit temperature, with a maximum difference of 10℃; for the same aspect ratio but different diameters, the temperature differences are small; the maximum temperature difference between the collectors with and without honeycombs is 12℃. A theoretical expression for the honeycomb transmittance is derived with a simplified method. The result shows that the honeycomb transmittance is only related with the aspect ratio and the materials’ optical properties but not the actual size of the honeycomb.

  6. Evaluating the Fin-ray Trajectory Tracking of Bio-inspired Robotic Undulating Fins via an Experimental-numerical Approach

    Directory of Open Access Journals (Sweden)

    Xiaojia Xiang

    2014-07-01

    Full Text Available In the past decade, biomimetic undulating fin propulsion has been one of the main topics considered by scientists and researchers in the field of robotic fish. This technology is inspired by the biological wave-like propulsion of ribbon-finned fish. The swimming modes have aquatic application potentials with greater manoeuvrability, less detectable noise or wake and better efficiency at low speeds. The present work concentrates on the evaluation of fin-ray trajectory tracking of biorobotic undulating fins at the levels of kinematics and hydrodynamics by using an experimental-numerical approach. Firstly, fin-ray tracking inconsistence between the desired and actual undulating trajectories is embodied with experimental data of the fin prototype. Next, the dynamics' nonlinearity is numerically and analytically unveiled by using the computational fluid dynamics (CFD method, from the viewpoint of vortex shedding and the hydro-effect. The evaluation of fin-ray tracking performance creates a good basis for control design to improve the fin-ray undulation of prototypes.

  7. Study of the performance of ATLAS muon drift-tube chambers in magntic fields and at high irradiation rates

    Energy Technology Data Exchange (ETDEWEB)

    Valderanis, Chrysostomos

    2012-07-26

    The performance of ATLAS muon drift-tube (MDT) chambers has been studied in detail using high-energy muon beams. The measurements of the drift tube properties in magnetic fields showed that inelastic collisions of the drifting electrons with the CO{sub 2} molecules in the Ar:CO{sub 2} (93:7) gas mixture of the MDT chambers have to be taken into account in the simulation of the drift properties. Such inelastic collisions are now correctly treated by the Garfield simulation programme from version 9 providing an accurate description of the behaviour of the ATLAS muon drift tubes, in particular in the magnetic field. Measurements at the Gamma Irradiation Facility at CERN were performed to study the performance of the MDT chambers in the presence of high {gamma} ray background fluences. The chambers have a spatial resolution better than 40 {mu}m at the nominal background rates expected at the Large Hadron Collider design luminosity of 10{sup 34} cm{sup -2}s{sup -1} and a resolution better than 50 {mu}m for up to five times higher background rates. Efficient muon detection up to background counting rates of 500 kHz per tube corresponding to 35% occupancy was demonstrated.

  8. Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger

    International Nuclear Information System (INIS)

    Thermoeconomic optimization of plate fin heat exchanger with similar (SF) and different (DF) or non-similar fin in each side is presented in this work. For this purpose, both heat exchanger effectiveness and total annual cost (TAC) are optimized simultaneously using multi-objective particle swarm optimization algorithm. The above procedure is performed for various mass flow rates in each side. The optimum results reveal that no thermoeconomic improvement is observed in the case of same mass flow rate in each side while both effectiveness and TAC are improved in the case of different mass flow rate. For example, effectiveness and TAC are improved 0.95% and 10.17% respectively, for the DF compared with SF. In fact, the fin configuration should be selected more compact in a side with lower mass flow rate compared with the other side in the thermoeconomic viewpoint. Furthermore, for the thermodynamic optimization viewpoint both SF and DF have the same optimum result while for the economic (or thermoeconomic) optimization viewpoint, the significant decrease in TAC is accessible in the case of DF compared with SF. - Highlights: • Thermoeconomic modeling of compact heat exchanger. • Selection of fin and heat exchanger geometries as nine decision variables. • Applying MOPSO algorithm for multi objective optimization. • Considering the similar and different fin specification in each side. • Investigation of optimum design parameters for various mass flow rates

  9. Development of High-Performance Pressure Tube Material for the Canadian SCWR Concept

    Science.gov (United States)

    Walters, L.; Donohue, S.

    2016-02-01

    The Canadian super-critical water-cooled reactor (SCWR) concept is moderated by using heavy water, while the coolant is light water at 25 MPa with an inlet temperature of 625 K and an outlet temperature of 900 K. The fuel assemblies reside in vertical pressure tubes that are the pressure boundary. The pressure tubes are insulated from the fuel assemblies and operate at temperatures near the moderator temperature, at 390 K. The zirconium alloy Excel has been selected as a candidate material for the pressure tube based on favorable properties such as high strength, resistance to radiation-induced diametral strain, and high terminal solid solubility. However, significant future effort will be required to obtain material properties and crack initiation mechanisms at super-critical water (SCW) conditions to verify that annealed Excel is a viable option as a pressure tube material in the Canadian SCWR.

  10. Modelisation, conception et simulation des performances d'un collecteur solaire aeraulique a tubes sous vide en milieu nordique

    Science.gov (United States)

    Paradis, Pierre-Luc

    The global energy consumption is still increasing year after year even if different initiatives are set up to decrease fossil fuel dependency. In Canada 80% of the energy is used for space heating and domestic hot water heating in residential sector. This heat could be provided by solar thermal technologies despite few difficulties originating from the cold climate. The aim of this project is to design a solar evacuated tube thermal collector using air as the working fluid. Firstly, needs and specifications of the product are established in a clear way. Then, three concepts of collector are presented. The first one relies on the standard evacuated tube. The second one uses a new technology of tubes; both sides are open. The third one uses heat pipe to extract the heat from the tubes. Based on the needs and specification as criteria, the concept involving tubes with both sides open has been selected as the best idea. In order to simulate the performances of the collector, a model of the heat exchanges in an evacuated tube was developed in 4 steps. The first step is a model in steady state intended to calculate the stagnation temperature of the tube for a fixed solar radiation, outside temperature and wind speed. As a second step, the model is generalised to transient condition in order to validate it with an experimental setup. A root mean square error of 2% is then calculated. The two remainder steps are intended to calculate the temperature of airflow leaving the tube. In the same way, a first model in steady state is developed and then generalised to the transient mode. Then, the validation with an experimental setup gave a difference of 0.2% for the root mean square error. Finally, a preindustrial prototype intended to work in open loop for preheating of fresh air is presented. During the project, explosion of the both sides open evacuated tube in overheating condition blocked the construction of a real prototype for the test. Different path for further work are

  11. The Fifth International Ice Nucleation Workshop Activities FIN-1 and FIN-2: Overview and Selected Results

    Science.gov (United States)

    Moehler, O.; Cziczo, D. J.; DeMott, P. J.; Hiranuma, N.; Petters, M. D.

    2015-12-01

    The role of aerosol particles for ice formation in clouds is one of the largest uncertainties in understanding the Earth's weather and climate systems, which is related to the poor knowledge of ice nucleation microphysics or of the nature and atmospheric abundance of ice nucleating particles (INPs). During the recent years, new mobile instruments were developed for measuring the concentration, size and chemical composition of INPs, which were tested during the three-part Fifth International Ice Nucleation (FIN) workshop. The FIN activities addressed not only instrument issues, but also important science topics like the nature of atmospheric INP and cloud ice residuals, the ice nucleation activity of relevant atmospheric aerosols, or the parameterization of ice formation in atmospheric weather and climate models. The first activity FIN-1 was conducted during November 2014 at the AIDA cloud chamber. It involved co-locating nine single particle mass spectrometers to evaluate how well they resolve the INP and ice residual composition and how spectra from different instruments compare for relevant atmospheric aerosols. We conducted about 90 experiments with mineral, carbonaceous and biological aerosol types, some also coated with organic and inorganic compounds. The second activity FIN-2 was conducted during March 2015 at the AIDA facility. A total of nine mobile INP instruments directly sampled from the AIDA aerosol chambers. Wet suspension and filter samples were also taken for offline INP processing. A refereed blind intercomparison was conducted during two days of the FIN-2 activity. The third activity FIN-3 will take place at the Desert Research Institute's Storm Peak Laboratory (SPL) in order to test the instruments' performance in the field. This contribution will introduce the FIN activities, summarize first results from the formal part of FIN-2, and discuss selected results, mainly from FIN-1 for the effect of coating on the ice nucleation (IN) by mineral

  12. Development of Remote Weld Testing Technique for Moisture Separator and Reheater Tubes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator and reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator and reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator and reheater tube of nuclear power plants.

  13. A high density FinFET one-time programmable cell with new intra-fin cell isolation for advanced system on chip applications

    Science.gov (United States)

    Chen, Yu-Zheng; Yuan, Jo En; Peng, Ping Chun; Hsiao, Woan Yun; King, Ya-Chin; Lin, Chrong Jung

    2016-04-01

    A fully CMOS compatible one-time programmable (OTP) cell with a novel intra-fin cell isolation (IFCI) structure on a FinFET CMOS process has been proposed. The IFCI OTP cell utilizes the field-enhanced dielectric breakdown at fin corners to perform a fast and low-voltage program operation. Moreover, an ultrasmall intra-fin cell-to-cell isolation is firstly introduced to markedly shrink the cell size by eliminating the area-consuming spacing of fin-to-fin isolation. The IFCI FinFET OTP with fast program speed, excellent read disturb immunity, and reliable data retention is a promising solution for logic nonvolatile memory (NVM) technology in advanced CMOS nodes.

  14. Experimental Simulation of Natural Heat Convection from Finned Vertical Plate with Different Inclinations

    Directory of Open Access Journals (Sweden)

    Saad Najeeb Shehab

    2016-09-01

    Full Text Available In this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus Rayleigh number for vertical plate and vertical fins array. The results indicate that the configuration of V-fins array gave best natural-convection heat transfer performance as base heat transfer coefficient about 20% greater compared with vertical fins array. Experimental simulation data and correlations of the present work are compared with a previous works shows good agreement

  15. SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES

    International Nuclear Information System (INIS)

    Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps

  16. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    Science.gov (United States)

    Mert, Suha Orçun; Reis, Alper

    2016-06-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  17. Big brains are not enough: performance of three parrot species in the trap-tube paradigm.

    Science.gov (United States)

    Liedtke, Jannis; Werdenich, Dagmar; Gajdon, Gyula K; Huber, Ludwig; Wanker, Ralf

    2011-01-01

    The trap-tube task has become a benchmark test for investigating physical causality in vertebrates. In this task, subjects have to retrieve food out of a horizontal tube using a tool and avoiding a trap hole in the tube. Great apes and corvids succeeded in this task. Parrots with relative brain volumes comparable to those of corvids and primates also demonstrate high cognitive abilities. We therefore tested macaws, a cockatoo, and keas on the trap-tube paradigm. All nine parrots failed to solve the task. In a simplified task, trap tubes with a slot inserted along the top were offered. The slot allowed the birds to move the reward directly with their bills. All but one individual solved this task by lifting the food over the trap. However, the parrots failed again when they were prevented from lifting the reward, although they anticipated that food will be lost when moved into the trap. We do not think that the demanding use of an external object is the main reason for the parrots' failure. Moreover, we suppose these parrots fail to consider the trap's position in the beginning of a trial and were not able to stop their behaviour and move the reward in the trap's opposite direction.

  18. How great apes perform on a modified trap-tube task.

    Science.gov (United States)

    Mulcahy, Nicholas J; Call, Josep

    2006-07-01

    To date, neither primates nor birds have shown clear evidence of causal knowledge when attempting to solve the trap tube task. One factor that may have contributed to mask the knowledge that subjects may have about the task is that subjects were only allowed to push the reward away from them, which is a particularly difficult action for primates in certain problem solving situations. We presented five orangutans (Pongo pygmaeus), two chimpanzees (Pan troglodytes), two bonobos (Pan paniscus), and one gorilla (Gorilla gorilla) with a modified trap tube that allowed subjects to push or rake the reward with the tool. In two additional follow-up tests, we inverted the tube 180 degrees rendering the trap nonfunctional and also presented subjects with the original task in which they were required to push the reward out of the tube. Results showed that all but one of the subjects preferred to rake the reward. Two orangutans and one chimpanzee (all of whom preferred to rake the reward), consistently avoided the trap only when it was functional but failed the original task. These findings suggest that some great apes may have some causal knowledge about the trap-tube task. Their success, however, depended on whether they were allowed to choose certain tool-using actions. PMID:16612632

  19. Heat Transfer Performance and Flow Resistance of Twisted Tubes in the Tube Side%扭曲管管内传热及流动特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    朱冬生; 郭新超; 刘庆亮

    2012-01-01

    Twisted tubes as a new efficient heat transfer tubes which is used in new tubular heat exchanger of refrigeration industry can enhance the heat transfer in the tube side, and do not have baffle plates in the shell side to reduce the pressure drop. The heat transfer performance and flow resistance of twisted tubes in the tube side is investigated by the means of numerical simulation in this paper. Many different specifications physical models of twisted tubes are established to analyze the performance in the tube side . The results show that the distortion of twisted tube and the squash of cross - section is obvious , the heat transfer performance of twisted tube is better, but the flow resistance will also increase.%扭曲管是应用于制冷行业中新型管壳式换热器的高效换热管,强化了管内传热,壳程不设折流板以降低壳程流阻.本文通过数值模拟研究了扭曲管管内传热及流动特性.通过建立不同规格的扭曲管物理模型,得出扭曲管的扭曲程度S/d,越小、截面压扁程度At/Bt越大,扭曲管的强化传热性能就越好,但是同时流阻也会增大;反之则相反.

  20. Review of Fin FET Technology and Circuit Design Challenges

    Directory of Open Access Journals (Sweden)

    Bibin Lawrence R,

    2015-12-01

    Full Text Available Considering the difficulties in planar CMOS transistor scaling to secure an acceptable gate to channel control FinFET based multi-gate (MuGFET devices have been proposed as a technology option for replacing the existing technology. The desirability of FinFET that it’s operation principle is same as CMOS process. This permits to lengthening the gate scaling beyond the planar transistor limits, sustaining a steep subthreshold slope, better performance with bias voltage scaling and good matching due to low doping concentration in the channel. There are, still, several challenges and limitations that FinFET technology has to face to be competitive with other technology options: Fin shape, pitch, isolation, doping, crystallographic orientation and stressing as well as device parasitic, performance and patterning approaches will be discussed.

  1. The Waveform Digitiser of the Double Chooz Experiment: Performance and Quantisation Effects on PhotoMultiplier Tube Signals

    CERN Document Server

    Abe, Y; Cabrera, A; Courty, B; Dawson, J V; Gonzalez, L F G; Hourlier, A; Ishitsuka, M; de Kerret, H; Kryn, D; Novella, P; Obolensky, M; Perasso, S; Remoto, A; Roncin, R

    2013-01-01

    We present the waveform digitiser used in the Double Chooz experiment. We describe the hardware and the custom-built firmware specifically developed for the experiment. The performance of the device is tested with regards to digitising low light level signals from photomultiplier tubes and measuring pulse charge. This highlights the role of quantisation effects and leads to some general recommendations on the design and use of waveform digitisers.

  2. Performance prediction for non-adiabatic capillary tube suction line heat exchanger: an artificial neural network approach

    International Nuclear Information System (INIS)

    This study presents an application of the artificial neural network (ANN) model using the back propagation (BP) learning algorithm to predict the performance (suction line outlet temperature and mass flow rate) of a non-adiabatic capillary tube suction line heat exchanger, basically used as a throttling device in small household refrigeration systems. Comparative studies were made by using an ANN model, experimental results and correlations to predict the performance. These studies showed that the proposed approach could successfully be used for performance prediction for the exchanger

  3. Enhancement of the Remote Field Eddy Current Testing Performed from Outside of a Magnetic Tube

    Directory of Open Access Journals (Sweden)

    Tomas Marek

    2006-01-01

    Full Text Available The paper deals with design of remote field eddy current probe for non-destructive testing dedicated for inspection of ferromagnetic tubular material from outside. The remote field effect inside the tube wall is achieved by the medium of a magnetic shield covering the probe. Results of numeric simulations made for verification of probe characteristics confirmed the effectiveness of probe design.

  4. Performance enhancement of filled-type solar collector with U-tube

    Institute of Scientific and Technical Information of China (English)

    梁若冰; 张吉礼; 赵亮; 马良栋

    2015-01-01

    In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube (HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little. Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4%higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.

  5. Bulk FinFETs with body spacers for improving fin height variation

    Science.gov (United States)

    Wei, Xing; Zhu, Huilong; Zhang, Yanbo; Zhao, Chao

    2016-08-01

    A novel FinFET structure with body spacers in sub fin (BSSF) is proposed to improve the fin height variation produced in the manufacturing processes. Device simulation results are presented to show the electrical variations improvement. The effective fin height (Heff) of FinFETs with BSSF is well controlled because it only depends on the silicon epi layer thickness (TSi). Taking advantage of the precisely controlled epitaxy process, Heff uniformity of FinFETs with BSSF is much better than conventional bulk FinFETs. Benefit from the smaller Heff variation, FinFETs with BSSF show much smaller electrical characteristics variation. For n-FinFETs, the Ion variation improves from 33.46% for conventional bulk FinFETs to 8.05% for FinFETs with BSSF. Additionally, manufacturing of FinFETs with BSSF is compatible with that of the state-of-the-art bulk FinFETs, promising for its applications in massive production.

  6. Aerodynamic assessment of humpback whale ventral fin shapes

    OpenAIRE

    Rita Espasa, Damià

    2011-01-01

    The ventral fins of the humpback whale (Megaptera novaeangliae) include a bulbous leading edge acting as a natural high-lift device. It has been suggested that application of this concept to wing design may yield advantages over traditional shapes (Miklosovic, et al., 2004). During the course of this project, the aerodynamic performance of whale fin models will be compared with conventional wing shapes. Based on the results of the study new wing design paradigms will be developed to improve t...

  7. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  8. FIN 515 DEVRY Material-fin515dotcom

    OpenAIRE

    Sandywilliam6

    2015-01-01

    FIN 515 Entire Course (Devry) For more course tutorials visit www.fin515.com   Week 1 Homework Problems and Mini Case Week 2 Homework Assignment; Problems Week 3 Homework Assignment; Problems Week 3 Homework Problems; 5-1, 5-2, 5-6 Week 4 Homework Problems page 297, 371 Week 4 Midterm; Business Valuation and Stock Valuation Week 5 Homework Problem10-8,10-9,11-2,11-3 Week 5 Project Case 11-7-New-Project Analysis Week 6 Homework Problem12...

  9. FIN 515 devry course Tutorial / fin515dotcom

    OpenAIRE

    anil14

    2015-01-01

    FIN 515 Entire Course (Devry) For more course tutorials visit www.fin515.com   Week 1 Homework Problems and Mini Case Week 2 Homework Assignment; Problems Week 3 Homework Assignment; Problems Week 3 Homework Problems; 5-1, 5-2, 5-6 Week 4 Homework Problems page 297, 371 Week 4 Midterm; Business Valuation and Stock Valuation Week 5 Homework Problem10-8,10-9,11-2,11-3 Week 5 Project Case 11-7-New-Project Analysis Week 6 Homework Problem12...

  10. Eddy-Current Testing of Finned Fuel Cladding

    International Nuclear Information System (INIS)

    Eddy-current methods of testing reactor-fuel components are well established. The literature, however, mainly describes tests which are applied to simple geometries such as cylindrical rods or tubes. Recent AECL fuel designs have called for cladding with heat transfer or locating fins along the length of the fuel. This paper describes the application of eddy-current techniques to three such designs. The function and geometry of the fins must be considered in the selection of the optimum test parameters and the most suitable test coil geometry. Thus, the presence of fins may limit or restrict the test but they will not prevent a successful test. Where the fin geometry is complex eddy currents may well be the most suitable of the non-destructive methods which can be used for flaw detection. The thickness of aluminium cladding over a uranium core is measured with a small probe coil placed between the fins and shielded from them. Two flaw detection tests are described, one on sintered aluminium product (SAP) tubing using an internal bobbin coil and the other on an aluminium-clad uranium-aluminium alloy rod with an external encircling coil. The instrumentation described is relatively simple. A small portable instrument was designed for the cladding thickness measurement. For flaw detection a standard oscilloscope with a plug-in carrier-amplifier module provides a means of sensing and displaying the test coil impedance variations. This equipment ,although it does not permit sophisticated methods of eliminating unwanted noise is adequate for a variety of testing applications and has been specified for routine fuel testing on a production basis. (author)

  11. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    Science.gov (United States)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  12. Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V.

    2005-11-11

    The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

  13. Expansive Performance of Self-stressing and Self-compacting Concrete Confined with Steel Tube

    Institute of Scientific and Technical Information of China (English)

    XU Lei; HUANG Chengkui; LIU Yi

    2007-01-01

    Combining with the technology of self-compacting concrete, self-stressing concrete and concrete-filled steel tube, we can get self-compacting and self-stressing concrete-filled steel tube. In order to study the expansive mechanism of self-stressing concrete, the continuous observation of 47 days on six specimens was carried on. The specimens have different steel area to concrete area ratio. The expansive process in hoop and axial direction were studied, and the expansive mechanism was discussed too. The experimental results identify that the creep and elastic deformation take a large proportion in effective free expansion. The calculating formulas of self-stress in hoop and axial directions were presented here.

  14. A New Model for the Analysis of Performance in Evacuated Tube Solar Collectors

    OpenAIRE

    Aboulmagd, Ahmed; Padovan, Andrea; De Césaro Oliveski, Rejane; Del Col, Davide

    2014-01-01

    Solar collectors can provide a useful response to the heat demand in buildings, such as heating of domestic water and spaces. Among the different types of solar collectors, the evacuated tube ones can better display their features when the temperature difference between operating fluid and ambient air is high, which are the typical operating conditions during space heating of buildings. Beside the heating application, there is also need for addressing the increasing energy consumption due to ...

  15. Electrochemical Performance of Iron Diphosphide/Carbon Tube Nanohybrids in Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • Dehydrogenated FeP2/C nanohybrids were fabricated via a facile annealing process. • The nanohybrids as anode in LIB show excellent cycling stability and rate capability. • C-hybrid promotes buffering volume change and increasing electroconductibility. • The process can be applied for the fabrication of many more TMPs and nanohybrids. -- Abstract: Phosphorous-rich phase iron diphosphide/carbon tube (FeP2/C) nanohybrids, which are synthesized via a pyrolysis process and composed of heterostructures of orthorhombic FeP2 with conical carbon tubes, have been identified as a new anode in lithium-ion batteries. After an annealing treatment to eliminate the excessive hydrogen elements in the carbon tubes, the FeP2/C nanohybrids display good reversible capacity, long cycle life, and excellent rate capability. Specifically, the annealed hybrids exhibit a discharge capacity of 602 mA h g−1 on the second cycle and a discharge capacity of 435 mA h g−1 after 100 cycles at 0.1C (0.137 A g−1). Meanwhile, these annealed hybrids exhibit excellent rate capability, such as a reversible capability of 510 mA h g−1, 440 mA h g−1, 380 mA h g−1, 330 mA h g−1 and 240 mA h g−1 at 0.25C, 0.5C, 1C, 2.5C and 5C, respectively

  16. The Aphrodite boiling crisis program. Analysis of CHF tests performed on a vertical tube

    International Nuclear Information System (INIS)

    In order to develop a comprehensive modelling of the boiling crisis phenomenon, the APHRODITE experimental program has been set up at ELECTRICITE DE FRANCE. Aiming at a better mechanistic understanding of this phenomenon, this program will investigate the influence of the experimental conditions (among which the mockup geometry and the boundary conditions) and the two-phase flow patterns via void fraction distributions. It has involved the construction of a R12 test loop, which can deliver a large thermal-hydraulic parameter ranges, and the development of a gamma-ray tomograph. The first experiments have been carried out on a vertical Inconel tube, 6 meters long with a bore diameter of 13 mm and a thickness of 0.5 mm. This electrically heated test section is heavily instrumented with 168 thermocouples welded along the tube, on its outer surface. After a refined calibration of the experimental procedure, a critical heat flux data bank has been collected within large pressure, mass velocity and critical steam quality ranges. These results are firstly compared with other CHF data obtained in similar conditions. Then several empirical correlations and a theoretical model for similar prediction in tubes are tested against these data

  17. A Novel Implementation of a Flexible Robotic Fin Actuated by Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Qin Yan; Lei Wang; Bo Liu; Jie Yang; Shiwu Zhang

    2012-01-01

    In this paper,study of a novel flexible robotic-fin actuated by Shape Memory Alloy (SMA) is presented.The developed robotic fin is capable of implementing various 3-Dimensional (3D) motions,which plays an important role in robot propulsion and maneuverability.Firstly,the morphological and mechanics parameters of a real pectoral fin from a carp are investigated.Secondly,a detailed design of the flexible pectoral fin driven by SMA is presented according to the previous morphological and mechanics analyses.Thirdly,a simplified theoretical model on the SMA fin plate is derived.The thermodynamics of the SMA plate and the relationship between curvature and phase transformation are analyzed.Finally,several simulations and model experiments are conducted according to the previous analyses.The results of the experiments are useful for the control of the robotic fin.The experimental results reveal that the SMA actuated fin ray has a good actuating performance.

  18. A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Yong-Hua Zhang; Jian-Hui He; Jie Yang; Shi-Wu Zhang; Kin Huat Low

    2006-01-01

    Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured,grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).

  19. ANSYS Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries

    Science.gov (United States)

    Doroudi, Shahed

    Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.

  20. Industrial mastering the use of tube fining by high-frequency welding for gasproof boilers

    International Nuclear Information System (INIS)

    Results of introduction of 20 and 12Kh1MF steel tube fining by high-frequency welding are presented. Heat treatment effect on properties of joints is studied, mechanical tests, metallographical and electron-microscopic investigations are carried out. It is shown that weld method of fins to tubes with the help of high-frequency currents is characterized by universality that permits to produce fined tubes of practically any diameter with fins of any width, control of smooth tubes before the fins welding to them being provided. Studies of properties of fined tubes has shown high quality of welded joints carried out by high-frequency current heating

  1. Wind Fins: Novel Lower-Cost Wind Power System

    Energy Technology Data Exchange (ETDEWEB)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  2. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with triangular fins

    Directory of Open Access Journals (Sweden)

    Vinous M. Hameed, Bashar Muslem Essa

    2016-01-01

    Full Text Available Experimental investigation of heat transfer and friction factor characteristics in a double pipe heat exchanger with triangular fins was studied. The working fluids were air, flowing in the annular pipe, and water through the inner circular tube. The test section is consisting of two parts. The first part is an insulated tube which has been manufactured from Perspex material of (54mm inner diameter, (2000mm length and (3mm thickness. The second part is an internal copper tube without or with triangular copper fins. The smooth copper tube has (2250mm long and (20mm, 22mm inner and outer diameter respectively. The triangular fins were made of the copper with thickness of 0.3mm and 10mm height. They were installed on the straight copper tube section in three different cases (32, 27, and 22 mm distance between each two successive fins and (15mm pitch between each two of fins. Air at various mass flow rates (0.001875 to 0.003133 kg/sec flows through annuli and water at Reynold's numbers ranging from (10376.9 to 23348.03 flows through the inner tube. The inlet cold air and hot water temperatures are 30oC and 70oC, respectively. The experimental results showed an increase in convective heat transfer coefficient by decreasing in distance between two fins and by increasing Reynold's number. This is due to increase in surface area. It was found that (Space=22mm gives good heat transfer enhancement.

  3. Signal-to-noise performance analysis of streak tube imaging lidar systems. II. Theoretical analysis and discussion.

    Science.gov (United States)

    Wu, Lei; Wang, Xiaopeng; Yang, Hongru; Yu, Bing; Chen, Chao; Yang, Bin; Yuan, Liang; Wu, Lipeng; Xue, Zhanli; Li, Gaoping; Wu, Baoning

    2012-12-20

    In the preceding paper (referred to here as paper I), we presented a general signal-to-noise performance analysis of a streak tube imaging lidar (STIL) system within the framework of linear cascaded systems theory. A cascaded model is proposed for characterizing the signal-to-noise performance of a STIL system with an internal or external intensified streak tube receiver. The STIL system can be decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Equations for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. This work investigates the signal-to-noise performance of an external intensified STIL system. The implementation of the cascaded model for predicting and evaluating the signal-to-noise performance of the external intensified STIL system is described. Some factors that limit the signal-to-noise performance of the external intensified STIL system are analyzed and discussed. PMID:23262623

  4. A new system for analyzing swim fin propulsion based on human kinematic data.

    Science.gov (United States)

    Nicolas, Guillaume; Bideau, Benoit; Bideau, Nicolas; Colobert, Briac; Le Guerroue, Gaël; Delamarche, Paul

    2010-07-20

    The use of swim fins has become popular in various water sport activities. While numerous models of swim fin with various innovative shapes have been subjectively designed, the exact influence of the fin characteristics on swimming performance is still much debated, and remains difficult to quantify. To date, the most common approach for evaluating swim fin propulsion is based on the study of "swimmer-fins" as a global system, where physiological and/or biomechanical responses are considered. However, reproducible swimming technique is difficult (or even impossible) to obtain on human body and may lead to discrepancies in data acquired between trials. In this study, we present and validate a new automat called HERMES which enables an evaluation of various swim fins during an adjustable, standardized and reproducible motion. This test bench reliably and accurately reproduces human fin-swimming motions, and gives resulting dynamic measurements at the ankle joint. Seven fins with various geometrical and mechanical characteristics were tested. For each swim fin, ankle force and hydromechanical efficiency (useful mechanical power output divided by mechanical power input delivered by the motors) were calculated. Efficiencies reported in our study were high (close to 70% for some swim fins) over a narrow range of Strouhal number (St) and peaks within the interval 0.2swimming animals. Therefore, an interesting prospect in this work would be to accurately study the impact of adjustable fin kinematics and material (design and mechanical properties) on the wake structure and on efficiency.

  5. Effect of Tube Spinning With Performance and Microstructure Subsequent Heat-Treatment on Evolution of T250 Maraging Steel

    Institute of Scientific and Technical Information of China (English)

    HU Zheng-fei; WANG Chun-xu

    2012-01-01

    The effects of spinning deformation and subsequent heat treatments on the mechanical properties and microstructure of 18Ni Co-free Maraging steel (T250) tube were evaluated comparatively with the perform. An obvious radial shrinkage is detected in spun tubes after heat treatment and the magnitude of the shrinkage induced by solution treatment is almost the same as that by aging. Plastic deformation during spinning elongated the grains severely in the direction of metal flow. The solution treatment resulted in a drastically refined grain and recrystallised microstructure, removing the effect of plastic deformation, relieving the tangential residual stress and strain and improving hardness. Subsequent aging obtained a tempered microstructure, enhancing hardness values strikingly for precipitation strengthening. XRD (X-ray diffraction) analysis indicated that the reversed austenite formed in a plate-like along the grain boundaries and the volume fraction of austenite in spun tube was more than double that in the preform. These results imply that the residual stress and stain induced by spinning process and reversed austenite forming during aging might have the similar contribution to the radical shrinkage.

  6. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  7. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  8. Closed-bore XMR (CBXMR) systems for aortic valve replacement: x-ray tube imaging performance.

    Science.gov (United States)

    Bracken, John A; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-04-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  9. Feasibility study to perform coiled tubing drilling on Gullfaks-A

    OpenAIRE

    Albawi, Ahmed Haimet

    2013-01-01

    This report is carried out as part of Decision gate1 (DG1) feasibility study conducted for the possibility of commencing coiled tubing drilling to drill slim holes simultaneously with other drilling activities on Gullfaks A (GF-A). A number of wells on GF-A platform has been closed and experienced oil production drop due to different reasons. However there are still small reservoirs with oil left in place which can be drilled through their mother wells to act as producer or injector wells ...

  10. Transcriptional Profiling of Caudal Fin Regeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Michael Schebesta

    2006-01-01

    Full Text Available Regeneration of severed limbs in adult animals is restricted to urodele amphibians. Mammals, including humans, have very limited regenerative capabilities and even with proper treatment, only the tips of our digits can grow back. Teleost fish can regenerate amputated fins, the evolutionary ancestors of limbs. To elucidate the principles of limb-fin regeneration, we performed an Affymetrix microarray screen on regenerating caudal fins 12, 24, 48, and 72 h post amputation. Approximately 15,000 zebrafish transcripts were analyzed, identifying 829 transcripts as differentially expressed during regeneration. Of those, 563 were up-regulated and 266 were down-regulated. We constructed a comprehensive database containing expression data, functional assignment, and background information from the literature for each differentially expressed transcript. In order to validate our findings, we employed three approaches: (1 microarray expression analysis of genes previously implicated in fin regeneration, (2 RT-PCR analysis of genes newly identified as differentially expressed during regeneration, and (3 in situ hybridization of the up-regulated genes bambi, dlx5A, and her6. Moreover, we show that Smad 1/5/8 proteins, effector molecules of Bmp signaling, are phosphorylated during fin regeneration. Taken together, we provide a comprehensive database of fin regeneration that will serve as an important tool for understanding the molecular mechanisms of regeneration.

  11. Fin propulsion on a human-powered submarine

    Science.gov (United States)

    Anderson, Iain A.; Pocock, Benjamin; Harbuz, Antoni; Algie, Cam; Vochezer, Daniel; Chao, Ryan; Lu, Benjamin

    2015-03-01

    Nearly all surface and underwater vessels are driven by screw propulsion; ideal for coupling to rotary engines and well understood after over a century of development. But most aquatic creatures use fins for swimming. Although there are sound evolutionary reasons why fish have fins and not propellers, they are nevertheless agile, fast and efficient. Although fish-like robots such as the MIT Robotuna are providing good insight into fin-based swimming there are advantages for using humans in the experimental device. Like an airplane test pilot they can write crash reports. We present preliminary observations for the human powered finned submarine: Taniwha. The sub participated in the 2nd European International Submarine races in Gosport UK where it received a trophy for "Best Non-Propeller Performance". Two sets of Hobie Mirage fin drives fixed to the upper and lower rear surfaces of the sub are pedaled by the pilot. The pilot also has two levers at the front, one to pitch a pair of dive planes and one for yawing a large rudder. Good speed, we estimate to be greater than 6 m/s is possible with these fins although we haven't explored their full potential. Straying too near the surface or bottom can lead to an instability, synonymous to a stall, such that control is lost. The mechanism for this will be discussed and solutions offered. Fish are 400 million years in front of us but one day we'll catch them.

  12. Anchor Fitted with Special Fin for Soil Reinforcement

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-01-01

    Full Text Available In order to ensure that anchored soil retention systems are more stable and free from failure, suitable anchors are required. A new technique using anchors with fins were investigated, particularly for mechanically stabilized earth. An experimental laboratory investigation on the behaviour of anchors with fins by using various shapes, sizes, arrangements and lengths were presented. The main purpose of this study is to investigate the load-displacement relationship of pullout anchors with fins embedded in sand. A rectangular model tank with dimensions 0.6 m length, 0.5 m width and 0.3 m high was designed. Models of 15 types of anchors of different lengths (0.3 m, 0.4 m and 0.5 m with fins using different and various types of lengths, sizes and arrangements embedded in sand, were experimented with . The testing program included 45 tests embedded in dry sand. The experiment was conducted in a soil laboratory at a scale of 1:10. The fin was placed at the end of the anchor shaft that abuts the failing structure which prevents further movement. It was concluded that the size, shape and angle of the fin influenced the pullout capacity of the anchor. Finally, selected anchors were recommended based on their superior performance.

  13. Transport in Porous Fins From Laminar to Turbulent Regime

    Science.gov (United States)

    Coletti, Filippo; Muramatsu, Kenshiro; Furciniti, Brian; Elkins, Chris; Eaton, John

    2012-11-01

    Lotus type porous metal has elongated pores of random size and spatial distribution but a common orientation. Sets of so-called lotus fins are obtained by slicing the metal into thin layers and stacking them in the flow path, forcing the fluid to pass through the pores. Lotus fins represent a promising alternative to metal foam heat exchangers, because they offer higher thermal conductivity and lower pressure drop. We have experimentally analyzed the fluid flow and heat transfer in lotus fins to determine their transport properties in a range of flow regimes. The investigated Reynolds numbers based on the pore diameter and inner velocity ranged from 100 to 4000. Three-dimensional mean velocity fields were obtained by magnetic resonance velocimetry performed on magnified replicas of the fins, allowing determination of the mechanical dispersion imposed by the random structure of the fins. Thermal measurements on non-conductive fins provided the global diffusivity coefficient, which accounts for molecular, mechanical and (at high Reynolds number) turbulent diffusion. The latter contribution was isolated and its relevance assessed as a function of the flow regime.

  14. FIN 515 UOP Course Tutorial/TutorialRank

    OpenAIRE

    apj

    2015-01-01

    For more course tutorials visit www.tutorialrank.com Tutorial Purchased: 4 Times, Rating: A+     FIN 515 Week 1-7 All Discussion Questions (DEVRY) FIN 515 Week 1 Homework assignments (DEVRY) FIN 515 Week 2 Homework Assignment (DEVRY) FIN 515 Week 3 Homework Assignment (DEVRY) FIN 515 Week 4 Homework Assignment (DEVRY) FIN 515 Week 4 Midterm Exam (DEVRY) FIN 515 Week 5 Homework Assignment (DEVRY) FIN 515 Week 5 Project (DEVRY) FIN 5...

  15. Influence of variable fluid properties during in-tube cooling on performance of CO{sub 2} refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Damseh, Rebhi A. [Albalqa Applied Univ., Irbid (Jordan). Mechanical Engineering Dept.

    2006-12-15

    This present study aims to investigate the influence of variable fluid properties on CO{sub 2} tube cooling process. A transient mathematical model for non thermally equilibrium fluid and solid domains is solved by means of finite difference technique. The effect of constant fluid properties assumption on cycle performance is studied. The validity of such assumption is investigated where it is found that it leads to higher gas cooler outlet temperature. The efficiency of the cooler is also affected and will tend the cycle to operate at a erroneous optimum cooling pressure. (orig.)

  16. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    Science.gov (United States)

    Devade, Kiran D.; Pise, Ashok T.

    2016-04-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  17. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    Science.gov (United States)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  18. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids

    Science.gov (United States)

    Amina, Benabderrahmane; Miloud, Aminallah; Samir, Laouedj; Abdelylah, Benazza; Solano, J. P.

    2016-10-01

    In this paper, we present a three dimensional numerical investigation of heat transfer in a parabolic trough collector receiver with longitudinal fins using different kinds of nanofluid, with an operational temperature of 573 K and nanoparticle concentration of 1% in volume. The outer surface of the absorber receives a non-uniform heat flux, which is obtained by using the Monte Carlo ray tracing technique. The numerical results are contrasted with empirical results available in the open literature. A significant improvement of heat transfer is derived when the Reynolds number varies in the range 2.57×104 ≤ Re ≤ 2.57×105, the tube-side Nusselt number increases from 1.3 to 1.8 times, also the metallic nanoparticles improve heat transfer greatly than other nanoparticles, combining both mechanisms provides better heat transfer and higher thermo-hydraulic performance.

  19. Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins

    Science.gov (United States)

    Zhang, Li; Shang, Bojun; Meng, Huibo; Li, Yaxia; Wang, Cuihua; Gong, Bin; Wu, Jianhua

    2016-04-01

    To improve heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins, triangle-winglet-pair vortex generators (VG) were installed along the centerline of the helical channel with rectangular cross section. The effects of the arrangement of the triangle-winglet-pair VG, such as the geometry, the angle of attack and the quantity on heat transfer performance and pressure drop characteristics have been investigated experimentally to find out the optimal design of the VG. Air was used as working fluid within the range of Re from 680 to 16,000. The results show that, the heat exchange effectiveness of the shell side with VG is 16.6 % higher than that without VG. The vortices and the unsteadiness of the flow introduced by the VG make a great contribution to the increase. Under identical pressure drop condition, the angle of attack of 30° is the best choice compared with 45° and 60°. Under the three constraints, i.e., identical mass flow rate, identical pressure drop and identical pumping power, the largest VG size can achieve the best enhancement effect. Installation of three pairs of VG within one pitch is an optimal design for the shell side used in the present experiments. The enhancement effect of isosceles right triangle is better than that of right triangle in which one acute angle is 30°.

  20. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... temperatures are compared to the temperatures determined by the CFD model and there is a good similarity between the measured and calculated results. Calculations with the CFD model elucidate the flow and temperature distribution in the collector. The influences of operating conditions such as flow rate...

  1. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  2. Mechanism of Tonal Noise Generation from Circular Cylinder with Spiral Fin

    Institute of Scientific and Technical Information of China (English)

    Ryo Yamashita; Hidechito Hayashi; Tetsuya Okumura; Hiromitsu Hamakawa

    2014-01-01

    The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.

  3. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method

    OpenAIRE

    Ningyu Li; Yumin Su

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin...

  4. Optimal design of plate-fin heat exchangers by a Bees Algorithm

    International Nuclear Information System (INIS)

    In this study, the application of Bees Algorithm (BA) in the optimum design of a cross flow plate-fin heat exchanger with offset strip fin is investigated. First, heat exchanger is optimized and designed according to the effectiveness optimization. Then, an analysis based on the second law of thermodynamics and minimizations of entropy generation units is performed. Specific heat duty, space restriction and permitted pressure drop are considered as the constraints for maximizing the effectiveness and minimizing the entropy generation units. Hot and cold flow length of the heat exchangers, number of fin layers, fin frequency, fin height, fin strip length and fin thickness are introduced as optimization variables. The effectiveness and accuracy of the suggested algorithm are compared with literature. The results have shown that BA can find optimum configuration with higher accuracy in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA) and preliminary design. - Highlights: •We analyzed a plate-fin heat exchanger with offset strip fins. •This is the first application of a Bees Algorithm for plate-fin heat exchanger design. •Preliminarily design and effectiveness of PFHE was improved by minimizing the entropy generation units. •The results show the superiority of this method over GA, PSO and ICA and preliminary design

  5. Patterning challenges in advanced device architectures: FinFETs to nanowires

    Science.gov (United States)

    Horiguchi, N.; Milenin, A. P.; Tao, Z.; Hubert, H.; Altamirano-Sanchez, E.; Veloso, A.; Witters, L.; Waldron, N.; Ragnarsson, L.-Å.; Kim, M. S.; Kikuchi, Y.; Mertens, H.; Raghavan, P.; Piumi, D.; Collaert, N.; Barla, K.; Thean, A. V.

    2016-03-01

    Si FinFET scaling is getting more difficult due to extremely narrow fin width control and power dissipation. Nanowire FETs and high mobility channel are attractive options for CMOS scaling. Nanowire FETs can maintain good electrostatics with relaxed nanowire diameter. High mobility channel can provide good performance at low power operation. However their fin patterning is challenging due to fins consisted of different materials or fragile high mobility material. Controlled etch and strip are necessary for good fin cd and profile control. Fin height increase is a general trend of scaled FinFETs and nanowire FETs, which makes patterning difficult not only in fin, but also in gate, spacer and replacement metal gate. It is important that gate and spacer etch have high selectivity to fins and good cd and profile control even with high aspect ratio of fin and gate. Work function metal gate patterning in scaled replacement metal gate module needs controlled isotropic etch without damaging gate dielectric. SF6 based etch provides sharp N-P boundary and improved gate reliability.

  6. Negative effect of smoking on the performance of the QuantiFERON TB gold in tube test

    DEFF Research Database (Denmark)

    Aabye, Martine G; Hermansen, Thomas Stig; Ruhwald, Morten;

    2012-01-01

    ABSTRACT: BACKGROUND: False negative and indeterminate Interferon Gamma Release Assay (IGRA) results are a well documented problem. Cigarette smoking is known to increase the risk of tuberculosis (TB) and to impair Interferon-gamma (IFN-gamma) responses to antigenic challenge, but the impact of...... smoking on IGRA performance is not known. The aim of this study was to evaluate the effect of smoking on IGRA performance in TB patients in a low and high TB prevalence setting respectively. METHODS: Patients with confirmed TB from Denmark (DK, n = 34; 20 smokers) and Tanzania (TZ, n = 172; 23 smokers......) were tested with the QuantiFERON-TB Gold In tube (QFT). Median IFN-gamma level in smokers and non smokers were compared and smoking was analysed as a risk factor for false negative and indeterminate QFT results. RESULTS: Smokers from both DK and TZ had lower IFN-gamma antigen responses (median 0.9 vs...

  7. Dynamic behavior of radiant cooling system based on capillary tubes in walls made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Svendsen, Svend

    2015-01-01

    the small amount of fresh air required by standards to provide a healthy indoor environment.This paper reports on experimental analyses evaluating the dynamic behavior of a test room equipped with a radiant cooling system composed of plastic capillary tubes integrated into the inner layer of sandwich wall...... elements made of high performance concrete. The influence of the radiant cooling system on the indoor climate of the test room in terms of the air, surface and operative temperatures and velocities was investigated.The results show that the temperature of the room air can be kept in a comfortable range...... using cooling water for the radiant cooling system with a temperature only about 4K lower than the temperature of the room air. The relatively high speed reaction of the designed system is a result of the slim construction of the sandwich wall elements made of high performance concrete. (C) 2015...

  8. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    International Nuclear Information System (INIS)

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information

  9. Energy savings in cooling systems through use of new heat exchanger type with flat aluminium pipes and fins; Energibesparelser i koeleanlaeg ved anvendelse af ny varmevekslertype med flade aluminiumsroer og finner

    Energy Technology Data Exchange (ETDEWEB)

    Mulvad, R. (Aluventa A/S, Svendborg (Denmark)); Schneider, P. (Teknologisk Institut, Koele- og Varmepumpeteknik, AArhus (Denmark))

    2008-12-15

    This report describes the theoretical and practical work carried out to characterize and size air-cooled condensers and evaporators manufactured in MPE-tubes. Test heat exchangers were constructed for which capacity and pressure loss was measured. The measurements are compared with equations from the literature, and the most appropriate equations were selected. An analytical comparison of heat exchangers made with round tubes and fins of different types shows that by using heat exchangers with MPE-tubes and louvered fins lower air side pressure loss and higher performance can be achieved. Similarly, the refrigerant filling in MPE heat exchangers lower than in conventional heat exchangers with round tubes. This has great significance in the choice of heat exchangers because of the high price per kilo of HCF refrigerants. Correlations for heat transfer and pressure loss by condensation / evaporation and correlations for heat transfer and pressure drop were implemented in the calculation programs for design of condensers and evaporators. The calculation programs developed in the project are compared with a non-commercially available program designed for heat exchangers with MPE-tubes. The comparison shows good agreement. (ln)

  10. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2013-10-01

    Full Text Available The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force (temperature difference due to remixing. The attached fins provide an enlarged heat transfer area. The order of performance in a device of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  11. A porosity model for flow resistance calculation of heat exchanger with louvered fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Keun [Halla Visteon Climate Control Corp. Daejeon (Korea, Republic of); Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of); Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-04-15

    A full 3-dimensional flow simulation of a louvered fin heat exchanger assembly requires a huge number of grid points and enormous computing time. This work proposes a porous media model for the flow resistance calculation of the louvered fin side in order to efficiently simulate a complex 3-dimensional flow over the louvered fins. In the present model, we determine the permeability and Ergun constant in the modified Darcy equation. We first build up a database of the friction factor from the available experimental data and our own CFD data, and then develop the friction factor correlation in the range of the Reynolds number based on the louver pitch from 0.001 to 20000 for 14 different louvered fin types. We use the non-linear and multi-linear regression analyses to obtain the friction factor correlation as a function of louvered fin geometric parameters such as louver pitch, louver angle and fin pitch. The present friction factor correlation shows an excellent agreement with the previous experimental and CFD data. The modified Darcy equation with the proposed permeability and Ergun constant for the louvered fin side can easily be coupled with the 3-dimensional computation of the main tube flow.

  12. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2013-01-01

    Full Text Available A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.

  13. Influence of regenerator void volume on performance of a precooled 4 K Stirling type pulse tube cryocooler

    Science.gov (United States)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie

    2015-09-01

    Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.

  14. Numerical simulation and experimental research of a flexible caudal fin by piezoelectric fiber composite

    Directory of Open Access Journals (Sweden)

    Yuan-Lin Guan

    2015-07-01

    Full Text Available A flexible caudal fin made of the macro fiber composites and the carbon fiber orthotropic composite was investigated by the numerical simulations and the experiments. First, a three-dimensional numerical simulation procedure was adopted to research the torsion propulsion mode of the caudal fin and the impact of the water for the structural torsion frequency of the caudal fin. Then, a two-dimensional unsteady fluid computational method was used to analyze the hydrodynamic performance with the periodic swing of the caudal fin on the torsion mode. Based on the simulation results, the flow field was demonstrated and discussed. The interaction between the caudal fin and the water was explained. Finally, the laser vibrometer system was built to verify the torsion propulsion mode. Meanwhile, the application of the caudal fin was realized on the torsion propulsion, and the measured system was established to demonstrate the performance of the caudal fin. The established simulation procedures and experimental methods in this study may provide guidance to the fins made of the composite materials during the structural design and the investigation of the flow field characteristics with the movement of the fins.

  15. Research on the Pin Fin Efficiency and Structure

    Directory of Open Access Journals (Sweden)

    Fan Bailin

    2013-06-01

    Full Text Available The performance of pin fin heat sink can be to measure through the temperature field. The temperature field and efficiency of the Pin Fin were analyzed, Pin fin efficiency curve was drowned also the distribution of the temperature field along the length of the pin fin curve was drawn. Thermal resistance was composed by thermal resistance of Aluminum substrate、 thermal resistance of convective heat transfer and the thermal resistance of the cooling liquid. The change rule was studied through the calculation on Aluminum plate thermal resistance、 thermal resistance of convective heat transfer and the thermal resistance of the cooling liquid. Its change regularity was simulated by toolbox In the MATLAB, and it was found that thermal resistance of convective heat transfer effect on the efficiency was most obvious in a certain amount of the heat and flow for thermal resistance of the Pin-fin radiator under the premise. The structural parameters of radiator were related to the size of thermal resistance.

  16. Novel concepts and geometries as alternatives to conventional circular pin fins for gas turbine blade cooling applications

    Science.gov (United States)

    Uzol, Oguz

    Short cylindrical pin fins with circular cross-sections are one of the most common types of cooling devices used in turbine blades. However it is by no means clear that the circular shape is the most efficient geometry in terms of heat transfer enhancement and pressure loss minimization. Therefore, novel pin fin concepts and geometries are developed and introduced as alternatives to conventional circular pin fins. The idea of using fluidic oscillators as turbulent heat transfer enhancement devices led to the novel concept of "oscillator fin". Also the idea of using more elliptical fin shapes resulted in the development of the SEF (Standard Elliptical Fin), the N fin (Derived from NACA four-digit series of airfoils) and the Egg fin (A hybrid circular-elliptical fin). Detailed experimental and computational investigations are performed in order to determine the heat transfer and pressure loss characteristics of these new concepts and the results are compared to the characteristics of conventional circular pin fins. The experimental analysis included endwall convective heat transfer coefficient measurements, wake total pressure surveys and wake flow field measurements and visualizations using particle image velocimetry (PIV). The isolated single fin measurements revealed that the oscillator fin concept is not working as expected and does not provide any advantage over circular fins. The SEFs and the N fins were found to be the most effective cooling devices in terms of both heat transfer enhancement and pressure loss minimization. The characteristics of the SEF and N fins are also determined for a 2 row staggered array configuration. It is observed that the endwall heat transfer enhancement capability of the SEFs and the N fins is about 25% less than the circular fins. However these elliptical fins caused tremendous reduction in loss levels from 100% to 200%. The main reason of this high levels of pressure loss in circular fin arrays is determined to be the huge low

  17. Study of performance of small gamma camera consisting of crystal pixel array and position sensitive photomultiplier tube

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; LIU Shi-Tao; LEI Xiao-Wen; YAN Tian-Xin; XU Zi-Zong; WANG Zhao-Min

    2005-01-01

    The performance of gamma camera with NaI(T1) array coupled with position sensitive photomultiplier tube (PSPMT) R2486 has been studied. The pixel size of NaI(T1) crystal is 2mm×2mm and the overall dimension of the array is 48.2mm×48.2mm×5mm. There are 484 pixels in a 22×22 matrix. Because each pixel can produce a much focused light spot and restrict the spread of photons, position resolution of the gamma camera is mainly determined by pixel size. It is shown that crystal array pixel can reduce shrinkage effect and improve intrinsic position resolution greatly via restricting the spread of photons. Experimental results demonstrate that its position resolution and linearity are much improved comparing with the gamma camera using planar crystals coupled with PSPMT.

  18. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    Directory of Open Access Journals (Sweden)

    M. Mahendran

    2012-12-01

    Full Text Available Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2 nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E, Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per

  19. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    Science.gov (United States)

    Wang, Zhenlong; Hang, Guanrong; Wang, Yangwei; Li, Jian; Du, Wei

    2008-04-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s-1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s-1 and 22° s-1, respectively.

  20. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    International Nuclear Information System (INIS)

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s−1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s−1 and 22° s−1, respectively

  1. 光电倍增管的性能研究%The Performance Exploration of Photomultipler Tube

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 祝凤荣; 闵振; 王熹; 李新治; 葛劲松; 李睿杰

    2016-01-01

    With the deepening of scientists for cosmic ray research, the performance research and optimization of the detection of cosmic rays of various kinds of experimental apparatus has become an important aspect. As a high-precision test equipment, the electromagnetic particle detector (ED) is mainly used for secondary electromagnetic particle detection on the surface of the front air shower, and record information such as particle density and arrival time. The ED unit is mainly composed of photomultiplier tube (PMT), plastic scintillator, wavelength shifting fiber etc., because of the precision sensitive parts with complex structure, the photomultiplier tube is one of the most important parts of the performance optimization of ED unit. This article ran a test and analyzed the absolute gain, high voltage response curve, the dark noise counting rate and degree of linearity of the type CR284 photomultiplier tube with experimental equipment.%随着科学家们对宇宙线研究的深入,用于探测宇宙线的各种实验仪器的性能研究与优化也成为一个重要的方面。电磁粒子探测器(ED)作为一种高精度实验器材,主要是用于探测空气簇射前锋面上的次级电磁粒子,并记录粒子密度和到达时间等信息。单元ED主要是由光电倍增管(PMT)、塑料闪烁体、波长位移光纤等组成,而光电倍增管作为其中精密敏感,结构复杂的部件,因此其是单元ED中性能优化最重要的部件之一。本文运用实验器材对CR284型光电倍增管的绝对增益、高压响应曲线、暗噪声计数率以及线性度进行了测试和分析。

  2. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    Science.gov (United States)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  3. Wake Vortex Structure Characteristics of a Flexible Oscillating Fin

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong Wang; Pei Chen; Xiao-qing Zhang

    2008-01-01

    We compute the wake of a two-dimensional and three-dimensional flexible fin in an unsteady flow field with heaving and pitching motions using FLUENT. Deflexion mode is used for a non-uniform cantilever beam with non-uniformly distributed load. The effect of chordwise deflexion length on the characteristics of propulsion is discussed for two-dimensional flexible fin.The thrust coefficient decreases, propulsive efficiency increases and the intensity of turbulence attenuates gradually as the deflexion length increases. For a three-dimensional flexible fin, the intensity of the vortex in the plane of symmetry is higher than that in the plane at 3/4 span length of the caudal fro. But the propulsive performance achieved is not what we expected with the given deflexion mode.

  4. Employing exergy-optimized pin fins in the design of an absorber in a solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Nwosu, Nwachukwu P. [National Centre for Energy Research and Development (NCERD) and Department of Mechanical Engineering, University of Nigeria, Nsukka (UNN) (Nigeria)

    2010-02-15

    Fins serve as heat transfer augmentation features in solar air heaters; however, they increase pressure drop in flow channels. Pin fins are relatively good heat transfer augmentation features with superior aerodynamic performance, and as a result find application in some solar air heaters. The exergy optimization method is employed in sizing the pin fin. Results indicate that high efficiency of the optimized fin improves the heat absorption and dissipation potential of a solar air heater. With optimum fin efficiency and superior absorptive coating quality, useful energy losses can be minimized. Some important observations pertinent in design are made. (author)

  5. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  6. The influence of the Prandtl number on the thermal performance of tubes with the separation and reattachment enhancement mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.; Arman, B.

    1992-08-01

    This paper demonstrates that the heat-transfer performance of an enhanced tube with transverse, rectangular disruptions can be predicted with a numerical modeling method, an accomplishment not previously achieved. This computer code is then used to determine the influence of the Prandtl number. The numerical simulation demonstrated that six distinct regions exist: the three rib surfaces, the upstream and downstream recirculation regions, and the boundary-layer development zone. Three zones dominate the thermal performance: the rib top and downstream faces and the downstream recirculation zone. The thermal performance at the rib region begins to dominate tile overall performance as the Prandtl number becomes large. The contribution from the downstream recirculation zone becomes more important and dominates for low Prandtl number fluids such as air. The Reynolds number dependence at the rib region and the downstream recirculation zone is similar to that for reattaching flows with exponents in the 0.65 to 0.75 range. The location of the maximum in the recirculation moves closer to the rib with increasing Reynolds and Prandtl numbers and is bounded upstream by the location of the maximum wall shear stress and downstream by the reattachment length. The high turbulence level near the surface in this region is responsible for the heat-transfer enhancement.

  7. The influence of the Prandtl number on the thermal performance of tubes with the separation and reattachment enhancement mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J.; Arman, B.

    1992-01-01

    This paper demonstrates that the heat-transfer performance of an enhanced tube with transverse, rectangular disruptions can be predicted with a numerical modeling method, an accomplishment not previously achieved. This computer code is then used to determine the influence of the Prandtl number. The numerical simulation demonstrated that six distinct regions exist: the three rib surfaces, the upstream and downstream recirculation regions, and the boundary-layer development zone. Three zones dominate the thermal performance: the rib top and downstream faces and the downstream recirculation zone. The thermal performance at the rib region begins to dominate tile overall performance as the Prandtl number becomes large. The contribution from the downstream recirculation zone becomes more important and dominates for low Prandtl number fluids such as air. The Reynolds number dependence at the rib region and the downstream recirculation zone is similar to that for reattaching flows with exponents in the 0.65 to 0.75 range. The location of the maximum in the recirculation moves closer to the rib with increasing Reynolds and Prandtl numbers and is bounded upstream by the location of the maximum wall shear stress and downstream by the reattachment length. The high turbulence level near the surface in this region is responsible for the heat-transfer enhancement.

  8. 高效复合强化换热器的管程性能%Tube side performance of new efficient composite enhanced heat exchanger

    Institute of Scientific and Technical Information of China (English)

    朱冬生; 安冬旭; 李霞; 张立振; 朱辉; 于腾祥

    2014-01-01

    通过搭建内螺纹扭曲椭圆管复合强化管换热器传热与压降性能测试平台,对内螺纹扭曲椭圆管复合强化管换热器的管程传热和流阻性能进行了实验研究,以实验数据为基础拟合得到其对流传热系数和流动摩擦阻力系数与管内流体Reynolds数的计算准则关系式,将内螺纹扭曲椭圆管与光滑圆管、内螺纹圆管、光滑扭曲管的管程传热、流阻以及综合性能进行对比分析,结果显示内螺纹扭曲管流动阻力略高于其他类型的换热管,传热效果和综合性能明显优于其他类型换热管。内螺纹扭曲管作为一种内螺纹和扭曲扁管强化传热技术的叠加技术,强化传热效果明显,具有重要的工程应用价值。%By building a platform for testing heat transfer and pressure drop performance, the thermal performance and flow resistance on the tube side of an internally ribbed twisted tube heat exchanger are examined. Based on the experimental result, correlations for the heat transfer coefficient and friction factor with tube side Reynolds number are obtained. This paper compares and analyzes the heat transfer, pressure drop and comprehensive performance of internally ribbed twisted tube, smooth twisted tube, internally ribbed circular tube, and general smooth tube with similar geometric parameters. The results show that although the internally ribbed twisted tube gives slightly higher flow resistance, it presents the highest heat transfer coefficient and comprehensive performance among these tubes. The coupled enhancement effects for heat transfer resulted from internal rib and twisted tube are obvious, and this structure will be widely used in the industry.

  9. Characterization of strained silicon FinFETs and the integration of a piezoelectric layer

    NARCIS (Netherlands)

    Kaleli, Buket

    2013-01-01

    Strain is often applied in semiconductor technology to improve the device performance in a field effect transistor (FET). However, it increases the off-state current as well. In this work, we investigated so-called silicon-on-insulator (SOI) fin-shaped field-effect transistors (FinFETs) and the effe

  10. Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness

    International Nuclear Information System (INIS)

    Highlights: • Variable fin tip angle significantly effect the velocity and temperature distribution. • Significant gain in the thermal performance with decrease in the friction factor. • Variable fin tip angle must be considered an important parameter in designing finned annulus. - Abstract: The analysis of fully developed laminar convective heat transfer in an innovate design of a finned double-pipe heat exchanger (DPHE) with longitudinal fins of variable thickness of the tip subjected to the constant heat transfer rate boundary conditions is investigated here. The tip thickness is controlled by the ratio of tip to base angles as a parameter whose values varying from 0 to 1 correspond to the fin shapes varying from the triangular to the rectangular cross-section. Upto the knowledge of the authors, this parameter is being introduced for the first time in the literature. Discontinuous Galerkin finite element method (DG-FEM) has been employed in the present work. The overall performance of the proposed DPHE has been investigated by considering the friction factor, the Nusselt number and the j-factor. Upto 178% gain in the Nusselt number and 89% gain in the j-factor have been achieved relative to the rectangular cross-section. Such gains relative to the triangular cross-section are respectively 9.5% and 19%. The results indicate that the newly introduced parameter the ratio of tip to base angles has proved to play significant role in the design of a double-pipe heat exchanger in reducing the cost, weight and frictional loss, in improving the heat transfer rate and making the exchanger energy-efficient. Therefore, it must be considered as an important design parameter for heat exchanger design

  11. Al current collector surface treatment and carbon nano tubes influences on Carbon / Carbon super-capacitors performances

    Energy Technology Data Exchange (ETDEWEB)

    Portet, C.; Taberna, P.L.; Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, 31 - Toulouse (France)

    2004-07-01

    Performances of 4 cm{sup 2} carbon/carbon super-capacitors cells using Al current collectors foils in organic electrolyte are presented; the improvement of electrode material has been investigated. In a first part, a surface treatment of the Al current collector is proposed in order to improve contact surface between the current collector and the active material leading to an internal resistance decrease. The process consists in an etching of the Al foil and is followed by a carbonaceous sol-gel deposit. Galvano-static cycling and Electrochemical Impedance Spectroscopy measurements of super-capacitors all assembled with treated Al foil were tested over 10,000 cycles: an ESR of 0.5 {omega} cm{sup 2} and a capacitance of 95 F g{sup -1} of activated carbon are obtained and performances remain stable during cycling. The second part is devoted to the study of Carbon Nano Tubes (CNTs) adding into the active material on the performances of super-capacitors. A content of 15% of CNTs appears to be the best composition; the ESR is 0.4 {omega} cm{sup 2} (20% lowered as compared to a cell using activated carbon based electrode) and the capacitance remain high 93 F g{sup -1} of carbonaceous active material. (authors)

  12. Physical Scaling Limits of FinFET Structure: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Gaurav Saini

    2011-03-01

    Full Text Available In this work an attempt has been made to analyze the scaling limits of Double Gate (DG underlap andTriple Gate (TG overlap FinFET structure using 2D and 3D computer simulations respectively. Toanalyze the scaling limits of FinFET structure, simulations are performed using three variables: finthickness,fin-height and gate-length. From 2D simulation of DG FinFET, it is found that the gate-length(L and fin-thickness (Tfin ratio plays a key role while deciding the performance of the device. DrainInduced Barrier Lowering (DIBL and Subthreshold Swing (SS increase abruptly when (L/Tfin ratio goesbelow 1.5. So, there will be a trade-off in between SCEs and on- current of the device since on-off currentratio is found to be high at small dimensions. From 3D simulation study on TG FinFET, It is found thatboth fin-thickness (Tfin and fin-height (Hfin can control the SCEs. However, Tfin is found to be moredominant parameter than Hfin while deciding the SCEs. DIBL and SS increase as (Leff/Tfin ratiodecreases. The (Leff/Tfin ratio can be reduced below 1.5 unlike DG FinFET for the same SCEs. However,as this ratio approaches to 1, the SCEs can go beyond acceptable limits for TG FinFET structure. Therelative ratio of Hfin and Tfin should be maximum at a given Tfin and Leff to get maximum on-current perunit width. However, increasing Hfin degrades the fin stability and degrades SCEs.

  13. Eustachian tube function in children after insertion of ventilation tubes.

    NARCIS (Netherlands)

    Heerbeek, N. van; Ingels, K.J.A.O.; Snik, A.F.M.; Zielhuis, G.A.

    2001-01-01

    This study was performed to assess the effect of the insertion of ventilation tubes and the subsequent aeration of the middle ear on eustachian tube (ET) function in children. Manometric ET function tests were performed repeatedly for 3 months after the placement of ventilation tubes in 83 children

  14. NUMERICAL STUDY ON FLOW DISTRIBUTION IN PLATE-FIN HEAT EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠

    2003-01-01

    Objective To investigate the flow distribution in plate-fin heat exchangers and optimize the design of header configuration for plate-fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate-fin heat exchangers were investigated by CFD. The second header configuration with a two-stage-distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate-fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate-fin heat exchangers.

  15. Flow topology, heat transfer characteristic and thermal performance in a circular tube heat exchanger inserted with punched delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Boonloi, Amnart [College of Industrial Technology, Bangkok (Thailand); Jedsadaratanachai, Withada [Faculty of Engineering, Bangkok (Thailand)

    2016-01-15

    To improve the heat transfer rate and thermal performance, the punched delta winglet vortex generators, DWVGs, were inserted in the middle of the circular tube heat exchanger. The effects of the flow attack angles and the flow directions were investigated numerically for the Reynolds number Re = 100 – 2000. The finite volume method and the SIMPLE algorithm were used to study. The results are reported in terms of the flow structure, heat transfer behavior and thermal performance evaluation and also compared with the smooth tube with no vortex generators. As the numerical results, the use of the DWVGs in the tube can improve the heat transfer rate and thermal performance by creating the vortex flow through the tested section. The rise of the flow attack angle results in the increasing strength of the vortex flows. The flow attack angle of 25 .deg. performs the highest heat transfer rate and thermal performance, while the flow attack angle of 0 .deg. gives the reversed results. The computational results reveal that the optimum thermal enhancement factor is around 2.80 at Re = 2000, α = 25 .deg., with the winglet tip pointing downstream. The correlations on both the Nusselt number ratio and friction factor ratio for the DWVG in the tube heat exchanger are presented.

  16. Flow topology, heat transfer characteristic and thermal performance in a circular tube heat exchanger inserted with punched delta winglet vortex generators

    International Nuclear Information System (INIS)

    To improve the heat transfer rate and thermal performance, the punched delta winglet vortex generators, DWVGs, were inserted in the middle of the circular tube heat exchanger. The effects of the flow attack angles and the flow directions were investigated numerically for the Reynolds number Re = 100 – 2000. The finite volume method and the SIMPLE algorithm were used to study. The results are reported in terms of the flow structure, heat transfer behavior and thermal performance evaluation and also compared with the smooth tube with no vortex generators. As the numerical results, the use of the DWVGs in the tube can improve the heat transfer rate and thermal performance by creating the vortex flow through the tested section. The rise of the flow attack angle results in the increasing strength of the vortex flows. The flow attack angle of 25 .deg. performs the highest heat transfer rate and thermal performance, while the flow attack angle of 0 .deg. gives the reversed results. The computational results reveal that the optimum thermal enhancement factor is around 2.80 at Re = 2000, α = 25 .deg., with the winglet tip pointing downstream. The correlations on both the Nusselt number ratio and friction factor ratio for the DWVG in the tube heat exchanger are presented

  17. Negative effect of smoking on the performance of the QuantiFERON TB gold in tube test

    Directory of Open Access Journals (Sweden)

    Aabye Martine G

    2012-12-01

    Full Text Available Abstract Background False negative and indeterminate Interferon Gamma Release Assay (IGRA results are a well documented problem. Cigarette smoking is known to increase the risk of tuberculosis (TB and to impair Interferon-gamma (IFN-γ responses to antigenic challenge, but the impact of smoking on IGRA performance is not known. The aim of this study was to evaluate the effect of smoking on IGRA performance in TB patients in a low and high TB prevalence setting respectively. Methods Patients with confirmed TB from Denmark (DK, n = 34; 20 smokers and Tanzania (TZ, n = 172; 23 smokers were tested with the QuantiFERON-TB Gold In tube (QFT. Median IFN-γ level in smokers and non smokers were compared and smoking was analysed as a risk factor for false negative and indeterminate QFT results. Results Smokers from both DK and TZ had lower IFN-γ antigen responses (median 0.9 vs. 4.2 IU/ml, p = 0.04 and 0.4 vs. 1.6, p  Conclusions Cigarette smoking was associated with false negative and indeterminate IGRA results in both a high and a low TB endemic setting independent of HIV status.

  18. Gold-functionalized stainless-steel wire and tube for fiber-in-tube solid-phase microextraction coupled to high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Bu, Yanan; Feng, Juanjuan; Sun, Min; Zhou, Changli; Luo, Chuannan

    2016-03-01

    A fiber-in-tube solid-phase microextraction device based on a gold-functionalized stainless-steel wire and tube was developed and characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. In combination with high-performance liquid chromatography, it was evaluated using six polycyclic aromatic hydrocarbons as model analytes. Important parameters including sampling rate, sample volume, organic solvent content and desorption time were investigated. Under optimized conditions, an online analysis method was established. The linearity was in the range of 0.15-50 μg/L with correlation coefficients ranging from 0.9989 to 0.9999, and limits of detection ranged from 0.05 to 0.1 μg/L. The method was applied to determine model analytes in mosquito-repellent incense ash and river water samples, with recoveries in the range of 85-120%. PMID:26681645

  19. QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting

    DEFF Research Database (Denmark)

    Rose, Michala Vaaben; Kimaro, Godfather; Nissen, Thomas N;

    2012-01-01

    To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with...... confirmed TB in Tanzania....

  20. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler

    NARCIS (Netherlands)

    Pang, Xiaomin; Dai, Wei; Wang, Xiaotao; Vanapalli, S.; Luo, Ercang

    2016-01-01

    Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K c

  1. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  2. Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC Reflector(C < 1

    Directory of Open Access Journals (Sweden)

    Yuehong Su

    2012-04-01

    Full Text Available Evacuated tube solar water heater systems are widely used in China due to their high thermal efficiency, simple construction requirements, and low manufacturing costs. CPC evacuated tube solar water heaters with a geometrical concentration ratio C of less than one are rare. A comparison of the experimental rig of evacuated tube solar water heater systems with and without a mini-CPC reflector was set up, with a series of experiments done in Hefei (31°53'N, 117°15'E, China. The first and second laws of thermodynamics were used to analyze and contrast their thermal performance. The water in the tank was heated from 26.9 to 55, 65, 75, 85, and 95 °C. Two types of solar water heater systems were used, and the data gathered for two days were compared. The results show that when attaining low temperature water, the evacuated tube solar water heater system without a mini-CPC reflector has higher thermal and exergy efficiencies than the system with a mini-CPC reflector, including the average and immediate values. On the other hand, when attaining high temperature water, the system with a mini-CPC reflector has higher thermal and exergy efficiencies than the other one. The comparison presents the advantages of evacuated tube solar water heater systems with and without a mini-CPC reflector, which can be offered as a reference when choosing which solar water system to use for actual applications.

  3. A comparison of two formulations of the fin efficiency for straight fins

    Institute of Scientific and Technical Information of China (English)

    Ebrahim Momoniat

    2012-01-01

    A formulation of the fin efficiency based on Newton's law of cooling is compared with a formulation based on a ratio of heat transferred from the fin surface to the surrounding fluid to the heat conducted through the base.The first formulation requires that the solution of the nonlinear fin equations for constant heat transfer coefficient and constant thermal conductivity is known,whilst the second formulation of the fin efficiency requires only that a first integral of the model equation is known.This paper shows the first formulation of the fin efficiency contains approximation errors as only power series and approximate solutions to the nonlinear fin equations have been determined.The second formulation of the fin efficiency is exact when the first integrals can be determined.

  4. A comparison of two formulations of the fin efficiency for straight fins

    Science.gov (United States)

    Momoniat, Ebrahim

    2012-04-01

    A formulation of the fin efficiency based on Newton's law of cooling is compared with a formulation based on a ratio of heat transferred from the fin surface to the surrounding fluid to the heat conducted through the base. The first formulation requires that the solution of the nonlinear fin equations for constant heat transfer coefficient and constant thermal conductivity is known, whilst the second formulation of the fin efficiency requires only that a first integral of the model equation is known. This paper shows the first formulation of the fin efficiency contains approximation errors as only power series and approximate solutions to the nonlinear fin equations have been determined. The second formulation of the fin efficiency is exact when the first integrals can be determined.

  5. Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cycle for Use in Geothermal Power Plant

    Directory of Open Access Journals (Sweden)

    Haile Araya Nigusse

    2014-08-01

    Full Text Available The global energy demand increases with the economic growth and population rise. Most electrical power is currently generated by conventional methods from fossil fuels. Despite the high energy demand, the conventional energy resources such as fossil fuels have been declining. In addition to this harmful combustion byproducts are resulting global warming. However, the increase of environmental concerns and energy crisis can be minimized by sustainable utilization of the low to medium temperature heat resources. The Organic Rankine Cycle power plant is a very effective option for utilization of low grade heat sources for power generation. Heat exchangers are the main components of the Organic Rankine Cycle power plant which receives heat energy from the heat source to evaporate and condense the low boiling temperature organic working fluid which in turn drives the turbine to generate power. This paper presents a simplified approach to the design, fabrication and performance assessment of a shell tube heat exchanger designed for condenser in a model Organic Rankine Cycle geothermal power plant. The design involved sizing of heat exchanger (condenser using the LMTD method based on an expected heat transfer rate. The heat exchanger of the model power plant was tested in which hot water simulated geothermal brine. The results of the experiment indicated that the heat exchanger is thermally suitable for the condenser of the model power plant.

  6. Performance of a 4 Kelvin pulse-tube cooled cryostat with dc SQUID amplifiers for bolometric detector testing

    CERN Document Server

    Barron, Darcy; Keating, Brian; Quillin, Ron; Stebor, Nathan; Wilson, Brandon

    2013-01-01

    The latest generation of cosmic microwave background (CMB) telescopes is searching for the undetected faint signature of gravitational waves from inflation in the polarized signal of the CMB. To achieve the unprecedented levels of sensitivity required, these experiments use arrays of superconducting Transition Edge Sensor (TES) bolometers that are cooled to sub-Kelvin temperatures for photon-noise limited performance. These TES detectors are read out using low- noise SQUID amplifiers. To rapidly test these detectors and similar devices in a laboratory setting, we constructed a cryogenic refrigeration chain consisting of a commercial two-stage pulse-tube cooler, with a base temperature of 3 K, and a closed-cycle 3He/4He/3He sorption cooler, with a base temperature of 220 mK. A commercial dc SQUID system, with sensors cooled to 4 K, was used as a highly-sensitive cryogenic ammeter. Due to the extreme sensitivity of SQUIDs to changing magnetic fields, there are several challenges involving cooling them with puls...

  7. A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator

    Directory of Open Access Journals (Sweden)

    Hua-Shu Dou

    2015-01-01

    Full Text Available This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper and fluid (air areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant.

  8. A numerical method for PCM-based pin fin heat sinks optimization

    International Nuclear Information System (INIS)

    Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures

  9. FIN 415 UOP Course Tutorial/TutorialRank

    OpenAIRE

    apj

    2015-01-01

    For more course tutorials visit www.tutorialrank.com Tutorial Purchased: 6 Times, Rating: A+   FIN 415 Week 1 Individual Assignment Risk Management Overview Paper FIN 415 Week 2 Team Assignment Risk Management Identification and Assessment Paper FIN 415 Week 3 Individual Assignment Risk Management Techniques Paper FIN 415 Week 3 Individual Assignment Risk Management Problem, Set I FIN 415 Week 3 Team Assignment Risk Measurement Summary FIN 415 Week 4 I...

  10. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    Science.gov (United States)

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people.

  11. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    Science.gov (United States)

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. PMID:24835340

  12. Fin shape thermal optimization using Bejan's constuctal theory

    CERN Document Server

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  13. Enteral Tube Feeding and Pneumonia

    Science.gov (United States)

    Gray, David Sheridan; Kimmel, David

    2006-01-01

    To determine the effects of enteral tube feeding on the incidence of pneumonia, we performed a retrospective review of all clients at our institution who had gastrostomy or jejunostomy tubes placed over a 10-year period. Ninety-three subjects had a history of pneumonia before feeding tube insertion. Eighty had gastrostomy and 13, jejunostomy…

  14. Computational heat transfer analysis and combined ANN–GA optimization of hollow cylindrical pin fin on a vertical base plate

    Indian Academy of Sciences (India)

    C Balachandar; S Arunkumar; M Venkatesan

    2015-09-01

    In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS FLUENT© . The hollow cylindrical pin fins are arranged inline. The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial Neural Network (ANN) by training the network based on the results of numerical simulation. The trained ANN is used to analyse the fin in terms of enhanced heat transfer and weight reduction when compared to solid pin fin. Optimization of the hollow cylindrical pin fin parameters to obtain maximum heat transfer from the base plate is carried out using Genetic Algorithm (GA) applied on the trained neural network. The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about 90% when compared to solid cylindrical pin fins.

  15. The use of pelvic fins for benthic locomotion during foraging behavior in Potamotrygon motoro (Chondrichthyes: Potamotrygonidae

    Directory of Open Access Journals (Sweden)

    Akemi Shibuya

    2015-06-01

    Full Text Available Synchronized bipedal movements of the pelvic fins provide propulsion (punting during displacement on the substrate in batoids with benthic locomotion. In skates (Rajidae this mechanism is mainly generated by the crural cartilages. Although lacking these anatomical structures, some stingray species show modifications of their pelvic fins to aid in benthic locomotion. This study describes the use of the pelvic fins for locomotory performance and body re-orientation in the freshwater stingray Potamotrygon motoro (Müller & Henle, 1841 during foraging. Pelvic fin movements of juvenile individuals of P. motoro were recorded in ventral view by a high-speed camera at 250-500 fields/s-1. Potamotrygon motoro presented synchronous, alternating and unilateral movements of the pelvic fins, similar to those reported in skates. Synchronous movements were employed during straightforward motion for pushing the body off the substrate as well as for strike feeding, whereas unilateral movements were used to maneuver the body to the right or left during both locomotion and prey capture. Alternating movements of the pelvic fins are similar to bipedal movements in terrestrial and semi-aquatic tetrapods. The pelvic fins showed coordinated movements during feeding even when stationary, indicating that they have an important function in maintaining body posture (station holding during prey capture and manipulation. The use of pelvic fins during prey stalking may be advantageous because it results in less substrate disturbance when compared to movements generated by pectoral fin undulation. The range of pelvic fin movements indicates more complex control and coordination of the pelvic radial muscles.

  16. Design sensitivity analysis of a plate-finned air-cooled condenser for waste heat recovery ORCs

    OpenAIRE

    Kaya, Alihan; Lazova, Marija; De Paepe, Michel

    2015-01-01

    The study is related to the design sensitivity analysis of a plate-finned tube bundle V-shaped air-cooled condenser design problem for a range of representative low-temperature waste heat recovery Organic Rankine Cycle (ORC) cases. An iterative design model is implemented which reveals the thermodynamic and geometric design error margins that occur when different in-tube prediction methods are used. 19 condensation heat transfer correlations are used simultaneously within arrays of geometric ...

  17. ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

    Directory of Open Access Journals (Sweden)

    Withada Jedsadaratanachai

    2013-01-01

    Full Text Available A mathematical study has been carried out to examine periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall circular tube with 45° in-line V-discrete baffles. The computations are based on the Finite Volume Method (FVM and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the diameter of the circular tube ranging from 100 to 1200. To generate main streamwise vortex flows through the tested section, V-discrete baffles with an attack angle of 45° are mounted in tandem with in-line arrangement and pointing downstream (V-Downstream inserted in the middle of the tested tube. Effects of different Blockage Ratio (b/D, BR and Pitch Ratio (P/D, PR on heat transfer and pressure drop in the tube are studied. It is apparent that the main vortex flows can induce impinging flows on a wall of the interbaffle cavity leading to extreme increases in heat transfer rate over the circular tube. In addition, the rise in the BR and reduce of PR results in the increase in the Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is around 2.5 at BR = 0.15, PR = 1 and Re = 1200.

  18. Design & modelling of a composite rudderless aeroelastic fin structure

    OpenAIRE

    Trapani, Matteo

    2010-01-01

    This thesis presents the study of a gapless and rudderless aeroelastic fin (GRAF) to enhance the directional stability and controllability of an aircraft. The GRAF concept was proposed and developed in the wake of previous research, targeted to improve flight performance and manoeuvrability, and to reduce fuel consumption and airframe weight. The study involved the subjects of aerodynamics, structural design and analysis, and flight mechanics. The work includes conceptual de...

  19. Parametric study of propeller boss cap fins for container ships

    OpenAIRE

    Lim Sang-Seop; Kim Tae-Won; Lee Dong-Myung; Kang Chung-Gil; Kim Soo-Young

    2014-01-01

    The global price of oil, which is both finite and limited in quantity, has been rising steadily because of the increasing requirements for energy in both developing and developed countries. Furthermore, regulations have been strengthened across all industries to address global warming. Many studies of hull resistance, propulsion and operation of ships have been performed to reduce fuel consumption and emissions. This study examined the design parameters of the propeller boss cap fin (PBCF) an...

  20. 一种单管强化传热的新型测试装置%Research on the Performance of Heat Transfer Device in Enhanced Tube

    Institute of Scientific and Technical Information of China (English)

    密洁霞; 陶乐仁; 郑志皋; 魏义平; 程建

    2013-01-01

    Building a new test device of heat transfer performance in the enhanced tube ,it can be used for the vaporing and con-densing in tube ,the vaporing and condensing outside tube .Heat transfer coefficient of refrigerant R 22 and R410 A was analysed in a inner threaded copper pipe with φ9.52mm,3.4m of length,when the evaporation temperature is separately 5℃and 10℃,the condensing temperature is separately 35℃and 40 ℃.Combined with the experimental principle ,this device can be performed on the heat transfer test of the enhanced tube in different refrigerants ,it provides basis for the development of the enhanced tube .%  搭建一种单管强化传热的新型测试装置,能应用于干式蒸发、管内冷凝、管外蒸发和管外冷凝。分析了矱9.52 mm,长度为3.4m的内螺纹铜管在蒸发温度分别是5℃和10℃,冷凝温度分别是35℃和40℃时,制冷剂R22、R410A的传热系数,结合实验原理,说明本装置可以完成对不同制冷剂的单管传热性能的测试,为高效换热管的开发提供依据。

  1. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  2. Development of a high performance parallel computing platform and its use in the study of nanostructures: Clusters, sheets and tubes

    Science.gov (United States)

    Gowtham, S.

    Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and Gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nanoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamO n clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these clusters starting from Ga3O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental results of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, RAMA, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolution, the RAMA cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark

  3. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  4. Bionic asymmetry: from amiiform fish to undulating robotic fins

    Institute of Scientific and Technical Information of China (English)

    HU TianJiang; SHEN LinCheng; LOW K.H.

    2009-01-01

    Similar to bionic non-smooth which has been successfully applied in anti-resistance and anti-adhesion, bionic asymmetry is also an inherent property of biological systems and is worth exploring for con-ceivable pragmatic applications. Therefore, bionic asymmetry for undulations is of main interest in this paper. We initially investigate bionic asymmetry with a case study of the undulating robotic fin, RoboGnilos, which evolved from the long dorsal fin of Gymnarchus niloticus in the amiiforrn mode. Since the performance of the pre-existing undulating fins is hardly satisfactory, we obtain bionic in-spirations of undulatory asymmetry through observations and measurements on the specimen of G. niloticus, to improve upon the performance. Consequently, the newly acquired innovation for bionic asymmetry is incorporated into the previously derived kinematics model, and also applied to the ex-perimental prototype. Both computational and experimental results verify that bionic asymmetric un-dulation generates better propulsion performance (in terms of linear velocity and efficiency) than the traditional symmetric modes with the same undulatory parameters.

  5. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.

    Science.gov (United States)

    Lee, Raymond Teck Ho; Knapik, Ela W; Thiery, Jean Paul; Carney, Thomas J

    2013-07-01

    The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ectomesenchyme. By contrast, it has been suggested that anamniotes might generate derivatives of both classes at all axial levels, with trunk neural crest generating fin osteoblasts, scale mineral-forming cells and connective tissue cells; however, this has not been fully tested. The cause and evolutionary significance of this cranial/trunk dichotomy, and its absence in anamniotes, are debated. Recent experiments have disputed the contribution of fish trunk neural crest to fin osteoblasts and scale mineral-forming cells. This prompted us to test the contribution of anamniote trunk neural crest to fin connective tissue cells. Using genetics-based lineage tracing in zebrafish, we find that these fin mesenchyme cells derive entirely from the mesoderm and that neural crest makes no contribution. Furthermore, contrary to previous suggestions, larval fin mesenchyme cells do not generate the skeletogenic cells of the adult fin, but persist to form fibroblasts associated with adult fin rays. Our data demonstrate that zebrafish trunk neural crest does not generate ectomesenchymal derivatives and challenge long-held ideas about trunk neural crest fate. These findings have important implications for the ontogeny and evolution of the neural crest.

  6. Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem

    Directory of Open Access Journals (Sweden)

    R. J. Moitsheki

    2012-01-01

    Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.

  7. Performance comparison between three intraoral image receptors of different technology at a variety of tube potential, tube current and exposure time settings using a stepwedge phantom

    OpenAIRE

    Elli Katsoni; Ioannis A. Tsalafoutas; Panagiotis Gritzalis; Evripidis Stefanou; Evangelos Georgiou; Emmanuel Yakoumakis

    2011-01-01

    Purpose: To comparatively evaluate the per-formance of three intraoral image receptors of different technology when exposed to different X-ray beam spectra, dose and dose rate levels using a stepwedge phantom. Materials and methods: The intraoral radiographic receptors evaluated were: the Kodak Insight F speed class film, the Kodak RVG 6000, and the Duerr Vis-tascan Combi PSP system. A dental quality control phantom made of Plexiglas, containing an aluminium stepwedge with 12 steps and 7 hole...

  8. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  9. Studying the effect of the shape parameters on the performance of the darrieus wind turbine using the multiple double disk stream tube theory

    International Nuclear Information System (INIS)

    The performance of the Darrieus vertical axis turbine is comparable with that of the more common horizontal axis machines. It has a number of aerodynamic and structural advantages over HAWTS. However the darrieus turbines are not self-starting at low wind speeds which is a considerable disadvantage for a simple small scale installation. Generally, papers concerning vertical axis turbine do not study the behavior of the rotor at low tip speed ratios. Therefore they do not deal with the self starting problems. A number of analytical methods were investigated to see whether they could predict the starting performance of vertical axis turbines. The chosen methods and 'actuator disc theory' for multiple stream tubes. In this paper the multiple stream tube model is applied using two discs in tandem. The computational analysis of all models simulates the blade aerodynamics throughout the full range of incidence from 180 degree centigrade. The effects of varying various geometric parameters of the windmill upon the performance of the rotor are investigated to find a design with improved self starting characteristics. The best agreement between theory and experiment was obtained using the multiple stream tube (double disc) models.(Author)

  10. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method.

    Science.gov (United States)

    Li, Ningyu; Su, Yumin

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis. PMID:27478363

  11. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Science.gov (United States)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  12. Experimental Analysis Of Heat Transfer From Square Perforated Fins In Staggered Arrangement

    Directory of Open Access Journals (Sweden)

    Siddiqui. M. Abdullah

    2015-08-01

    Full Text Available This project gives the experimental analysis of heat transfer over a flat surface equipped with Square perforated pin fins in staggered arrangement in a rectangular channel. The Fin dimensions are 100mm in height & 25mm in width. The range of Reynolds number is fixed & about 13,500– 42,000, the clearance ratio (C/H 0, 0.33 and 1, the inter-fin spacing ratio (Sy /D 1.208, 1.524, 1.944 and 3.417. Sy i.e. stream wise distance is varies and Sx i.e. span wise distance is constant. The friction factor, enhancement efficiency and heat transfer correlate in equations with each other. Here we are comparing Square pin fins with cylindrical pin fins. Staggered arrangement and perforation will enhance the heat transfer rate. Clearance ratio and inter-fin spacing ratio affect on Enhancement efficiency. Both lower clearance ratio and lower inter-fin spacing ratio and comparatively lower Reynolds number give higher thermal performance. Friction factor & Nusselt number are Key parameter which relates with efficiency enhancement and heat transfer rate.

  13. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Directory of Open Access Journals (Sweden)

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  14. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method.

    Science.gov (United States)

    Li, Ningyu; Su, Yumin

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis.

  15. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method

    Directory of Open Access Journals (Sweden)

    Ningyu Li

    2016-01-01

    Full Text Available Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis.

  16. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method

    Science.gov (United States)

    Li, Ningyu; Su, Yumin

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis. PMID:27478363

  17. Thermal management of electronics using phase change material based pin fin heat sinks

    International Nuclear Information System (INIS)

    This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m2, was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.

  18. Three-dimensional structural analysis of the plate-fin heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, T.; Sou, T.

    1984-06-01

    The Brazed aluminum plate-fin heat exchanger is a complex structure consisting of a core, headers and nozzles. The core is built of many layers of flat parting sheets and corrugated fins, and is sealed by side bars. Stress patterns in this type of heat exchanger have so far not been accurately analyzed, due to the complexity of the structure. A three dimensional structural analysis of such a core-header-nozzle structure subject to internal pressure is performed herein, using the finite element method, in order to investigate the mechanical characteristics of the structure. In the analysis, the corrugated fin is modeled by an equivalent anisotropic continuum element, to save on the computational cost. The adequacy of the analysis is then verified by performing a strain measurement test on the actual plate-fin heat exchanger. On the basis of the analytical results, it becomes clear that some critical parts need special attention when designing such structures.

  19. Eddy current inspection of tubing

    International Nuclear Information System (INIS)

    The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)

  20. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  1. Isolated Fallopian Tube Torsion

    Directory of Open Access Journals (Sweden)

    S. Kardakis

    2013-01-01

    Full Text Available Isolated torsion of the Fallopian tube is a rare gynecological cause of acute lower abdominal pain, and diagnosis is difficult. There are no pathognomonic symptoms; clinical, imaging, or laboratory findings. A preoperative ultrasound showing tubular adnexal masses of heterogeneous echogenicity with cystic component is often present. Diagnosis can rarely be made before operation, and laparoscopy is necessary to establish the diagnosis. Unfortunately, surgery often is performed too late for tube conservation. Isolated Fallopian tube torsion should be suspected in case of acute pelvic pain, and prompt intervention is necessary.

  2. The numerical analysis of natural convective heat transfer around a pin-fin of air cooling module for electronic packaging applications

    International Nuclear Information System (INIS)

    In present study, the natural convective heat transfer around a pin-fin of an air cooling module for electronic devices was numerically analyzed with change of pin-fin shapes. The cross-sectional shape of the pin-fin was changed from the square(the reference shape) to the long rectangle with same cross-sectional area and height. The Nusselt numbers of outside surfaces of the pin-fin array was much higher than those of the inside surfaces. Of six case tests, the rectangle pin-fin which its aspect ratio was 2.56 had the best heat transfer performance.

  3. Research and Simulation of a flexible robotic fish tail fin propulsion system

    Directory of Open Access Journals (Sweden)

    Luo Hong Yu

    2016-01-01

    Full Text Available This article uses a flexible crescent caudal fin tuna as the research object, sets up the robot fish physical model ,researches the propulsion and advancing speed of the model, discusses forward speed, sliding and swing amplitude, frequency and phase to the flexible tail fin propulsive performance, and uses MATLAB to simulate, motion simulation is consistent with the way to achieve the real movement of the fish.

  4. Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific

    OpenAIRE

    Aguilar-Medrano, Rosalia; Frederich, Bruno; Eduardo F. Balart; De Luna, Efrain

    2013-01-01

    Fin shape strongly influences performance of locomotion across all swimming styles. In this study, we focused on the diversity of the pectoral fin morphology in damselfishes of the Eastern Pacific. Underwater observations and a review of literature allowed the characterization of ten behavioral groups. Territorial and non-territorial species were discriminated easily with traditional morphometrics. Five ecomorphological groups were recognized by geometric morphometric analyses. Geometric data...

  5. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-21

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  6. Numerical Modelling of Performance of R22 and R290 in Adiabatic Capillary Tubes Considering Metastable Two-Phase Region--Theoretical Model Description and Validation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guobing; ZHANG Yufeng; HAO Hong

    2005-01-01

    A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid and two-phase flow regions are considered in the model. In metastable two-phase region, superheated liquid is introduced into the metastable mixture viscosity and two methods are presented to evaluate it. The model is validated by comparing the predicted pressure and temperature profile and mass flow rate with several investigators′ experimental data of R22 and one of its alternatives R290 reported in literature. All of the predicted mass flow rates are within ±8% of measured values. Comparisons are also made between the present model and other investigators′ models or sizing correlation. The model can be used for design or simulation calculation of adiabatic capillary tubes.

  7. Percutaneous gastrostomy performed by radiologists using balloon replacement tubes. A simple interventional technique for the placement of nutritional catheters without endoscopy or surgery

    International Nuclear Information System (INIS)

    Patients afflicted with stenotic head and neck or esophageal tumors often require artificial enteral feeding. Frequently passage of an endoscope through the esophagus is impossible in these patients. Interventional, fluoroscopically assisted, percutaneous gastrostomy (PG) by balloon replacement tubes is a feasible and successful alternative to percutaneous endoscopic gastrostomy (PEG) and the method of choice in patients where the esophagus cannot be passed with an endoscope anymore. Technical success rate is very high and serious complications are rare. Radiological PG is a feasible, equivalent alternative to PEG also in all other patients. We recommend PG with balloon gastrostomy tubes in conjunction with gastropexy performed with three to four T-fasteners, which are left in place for seven days in order to prevent dislocation and leakage. (orig.)

  8. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  9. Indoor test for thermal performance of the GE TC-100 liquid solar collector eight- and ten-tube configuration. [Marshall Space Flight Center solar simulator

    Science.gov (United States)

    1979-01-01

    The thermal performance of a liquid solar collector was tested in eight- and ten-tube configurations under simulated conditions. A time constant test and an incident angle modifier test were also conducted to determine the transient and incident angle effects on the collector. Performance loss with accessory covers is demonstrated. The gross collector area is about 17.4 ft sq without manifold and 19.1 ft sq with manifold. The collector weight is approximately 60 pounds empty and 75 pounds with manifold.

  10. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  11. A Hybrid ARIMA-SVM Model on Predicting Finned Tube Evaporator Performance under Frosting Conditions%基于ARIMA-SVM模型的翅片管蒸发器结霜性能预测

    Institute of Scientific and Technical Information of China (English)

    黄彬彬; 谷波; 任能

    2009-01-01

    针对翅片管蒸发器结霜过程混杂着复杂的线性和非线性特征且测试数据受噪声干扰大,使用单一的模型无法对其性能进行预测的难题,建立了基于求和自回归移动平均(Autoregressive Integrated Moving Average,ARIMA)和支持向量机(Support Vector Machine,SVM)的翅片管蒸发器结霜性能组合预测模型.利用实验数据对模型进行了验证和评估,并与单一ARIMA模型和SVM模型做了对比分析.结果表明,基于ARIMA-SVM的组合预测模型能兼顾结霜过程的线性和非线性特征,具有良好的预测性能,并能够较精确地预测到翅片管蒸发器性能参数的转向点.

  12. Hegel y el fin del arte

    Directory of Open Access Journals (Sweden)

    Óscar Cubo Ugarte

    2010-03-01

    Full Text Available Uno de los puntos de mayor interés del pensamiento estético de Hegel procede de sus Lecciones de estética, y es aquel que afirma y tematiza el fin del arte. Para entender el sentido y el alcance de esta idea, presentamos en este trabajo el modo como Hegel trata el problema del arte dentro de su filosofía especulativa y en especial en sus Lecciones de Estética. Por medio de este proceso de contextualización rastreamos finalmente las distintas interpretaciones que se han producido en nuestros días acerca de la provocativa tesis del fin del arte y dejamos planteada también la cuestión del lugar que ocupa o puede ocupar el arte después del mencionado fin del arte.

  13. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    Microchannel heat sinks have been widely used in the field of thermo-fluids due to the rapid growth in technological applications which require high rates of heat transfer in relatively small spaces and volumes. In this work, a micro plate-fin heat sink is optimized parametrically, to minimize...... the thermal resistance and to maximize the cost performance of the heat sink. The width and the height of the microchannels, and the fin thickness are analytically optimized at a wide range of pumping power. Using an effective numeric test, the generated equations also discuss the optimum parameters at three...... sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead...

  14. Heat transfer and pressure drop performances of twisted oval tubes%扭曲椭圆管管内传热与压降性能的研究

    Institute of Scientific and Technical Information of China (English)

    朱冬生; 谭祥辉; 曾力丁

    2013-01-01

    通过建立扭曲椭圆管单管传热与压降性能测试平台,利用光滑圆管,对测试平台测试结果的准确性进行了验证,同时对扭曲椭圆管的传热以及压降性能进行了实验测试,以测试结果为基础,验证了数值计算模型的准确性.对不同几何尺寸的扭曲椭圆管单管传热与压力性能进行了数值计算,分析了换热管几何参数对传热与压降性能的影响,结果显示:扭曲椭圆管传热性能随着扭曲椭圆管长短轴比A/B的增大而增大,随着扭曲椭圆管扭距S的减小而增大.同时以数值计算结果为基础,拟合得到了8×103< Re<4×104,11.49< S/dh<19.84,1.65 <A/B <3.11范围内的传热因子以及摩擦系数计算通用准则关系式.为扭曲椭圆管换热器在工程实际中的应用提供了数据基础.%An experimental system for testing the heat transfer and pressure drop performances of twisted oval tube was established,and its reliability was verified with a smooth round tube. Then,the heat transfer and pressure drop performances of a twisted oval tube were tested with the system. Based on the experimental result, the turbulent model and grid system for numerically studying the heat transfer and pressure drop performances of twisted tubes were confirmed. The performances of twisted oval tubes with different geometrical parameters were obtained numerically. The influences of geometrical parameters such as axis ratio A/B and twist pitch S on the performances of the tubes were also analyzed. The experimental result shows that the testing system and the data reduction method are reliable. The numerical result shows that the bigger the A/B is,the higher the heat transfer factor and friction factor are, the smaller the 5 is, and the higher the heat transfer factor and friction factor are. The correlations for calculating the heat transfer factor and friction coefficient in the range of 8 × 103 < Re < 4 × 104 ,11.49 < S/dh < 19.84,1.65

  15. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  16. Performance analysis of cylindrical metal hydride beds with various heat exchange options

    International Nuclear Information System (INIS)

    Highlights: • 3D numerical model for the comparison of H2 uptake performances in MH reactors. • 4 options of heat exchange between heat transfer fluid and MH in cylindrical reactor compared. • Straight tube internal heat exchanger. • Helical coil internal heat exchanger. • External heat exchange without and with transversal fins in the MH reactor. - Abstract: A 3D numerical heat-and-mass transfer model was used for the comparison of H2 uptake performances of powdered cylindrical MH beds comprising MmNi4.6Al0.4 hydrogen storage material. The considered options of heat exchange between the MH and a heat transfer fluid included internal cooling using straight (I) or helically coiled (II) tubing, as well as external cooling of the MH bed without (III) and with (IV) transversal fins. The dynamic performances of these layouts were compared based on the numerical simulation. The effect of heat transfer coefficient was also analysed

  17. Prestaciones del Detector Central de Muones del Experimento CMS: las Camaras de Deriva y su Sistema de Trigger (Performance of the Central Muon Detector of the Experiment CMS: the Drift Tube Chambers and its Trigger System)

    CERN Document Server

    Muñoz, Carlos Villanueva

    2007-01-01

    Prestaciones del Detector Central de Muones del Experimento CMS: las Camaras de Deriva y su Sistema de Trigger (Performance of the Central Muon Detector of the Experiment CMS: the Drift Tube Chambers and its Trigger System)

  18. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  19. Experimental Observation of Two Phase Flow of R123 Inside a Herringbone Microfin Tube

    Institute of Scientific and Technical Information of China (English)

    Akio Miyara; Mohammad Ariful Islam; Yoshihiko Mizuta; Atsushi Kibe

    2003-01-01

    Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle β = 8°, 14° and 28° are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle β = 28° shows higher quantity of liquid droplets than others.

  20. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... endoscope (a thin, flexible tube with a tiny camera and light at the tip) inserted through the ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  1. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    OpenAIRE

    Lee, Moo-Yeon

    2012-01-01

    The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator) under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994) than that of the Kim model (2004) and the Jonse and Parker model (1975). This is because the prediction on the fros...

  2. Ear tube insertion

    Science.gov (United States)

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  3. Experimental study of condensation heat transfer in the presence of noncondensable gas on the vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yeong-Jun; Choi, Dong-Jae; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of); Kim, Sin [Chung-Ang University, Seoul (Korea, Republic of)

    2015-05-15

    The Passive Containment Cooling System (PCCS) that will be introduced in the next generation nuclear power plant removes released energy to containment through the condensation heat transfer phenomenon in the event of the loss of coolant accident(LOCA) or main steam line break(MSLB). The released steam is mixed with the air inside the containment and condensed on the tube bundle's outer surface of PCCS. In this study, an experimental study is performed to investigate the condensation heat transfer in the presence of noncondensable gas on vertical tube. Experiments were conducted using a tube with 1000 mm in length and 40 mm in outer diameter tube. The experimental data are obtained at pressure of 2, 3, 4 bar and the air mass fraction varied from 0.1 to 0.7. The experimental results are compared to the prediction of existing correlations. In a vertical tube with 40 mm in O.D. and 1000 mm in height, three sets of experiments to measure the condensation heat transfer coefficient are performed at 2, 3, 4 bar. Experimental results show that the condensation heat transfer coefficient reduces with an increase of the noncondensable mass fraction. The results are compared with the prediction of existing correlations by Uchida, Tagami and Dehbi. The compared result shows that these correlations underestimate the experimental results. That's because Uchida's and Tagami's correlations do not reflect all the effects of primary physical parameters and Dehbi's experiment did not maintain the uniform gas mixtures state inside chamber and has significant wall temperature gradient along the tube height. As further works, a new correlation will be proposed based on the experimental results. In addition, the heat transfer enhancement by using a finned tube is to be experimentally investigated.

  4. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  5. Finned-absorber solar collector

    Science.gov (United States)

    1980-01-01

    Report presents results of performance evaluation. Tests are part of continuing study of solar-heating systems and components for NASA and Department of Energy. Test data are presented as graphs and tables. Report also summarizes test procedures and mathematical analysis of results.

  6. Investigation of negative bias temperature instability dependence on fin width of silicon-on-insulator-fin-based field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Young, Chadwin D., E-mail: chadwin.young@utdallas.edu; Wang, Zhe [Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080 (United States); Neugroschel, Arnost [Department of Electrical and Computer Enginering, University of Florida, Gainesville, Florida 32611 (United States); Majumdar, Kausik; Matthews, Ken; Hobbs, Chris [SEMATECH, Albany, New York 12203 (United States)

    2015-01-21

    The fin width dependence of negative bias temperature instability (NBTI) of double-gate, fin-based p-type Field Effect Transistors (FinFETs) fabricated on silicon-on-insulator (SOI) wafers was investigated. The NBTI degradation increased as the fin width narrowed. To investigate this phenomenon, simulations of pre-stress conditions were employed to determine any differences in gate oxide field, fin band bending, and electric field profile as a function of the fin width. The simulation results were similar at a given gate stress bias, regardless of the fin width, although the threshold voltage was found to increase with decreasing fin width. Thus, the NBTI fin width dependence could not be explained from the pre-stress conditions. Different physics-based degradation models were evaluated using specific fin-based device structures with different biasing schemes to ascertain an appropriate model that best explains the measured NBTI dependence. A plausible cause is an accumulation of electrons that tunnel from the gate during stress into the floating SOI fin body. As the fin narrows, the sidewall device channel moves in closer proximity to the stored electrons, thereby inducing more band bending at the fin/dielectric interface, resulting in a higher electric field and hole concentration in this region during stress, which leads to more degradation. The data obtained in this work provide direct experimental proof of the effect of electron accumulation on the threshold voltage stability in FinFETs.

  7. Silicon LEDs in FinFET technology

    NARCIS (Netherlands)

    Piccolo, G.; Kuindersma, P.I.; Ragnarsson, L-A.; Hueting, R.J.E.; Collaert, N.; Schmitz, J.

    2014-01-01

    We present what to our best knowledge is the first forward operating silicon light-emitting diode (LED) in fin-FET technology. The results show near-infrared (NIR) emission around 1100 nm caused by band-to-band light emission in the silicon which is uniformly distributed across the lowly doped activ

  8. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough

    International Nuclear Information System (INIS)

    Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m2. • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments

  9. Fluctuating Behavior and Influential Factors in the Performance of the QuantiFERON-TB Gold In-Tube Assay in the Diagnosis of Tuberculosis

    OpenAIRE

    Lei Bao; Tao Li; Ni Diao; Yaojie Shen; Lingyun Shao; Ying Zhang; Shuihua Lu; Wenhong Zhang

    2015-01-01

    Background The QuantiFERON-TB Gold In-Tube (QFT-GIT) is a newly developed but widely used interferon-γ release assay for diagnosing tuberculosis (TB). However, research has not determined whether age or the use of an immune suppressive or anti-TB treatment influences this assay’s ability to detect TB. We assessed the QFT-GIT diagnostic performance for active tuberculosis (ATB) in children and adults in an endemic country and explored the effects of glucocorticoids and anti-TB therapy on the d...

  10. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  11. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  12. Exotic wakes of flapping fins

    DEFF Research Database (Denmark)

    Schnipper, Teis

    We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured, with unpreced......We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured......-speed and the strength ratio of the vortices formed at the foil’s leading and trailing edge. The simulated vortex particles and measured thickness variations in the soap film show similar behaviour which indicates that the soap film provides a good approximation the flow of a two-dimensional incompressible and Newtonian...

  13. Cooling Effect Improvement by Dimensional Modification of Annular Fins in Two Stage Reciprocating Compressor

    Directory of Open Access Journals (Sweden)

    Mr. Ashish D. Vasiyar,

    2014-05-01

    Full Text Available The Reciprocating Compressor fins are made from Aluminum alloy and it is provided for increase in contact area in convective heat transfer. Air cooling is a method of dissipating heat It works by making the object to be cooled have a larger surface area or have an increased flow of air over its surface. a fin is a surface that extends from an object to increase the rate of heat transfer to or from the environment by increasing convection. The aim of present work study is to prepare a finite element model of fin. The result of finite element model will be verified with experimental work with thermocouple. After comparing results of FEA model we can modify boundary condition, material shape & size for improvement in efficiency & cooling rate. It is possible to find optimum solution with FEA package ANSYS 14 used for modeling and analysis. Effectiveness of fin can be improved by changing geometry of fin. So after increase effectiveness it can increase cooling rate and minimize the time for cooling process of Reciprocating compressor. Aim of this work is increase effectiveness of the fin for best performance.

  14. Fin-tail coordination during escape and predatory behavior in larval zebrafish.

    Directory of Open Access Journals (Sweden)

    Phil McClenahan

    Full Text Available Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches.

  15. Pool boiling on surfaces with mini-fins and micro-cavities

    International Nuclear Information System (INIS)

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 – 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids – smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  16. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  17. Correlations Based on CFD and Their Applications in Optimization for Staggered and Parallel Plate Fin Heatsinks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Both parallel and staggered plate fin arrays have shown promise for use in high performance heatsinks regard of its individual manufacturing costs. The geometrical and operational parameters are very important to their cooling performance as heatsinks in practical applications. Fluent 5.0 commercial CFD (computational fluid dynamic) code is used to simulate the flow and heat transfer of those heatsinks of different realistic parameters. Based on those simulations, two correlations, concerning Nusselt number and friction factor as the functions of geometrical and operational parameters, FB (fin-base area ratio), PR (ratio of spanwise pitch to lengthwise pitch) and Re, were developed. From the both, the performance comparisons for optimizing geometrical and operational parameters of a fixed dimension heatsink are shown at constant pumping power and constant thermal resistance. Several optimized parameters were obtained with the discussion to various goals in real application. It demonstrates that in some particular situations, the parallel plate fin heatsinks can out perform the staggered ones.

  18. The impact of process variations on input impedance and mitigation using a circuit technique in FinFET-based LNA

    International Nuclear Information System (INIS)

    The effect of process variations of a FinFET-based low noise amplifier (LNA) are mitigated by using the device in an independently driven mode, i.e. an independently driven double gate (IDDG) FinFET. A 45 nm gate length IDDG FinFET-based cascoded LNA, operating at 5 GHz, is designed and studied to assess the impact of process variation on the LNA performance metrics such as input impedance, gain and noise figure. Four geometrical parameters, gate length, channel width, gate oxide thickness and fin width, and one non-geometrical parameter, channel doping concentration, are considered in the study. The effect of these variations on the input impedance (the desired value is 50 Ω purely real) of the LNA is compensated by the second gate bias of the IDDG FinFET. (paper)

  19. Compressive Behavior of Four Types FRP Tube Confined Ultra-high-performance Concrete%四种FRP管约束UHPC轴压特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    邓宗才; 刘少新; 王海忠; 陈仲锴

    2015-01-01

    为研究纤维增强聚合物( fiber reinforced polymer, FRP )管约束超高性能混凝土( ultra-high performance concrete, UHPC)的轴压特性,分别对4个未约束和36个约束圆柱体试件进行了轴压试验,测定了应力-应变全曲线,获得了强度和极限应变值。试验结果发现:FRP约束UHPC可明显提高其强度和变形能力,纤维布层数愈多、强度越高,改善效果愈明显;轴压应力-应变曲线为双线性;在相近的约束比下,FRP管约束刚度越小,约束试件的极限应变值越大;已有的强度和极限应变的模型预测值均高于实测值,极限应变预测值偏离试验值更大。本文回归得到了FRP管UHPC的强度和极限应变预测公式预测精度较高。%An axial compression test was conducted to investigate the performance of ultra-high performance concrete ( UHPC) specimens confined with different types and thickness of fiber reinforced polymer ( FRP) tubes. 40 cylindrical specimens were prepared, of which 4 were non-confined while the rest were confined with FRP tubes. Stress-strain curves were produced, and the strength and ultimate strains obtained. The test results show significant enhancement in ultimate strength and strain of UHPC. The confinement effectiveness improves with increase in the FRP layers, and also with increase in strength of FRP. Axial compression stress-strain curves relationship exhibits bilinear characteristics. Under the same confinement ratio, the smaller the stiffness of FRP tube is, the greater the ultimate strain value of the confined specimen becomes. The predicted value of both ultimate strength and strain of existing models is higher than the tested value, and the predicted values of the ultimate strain are more higher than that of the experimental results. The accuracy of the formula for the prediction of strength and ultimate strain of FRP tube confined UHPC specimens suggested in this paper is higher.

  20. 四种FRP管约束UHPC轴压特性的试验研究%Compressive Behavior of Four Types FRP Tube Confined Ultra-high-performance Concrete

    Institute of Scientific and Technical Information of China (English)

    邓宗才; 刘少新; 王海忠; 陈仲锴

    2015-01-01

    为研究纤维增强聚合物( fiber reinforced polymer, FRP )管约束超高性能混凝土( ultra-high performance concrete, UHPC)的轴压特性,分别对4个未约束和36个约束圆柱体试件进行了轴压试验,测定了应力-应变全曲线,获得了强度和极限应变值。试验结果发现:FRP约束UHPC可明显提高其强度和变形能力,纤维布层数愈多、强度越高,改善效果愈明显;轴压应力-应变曲线为双线性;在相近的约束比下,FRP管约束刚度越小,约束试件的极限应变值越大;已有的强度和极限应变的模型预测值均高于实测值,极限应变预测值偏离试验值更大。本文回归得到了FRP管UHPC的强度和极限应变预测公式预测精度较高。%An axial compression test was conducted to investigate the performance of ultra-high performance concrete ( UHPC) specimens confined with different types and thickness of fiber reinforced polymer ( FRP) tubes. 40 cylindrical specimens were prepared, of which 4 were non-confined while the rest were confined with FRP tubes. Stress-strain curves were produced, and the strength and ultimate strains obtained. The test results show significant enhancement in ultimate strength and strain of UHPC. The confinement effectiveness improves with increase in the FRP layers, and also with increase in strength of FRP. Axial compression stress-strain curves relationship exhibits bilinear characteristics. Under the same confinement ratio, the smaller the stiffness of FRP tube is, the greater the ultimate strain value of the confined specimen becomes. The predicted value of both ultimate strength and strain of existing models is higher than the tested value, and the predicted values of the ultimate strain are more higher than that of the experimental results. The accuracy of the formula for the prediction of strength and ultimate strain of FRP tube confined UHPC specimens suggested in this paper is higher.