Equilibrium states of a test particle coupled to finite-size heat baths.
Wei, Qun; Smith, S Taylor; Onofrio, Roberto
2009-03-01
We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constrains the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques and for engineering reservoirs capable of mitigating the back action on a mechanical system.
Geometric measures of multipartite entanglement in finite-size spin chains
Energy Technology Data Exchange (ETDEWEB)
Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2010-09-01
We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.
Finite size and finite temperature studies of the osp(1|2) spin chain
Tavares, T. S.; Ribeiro, G. A. P.
2017-08-01
We studied a quantum spin chain invariant by the superalgebra osp (1 | 2). We derived non-linear integral equations for the row-to-row transfer matrix eigenvalue in order to analyze its finite size scaling behavior and we determined its central charge. We also studied the thermodynamical properties of the spin chain via non-linear integral equations for the quantum transfer matrix eigenvalue. We numerically solved these NLIE and evaluated the specific heat and magnetic susceptibility. The analytical low temperature analysis was performed providing the effective central charge. The computed values are in agreement with the numerical predictions in the literature.
Interacting spins in a cavity: Finite-size effects and symmetry-breaking dynamics
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2012-01-01
, and for small chains, we find significant and nontrivial finite-size effects. Below the first-order phase transition, even quite large spin chains of 30–40 spins give rise to a mean photon number and number fluctuations significantly above the mean-field vacuum result. Near the second-order phase critical point......-transition the random character of the measurement process causes a measurement-induced symmetry breaking in the system. This symmetry breaking occurs on the time scale needed for an observer to gather sufficient information to distinguish between the two possible (mean-field) symmetry-broken states....
Spurious finite-size instabilities in nuclear energy density functionals: Spin channel
Pastore, A.; Tarpanov, D.; Davesne, D.; Navarro, J.
2015-08-01
Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s .Δ s . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s .Δ s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.
Energy Technology Data Exchange (ETDEWEB)
Neumann, A.U.; Derrida, B.
1988-10-01
We study the time evolution of two configurations submitted to the same thermal noise for several two dimensional models (Ising ferromagnet, symmetric spin glass, non symmetric spin glass). For all these models, we find a non zero critical temperature above which the two configurations always meet. Using finite size scaling ideas, we determine for these three models this dynamical phase transition and some of the critical exponents. For the ferromagnet, the transition T/sub c/ approx. = 2.25 coincides with the Curie temperature whereas for the two spin glass models +- J distribution of bonds) we obtain T/sub c/ approx. = 1.5-1.7.
Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo
2016-03-01
The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.
Energy Technology Data Exchange (ETDEWEB)
Popov, Alexander P., E-mail: APPopov@mephi.ru [Department of Molecular Physics, National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Gloria Pini, Maria, E-mail: mariagloria.pini@isc.cnr.it [Istituto dei Sistemi Complessi del CNR (CNR-ISC), Unità di Firenze, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Rettori, Angelo [Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Italy)
2016-03-15
The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii–Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls–Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain. - Highlights: • A finite-size chain of N classical spins within the XY-chiral model is investigated. • Using a systematic theoretical method, all equilibrium states are calculated for N=10. • The ground state has a non-uniform helical order with unique rotational sense. • Metastable states contain a domain wall whose energy
Spurious finite-size instabilities in nuclear energy density functionals: spin channel
Pastore, A; Davesne, D; Navarro, J
2015-01-01
It has been recently shown, that some Skyrme functionals can lead to non-converging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. We show that the finite-size instabilities not only affect the ground state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. We perform systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term $\\mathbf{s}\\cdot \\Delta \\mathbf{s}$ . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because RPA the stability matrix becomes non-positive.By comparing the RPA calculations of atomic nucl...
Collective spin excitation in finite size array of patterned magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Piao, H.-G. [College of Science, China Three Gorges University, Yichang 443002 (China); Shim, J.-H. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Pan, L. [College of Science, China Three Gorges University, Yichang 443002 (China); Yu, S.-C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, D.-H., E-mail: donghyun@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)
2016-04-01
We explore further details of the collectively excited spin wave mode in finite arrays of elliptically shaped ferromagnetic nanoelements as two-dimensional magnonic crystals by means of micromagnetic simulations. Under a pulsed magnetic driving field, collective spin wave modes were intensively investigated with variation of nanoelement dimensions and interelement separation as structural parameters of the magnonic crystal as well as changing the applied bias magnetic field. Via observing and analyzing the dynamic behavior of collective spin wave modes, we have found that the dynamic behavior strongly depends on the bias magnetic field with a quasi-linear dependency. The quasi-linear dependency of spin wave frequency transition can be achieved to a high sensitivity of the pT/Hz level. By modulating the magnonic crystal lattice structures and the bias magnetic field, the spin wave dynamic behavior is tunable which might be a promising property for a future magnonic crystal application and multifunctional sensors.
Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization
Mehta, Dhagash; Hauenstein, Jonathan D.; Niemerg, Matthew; Simm, Nicholas J.; Stariolo, Daniel A.
2015-02-01
Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes (PELs) for several statistical mechanics models, we perform a numerical study of the finite-size 2-spin spherical model using both numerical polynomial homotopy continuation and a reformulation via non-Hermitian matrices. The continuation approach computes all of the complex stationary points of this model while the matrix approach computes the real stationary points. Using these methods, we compute the average number of stationary points while changing the topology of the PEL as well as the variance. Histograms of these stationary points are presented along with an analysis regarding the complex stationary points. This work connects topology trivialization to two different branches of mathematics: algebraic geometry and catastrophe theory, which is fertile ground for further interdisciplinary research.
Eigenvectors and scalar products for long range interacting spin chains II: the finite size effects
Serban, D
2013-01-01
In this note, we study the eigenvectors and the scalar products the integrable long-range deformation of a XXX spin chain which is solved exactly by algebraic Bethe ansatz, and it coincides in the bulk with the Inozemtsev spin chain. At the closing point it contains a defect which effectively removes the wrapping interactions. Here we concentrate on determining the defect term for the first non-trivial order in perturbation in the deformation parameter and how it affects the Bethe ansatz equations. Our study is motivated by the relation with the dilatation operator of the N = 4 gauge theory in the su(2) sector.
The impact of finite size effects on spin waves in CoO
Feygenson, Mikhail; Teng, Xiaowei; Du, Wenxin; Podlesnyak, Andrey; Niedziela, Jennifer; Hagen, Mark; Aronson, Meigan
2010-03-01
We studied the spin waves in nanoscaled CoO using inelastic neutron scattering. The zero-field measurements were carried out on Co/CoO nanoparticles, CoO nanoparticles, and the bulk powder of CoO in the temperature range of 15 -- 300 K. The temperature-dependent inelastic intensity at 2.5 meV, found in all samples, was ascribed to CoO spin waves. We observed an increase at least of factor of 100 in the inelastic intensity for Co/CoO as compared to the CoO bulk, and shift of intensity towards larger scattering vectors. We suggest that new boundary conditions imposed by the nanoparticle surface and the breaking of the symmetry are mainly responsible for this effect. Similar enhancement of the spin wave spectrum was also predicted in thin films [1,2]. [1] S. Reshetnyak et al PMC Physics B 2008 [2] Y.Gorobets et al, Tech. Phys. 1998
Mikolasek, Mirko; Nicolazzi, William; Terki, Férial; Molnár, Gábor; Bousseksou, Azzedine
2017-07-01
In the first part of this work, an experimental study of the lattice dynamics of spin crossover nanoparticles was performed using the nuclear inelastic scattering (NIS). A size dependence of low energy phonon modes appears under 10 nm, but its origin is not well understood. In this paper, we investigate the phonon confinement effects in the framework of molecular dynamics simulations by modeling three-dimensional nanoparticles considering a cubic lattice with an octahedral pattern. The vibrational density of states is computed and compared to the experiment. The simulations allow one to highlight both the role of the phonon quantification and the role of the size and shape distributions of particles on the extracted parameters leading to a better understanding of the experimental results.
Finite size effects and spin transition in ball-milled γ-(FeMn) 30Cu 70 nanostructured alloys
Restrepo, J.; Greneche, J. M.; González, J. M.
2004-12-01
Fe 15Mn 15Cu 70 alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Mössbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 Å 3 at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.
Taherkhani, Farid; Abroshan, Hadi; Akbarzadeh, Hamed; Fortunelli, Alessandro
2012-07-01
The effects of second-neighbor spin coupling interactions and a magnetic field are investigated on the free energies of a finite-size 1-D Ising model. For both ferromagnetic of nearest neighbor (NN) and next-nearest neighbor (NNN) spin coupling interactions, the finite-size free energy first increases and then approaches a constant value for any size of the spin chain. In contrast, when NNN and NN spin coupling interactions are antiferromagnetic and ferromagnetic, respectively, the finite-size free energy gradually decreases by increasing the competition factor and eventually vanishes for large values of it. When a magnetic field is applied, the finite-size free energy decreases with respect to the case of zero magnetic fields for both ferromagnetic and antiferromagnetic spin coupling interactions. Deviation of free energy per size for finite-size systems relative to the infinite system increases when the spin coupling interactions as well as the f parameter (the ratio of the magnetic field to NN spin coupling interaction) increase.
Coherence and control of quantum registers based on electronic spin in a nuclear spin bath.
Cappellaro, P; Jiang, L; Hodges, J S; Lukin, M D
2009-05-29
We consider a protocol for the control of few-qubit registers comprising one electronic spin embedded in a nuclear spin bath. We show how to isolate a few proximal nuclear spins from the rest of the bath and use them as building blocks for a potentially scalable quantum information processor. We describe how coherent control techniques based on magnetic resonance methods can be adapted to these solid-state spin systems, to provide not only efficient, high fidelity manipulation but also decoupling from the spin bath. As an example, we analyze feasible performances and practical limitations in the realistic setting of nitrogen-vacancy centers in diamond.
Mikolasek, Mirko; Félix, Gautier; Peng, Haonan; Rat, Sylvain; Terki, Férial; Chumakov, Aleksandr I.; Salmon, Lionel; Molnár, Gábor; Nicolazzi, William; Bousseksou, Azzedine
2017-07-01
We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [ Fe (pyrazine ) (Ni (CN) 4) ] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (nanoparticles is also highlighted through the matrix dependence of the sound velocity.
Activated and non-activated dephasing in a spin bath
Torrontegui, E.; Kosloff, R.
2016-09-01
We analyze different decoherence processes in a system coupled to a bath. Apart from the well known standard dephasing mechanism which is temperature dependent an alternative mechanism is presented, the spin-swap dephasing which does not need initial bath activation and is temperature independent. We show that for dipole interaction in the weak coupling regime the separation of time scales between system and bath can not produce pure dephasing, the process being accompanied by dissipation. Activated and non-activated dephasing processes are analyzed in a diamond nitrogen-vacancy center.
Rakyta, Péter; Oroszlány, László; Kormányos, Andor; Cserti, József
2016-08-01
We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin-orbit coupling. The Rashba spin-orbit interaction causes the low-energy bands to undergo trigonal-warping deformation and for energies smaller than the Lifshitz energy, the Fermi circle breaks up into parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of length L and width W within the Landauer-Büttiker formalism in a continuum and in a tight binding model. We show that the minimal conductivity depends on the relative orientation of the sample and the probing electrodes due to the interference of states related to different Dirac cones. We also explore the effects of finite system size and find that the minimal conductivity can be lowered compared to that of an infinitely wide sample.
Heat-Bath Cooling of Spins in Amino Acids
Elias, Yuval; Mor, Tal; Weinstein, Yossi
2011-01-01
Heat-bath cooling is a component of practicable algorithmic cooling of spins, an approach which might be useful for in vivo 13C spectroscopy, in particular for prolonged metabolic processes where substrates that are hyperpolarized ex-vivo are not effective. We applied heat-bath cooling to 1,2-13C2-amino acids, using the \\alpha\\ protons to shift entropy from selected carbons to the environment. For glutamate and glycine, the polarizations of both labeled carbons were enhanced, and in other experiments the total entropy of each spin system was shown to decrease. The effect of adding Magnevist, a gadolinium contrast agent, on heat-bath cooling of glutamate was investigated.
Energy Technology Data Exchange (ETDEWEB)
Restrepo, J. [Grupo de Estado Solido, Instituto de Fisica, Universidad de Antioquia, A. A. 1226, Medellin (Colombia)]. E-mail: jrestre@fisica.udea.edu.co; Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, 72085 Le Mans, Cedex 9 (France); Gonzalez, J.M. [Instituto de Magnetismo Aplicado, P.O. Box 155. 28230 Las Rozas, Madrid (Spain)
2004-12-31
Fe{sub 15}Mn{sub 15}Cu{sub 70} alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Moessbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 A{sup 3} at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.
Novotny, M.A.; Guerra, M.; Raedt, H. De; Michielsen, K.; Jin, F.
2012-01-01
An efficient algorithm for the computation of the real-time dependence of a single quantum spin-1/2 coupled to a specific set of quantum spin-1/2 baths is presented. The specific spin baths have couplings only with the spin operators Sx between bath spins and the central spin. We calculate spin expe
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Two-level system in spin baths: non-adiabatic dynamics and heat transport.
Segal, Dvira
2014-04-28
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Finite-size geometric entanglement from tensor network algorithms
Energy Technology Data Exchange (ETDEWEB)
Shi Qianqian; Zhou Huanqiang [Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044 (China); Orus, Roman; Fjaerestad, John Ove [University of Queensland, Department of Physics, Brisbane, QLD 4072 (Australia)], E-mail: orus@physics.uq.edu.au
2010-02-15
The global geometric entanglement (GE) is studied in the context of newly developed tensor network algorithms for finite systems. For one-dimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global GE per site behaves as b/n, where n is the size of the system and b a given coefficient. Our conclusion is based on the computation of the GE per spin for the quantum Ising model in a transverse magnetic field and for the spin-1/2 XXZ model. We also discuss the possibility of coefficient b being universal.
Chekhovich, Evgeny A.
2017-06-01
Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.
Chiral anomaly and anomalous finite-size conductivity in graphene
Shen, Shun-Qing; Li, Chang-An; Niu, Qian
2017-09-01
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.
Tunable finite-sized chains to control magnetic relaxation
Ekstrand, Paul D.; Javier, Daniel J.; Gredig, Thomas
2017-01-01
The magnetic dynamics of low-dimensional iron ion chains have been studied with regards to the tunable finite-sized chain length using iron phthalocyanine thin films. The deposition temperature varies the diffusion length during thin-film growth by limiting the average crystal size in the range from 40 to 110 nm . Using a method common for single chain magnets, the magnetic relaxation time for each chain length is determined from temporal remanence data and fit to a stretched exponential form in the temperature range below 5 K , the onset for magnetic hysteresis. A temperature-independent master curve is generated by scaling the remanence by its relaxation time to fit the energy barrier for spin reversal, and the single spin-relaxation time. The energy barrier of 95 K is found to be independent of the chain length. In contrast, the single spin-relaxation time increases with longer chains from under 1 ps to 800 ps. We show that thin films provide the nanoarchitecture to control magnetic relaxation and a testbed to study finite-size effects in low-dimensional magnetic systems.
Eggs and milk: Spinning spheres partially immersed in a liquid bath
Langley, Kenneth R.; Maynes, Daniel; Truscott, Tadd T.
2015-03-01
When a hard-boiled egg spins through a pool of milk on the kitchen counter, the milk rises up the sides of the egg and droplets are ejected. This phenomenon occurs when any partially submerged object whose radius increases upward from the fluid surface (e.g., spheres, inverted cones, and rings) spins in a liquid bath. The fluid ejects from the surface near the maximum radius in one of three ejection modes: jets, sheets, or sheet breakup. Additionally, a surprisingly large flow rate is induced by the spinning object. In this study, we used spheres to determine the effects of experimental parameters on the induced flow rate. We characterized the modes of ejection and measured the sheet breakup distance using high-speed imaging. The basis of our closed form analytical model utilizes an integral momentum boundary layer analysis both beneath the free surface and in the thin film attached to the sphere. We present criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime. Criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime shows good agreement with experiments.
Quantum Zeno effect in a nitrogen-vacancy center embedded in a spin bath
Yang, Zhi-Sheng; Zhang, Mei; Ai, Qing; Deng, Fu-Guo
2016-01-01
We study the longitudinal relaxation of a nitrogen-vacancy (NV) center surrounded by a $^{13}$C nuclear spin bath in diamond. By means of cluster-correlation expansion (CCE), we numerically demonstrate the decay process of electronic state induced by cross relaxation at low temperature. It is shown that the CCE method is not only capable of describing pure-dephasing effect at large-detuning regime, but it can also simulate the quantum dynamics of populations in the nearly resonant regime. We present a proposal to slow down the decay of NV center via implementing quantum Zeno effect (QZE). The numerical result shows that QZE can effectively inhibit the decay of NV center.
Henriet, Loïc; Sclocchi, Antonio; Orth, Peter P.; Le Hur, Karyn
2017-02-01
We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H =H (sinθ cosϕ ,sinθ sinϕ ,cosθ ) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for α <1 . We report a divergence of the Berry curvature at αc=1 for magnetic fields aligned along the equator θ =π /2 . This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrödinger approach we find that, for a fixed field sweep velocity θ (t )=v t , the bath induces a crossover from (quasi)adiabatic to nonadiabatic dynamical behavior when the spin bath coupling α increases. We also investigate the particular regime H /ωc≪v /H ≪1 with large bath cutoff frequency ωc, where the dynamical Chern number vanishes already at α =1 /2 . In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of α =1 /2 . We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Finite-size effects from giant magnons
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: frolovs@aei.mpg.de; Zamaklar, Marija [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: marzam@aei.mpg.de
2007-08-27
In order to analyze finite-size effects for the gauge-fixed string sigma model on AdS{sub 5}xS{sup 5}, we construct one-soliton solutions carrying finite angular momentum J. In the infinite J limit the solutions reduce to the recently constructed one-magnon configuration of Hofman and Maldacena. The solutions do not satisfy the level-matching condition and hence exhibit a dependence on the gauge choice, which however disappears as the size J is taken to infinity. Interestingly, the solutions do not conserve all the global charges of the psu(2,2-vertical bar4) algebra of the sigma model, implying that the symmetry algebra of the gauge-fixed string sigma model is different from psu(2,2-vertical bar4) for finite J, once one gives up the level-matching condition. The magnon dispersion relation exhibits exponential corrections with respect to the infinite J solution. We also find a generalisation of our one-magnon configuration to a solution carrying two charges on the sphere. We comment on the possible implications of our findings for the existence of the Bethe ansatz describing the spectrum of strings carrying finite charges.
Finite-size scaling at quantum transitions
Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore
2014-03-01
We develop the finite-size scaling (FSS) theory at quantum transitions. We consider various boundary conditions, such as open and periodic boundary conditions, and characterize the corrections to the leading FSS behavior. Using renormalization-group (RG) theory, we generalize the classical scaling ansatz to describe FSS in the quantum case, classifying the different sources of scaling corrections. We identify nonanalytic corrections due to irrelevant (bulk and boundary) RG perturbations and analytic contributions due to regular backgrounds and analytic expansions of the nonlinear scaling fields. To check the general predictions, we consider the quantum XY chain in a transverse field. For this model exact or numerically accurate results can be obtained by exploiting its fermionic quadratic representation. We study the FSS of several observables, such as the free energy, the energy differences between low-energy levels, correlation functions of the order parameter, etc., confirming the general predictions in all cases. Moreover, we consider bipartite entanglement entropies, which are characterized by the presence of additional scaling corrections, as predicted by conformal field theory.
Quasi-long-range ordering in a finite-size 2D Heisenberg model
Kapikranian, O; Holovatch, Yu; Berche, Bertrand; Holovatch, Yurij; Kapikranian, Oleksandr
2006-01-01
We analyse the low-temperature behaviour of the Heisenberg model on a two-dimensional lattice of finite size. Presence of a residual magnetisation in a finite-size system enables us to use the spin wave approximation, which is known to give reliable results for the XY model at low temperatures T. For the system considered, we find that the spin-spin correlation function decays as 1/r^eta(T) for large separations r bringing about presence of a quasi-long-range ordering. We give analytic estimates for the exponent eta(T) in different regimes and support our findings by Monte Carlo simulations of the model on lattices of different sizes at different temperatures.
Optimal pulse spacing for dynamical decoupling in the presence of a purely-dephasing spin-bath
Ajoy, Ashok; Suter, Dieter
2010-01-01
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. While a sequence of equidistant control pulses (CPMG) has been ubiquitously used for this purpose, Uhrig recently proposed that a non-equidistant pulse sequence (UDD) may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system-qubits are 13C nuclear spins and the environment consists of a 1H nuclear spin-bath whose spectral density is close to a norm...
Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system.
Ray, Somrita; Bag, Bidhan Chandra
2015-11-01
In this paper we have presented the heat exchange between the two fermionic thermal reservoirs which are connected by a fermionic system. We have calculated the heat flux using solution of the c-number Langevin equation for the system. Assuming small temperature difference between the baths we have defined the thermal conductivity for the process. It first increases as a nonlinear function of average temperature of the baths to a critical value then decreases to a very low value such that the heat flux almost becomes zero. There is a critical temperature for the fermionic case at which the thermal conductivity is maximum for the given coupling strength and the width of the frequency distribution of bath modes. The critical temperature grows if these quantities become larger. It is a sharp contrast to the Bosonic case where the thermal conductivity monotonically increases to the limiting value. The change of the conductivity with increase in width of the frequency distribution of the bath modes is significant at the low temperature regime for the fermionic case. It is highly contrasting to the Bosonic case where the signature of the enhancement is very prominent at high temperature limit. We have also observed that thermal conductivity monotonically increases as a function of damping strength to the limiting value at the asymptotic limit. There is a crossover between the high and the low temperature results in the variation of the thermal conductivity as a function of the damping strength for the fermionic case. Thus it is apparent here that even at relatively high temperature, the fermionic bath may be an effective one for the strong coupling between system and reservoir. Another interesting observation is that at the low temperature limit, the temperature dependence of the heat flux is the same as the Stefan-Boltzmann law. This is similar to the bosonic case.
NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)
2014-04-21
We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Finite-size effects in silica: a landscape perspective
Energy Technology Data Exchange (ETDEWEB)
Saksaengwijit, A; Heuer, A [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Physikalische Chemie and International Graduate School of Chemistry, Corrensstrasse 30, 48149 Muenster (Germany)
2007-05-23
Finite-size effects are analysed for the well-known BKS model of silica. Results are presented for thermodynamic as well as dynamic observables which play a key role in the analysis of the potential energy landscape. It turns out that, for the analysed temperature range (T{>=}3000 K), a system with only N = 99 particles does not display significant finite-size effects in thermodynamic observables. In agreement with previous work, one observes finite-size effects for the dynamics. However, after rescaling of time the finite-size effects nearly disappear. These results suggest that for BKS-silica a system with only N = 99 particles is sufficiently large to study important properties of structural relaxation in the temperature range considered.
Unusual finite size effects on critical temperature in fcc Ising antiferromagnets
Pommier, J.; Diep, H. T.; Ghazali, A.; Lallemand, P.
1988-04-01
A new multispin coding technique is presented for Monte Carlo simulation of antiferromagnetic Ising spin systems on an fcc lattice. The nearest- and next-nearest-neighbor interactions J1 and J2 are included. This technique allows a considerable gain in CPU time and computer memory. As a first application, we have studied samples of 4L3 spins with L up to 48. An unusual behavior of the critical temperature with increasing L is found in the case of nearest-neighbor interaction in zero field. Finite size effects on the locations of tricrical points in the (T,J2/J1) plane are discussed.
Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets
Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro
2015-03-01
The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.
Symmetry and the critical phase of the two-bath spin-boson model: Ground-state properties
Zhou, Nengji; Chen, Lipeng; Xu, Dazhi; Chernyak, Vladimir; Zhao, Yang
2015-05-01
A generalized trial wave function termed as the "multi-D1 ansatz" has been developed to study the ground state of the spin-boson model with simultaneous diagonal and off-diagonal coupling in the sub-Ohmic regime. Ground-state properties including energy and spin polarization are investigated, and the results are consistent with those from exact diagonalization and density matrix renormalization group approaches for the cases involving two oscillators and two baths described by a continuous spectral density function. Breakdown of the rotational and parity symmetries along the continuous quantum phase transition separating the localized phase from the critical phase has been uncovered. Moreover, the phase boundary is determined accurately with the corresponding rotational- and parity-symmetry parameters. A critical value of the spectral exponent s*=0.49 (1 ) is predicted in the weak coupling limit, which is in agreement with the mean-field prediction of 1 /2 , but much smaller than the earlier literature estimate of 0.75 (1 ) .
Energy Technology Data Exchange (ETDEWEB)
Tzou, K.T. [School of Textiles, Fiber and Polymer Science, Clemson University, Clemson, SC 29621 (United States); Gregory, R.V. [School of Textiles, Fiber and Polymer Science, Clemson University, Clemson, SC 29621 (United States)
1995-03-01
It is widely known that the intrinsically conductive polymer (ICP) polyaniline is soluble in NMP solvent in its nonconducting base form. However a concentrated polyaniline/NMP solution (>5%) is unstable and rapidly forms gels at room temperatures. We have found that the gelation time and solution stability of polyaniline in DMPU is greatly increased and that this solvent may be suitable for use as a spin bath for the wet spinning of polyaniline fibers in the base form. We report in this paper some initial rheology data on solutions of PANI using NMP, NMP/LiCl, and DMPU as the solvent. All examined PANI solutions showed a similar rheological behavior in that the solutions became more shear dependent with increasing concentrations or increased aging time. The spinnability of PANI solutions was superior when DMPU is used as the spin bath solvent. NMP/LiCl was also examined since this solution tends to prohibit coagulation of PANI in solution. (orig.)
Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang
2014-04-28
We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.
Magnetic catalysis of a finite size pion condensate
Ayala, Alejandro; Villavicencio, C
2016-01-01
We study the Bose-Einstein condensation of a finite size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite size effects. We use experimentally reported values of pion source sizes and multiplicities at LHC energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collision, is at least partially preserved up to the hadronic phase, the combined finite size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.
Magnetic catalysis of a finite-size pion condensate
Ayala, Alejandro; Mercado, Pedro; Villavicencio, C.
2017-01-01
We study the Bose-Einstein condensation of a finite-size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite-size effects. We use experimentally reported values of pion source sizes and multiplicities at Large Hadron Collider (LHC) energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collisions, is at least partially preserved up to the hadronic phase, the combined finite-size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.
Finite-size Energy of Non-interacting Fermi Gases
Energy Technology Data Exchange (ETDEWEB)
Gebert, Martin, E-mail: gebert@math.lmu.de [ETH Zürich , Theoretische Physik (Switzerland)
2015-12-15
We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/L. We are particularly interested in subdominant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson’s orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.
Finite-size Energy of Non-interacting Fermi Gases
Gebert, Martin
2015-12-01
We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/ L. We are particularly interested in subdominant terms proportional to 1/ L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35-41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743-5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson's orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.
Dynamic properties of epidemic spreading on finite size complex networks
Institute of Scientific and Technical Information of China (English)
Li Ying; Liu Yang; Shan Xiu-Ming; Ren Yong; Jiao Jian; Qiu Ben
2005-01-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptibleinfected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar
2017-01-01
An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.
Finite-size scaling a collection of reprints
1988-01-01
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Transition to Turbulence in the Presence of Finite Size Particles
Lashgari, I.; Picano, F.; Breugem, W.P.; Brandt, L.
2015-01-01
We study the transition from laminar to turbulent flow in a channel seeded with finite-size neutrally buoyant particles. A fixed ratio of 10 between the channel height and the particle diameter is considered. The flow is examined in the range of Reynolds numbers 500 ≤ Re ≤ 5000 and the particle volu
Finite size scaling in the planar Lebwohl-Lasher model
Mondal, Enakshi; Roy, Soumen Kumar
2003-06-01
The standard finite size scaling method for second order phase transition has been applied to Monte Carlo data obtained for a planar Lebwohl-Lasher lattice model using the Wolff cluster algorithm. We obtain Tc and the exponents γ, ν, and z and the results are different from those obtained by other investigators.
Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections
van Enter, Aernout C. D.; Hulshof, Tim
2007-01-01
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Analytical theory of finite-size effects in mechanical desorption
Skvortsov, A.M.; Klushin, L.I.; Fleer, G.J.; Leermakers, F.A.M.
2010-01-01
We discuss a unique system that allows exact analytical investigation of first- and second-order transitions with finite-size effects: mechanical desorption of an ideal lattice polymer chain grafted with one end to a solid substrate with a pulling force applied to the other end. We exploit the analo
Exchange bias in finite sized NiO nanoparticles with Ni clusters
Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace
2017-02-01
Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of 100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix.
Müller, Dirk K.; Pampel, André; Möller, Harald E.
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data.
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Xi-Jing; Hu, Bing-Quan; Cho, Sam Young; Zhou, Huan-Qiang; Shi, Qian-Qian
2016-10-01
Recently, the finite-size corrections to the geometrical entanglement per lattice site in the spin-1/2 chain have been numerically shown to scale inversely with system size, and its prefactor b has been suggested to be possibly universal [Q-Q. Shi et al., New J. Phys. 12, 025008 (2010)]. As possible evidence of its universality, the numerical values of the prefactors have been confirmed analytically by using the Affleck-Ludwig boundary entropy with a Neumann boundary condition for a free compactified field [J-M. Stephan et al., Phys. Rev. B 82, 180406(R) (2010)]. However, the Affleck-Ludwig boundary entropy is not unique and does depend on conformally invariant boundary conditions. Here, we show that a unique Affleck-Ludwig boundary entropy corresponding to a finitesize correction to the geometrical entanglement per lattice site exists and show that the ratio of the prefactor b to the corresponding minimum groundstate degeneracy gmin for the Affleck- Ludwig boundary entropy is a constant for any critical region of the spin-1 XXZ system with the single-ion anisotropy, i.e., b/(2 log2 g min ) = -1. Previously studied spin-1/2 systems, including the quantum three-state Potts model, have verified the universal ratio. Hence, the inverse finite-size correction to the geometrical entanglement per lattice site and its prefactor b are universal for one-dimensional critical systems.
Dynamic finite-size scaling at first-order transitions
Pelissetto, Andrea; Vicari, Ettore
2017-07-01
We investigate the dynamic behavior of finite-size systems close to a first-order transition (FOT). We develop a dynamic finite-size scaling (DFSS) theory for the dynamic behavior in the coexistence region where different phases coexist. This is characterized by an exponentially large time scale related to the tunneling between the two phases. We show that, when considering time scales of the order of the tunneling time, the dynamic behavior can be described by a two-state coarse-grained dynamics. This allows us to obtain exact predictions for the dynamical scaling functions. To test the general DFSS theory at FOTs, we consider the two-dimensional Ising model in the low-temperature phase, where the external magnetic field drives a FOT, and the 20-state Potts model, which undergoes a thermal FOT. Numerical results for a purely relaxational dynamics fully confirm the general theory.
Finite size scaling RG: detailed description and applications to diluted Ising systems
de Figueiredo Neto, João Monteiro; de Oliveira, Suzana Maria Moss; de Oliveira, Paulo Murilo Castro
1994-05-01
The finite size scaling renormalisation group (FSSRG) was introduced in Europhysics Letters 20 (1992) 621. Based only on the finite size scaling hypothesis, with no further assumptions, it differs from other real space renormalisation groups (RSRGs) in the following essential point: one does not need to adopt any particular recipe exp(- H‧( S‧/ T = σ sP( S, S‧) exp[- H( S)/ T] relating the spin states S of the original system to the spin states S' of a renormalised system. The choice of a particular weight function P( S, S‧), e.g. the so called majority rule, is generally based on plausibility arguments, and involves uncontrollable approximations. In addition to being free from these drawbacks, FSSRG shares with RSRG some good features as, for instance, the possibility of extracting qualitative informations from multi-parameter RG flow diagrams, including crossovers, universality classes, universality breakings, multicriticalities, orders of transitions, etc. Other unpleasant consequences of particular weight functions, as the so called proliferation of parameters, are also absent in the FSSRG. Using it in three-dimensions, we were able to find a semi-unstable fixed point in the critical frontier concentration p versus exchange coupling J, characterizing a universality class crossover when one goes from pure to diluted Ising ferromagnets. The specific heat exponents we have obtained for the pure and diluted regimes are in agreement with the Harris criterion.
Finite-Size Scaling in Random K-SAT Problems
Ha, Meesoon; Lee, Sang Hoon; Jeon, Chanil; Jeong, Hawoong
2010-03-01
We propose a comprehensive view of threshold behaviors in random K-satisfiability (K-SAT) problems, in the context of the finite-size scaling (FSS) concept of nonequilibrium absorbing phase transitions using the average SAT (ASAT) algorithm. In particular, we focus on the value of the FSS exponent to characterize the SAT/UNSAT phase transition, which is still debatable. We also discuss the role of the noise (temperature-like) parameter in stochastic local heuristic search algorithms.
Implicit Finite-Size Effects in Computer Simulations
Denton, A. R.; EGELSTAFF, P. A.
1997-01-01
The influence of periodic boundary conditions (implicit finite-size effects) on the anisotropy of pair correlations in computer simulations is studied for a dense classical fluid of pair-wise interacting krypton atoms near the triple point. Molecular dynamics simulation data for the pair distribution function of N-particle systems, as a function of radial distance, polar angle, and azimuthal angle are compared directly with corresponding theoretical predictions [L. R. Pratt and S. W. Haan, J....
Finite size effects in simulations of protein aggregation.
Directory of Open Access Journals (Sweden)
Amol Pawar
Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.
Nonuniversal Finite-Size Effects Near Critical Points
Dohm, V.
2008-11-01
We study the finite-size critical behavior of the anisotropic φ4 lattice model with periodic boundary conditions in a d-dimensional hypercubic geometry above, at, and below Tc. Our perturbation approach at fixed d = 3 yields excellent agreement with the Monte Carlo (MC) data for the finite-size amplitude of the free energy of the three-dimensional Ising model at Tc by Mon [Phys. Rev. Lett. 54, 2671 (1985)]. Below Tc a minimum of the scaling function of the excess free energy is found. We predict a measurable dependence of this minimum on the anisotropy parameters. Our theory agrees quantitatively with the non-monotonic dependence of the Binder cumulant on the ferromagnetic next-nearest neighbor (NNN) coupling of the two-dimensional Ising model found by MC simulations of Selke and Shchur [J. Phys. A 38, L739 (2005)]. Our theory also predicts a non-monotonic dependence for small values of the anti-ferromagnetic NNN coupling and the existence of a Lifshitz point at a larger value of this coupling. The tails of the large-L behavior at T ≠ Tc violate both finite-size scaling and universality even for isotropic systems as they depend on the bare four-point coupling of the φ4 theory, on the cutoff procedure, and on subleading long-range interactions.
Finite size effects on the helical edge states on the Lieb lattice
Rui, Chen; Bin, Zhou
2016-06-01
For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin-orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).
Finite-size scaling approach to dynamic storage allocation problem
Seyed-allaei, Hamed
2003-09-01
It is demonstrated how dynamic storage allocation algorithms can be analyzed in terms of finite-size scaling. The method is illustrated in the three simple cases of the first-fit, next-fit and best-fit algorithms, and the system works at full capacity. The analysis is done from two different points of view-running speed and employed memory. In both cases, and for all algorithms, it is shown that a simple scaling function exists and the relevant exponents are calculated. The method can be applied on similar problems as well.
Do Finite-Size Lyapunov Exponents detect coherent structures?
Karrasch, Daniel; Haller, George
2013-12-01
Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the FSLE and LCSs, however, has been missing. Here, we prove that an FSLE ridge satisfying certain conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field, which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our conditions, however, are seen to be false positives for LCSs. We also find further limitations of the FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities, and sensitivity with respect to the computational time step.
Finite-size modifications of the magnetic properties of clusters
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker
1993-01-01
The spin-wave spectrum of Heisenberg spin clusters of various structures (bcc, fcc, and disordered) ranging in size between 9 and 749 spins is calculated by a self-consistent diagonalization of the equation of motion of S+ in real space. The spin-wave spectrum of the clusters is strongly modified...
Finite size properties of staggered U{sub q}[sl(2{vert_bar}1)] superspin chains
Energy Technology Data Exchange (ETDEWEB)
Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany); Martins, Marcio J. [Departamento de Fisica, Universidade Federal de Sao Carlos, C.P. 676, 13565-905 Sao Carlos (Brazil)
2011-06-01
Based on the exact solution of the eigenvalue problem for the U{sub q}[sl(2{vert_bar}1)] vertex model built from alternating three-dimensional fundamental and dual representations by means of the algebraic Bethe ansatz we investigate the ground state and low energy excitations of the corresponding mixed superspin chain for deformation parameter q=exp(-i{gamma}/2). The model has a line of critical points with central charge c=0 and continua of conformal dimensions grouped into sectors with {gamma}-dependent lower edges for 0{<=}{gamma}<{pi}/2. The finite size scaling behavior is consistent with a low energy effective theory consisting of one compact and one non-compact bosonic degree of freedom. In the 'ferromagnetic' regime {pi}<{gamma}{<=}2{pi} the critical theory has c=-1 with exponents varying continuously with the deformation parameter. Spin and charge degrees of freedom are separated in the finite size spectrum which coincides with that of the U{sub q}[osp(2{vert_bar}2)] spin chain. In the intermediate regime {pi}/2<{gamma}<{pi} the finite size scaling of the ground state energy depends on the deformation parameter.
Finite-size effects in the spectrum of the OSp(3|2 superspin chain
Directory of Open Access Journals (Sweden)
Holger Frahm
2015-05-01
Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain
Frahm, Holger; Martins, Márcio J.
2015-05-01
The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Energy Technology Data Exchange (ETDEWEB)
Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)
2017-06-15
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
Directory of Open Access Journals (Sweden)
W.V. Pogosov
2017-06-01
Full Text Available We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states. In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Finite-size scaling of heavy-light mesons
Bernardoni, Fabio; Necco, Silvia
2009-01-01
We study the finite-size scaling of heavy-light mesons in the static limit. The most relevant effects are due to the pseudo-Goldstone boson cloud. In the HMChPT framework we compute two-point functions of left current densitities as well as pseudoscalar densitites for the cases in which some or all of them lay in the epsilon-regime. As expected, finite volume dependence turns out to be significant in this regime and can be predicted in the effective theory in terms of the infinite-volume low-energy couplings. These results might be relevant for extraction of heavy-light meson properties from lattice simulations.
On finite-size Lyapunov exponents in multiscale systems
Mitchell, Lewis
2012-01-01
We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes the error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the large scales of FSLE spectra is shown to be a signature of slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full deterministic model are well approximated whereas small scale feat...
Thinking outside the box: fluctuations and finite size effects
Villamaina, Dario; Trizac, Emmanuel
2014-05-01
The isothermal compressibility of an interacting or non-interacting system may be extracted from the fluctuations of the number of particles in a well-chosen control volume. Finite size effects are prevalent and should be accounted for to obtain a meaningful, thermodynamic compressibility. In the traditional computational setup, where a given simulation box is replicated with periodic boundary conditions, we study particle number fluctuations outside the box (i.e. when the control volume exceeds the box itself), which bear relevant thermodynamic information. We also investigate the related problem of extracting the compressibility from the structure factor in the small wave-vector limit (k → 0). The calculation should be restricted to the discrete set of wave-vectors k that are compatible with the periodicity of the system, and we assess the consequences of considering other k values, a widespread error among beginners.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Finite size effects in Neutron Star and Nuclear matter simulations
Molinelli, P A Giménez
2014-01-01
In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...
Finite-size effects for percolation on Apollonian networks.
Auto, Daniel M; Moreira, André A; Herrmann, Hans J; Andrade, José S
2008-12-01
We study the percolation problem on the Apollonian network model. The Apollonian networks display many interesting properties commonly observed in real network systems, such as small-world behavior, scale-free distribution, and a hierarchical structure. By taking advantage of the deterministic hierarchical construction of these networks, we use the real-space renormalization-group technique to write exact iterative equations that relate percolation network properties at different scales. More precisely, our results indicate that the percolation probability and average mass of the percolating cluster approach the thermodynamic limit logarithmically. We suggest that such ultraslow convergence might be a property of hierarchical networks. Since real complex systems are certainly finite and very commonly hierarchical, we believe that taking into account finite-size effects in real-network systems is of fundamental importance.
Finite-size effects in Luther-Emery phases of Holstein and Hubbard models
Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.
2015-12-01
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
Energy Technology Data Exchange (ETDEWEB)
Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Ukrainian Academy of Sciences, 47, Lenin Avenue, 310164, Kharkov (Ukraine); Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)
1996-12-01
We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron {Gamma}{sub 8} into two doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy. These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity. {copyright} {ital 1996 The American Physical Society.}
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
Energy Technology Data Exchange (ETDEWEB)
Tsai, W-F.
2010-04-06
We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.
Scattering from finite size methods in lattice QCD
Feng, Xu; Renner, Dru B
2009-01-01
Using two flavors of maximally twisted mass fermions, we calculate the S-wave pion-pion scattering length in the isospin I=2 channel and the P-wave pion-pion scattering phase in the isospin I=1 channel. In the former channel, the lattice calculations are performed at pion masses ranging from 270 MeV to 485 MeV. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m_pi a_pipi(I=2)=-0.04385(28)(38) for the scattering length. In the latter channel, the calculation is currently performed at a single pion mass of 391 MeV. Making use of finite size methods, we evaluate the scattering phase in both the center of mass frame and the moving frame. The effective range formula is employed to fit our results, from which the rho resonance mass and decay width are evaluated.
Finite-size effects in amorphous indium oxide
Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan
2016-04-01
We study the low-temperature magnetotransport properties of several highly disordered amorphous indium oxide (a:InO) samples. Simultaneously fabricated devices comprising a two-dimensional (2D) film and 10 -μ m -long wires of different widths were measured to investigate the effect of size as we approach the 1D limit, which is around 4 times the correlation length, and happens to be around 100 nm for a:InO. The film and the wires showed magnetic field (B )-induced superconductor to insulator transition (SIT). In the superconducting side, the resistance increased with decrease in wire width, whereas an opposite trend is observed in the insulating side. We find that this effect can be explained in light of charge-vortex duality picture of the SIT. Resistance of the 2D film follows an activated behavior over the temperature (T ), whereas, the wires show a crossover from the high-T -activated to a T -independent behavior. At high-temperature regime the wires' resistance follow the film's until they deviate and became independent of T . We find that the temperature at which this deviation occurs evolves with the magnetic field and the width of the wire, which show the effect of finite size on the transport.
Finite-Size Scaling Effects in Chromia thin films
Echtenkamp, Will; He, Xi; Binek, Christian
2012-02-01
Controlling magnetism by electrical means remains a key challenge in the area of spintronics. The use of magnetoelectrically active materials is one of the most promising approaches to this problem. Utilizing Cr2O3 as the magnetoelectric pinning layer in a magnetic heterostructure both temperature assisted and isothermal electrical control of exchange bias have been achieved [1,2]. Interestingly, this ME switching of exchange bias has only been achieved using bulk Cr2O3 crystals, isothermal switching of exchange bias using thin film chromia remains elusive. We investigate the origin of unusually pronounced finite-size scaling effects on the properties of Cr2O3 grown by Molecular Beam Epitaxy; in particular we focus on the different temperature dependencies of the magnetic susceptibility of bulk vs. thin film chromia, the change in Nèel temperatures, and the implications for the magneto electric properties of chromia thin films. [4pt] [1] P. Borisov et al., Phys. Rev. Lett. 94, 117203 (2005).[0pt] [2] X. He et al., Nature Mater. 9, 579 (2010).
Simulated identification of epidemic threshold in finite-size networks
Shu, Panpan; Tang, Ming
2014-01-01
Epidemic threshold is one of the most important features of the epidemic dynamics. Based on a lot of numerical simulations of classic Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) models on various types of networks, we study the simulated thresholds for finite-size networks. We confirm that the susceptibility measure goes awry for the SIR model due to the bimodal distribution of outbreak sizes near the critical point, while the simulated thresholds of the SIS and SIR models can be accurately determined by analyzing the peak of the epidemic variability. We further verify the accuracy of theoretical predictions of the heterogeneous mean-field theory (HMF) and of the quenched mean-field theory (QMF), by comparing them with the simulated threshold of the SIR model obtained from the variability measure. The results show that the HMF prediction agrees very well with the simulated threshold, except the case that the networks are disassortive, in which the QMF prediction is more clo...
Holographic Relaxation of Finite Size Isolated Quantum Systems
Abajo-Arrastia, Javier; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the traveling shell is brought into correspondence with the evolution of the e...
Energy Technology Data Exchange (ETDEWEB)
Prosen, Tomaz; Zunkovic, Bojan [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia)], E-mail: tomaz.prosen@fmf.uni-lj.si
2010-02-15
We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of a 4nx4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how one can compute all the physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time-dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that the recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium steady state to external (bath or bulk) parameters. Studying the heat transport, we find negative differential thermal conductance for sufficiently strong thermal driving as well as non-monotonic dependence of the heat current on the strength of the bath coupling.
Universal order parameters and quantum phase transitions: a finite-size approach.
Shi, Qian-Qian; Zhou, Huan-Qiang; Batchelor, Murray T
2015-01-08
We propose a method to construct universal order parameters for quantum phase transitions in many-body lattice systems. The method exploits the H-orthogonality of a few near-degenerate lowest states of the Hamiltonian describing a given finite-size system, which makes it possible to perform finite-size scaling and take full advantage of currently available numerical algorithms. An explicit connection is established between the fidelity per site between two H-orthogonal states and the energy gap between the ground state and low-lying excited states in the finite-size system. The physical information encoded in this gap arising from finite-size fluctuations clarifies the origin of the universal order parameter. We demonstrate the procedure for the one-dimensional quantum formulation of the q-state Potts model, for q = 2, 3, 4 and 5, as prototypical examples, using finite-size data obtained from the density matrix renormalization group algorithm.
An Ising iron(ii) chain exhibits a large finite-size energy barrier and "hard" magnetic behaviour.
Deng, Yi-Fei; Han, Tian; Xue, Wei; Hayashi, Naoaki; Kageyama, Hiroshi; Zheng, Yan-Zhen
2017-01-31
One-dimensional spin chains featuring strong axial anisotropic magnetism are promising candidates for isolatable and miniatured information storage materials, the so-called single-chain magnets (SCMs). Here we show a mixed azido/carboxylato bridged metamagnetic iron(ii) chain [Fe(N3)2(4-mpc)]n (4-mpc = N-methylpyridinium-4-carboxylate) with a large energy barrier of 150 K, a large remnant magnetization (1.55Nβ) and coercivity (1.7 T at 2 K) for homo-spin SCMs. Heat capacity and Mössbauer spectroscopy studies corroborate the intrinsic nature of SCM behavior regardless of weak interchain magnetic interactions, which lead to the coexistence of metamagnetism but not long-range magnetic ordering. Moreover, detailed magnetic investigations indicate that the system is not only within the "Ising limit" but also in the "finite-size" regime.
Suppression of decoherence by bath ordering
Institute of Scientific and Technical Information of China (English)
Jing Jun; Ma Hong-Ru
2007-01-01
The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the TessieriWilkie Hamiltonian. The pair of spins served as an open subsystem is prepared in one of the Bell states and the bath consisting of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with increasing coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence of it are recovered to some extent in the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.
Theory of Finite Size Effects for Electronic Quantum Monte Carlo Calculations of Liquids and Solids
Holzmann, Markus; Morales, Miguel A; Tubmann, Norm M; Ceperley, David M; Pierleoni, Carlo
2016-01-01
Concentrating on zero temperature Quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one and two-body correlation functions. We introduce new effective procedures, such as using the potential and wavefunction split-up into long and short range functions to simplify the method and we discuss how to treat backflow wavefunctions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.
Probing finite size effects in $(\\lambda \\Phi^{4})_4$ MonteCarlo calculations
Agodi, A
1999-01-01
The Constrained Effective Potential (CEP) is known to be equivalent to the usual Effective Potential (EP) in the infinite volume limit. We have carried out MonteCarlo calculations based on the two different definitions to get informations on finite size effects. We also compared these calculations with those based on an Improved CEP (ICEP) which takes into account the finite size of the lattice. It turns out that ICEP actually reduces the finite size effects which are more visible near the vanishing of the external source.
Finite Size Corrections to the Excitation Energy Transfer in a Massless Scalar Interaction Model
Maeda, N; Tobita, Y; Ishikawa, K
2016-01-01
We study the excitation energy transfer (EET) for a simple model in which a virtual massless scalar particle is exchanged between two molecules. If the time interval is finite, then the finite size effect generally appears in a transition amplitude through the regions where the wave nature of quanta remains. We calculated the transition amplitude for EET and obtained finite size corrections to the standard formula derived by using Fermi's golden rule. These corrections for the transition amplitude appear outside the resonance energy region. The estimation in a photosynthesis system indicates that the finite size correction could reduce the EET time considerably.
Directory of Open Access Journals (Sweden)
Sibel MORKOÇ KARADENİZ
2016-11-01
Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian free-induct
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian
Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis
DEFF Research Database (Denmark)
Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.
2004-01-01
A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...
Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime
Wu, Ka Ling; Porté-Agel, Fernando
2017-04-01
Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper
2009-01-01
We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....
Finite Size Corrected Relativistic Mean-Field Model and QCD Critical End Point
Uddin, Saeed; Ahmad, Jan Shabir
2012-01-01
The effect of finite size of hadrons on the QCD phase diagram is analyzed using relativistic mean field model for the hadronic phase and the Bag model for the QGP phase. The corrections to the EOS for hadronic phase are incorporated in a thermodynamic consistent manner for Van der Waals like interaction. It is found that the effect of finite size of baryons is to shift CEP to higher chemical potential values.
Finite Size Scaling and "perfect" actions the three dimensional Ising model
Ballesteros, H G; Martín-Mayor, V; Muñoz-Sudupe, A
1998-01-01
Using Finite-Size Scaling techniques, we numerically show that the first irrelevant operator of the lattice $\\lambda\\phi^4$ theory in three dimensions is (within errors) completely decoupled at $\\lambda=1.0$. This interesting result also holds in the Thermodynamical Limit, where the renormalized coupling constant shows an extraordinary reduction of the scaling-corrections when compared with the Ising model. It is argued that Finite-Size Scaling analysis can be a competitive method for finding improved actions.
Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes
Energy Technology Data Exchange (ETDEWEB)
Liu, M; Bassler, K E, E-mail: bassler@uh.edu [Department of Physics, University of Houston, 617 Science and Research 1, Houston, TX 77204-5005 (United States)
2011-01-28
Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.
Finite-size analysis of continuous-variable quantum key distribution
Leverrier, Anthony; Grangier, Philippe
2010-01-01
The goal of this paper is to extend the framework of finite size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than the ones obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite size scenario, over distances larger than 50 km.
Nuclear Zemach Moments and Finite-Size Corrections to Allowed Beta Decay
Wang, X B; Hayes, A C
2016-01-01
The finite-size correction to $\\beta$-decay plays an important role in determining the expected antineutrino spectra from reactors at a level that is important for the reactor-neutrino anomaly. Here we express the leading-order finite-size correction to allowed $\\beta$-decay in terms of Zemach moments. We calculate the Zemach moments within a Hartree-Fock model using a Skyrme-like energy density functional. We find that the Zemach moments are increased relative to predictions based on the simple assumption of identical uniform nuclear-charge and weak-transition densities. However, for allowed ground-state to ground-state transitions in medium and heavy nuclei, the detailed nuclear structure calculations do not change the finite-size corrections significantly from the simple model predictions, and are only 10-15% larger than the latter even though the densities differ significantly.
Finite-size scaling study of the three-dimensional classical Heisenberg model
Holm, C; Holm, Christian; Janke, Wolfhard
1993-01-01
We use the single-cluster Monte Carlo update algorithm to simulate the three-dimensional classical Heisenberg model in the critical region on simple cubic lattices of size $L^3$ with $L=12, 16, 20, 24, 32, 40$, and $48$. By means of finite-size scaling analyses we compute high-precision estimates of the critical temperature and the critical exponents, using extensively histogram reweighting and optimization techniques. Measurements of the autocorrelation time show the expected reduction of critical slowing down at the phase transition. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors in finite-size scaling analyses.
Finite-size corrections for logarithmic representations in critical dense polymers
Energy Technology Data Exchange (ETDEWEB)
Izmailian, Nickolay Sh., E-mail: izmailan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 10617, Taiwan (China); Ruelle, Philippe, E-mail: philippe.ruelle@uclouvain.be [Institut de Recherche en Mathematique et Physique, Universite catholique de Louvain, B-1348 Louvain-La-Neuve (Belgium); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2012-05-01
We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order.
Finite size corrections to the radiation reaction force in classical electrodynamics.
Galley, Chad R; Leibovich, Adam K; Rothstein, Ira Z
2010-08-27
We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius R of a spherically symmetric charge is order R2 rather than order R in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincaré and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.
Communication: Finite size correction in periodic coupled cluster theory calculations of solids
Liao, Ke; Grüneis, Andreas
2016-10-01
We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.
Li, S.-G.; Koops, G.H.; Mulder, M.H.V.; Boomgaard, van den A.; Smolders, C.A.
1994-01-01
Three main routes are known to prepare hollow fiber membranes; melt spinning, dry spinning and wet spinning (or dry/wet spinning). The latter is the most important technique for the preparation of industrial hollow fiber membranes. In this process the extruded polymer solution is immersed in a nonso
Li, S.G.; Li, S.-G.; Koops, G.H.; Mulder, M.H.V.; van den Boomgaard, Anthonie; Smolders, C.A.; Smolders, C.A.
1994-01-01
Three main routes are known to prepare hollow fiber membranes; melt spinning, dry spinning and wet spinning (or dry/wet spinning). The latter is the most important technique for the preparation of industrial hollow fiber membranes. In this process the extruded polymer solution is immersed in a nonso
Finite-Size and Composition-Driven Topological Phase Transition in (Bi1-xInx)2Se3 Thin Films.
Salehi, Maryam; Shapourian, Hassan; Koirala, Nikesh; Brahlek, Matthew J; Moon, Jisoo; Oh, Seongshik
2016-09-14
In a topological insulator (TI), if its spin-orbit coupling (SOC) strength is gradually reduced, the TI eventually transforms into a trivial insulator beyond a critical point of SOC, at which point the bulk gap closes: this is the standard description of the topological phase transition (TPT). However, this description of TPT, driven solely by the SOC (or something equivalent) and followed by closing and reopening of the bulk band gap, is valid only for infinite-size samples, and little is known how TPT occurs for finite-size samples. Here, using both systematic transport measurements on interface-engineered (Bi1-xInx)2Se3 thin films and theoretical simulations (with animations in the Supporting Information), we show that description of TPT in finite-size samples needs to be substantially modified from the conventional picture of TPT due to surface-state hybridization and bulk confinement effects. We also show that the finite-size TPT is composed of two separate transitions, topological-normal transition (TNT) and metal-insulator transition (MIT), by providing a detailed phase diagram in the two-dimensional phase space of sample size and SOC strength.
THE IMPORTANCE OF COAGULATION BATH IN ACRYLIC FIBER PRODUCTION
Directory of Open Access Journals (Sweden)
İsmail TİYEK
2005-03-01
Full Text Available In the production of acrylic fibers using wet-spinning method, fiber formation takes places in the coagulation bath. Therefore, physical properties of the fibers, produced by the wet-spinning method, is affected by coagulation bath conditions. For this reason, coagulation bath parameters have to be checked very well. In this paper, both the physical events such as diffusion and phase transition, occured in the coagulation bath, and some coagulation bath parameters that affect these physical events are studied. Furthermore, it is tried to express their affects on the physical characteristics of the fibers.
Finite-size effects in the spherical model of finite thickness
Chamati, H.
2008-09-01
A detailed analysis of the finite-size effects on the bulk critical behaviour of the d-dimensional mean spherical model confined to a film geometry with finite thickness L is reported. Along the finite direction different kinds of boundary conditions are applied: periodic (p), antiperiodic (a) and free surfaces with Dirichlet (D), Neumann (N) and a combination of Neumann and Dirichlet (ND) on both surfaces. A systematic method for the evaluation of the finite-size corrections to the free energy for the different types of boundary conditions is proposed. The free energy density and the equation for the spherical field are computed for arbitrary d. It is found, for 2 finite-size scaling form at the bulk critical temperature only for (p) and (a). For the remaining boundary conditions the standard finite-size scaling hypothesis is not valid. At d = 3, the critical amplitude of the singular part of the free energy (related to the so-called Casimir amplitude) is estimated. We obtain Δ(p) = -2ζ(3)/(5π) = -0.153 051..., Δ(a) = 0.274 543... and Δ(ND) = 0.019 22..., implying a fluctuation-induced attraction between the surfaces for (p) and repulsion in the other two cases. For (D) and (N) we find a logarithmic dependence on L.
Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2016-01-01
The problem of the lower bound on the radiation Q for an arbitrarily shaped finite size antenna of non-zero volume is formulated in terms of equivalent electric and magnetic currents densities distributed on a closed surface coinciding with antenna exterior surface. When these equivalent currents...
Roughness and Finite Size Effect in the NYSE Stock-Price Fluctuations
Alfi, V; Petri, A; Pietronero, L
2006-01-01
We consider the roughness properties of NYSE (New York Stock Exchange) stock-price fluctuations. The statistical properties of the data are relatively homogeneous within the same day but the large jumps between different days prevent the extension of the analysis to large times. This leads to intrinsic finite size effects which alter the apparent Hurst (H) exponent. We show, by analytical methods, that finite size effects always lead to an enhancement of H. We then consider the effect of fat tails on the analysis of the roughness and show that the finite size effects are strongly enhanced by the fat tails. The non stationarity of the stock price dynamics also enhances the finite size effects which, in principle, can become important even in the asymptotic regime. We then compute the Hurst exponent for a set of stocks of the NYSE and argue that the interpretation of the value of H is highly ambiguous in view of the above results. Finally we propose an alternative determination of the roughness in terms of the ...
Finite-size scaling of interface free energies in the 3d Ising model
Pepé, M; Forcrand, Ph. de
2002-01-01
We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.
Finite-size scaling of interface free energies in the 3d Ising model
Pepe, M.; de Forcrand, Ph.
2001-01-01
We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.
Finite size scaling analysis of intermittency moments in the two dimensional Ising model
Burda, Z; Peschanski, R; Wosiek, J
1993-01-01
Finite size scaling is shown to work very well for the block variables used in intermittency studies on a 2-d Ising lattice. The intermittency exponents so derived exhibit the expected relations to the magnetic critical exponent of the model. Email contact: pesch@amoco.saclay.cea.fr
An explicit expression for finite-size corrections to the chemical potential
Smit, B.; Frenkel, D.
1989-01-01
In this article an expression is derived for the finite-size corrections to the excess chemical potential in an N-particle system with periodic boundary conditions. The leading N-dependence of the chemical potential is predicted to be proportional to 1/N. The authors derive a simple expression relat
The finite size spectrum of the 2-dimensional O(3) nonlinear sigma-model
Balog, Janos(Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, MTA Lendület Holographic QFT Group, 1525, Budapest 114, P.O.B. 49, Hungary); Hegedus, Arpad
2009-01-01
Nonlinear integral equations are proposed for the description of the full finite size spectrum of the 2-dimensional O(3) nonlinear sigma-model in a periodic box. Numerical results for the energy eigenvalues are compared to the rotator spectrum and perturbation theory for small volumes and with the recently proposed generalized Luscher formulas at large volumes.
Finite-size corrections to the free energies of crystalline solids
Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.
2000-01-01
We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free ene
Finite-size corrections to the free energies of crystalline solids
Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.
2000-01-01
We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free
Billoire, Alain
2006-04-01
I use an interpolation formula, introduced recently by Guerra and Toninelli, in order to prove the existence of the free energy of the Sherrington-Kirkpatrick spin glass model in the infinite volume limit, to investigate numerically the finite-size corrections to the free energy of this model. The results are compatible with a (1/12N)ln(N/N0) behavior at Tc , as predicted by Parisi, Ritort, and Slanina, and a 1/N2/3 behavior below Tc .
Faustov, R. N.; Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.
2014-06-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Faustov, R N; Martynenko, G A; Sorokin, V V
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2012-08-31
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.
Finite-size effects and the search for the critical endpoint of QCD
Fraga, Eduardo S; Palhares, Letícia F; Sorensen, Paul
2011-01-01
Taking into account the finiteness of the system created in heavy ion collisions, we show sizable results for the modifications of the chiral phase diagram at volume scales typically encountered in current experiments and demonstrate the applicability of finite-size scaling as a tool in the experimental search for the critical endpoint. Using data from RHIC and SPS and assuming finite-size scaling, we find that RHIC data from 200 GeV down to 19.6 GeV is only consistent with a critical point at \\mu \\gtrsim 510 MeV. We also present predictions for the fluctuations at lower energies currently being investigated in the Beam Energy Scan program.
Finite-size effects, pseudocritical quantities and signatures of the chiral critical endpoint of QCD
Palhares, L F; Kodama, T
2009-01-01
We investigate finite-size effects on the phase diagram of strong interactions, and discuss their influence (and utility) on experimental signatures in high-energy heavy ion collisions. We calculate the modification of the pseudocritical transition line and isentropic trajectories, and discuss how this affects proposed signatures of the chiral critical endpoint. We argue that a finite-size scaling analysis may be crucial in the process of data analysis in the Beam Energy Scan program at RHIC and in future experiments at FAIR-GSI. We propose the use of extrapolations, full scaling plots and a chi-squared method as tools for searching the critical endpoint of QCD and determining its universality class.
Reflection of sound from finite-size plane and curved surfaces
DEFF Research Database (Denmark)
Rindel, Jens Holger
2005-01-01
and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array and it was demonstrated that the performance......The author’s research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite size plate was studied using the Kirchhoff-Fresnel approximation...... of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...
Approximate solution for frequency synchronization in a finite-size Kuramoto model.
Wang, Chengwei; Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S
2015-12-01
Scientists have been considering the Kuramoto model to understand the mechanism behind the appearance of collective behavior, such as frequency synchronization (FS) as a paradigm, in real-world networks with a finite number of oscillators. A major current challenge is to obtain an analytical solution for the phase angles. Here, we provide an approximate analytical solution for this problem by deriving a master solution for the finite-size Kuramoto model, with arbitrary finite-variance distribution of the natural frequencies of the oscillators. The master solution embodies all particular solutions of the finite-size Kuramoto model for any frequency distribution and coupling strength larger than the critical one. Furthermore, we present a criterion to determine the stability of the FS solution. This allows one to analytically infer the relationship between the physical parameters and the stable behavior of networks.
Finite-size effects in the Nagel-Schreckenberg traffic model
Balouchi, Ashkan; Browne, Dana A.
2016-05-01
We examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. We show that the low-density limit can be described as a dilute gas of vehicles with a repulsive core. At the transition to jamming, we observe finite-size effects in a variety of quantities describing the flow and the density correlations, but only if the maximum speed Vmax is larger than a certain value. A finite-size scaling analysis of several order parameters shows universal behavior, with scaling exponents that depend on Vmax. The jamming transition at large Vmax can be viewed as the nucleation of jams in a background of freely flowing vehicles. For small Vmax no such clean separation into jammed and free vehicles is possible.
Reflection of sound from finite-size plane and curved surfaces
DEFF Research Database (Denmark)
Rindel, Jens Holger
2005-01-01
and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array and it was demonstrated that the performance...... of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...... in the refurbishment of the concert hall of the Danish Radio in Copenhagen 1989, and later in many other halls. In order to describe the scattering due to edge diffraction the directional characteristic of reflections from a finite-size plate has been studied and a simple approximation valid for octave bands has been...
Finite-size effects in quasi-one-dimensional conductors with a charge-density wave
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, Sergei V [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation)
2004-06-30
Recent studies of finite-size effects in charge-density wave conductors are reviewed. Various manifestations of finite-size effects, including the transverse-size dependence of the nonlinear-conduction threshold field, the Peierls transition temperature, high-frequency conduction, and the relaxation rates of metastable states, are discussed. Resistivity jumps in thin samples, the smeared threshold field for nonlinear conduction, and threshold conduction above the Peierls transition temperature are considered, as are mesoscopic oscillations of the threshold field, one-dimensional conduction in thin crystals, absolute negative conductivity of quasi-one-dimensional conductors, the length dependence of the phase-slip voltage, and the Aharonov-Bohm oscillations in sliding CDWs. Problems yet to be solved are discussed. (reviews of topical problems)
Imaging properties of finite-size left-handed material slabs.
Chen, Jianbing J; Grzegorczyk, Tomasz M; Wu, Bae-Ian; Kong, Jin Au
2006-10-01
Finite-size left-handed material (LHM) slabs are studied both analytically and numerically. The analytical method is based on Huygens' principles using truncated current sheets that cover only the apertures of the slabs. It is shown that the main effects on the images' spectra due to the size of the slabs can be predicted by the proposed analytical method, which can, therefore, be used as a fast alternative to the numerical simulations. Furthermore, the property of negative-energy streams at the image plane is explained. This unique property is found to be due to the interactions between propagating and evanescent waves and can only occur with LHM slabs, both finite size and infinite.
Finite-size effects and the search for the critical endpoint in heavy ion collisions
Palhares, Leticia F; Kodama, Takeshi
2009-01-01
We discuss how the finiteness of the system created in a heavy-ion collision affects possible signatures of the QCD critical endpoint. We show sizable results for the modifications of the chiral phase diagram at volume scales typically encountered in current heavy-ion collisions and address the applicability of finite-size scaling as a tool in the experimental search for the critical endpoint.
Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation
Shiokawa, K
1999-01-01
Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.
Finite-size corrections and scaling for the dimer model on the checkerboard lattice
Izmailian, Nickolay Sh.; Wu, Ming-Chya; Hu, Chin-Kun
2016-11-01
Lattice models are useful for understanding behaviors of interacting complex many-body systems. The lattice dimer model has been proposed to study the adsorption of diatomic molecules on a substrate. Here we analyze the partition function of the dimer model on a 2 M ×2 N checkerboard lattice wrapped on a torus and derive the exact asymptotic expansion of the logarithm of the partition function. We find that the internal energy at the critical point is equal to zero. We also derive the exact finite-size corrections for the free energy, the internal energy, and the specific heat. Using the exact partition function and finite-size corrections for the dimer model on a finite checkerboard lattice, we obtain finite-size scaling functions for the free energy, the internal energy, and the specific heat of the dimer model. We investigate the properties of the specific heat near the critical point and find that the specific-heat pseudocritical point coincides with the critical point of the thermodynamic limit, which means that the specific-heat shift exponent λ is equal to ∞ . We have also considered the limit N →∞ for which we obtain the expansion of the free energy for the dimer model on the infinitely long cylinder. From a finite-size analysis we have found that two conformal field theories with the central charges c =1 for the height function description and c =-2 for the construction using a mapping of spanning trees can be used to describe the dimer model on the checkerboard lattice.
Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition
Bajnok, Z; Takács, G
2001-01-01
The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.
SEMI-ELLIPTIC SURFACE CRACK IN AN ELASTIC SOLID WITH FINITE SIZE UNDER IMPACT LOADING
Institute of Scientific and Technical Information of China (English)
Guo Ruiping; Liu Guanting; Fan Tianyou
2006-01-01
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.
Finite-size effects on semi-directed Barabási-Albert networks
Radwan, M. A.; Sumour, Muneer A.; Elbitar, A. M.; Shabat, M. M.; Lima, F. W. S.
2016-04-01
In scale-free Barabási-Albert (BA) networks, we study the finite-size effect at different number m of neighbors. So, we investigate the effects of finite network size N for the recently developed semi-directed BA networks (SDBA1 and SDBA2) at fixed 2≤m≤300) and show and explain the gap in the distribution of the number k(i) of neighbors of the nodes i.
Spontaneous radiation of a finite-size dipole emitter in hyperbolic media
Poddubny, Alexander N; Kivshar, Yuri S
2011-01-01
We study the radiative decay rate and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the longitudinal and transverse dielectric constants of the medium are opposite, and the isofrequency contour has a hyperbolic shape. We reveal that the Purcell enhancement factor remains finite even in the absence of losses, and it depends on the emitter size.
Simulation of suspension flow of finite-size spherical particles in a 3D square channel
Gao, Hui; Wang, Lian-Ping
2008-11-01
Suspension flow of finite-size particles in a turbulent gas is of importance to many engineering applications and natural phenomena. As a first step, the present work focuses on the motion and hydrodynamic interaction of finite-size particles in the absence of background carrier-fluid turbulence. The major challenge for an accurate simulation is twofold: an efficient implementation of no-slip boundary conditions on the moving particle surface and an accurate representation of short-range lubrication effects that typically are not resolved numerically. A Navier-Stokes based hybrid approach (i.e., Physalis) developed by Prosperetti and co-workers is employed to solve the suspension flows of a pair of finite-size, freely-moving particles at finite particle Reynolds numbers. A lubrication force representation, designed by Ladd, involving particle relative location and velocity, is incorporated to capture the short-range interactions between particles. The accuracy of the representation and its compatibility with the flow simulation will be examined. A mesoscopic lattice Boltzmann equation (LBE) approach is also used to simulate the same problem for cross validation. Specific implementation issues will be addressed. Comparison with available numerical data will also be discussed.
Finite size corrections in the random energy model and the replica approach
Derrida, Bernard; Mottishaw, Peter
2015-01-01
We present a systematic and exact way of computing finite size corrections for the random energy model, in its low temperature phase. We obtain explicit (though complicated) expressions for the finite size corrections of the overlap functions. In its low temperature phase, the random energy model is known to exhibit Parisi's broken symmetry of replicas. The finite size corrections given by our exact calculation can be reproduced using replicas if we make specific assumptions about the fluctuations (with negative variances!) of the number and sizes of the blocks when replica symmetry is broken. As an alternative we show that the exact expression for the non-integer moments of the partition function can be written in terms of coupled contour integrals over what can be thought of as ‘complex replica numbers’. Parisi's one step replica symmetry breaking arises naturally from the saddle point of these integrals without making any ansatz or using the replica method. The fluctuations of the ‘complex replica numbers’ near the saddle point in the imaginary direction correspond to the negative variances we observed in the replica calculation. Finally our approach allows one to see why some apparently diverging series or integrals are harmless.
Reflection of sound from finite-size plane and curved surfaces
Rindel, Jens H.
2005-09-01
The author's research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite-size plate was studied using the Kirchhoff-Fresnel approximation, and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array, and it was demonstrated that the performance of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used in the refurbishment of the concert hall of the Danish Radio in Copenhagen 1989, and later in many other halls. In order to describe the scattering due to edge diffraction, the directional characteristic of reflections from a finite-size plate has been studied and a simple approximation valid for octave bands has been derived.
Competition between finite-size effects and dipole-dipole interactions in few-atom systems
Damanet, François; Martin, John
2016-11-01
In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.
Directory of Open Access Journals (Sweden)
Tilo Schwalger
2017-04-01
Full Text Available Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Finite-size scaling in silver nanowire films: design considerations for practical devices
Large, Matthew J.; Cann, Maria; Ogilvie, Sean P.; King, Alice A. K.; Jurewicz, Izabela; Dalton, Alan B.
2016-07-01
We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of
Finite-size scaling analysis of a nonequilibrium phase transition in the naming game model
Brigatti, E.; Hernández, A.
2016-11-01
We realize an extensive numerical study of the naming game model with a noise term which accounts for perturbations. This model displays a nonequilibrium phase transition between an absorbing ordered consensus state, which occurs for small noise, and a disordered phase with fragmented clusters characterized by heterogeneous memories, which emerges at strong noise levels. The nature of the phase transition is studied by means of a finite-size scaling analysis of the moments. We observe a scaling behavior typical of a discontinuous transition and we are able to estimate the thermodynamic limit. The scaling behavior of the clusters size seems also compatible with this kind of transition.
Light propagation in tissues: effect of finite size of tissue sample
Melnik, Ivan S.; Dets, Sergiy M.; Rusina, Tatyana V.
1995-12-01
Laser beam propagation inside tissues with different lateral dimensions has been considered. Scattering and anisotropic properties of tissue critically determine spatial fluence distribution and predict sizes of tissue specimens when deviations of this distribution can be neglected. Along the axis of incident beam the fluence rate weakly depends on sample size whereas its relative increase (more than 20%) towards the lateral boundaries. The finite sizes were considered to be substantial only for samples with sizes comparable with the diameter of the laser beam. Interstitial irradiance patterns simulated by Monte Carlo method were compared with direct measurements in human brain specimens.
Finite-size scaling of two-point statistics and the turbulent energy cascade generators.
Cleve, Jochen; Dziekan, Thomas; Schmiegel, Jürgen; Barndorff-Nielsen, Ole E; Pearson, Bruce R; Sreenivasan, Katepalli R; Greiner, Martin
2005-02-01
Within the framework of random multiplicative energy cascade models of fully developed turbulence, finite-size-scaling expressions for two-point correlators and cumulants are derived, taking into account the observationally unavoidable conversion from an ultrametric to an Euclidean two-point distance. The comparison with two-point statistics of the surrogate energy dissipation, extracted from various wind tunnel and atmospheric boundary layer records, allows an accurate deduction of multiscaling exponents and cumulants, even at moderate Reynolds numbers for which simple power-law fits are not feasible. The extracted exponents serve as input for parametric estimates of the probabilistic cascade generator. Various cascade generators are evaluated.
Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition
Midya, Jiarul; Das, Subir K.
2017-01-01
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.
Finite size effects in the static structure factor of dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Davletov, A. E., E-mail: askar@physics.kz; Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K. [Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty (Kazakhstan)
2014-07-15
Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.
Finite size scaling analysis of a nonequilibrium phase transition in the naming game model
Brigatti, E
2016-01-01
We realize an extensive numerical study of the Naming Game model with a noise term which accounts for perturbations. This model displays a non-equilibrium phase transition between an absorbing ordered consensus state, which occurs for small noise, and a disordered phase with fragmented clusters characterized by heterogeneous memories, which emerges at strong noise levels. The nature of the phase transition is studied by means of a finite-size scaling analysis of the moments. We observe a scaling behavior typical of a discontinuous transition and we are able to estimate the thermodynamic limit. The scaling behavior of the clusters size seems also compatible with this kind of transition.
Some recent developments in spin glasses
Indian Academy of Sciences (India)
A P Young
2005-06-01
I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the spins and chiralities shows that there is a single, finite-temperature transition at which both spins and chiralities order.
Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors
Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya
2014-10-01
Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.
Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems
Li, Xiao-Teng; Chen, Xiao-Song
2016-09-01
Complex systems consisting of N agents can be investigated from the aspect of principal fluctuation modes of agents. From the correlations between agents, an N × N correlation matrix C can be obtained. The principal fluctuation modes are defined by the eigenvectors of C. Near the critical point of a complex system, we anticipate that the principal fluctuation modes have the critical behaviors similar to that of the susceptibity. With the Ising model on a two-dimensional square lattice as an example, the critical behaviors of principal fluctuation modes have been studied. The eigenvalues of the first 9 principal fluctuation modes have been invesitigated. Our Monte Carlo data demonstrate that these eigenvalues of the system with size L and the reduced temperature t follow a finite-size scaling form λn (L, t) = Lγ/ν fn(tL1/ν), where γ is critical exponent of susceptibility and ν is the critical exponent of the correlation length. Using eigenvalues λ1, λ2 and λ6, we get the finite-size scaling form of the second moment correlation length ξ (L, t) &equals L\\tilde ξ (tL1/ν ). It is shown that the second moment correlation length in the two-dimensional square lattice is anisotropic. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384
Finite-size analysis of the detectability limit of the stochastic block model
Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.
2017-06-01
It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.
Directory of Open Access Journals (Sweden)
Enes Kavalçalan
2015-12-01
Full Text Available From the very beginning of the human history, body cleanliness is one of the basic needs. At first, human beings have supplied the needs of cleaning from rivers and lakes. With the development of civilizations they have started to build baths. In Roman Period these baths have been combined with Gymnasiums and become a part of the social life while they were merely small places of bathing in Ancient Greek. In the course of time, bath architecture which gained new functions and typologies with the effects of different nations and geographic places has maintained its own existence in Turkish culture as a popular ingredient in it. In this paper, mansion baths that were built in Ottoman period in Cyprus are studied. Firstly all locations of baths were determinated, photographed and measured during the research. Then, the determinated baths have been tried to being described comprehensively in the light of the documents and knowledges that are achievable. Main plan in mansion baths was built on the basis of “dressing” and “hotness” sections. Also, there are installation parts like “water tank” and “boiler room”. The baths which have a peculiar schema in itself constitute the exceptional examples of bath typology. With this paper, introduction to science world of mansion baths which are generally ignored in most of the researches because of the small sizes, are aimed.
How reliable are Finite-Size Lyapunov Exponents for the assessment of ocean dynamics?
Hernández-Carrasco, Ismael; López, Cristóbal; Turiel, Antonio
2010-01-01
Much of atmospheric and oceanic transport is associated with coherent structures. Lagrangian methods are emerging as optimal tools for their identification and analysis. An important Lagrangian technique which is starting to be widely used in oceanography is that of Finite-Size Lyapunov Exponents (FSLEs). Despite this growing relevance there are still many open questions concerning the reliability of the FSLEs in order to analyse the ocean dynamics. In particular, it is still unclear how robust they are when confronted with real data. In this paper we analyze the effect on this Lagrangian technique of the two most important effects when facing real data, namely noise and dynamics of unsolved scales. Our results, using as a benchmarch data from a primitive numerical model of the Mediterranean Sea, show that even when some dynamics is missed the FSLEs results still give an accurate picture of the oceanic transport properties.
Lasing in dark and bright modes of a finite-sized plasmonic lattice
Hakala, T K; Väkeväinen, A I; Martikainen, J -P; Moilanen, A J; Törmä, P
2016-01-01
Lasing at the nanometer scale promises strong light-matter interactions and ultrafast operation. The first realizations of nanoscale lasing have been achieved but suffer from losses and lack of beam directionality. Band-edge lasing in periodic plasmonic structures offered an improvement but radiative losses remained high. Intriguingly, plasmonic nanoparticle arrays support also non-radiative dark modes that offer longer life-times but are inaccessible to far field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nanometers at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.
Finite-size scaling in a 2D disordered electron gas with spectral nodes.
Sinner, Andreas; Ziegler, Klaus
2016-08-03
We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text].
Finite size effects on the phase diagram of the thermodynamical cluster model
Mallik, S; Chaudhuri, G
2016-01-01
The thermodynamical cluster model is known to present a first-order liquid-gas phase transition in the idealized case of an uncharged, infinitely extended medium. However, in most practical applications of this model, the system is finite and charged. In this paper we study how the phase diagram is modified by finite size and Coulomb effects. We show that the thermodynamic anomalies which are associated to the finite system counterpart of first order phase transitions, are correctly reproduced by this effective model. However, approximations in the calculation of the grandcanonical partition sum prevent obtaining the exact mapping between statistical ensembles which should be associated to finite systems. The ensemble inequivalence associated to the transition persists in the presence of Coulomb, but the phase diagram is deeply modified with respect to the simple liquid-gas phase transition characteristic of the neutral system.
Finite Size Scaling of the Higgs-Yukawa Model near the Gaussian Fixed Point
Chu, David Y -J; Knippschild, Bastian; Lin, C -J David; Nagy, Attila
2016-01-01
We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
Energy Technology Data Exchange (ETDEWEB)
Song, Youlin [Zhengzhou University, China; Zhao, Ke [ORNL; Jia, Yu [Zhengzhou University, China; Hu, Xing [Zhengzhou University, China; Zhang, Zhenyu [ORNL
2008-01-01
Finite size effects on the optical properties of one-dimensional 1D and two-dimensional 2D nanoshell dimer arrays are investigated using generalized Mie theory and coupled dipole approximation within the context of surface-enhanced Raman spectroscopy SERS. It is shown that the huge enhancement in the electromagnetic EM field at the center of a given dimer oscillates with the length of the 1D array. For an array of fixed length, the EM enhancement also oscillates along the array, but with a different period. Both types of oscillations can be attributed to the interference of the dynamic dipole fields from different dimers in the array. When generalized to 2D arrays, EM enhancement higher than that of the 1D arrays can be gained with a constant magnitude, a salient feature advantageous to experimental realization of single-molecule SERS. 2008 American Institute of Physics. DOI: 10.1063/1.3009293
Song, Youlin; Zhao, Ke; Jia, Yu; Hu, Xing; Zhang, Zhenyu
2009-03-01
Finite size effects on the optical properties of one-dimensional (1D) and 2D nanoshell dimer arrays are investigated using generalized Mie theory and coupled dipole approximation within the context of surface-enhanced Raman spectroscopy (SERS). It is shown that the huge enhancement in the electromagnetic (EM) field at the center of a given dimer oscillates with the length of the 1D array. For an array of fixed length, the EM enhancement also oscillates along the array, but with a different period. Both types of oscillations can be attributed to the interference of the dynamic dipole fields from different dimers in the array. When generalized to 2D arrays, EM enhancement higher than that of the 1D arrays can be gained with a constant magnitude, a salient feature advantageous to experimental realization of single-molecule SERS. [K. Zhao et al, J. Chem. Phys. 125, 081102 (2005); Y. L. Song et al, accepted by J. Chem. Phys.
Spatial Kerr solitons in optical fibres of finite size cross section: beyond the Townes soliton
Drouart, F.; Renversez, G.; Nicolet, A.; Geuzaine, C.
2008-12-01
We propose a new and efficient numerical method to find spatial solitons in optical fibres with a nonlinear Kerr effect including microstructured ones. A nonlinear non-paraxial scalar model of the electric field in the fibre is used (nonlinear Helmholtz equation) and an iterative algorithm is proposed to obtain the nonlinear solutions using the finite element method. The field is supposed to be harmonic in time and along the direction of invariance of the fibre but inhomogeneous in the cross section. In our approach, we solve a nonlinear eigenvalue problem in which the propagation constant is the eigenvalue. Several examples dealing with step-index fibres and microstructured optical fibres with a finite size cross section are described. In each geometry, a single self-coherent nonlinear solution is obtained. This solution, which also depends on the size of the structure, is different from the Townes soliton—but converges towards it at small wavelengths.
Fully-resolved DNS of finite-size particles exposed to a turbulent stream
Botto, Lorenzo; Prosperetti, Andrea
2008-11-01
A field of homogeneous isotropic turbulence is convected with a mean velocity past a group of fixed, finite-size particles and the structure and intensity of the resulting downstream turbulence are compared to the particle-free case. The diameter of the particles is larger than the Kolmogorov scale and is of the order of the Taylor micro-scale. The results illustrate the central role played by the particle wakes in destroying the isotropy and homogeneity of the incident turbulence. Furthermore, as a result of wake interactions, the time-dependent hydrodynamic forces on the downstream and upstream spheres are correlated. The numerical simulations are carried out on a uniform grid by employing the ``Physalis'' method which can be regarded as a combination of an immersed boundary and spectral method. Among other advantages, it does not require interpolation and its spectral convergence permits computations with relatively few grid nodes per particle.
Finite-size corrections for universal boundary entropy in bond percolation
de Gier, Jan; Ponsaing, Anita
2016-01-01
We compute the boundary entropy for bond percolation on the square lattice in the presence of a boundary loop weight, and prove explicit and exact expressions on a strip and on a cylinder of size $L$. For the cylinder we provide a rigorous asymptotic analysis which allows for the computation of finite-size corrections to arbitrary order. For the strip we provide exact expressions that have been verified using high-precision numerical analysis. Our rigorous and exact results corroborate an argument based on conformal field theory, in particular concerning universal logarithmic corrections for the case of the strip due to the presence of corners in the geometry. We furthermore observe a crossover at a special value of the boundary loop weight.
Transition and self-sustained turbulence in dilute suspensions of finite-size particles
Lashgari, Iman; Brandt, Luca
2015-01-01
We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e. $\\Phi \\approx 0.001$. The critical Reynolds number above which turbulence is sustained reduces to $Re \\approx 1675$, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e. $Re\\approx1775$. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic. Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow.
Weakest-Link Scaling and Finite Size Effects on Recurrence Times Distribution
Hristopulos, Dionissios T; Kaniadakis, Giorgio
2013-01-01
Tectonic earthquakes result from the fracturing of the Earth's crust due to the loading induced by the motion of the tectonic plates. Hence, the statistical laws of earthquakes must be intimately connected to the statistical laws of fracture. The Weibull distribution is a commonly used model of earthquake recurrence times (ERT). Nevertheless, deviations from Weibull scaling have been observed in ERT data and in fracture experiments on quasi-brittle materials. We propose that the weakest-link-scaling theory for finite-size systems leads to the kappa-Weibull function, which implies a power-law tail for the ERT distribution. We show that the ERT hazard rate function decreases linearly after a waiting time which is proportional to the system size (in terms of representative volume elements) raised to the inverse of the Weibull modulus. We also demonstrate that the kappa-Weibull can be applied to strongly correlated systems by means of simulations of a fiber bundle model.
Piasecki, Ryszard
2008-09-01
The statistical measure of spatial inhomogeneity for n points placed in χ cells each of size k×k is generalized to incorporate finite size objects like black pixels for binary patterns of size L×L. As a function of length scale k, the measure is modified in such a way that it relates to the smallest realizable value for each considered scale. To overcome the limitation of pattern partitions to scales with k being integer divisors of L, we use a sliding cell-sampling approach. For given patterns, particularly in the case of clusters polydispersed in size, the comparison between the statistical measure and the entropic one reveals differences in detection of the first peak while at other scales they well correlate. The universality of the two measures allows both a hidden periodicity traces and attributes of planar quasi-crystals to be explored.
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Homoclinic snaking in plane Couette flow: bending, skewing, and finite-size effects
Gibson, John F
2015-01-01
Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift-Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar-turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing, and finite-size effects. We show that the finite-si...
Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting.
Medrano-T, Rene O; Moura, Alessandro; Tél, Tamás; Caldas, Iberê L; Grebogi, Celso
2008-11-01
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Finite-size corrections to scaling behavior in sorted cell aggregates.
Klopper, A V; Krens, G; Grill, S W; Heisenberg, C-P
2010-10-01
Cell sorting is a widespread phenomenon pivotal to the early development of multicellular organisms. In vitro cell sorting studies have been instrumental in revealing the cellular properties driving this process. However, these studies have as yet been limited to two-dimensional analysis of three-dimensional cell sorting events. Here we describe a method to record the sorting of primary zebrafish ectoderm and mesoderm germ layer progenitor cells in three dimensions over time, and quantitatively analyze their sorting behavior using an order parameter related to heterotypic interface length. We investigate the cell population size dependence of sorted aggregates and find that the germ layer progenitor cells engulfed in the final configuration display a relationship between total interfacial length and system size according to a simple geometrical argument, subject to a finite-size effect.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V
2015-11-06
Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.
N[Formula: see text] azide anion confined inside finite-size carbon nanotubes.
Battaglia, Stefano; Evangelisti, Stefano; Faginas-Lago, Noelia; Leininger, Thierry
2017-09-26
In this work, the confinement of an N[Formula: see text] azide anion inside finite-size single-wall zigzag and armchair carbon nanotubes of different diameters has been studied by wave function and density functional theory. Unrelaxed and relaxed interaction energies have been computed, resulting in a favorable interaction between the guest and host system. In particular, the largest interaction has been observed for the confinement in an armchair (5,5) carbon nanotube, for which a natural population analysis as well as an investigation based on the molecular electrostatic potential has been carried out. The nature of the interaction between the two fragments appears to be mainly electrostatic, favored by the enhanced polarizability of the nanotube wall treated as a finite system and passivated by hydrogen atoms. The results obtained are promising for possible applications of this complex as a starting point for the stabilization of larger polynitrogen compounds, suitable as a high-energy density material.
Universal Finite Size Corrections and the Central Charge in Non-solvable Ising Models
Giuliani, Alessandro; Mastropietro, Vieri
2013-11-01
We investigate a non-solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength λ. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all and λ 0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.
Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.
Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne
2014-02-18
A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.
Yu, Zongfu; Zhang, Torbjorn Skauli Gang; Wang, Hailiang; Fan, Shanhui
2012-01-01
The understanding of far-field thermal radiation had directly led to the discovery of quantum mechanics a century ago, and is of great current practical importance for applications in energy conversions, radiative cooling, and thermal control. It is commonly assumed that for any macroscopic thermal emitter, its maximal emitted power within any given frequency range cannot exceed that of a blackbody with the same surface area. In contrast to such conventional wisdom, here we propose, and experimentally demonstrate, that the emitted power from a finite size macroscopic blackbody to far field vacuum can be significantly enhanced, within the constraint of the second law of thermodynamics. To achieve such an enhancement, the thermal body needs to have internal electromagnetic density of states (DOS) greater than that of vacuum, and one needs to provide a thermal extraction mechanism to enable the contributions of all internal modes to far field radiation.
Finite-size scaling in a 2D disordered electron gas with spectral nodes
Sinner, Andreas; Ziegler, Klaus
2016-08-01
We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .
Defect Formation in Superconducting Rings: External Fields and Finite-Size Effects
Weir, D. J.; Monaco, R.; Rivers, R. J.
2013-06-01
Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practise, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.
Simple rules govern finite-size effects in scale-free networks
Cuenda, Sara
2011-01-01
We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution. We use two different approaches: the deterministic mean-field approximation used by Barab\\'asi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.
Weiss, Stephan; Zhong, Jin-Qiang; Clercx, Herman J H; Lohse, Detlef; Ahlers, Guenter; 10.1103/PhysRevLett.105.224501
2011-01-01
In turbulent thermal convection in cylindrical samples of aspect ratio \\Gamma = D/L (D is the diameter and L the height) the Nusselt number Nu is enhanced when the sample is rotated about its vertical axis, because of the formation of Ekman vortices that extract additional fluid out of thermal boundary layers at the top and bottom. We show from experiments and direct numerical simulations that the enhancement occurs only above a bifurcation point at a critical inverse Rossby number $1/\\Ro_c$, with $1/\\Ro_c \\propto 1/\\Gamma$. We present a Ginzburg-Landau like model that explains the existence of a bifurcation at finite $1/\\Ro_c$ as a finite-size effect. The model yields the proportionality between $1/\\Ro_c$ and $1/\\Gamma$ and is consistent with several other measured or computed system properties.
Mode splitting in high-index-contrast grating with mini-scale finite size.
Wang, Zhixin; Ni, Liangfu; Zhang, Haiyang; Zhang, Hanxing; Jin, Jicheng; Peng, Chao; Hu, Weiwei
2016-08-15
The mode-splitting phenomenon within finite-size, mini-scale high-index-contrast gratings (HCGs) has been investigated theoretically and experimentally. The high-Q resonance splits into a series of in-plane modes due to the confinement of boundaries but can still survive even on a mini-scale footprint. Q factors up to ∼3300 and ∼2200 have been observed for the HCGs with footprints that are only 55 μm×300 μm and 27.5 μm×300 μm, which would be promising for realizing optical communication and sensing applications with compact footprint.
Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape
Kim, Oleksiy S
2015-01-01
The problem of the lower bound on the radiation Q for an arbitrarily shaped finite size antenna of non-zero volume is formulated in terms of equivalent electric and magnetic currents densities distributed on a closed surface coinciding with antenna exterior surface. When these equivalent currents radiate in free space, the magnetic current augments the electric current, so that the fields interior to the surface vanish. In contrast to approaches based solely on electric currents, the proposed technique ensures no stored energy interior to the antenna exterior surface, and thus, allows the fundamental lower bound on Q to be determined. To facilitate the computation of the bound, new expressions for the stored energy, radiated power, and Q of coupled electric and magnetic source currents in free space are derived.
Finite Size Effect in Path Integral Monte Carlo Simulations of 4He Systems
Institute of Scientific and Technical Information of China (English)
ZHAO Xing-Wen; CHENG Xin-Lu
2008-01-01
Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of 4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the ground state for systems consisted of 32, 64 and 128 4He atoms, respectively. We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.
Renormalization-group theory for finite-size scaling in extreme statistics.
Györgyi, G; Moloney, N R; Ozogány, K; Rácz, Z; Droz, M
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
Topological phase transitions in finite-size periodically driven translationally invariant systems
Ge, Yang; Rigol, Marcos
2017-08-01
It is known that, in the thermodynamic limit, the Chern number of a translationally invariant system cannot change under unitary time evolutions that are smooth in momentum space. Yet a real-space counterpart of the Chern number, the Bott index, has been shown to change in periodically driven systems with open boundary conditions. Here we prove that the Bott index and the Chern number are identical in translationally invariant systems in the thermodynamic limit. Using the Bott index, we show that, in finite-size translationally invariant systems, a Fermi sea under a periodic drive that is turned on slowly can acquire a different topology from that of the initial state. This can happen provided that the gap-closing points in the thermodynamic limit are absent in the discrete Brillouin zone of the finite system. Hence, in such systems, a periodic drive can be used to dynamically prepare topologically nontrivial states starting from topologically trivial ones.
Influences of finite-size effectson the self-organized critical-ity of forest-fire model
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The influences of finite-size effects on the self-organized criticality (SOC) of the traditional forest-fire model are investigated by means of a new method. The forest size is originally set to a value much greater than the correlation length of the forest. Finite-size effects are then studied by equally dividing the forest into more and more separate subsystems on condition that the forest size, igniting probability and planting probability are invariant. A new phenomenon, i.e. the finite-size effects with one-side frequency peak, is observed. The boundary between two neighboring subsystems can be regarded as a firebreak. The concept of 'separation ability' is introduced to represent the probability for the firebreak to block off the fire successfully. Restraining effects of separation ability on finite-size effects are analyzed. Finite-size effects and separation ability, as well as their relations are found to have practical importance to the actual forest-fire protection.
Finite-size giant magnons on η-deformed AdS5×S5
Directory of Open Access Journals (Sweden)
Changrim Ahn
2014-10-01
Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.
Length and temperature dependence of the mechanical properties of finite-size carbyne
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Schmitz, Fabian; Virnau, Peter; Binder, Kurt
2014-07-01
The computation of interfacial free energies between coexisting phases (e.g., saturated vapor and liquid) by computer simulation methods is still a challenging problem due to the difficulty of an atomistic identification of an interface and interfacial fluctuations on all length scales. The approach to estimate the interfacial tension from the free-energy excess of a system with interfaces relative to corresponding single-phase systems does not suffer from the first problem but still suffers from the latter. Considering d-dimensional systems with interfacial area Ld -1 and linear dimension Lz in the direction perpendicular to the interface, it is argued that the interfacial fluctuations cause logarithmic finite-size effects of order ln(L)/Ld -1 and order ln(Lz)/Ld -1, in addition to regular corrections (with leading-order const/Ld -1). A phenomenological theory predicts that the prefactors of the logarithmic terms are universal (but depend on the applied boundary conditions and the considered statistical ensemble). The physical origin of these corrections are the translational entropy of the interface as a whole, "domain breathing" (coupling of interfacial fluctuations to the bulk order parameter fluctuations of the coexisting domains), and capillary waves. Using a new variant of the ensemble switch method, interfacial tensions are found from Monte Carlo simulations of d =2 and d =3 Ising models and a Lennard-Jones fluid. The simulation results are fully consistent with the theoretical predictions.
Investigation of finite-size effects in chemical bonding of AuPd nanoalloys
Energy Technology Data Exchange (ETDEWEB)
Zhu, Beien [Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Oğuz, Ismail Can; Guesmi, Hazar, E-mail: hazar.guesmi@enscm.fr [CNRS-ICG UMR 5253, équipe MACS, 8 rue de l’Ecole Normale, 34296 Montpellier (France)
2015-10-14
In this paper, the size-dependent changes in energetic, vibrational, and electronic properties of C–O gas molecule interacting with surface Pd atom of a variety of AuPd nanoalloy structures are investigated by means of first principles calculations. The variation in C–O adsorption energies, C–O vibration frequencies (ν{sub C−O}), and Pd d-bond centers (ε{sub d}) on a series of non-supported Au{sub n−1}–Pd{sub 1} nanoparticles (with n varying from 13 to 147) and on two semi-finite surfaces are inspected with cluster size. We demonstrate for the first time that, with small AuPd bimetallic three-dimensional clusters as TOh{sub 38}, one can reach cluster size convergence even for such a sensitive observable as the adsorption energy on a metal surface. Indeed, the results show that the adsorbate-induced perturbation is extremely local and it only concerns the isolated Pd interacting with the reactive gas molecule. Except for 13 atom clusters, in which molecular behaviour is predominant, no finite-size effects are observed for surface Pd atom substituted in AuPd free nanoclusters above 38 atoms.
Accounting for Finite Size of Ions in Nanofluidic Channels Using Density Functional Theory
McCallum, Christopher; Gillespie, Dirk; Pennathur, Sumita
2016-11-01
The physics of nanofluidic devices are dominated by ion-wall interactions within the electric double layer (EDL). A full understanding of the EDL allows for better exploitation of micro and nanofluidic devices for applications such as biologic separations, desalination, and energy conversion, Although continuum theory is generally used to study the fluidics within these channels, in very confined geometries, high surface charge channels, or significant solute concentration systems, continuum theories such as Poisson-Boltzmann cease to be valid because the finite size of ions is not considered. Density functional theory (DFT) provides an accurate and efficient method for predicting the concentration of ions and the electrostatic potential near a charged wall because it accounts for more complex electrostatic and hard-sphere correlations. This subsequently allows for a better model for ion flux, fluid flow, and current in electrokinetic systems at high surface charge, confined geometries, and concentrated systems. In this work, we present a theoretical approach utilizing DFT to predict unique flow phenomena in nanofluidic, electrokinetic systems. CBET-1402736 from the National Science Foundation.
Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics
Wu, Ka Ling; Porté-Agel, Fernando
2016-04-01
Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.
Lasing in dark and bright modes of a finite-sized plasmonic lattice
Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.; Martikainen, J.-P.; Nečada, M.; Moilanen, A. J.; Törmä, P.
2017-01-01
Lasing at the nanometre scale promises strong light-matter interactions and ultrafast operation. Plasmonic resonances supported by metallic nanoparticles have extremely small mode volumes and high field enhancements, making them an ideal platform for studying nanoscale lasing. At visible frequencies, however, the applicability of plasmon resonances is limited due to strong ohmic and radiative losses. Intriguingly, plasmonic nanoparticle arrays support non-radiative dark modes that offer longer life-times but are inaccessible to far-field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nm at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.
Destri, C
1994-01-01
We present a unified approach to the Thermodynamic Bethe Ansatz (TBA) for magnetic chains and field theories that includes the finite size (and zero temperature) calculations for lattice BA models. In all cases, the free energy follows by quadratures from the solution of a {\\bf single} non-linear integral equation (NLIE). [A system of NLIE appears for nested BA]. We derive the NLIE for: a) the six-vertex model with twisted boundary conditions; b) the XXZ chain in an external magnetic field h_z and c) the sine-Gordon-massive Thirring model (sG-mT) in a periodic box of size \\b \\equiv 1/T using the light-cone approach. This NLIE is solved by iteration in one regime (high T in the XXZ chain and low T in the sG-mT model). In the opposite (conformal) regime, the leading behaviors are obtained in closed form. Higher corrections can be derived from the Riemann-Hilbert form of the NLIE that we present.
Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2007-01-01
Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...
Finite-Size Scaling of Non-Gaussian Fluctuations Near the QCD Critical Point
Lacey, Roy A; Magdy, Niseem; Schweid, B; Ajitanand, N N
2016-01-01
Finite-Size Scaling (FSS) of moment products from recent STAR measurements of the variance $\\sigma$, skewness $S$ and kurtosis $\\kappa$ of net-proton multiplicity distributions, are reported for a broad range of collision centralities in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) collisions. The products $S\\sigma $ and $\\kappa \\sigma^2 $, which are directly related to the hgher-order baryon number susceptibility ratios $\\chi^{(3)}_B/\\chi^{(2)}_B$ and $\\chi^{(4)}_B/\\chi^{(2)}_B$, show scaling patterns consistent with earlier indications for a second order phase transition at a critical end point (CEP) in the plane of temperature vs. baryon chemical potential ($T,\\mu_B$) of the QCD phase diagram. The resulting scaling functions validate the earlier estimates of $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 95$~MeV for the location of the CEP, and the critical exponents used to assign its 3D Ising model universality class.
Finite Size Effects in Chemical Bonding: From Small Clusters to Solids
DEFF Research Database (Denmark)
Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.
2011-01-01
We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold n......). Below that critical size, finite-size effects can be observed, and we show those to be related to variations in the local atomic structure augmented by quantum size effects for the smallest clusters.......We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...... nanoparticles ranging from 13 to 1,415 atoms, or 0.8–3.7 nm, have been made possible by exploiting massively parallel computing on up to 32,768 cores on the Blue Gene/P computer at Argonne National Laboratory. We show that bulk surface properties are obtained for clusters larger than ca. 560 atoms (2.7 nm...
MHD flow in a cylindrical vessel of finite size with turbulent boundary layers
Energy Technology Data Exchange (ETDEWEB)
Gorbachev, L.P.; Nikitin, N.V.
1979-01-01
The hydrodynamic characteristics of flows generated by electromagnetic forces in a cylindrical vessel of finite size, for the case of large values of the hydrodynamic and small values of the magnetic Reynolds numbers have been inadequately analyzed in previous literature, since neither the nonlinear nor the linear theory adequately accounts for secondary flows due to the strong action of boundary layers formed at the end faces of the cylinders at large Reynolds numbers and the results do not agree with experimental data. This paper generalizes the previously more accurate nonlinear scheme of the same authors, the basis for which was the fact that viscosity at large Reynolds numbers is manifest only close to solid surfaces. Two cases are treated: crossed fields and a rotating magnetic field in the cylindrical vessel, where the entire flow region is broken down into an inviscid core and end face boundary layers. It is assumed that the velocity distribution near the end surfaces obeys an empirical one-seventh power law, which is applicable to turbulent liquid flow in a tube in a range of Re = 3 x 10/sup 3/ to 10/sup 5/ simple engineering formulas are derived for the angular velocity, which exhibit good agreement with the experimental data for Hartmann numbers less than 10. The procedure can be generalized to the case of a rotating magnetic field having several pairs of poles. 6 references, 2 figures.
Tuning surface reactivity by finite size effects: role of orbital symmetry in the d - band model
Snijders, Paul; Yin, Xiangshi; Cooper, Valentino; Weitering, Hanno
Catalytic activity depends sensitively on the strength of the interactions between reactant molecules and catalyst surface: too weak and the catalyst cannot capture enough molecules to react; too strong and the reaction products do not desorb, blocking further reactions. The ability to control the binding strength of molecules to metal surfaces is thus fundamental to the design of efficient and selective catalysts. Catalyst design often relies on increasing the interaction strength on relatively non-reactive materials by introducing active sites. Here, we present a complementary approach: we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time. While bulk Pd(111) is reactive toward oxygen, we find that Pd films thinner than 6 atom layers are surprisingly inert to oxidation. This observation can be explained with the d-band model only when it is applied to the orbitals directly involved in the bonding. The insight into orbital specific contributions to surface reactivity could be useful in the design of catalysts. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Simulation of finite size particles in turbulent flows using entropic lattice boltzmann method
Gupta, Abhineet; Clercx, Herman J. H.; Toschi, Federico
2016-11-01
Particle-laden turbulent flows occur in variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we will present results on the development of numerical methods, based on the Lattice Boltzmann method, suitable for the study of suspensions of finite-size particles under turbulent flow conditions and with varying geometrical complexity. The turbulent flow is modeled by an entropic lattice Boltzmann method, and the interaction between particles and carrier fluid is modeled using bounce back rule. Direct contact and lubrication force models for particle-particle interactions and particle-wall interaction are taken into account to allow for a full four-way coupled interaction. The accuracy and robustness of the method is discussed by validating velocity profile in turbulent pipe flow, sedimentation velocity of spheres in duct flow and resistance functions of approaching particles. Results show that the velocity profiles and turbulence statistics can be significantly altered by the presence of the dispersed solid phase. The author is supported by Shell-NWO computational sciences for energy research (CSER) Grant (12CSER034).
Water Evaporation in Swimming Baths
DEFF Research Database (Denmark)
Hyldgård, Carl-Erik
This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...
Simulating Bosonic Baths with Error Bars
Woods, M. P.; Cramer, M.; Plenio, M. B.
2015-09-01
We derive rigorous truncation-error bounds for the spin-boson model and its generalizations to arbitrary quantum systems interacting with bosonic baths. For the numerical simulation of such baths, the truncation of both the number of modes and the local Hilbert-space dimensions is necessary. We derive superexponential Lieb-Robinson-type bounds on the error when restricting the bath to finitely many modes and show how the error introduced by truncating the local Hilbert spaces may be efficiently monitored numerically. In this way we give error bounds for approximating the infinite system by a finite-dimensional one. As a consequence, numerical simulations such as the time-evolving density with orthogonal polynomials algorithm (TEDOPA) now allow for the fully certified treatment of the system-environment interaction.
DEFF Research Database (Denmark)
Søndergaard, T.; Tromborg, Bjarne
2002-01-01
A full-vectorial integral equation method is presented for calculating near fields and far fields generated by a given distribution of sources located inside finite-sized dielectric structures. Special attention is given to the treatment of the singularity of the dipole source field. A method is ...
The recoil correction to the proton-finite-size contribution to the Lamb shift in muonic hydrogen
Karshenboim, Savely G; Ivanov, Vladimir G; Shelyuto, Valery A
2015-01-01
The Lamb shift in muonic hydrogen was measured some time ago to a high accuracy. The theoretical prediction of this value is very sensitive to the proton-finite-size effects. The proton radius extracted from muonic hydrogen is in contradiction with the results extracted from elastic electron-proton scattering. That creates a certain problem for the interpretation of the results from the muonic hydrogen Lamb shift. For the latter we need also to take into account the two-photon-exchange contribution with the proton finite size involved. The only way to describe it relies on the data from the scattering, which may produce an internal inconsistency of theory. Recently the leading proton-finite-size contribution to the two-photon exchange was found within the external field approximation. The recoil part of the two-photon-exchange has not been considered. Here we revisit calculation of the external-field part and take the recoil correction to the finite-size effects into account.
Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model
Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.
2010-01-01
We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due
Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model
Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.
2010-01-01
We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due
DEFF Research Database (Denmark)
Franek, Ondrej; Sørensen, Morten; Ebert, Hans
2012-01-01
Model of a generic printed circuit board (PCB) in a presence of a finite-sized metallic ground plane is introduced as a commonly occurring scenario of electronic module whose electromagnetic fields are disturbed by a nearby object. Finite-difference time-domain simulations are performed...
Finite Size Scaling and the Universality Class of SU(2) Lattice Gauge Theory
Staniford-Chen, Stuart Gresley
For a system near a second order phase transition, the correlation length becomes extremely large. This gives rise to much interesting physics such as the existence of critical exponents and the division of physical theories into universality classes. SU(2) lattice gauge theory has such a phase transition at finite temperature and it has been persuasively argued in the literature that it should be in the same universality class as the Ising model in a space with dimensionality one less than the gauge theory. This is in the sense that the effective theory for the SU(2) Wilson lines is universal with the Ising model. This prediction has been checked for d = 3 + 1 SU(2) by comparing the critical exponents, and those checks appear to confirm it to the modest accuracy currently available. However, the theory of finite size scaling predicts a very rich set of objects which should be the same across universality classes. For example, the shape of the graph of various observables against temperature near the transition is universal. Not only that, but whole collections of probability distributions as a function of temperature can be given a scaling form and the shape of this object is universal. I develop a methodology for comparing such sets of distributions. This gives a two dimensional surface for each theory which can then be used in comparisons. I then use this approach and compare the surface for the order parameter in SU(2) with that in phi^4. The visual similarity is very striking. I perform a semi-quantitative error analysis which does not reveal significant differences between the two surfaces. This strengthens the idea that the SU(2) effective line theory is in the Ising universality class. I conclude by discussing the advantages and disadvantages of the method used here.
Dispersion of finite size droplets and solid particles in isotropic turbulence
Rosso, Michele
Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e. dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel droplets in the combustion chamber of internal combustion engines. However, the physics of the interaction between a dispersed phase and turbulence is not yet fully understood. The objective of this study is to compare the dispersion of deformable finite size droplets with that of solid particles in a turbulent flow in the absence of gravity, by performing Direct Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the order of the Taylor's microscale of turbulence, and the same density ratio to the carrier flow. The solid particle-laden turbulence is simulated by coupling a standard projection method with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space and time without considering particle/particle collisions (two-way coupling). The liquid droplet-laden turbulence is simulated by coupling a variable-density projection method with the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are allowed (four-way coupling). The results presented here show that in isotropic turbulence the dispersion of liquid droplets in a given direction is larger than that of solid particles due to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of the droplets.
No-slip boundary condition in finite-size dissipative particle dynamics
Ranjith, S. Kumar; Patnaik, B. S. V.; Vedantam, Srikanth
2013-01-01
Dissipative particle dynamics (DPD) is an efficient, particle based mesoscopic numerical scheme to simulate dynamics of complex fluids and micro-flows, with spatio-temporal scales in the range of micrometers and microseconds. While the traditional DPD method treated particles as point masses, a modified DPD scheme was introduced recently [W. Pan, I.V. Pivkin, G.E. Karniadakis, Single-particle hydrodynamics in DPD: a new formulation, Europhysics Letters 84 (2008) 10012] by including transverse forces between finite sized particles in addition to the central forces of the standard DPD. The capability of a DPD scheme to solve confined wall bounded flows, depends on its ability to model the flow boundaries and effectively impose the classical no-slip boundary condition. Previous simulations with the modified DPD scheme used boundary conditions from the traditional DPD schemes, resorting to the velocity reversal of re-inserted particles which cross the solid wall. In the present work, a new method is proposed to impose no-slip or tunable slip boundary condition by controlling the non-central dissipative components in the modified DPD scheme. The solid wall is modeled in such a way that the fluid particles feel the presence of a continuous wall rather than a few discrete frozen particles as in conventional wall models. The fluid particles interact with the walls using a modified central repulsive potential to reduce the spurious density fluctuations. Several different benchmark problems (Poiseuille flow, lid-driven cavity and flow past circular cylinder) were solved using the new approach to demonstrate its validity.
Fabrication of ?-Carrageenan Fibers by Wet Spinning: Spinning Parameters
Lingyan Kong; Gregory R. Ziegler
2011-01-01
This study demonstrates the fabrication of κ-carrageenan fibers by a wet-spinning method and discusses three important spinning parameters: coagulation bath composition, spinning rate and post-spinning mechanical drawing. The as-spun fiber diameter decreased with KCl and ethanol concentration in the coagulation bath. In general, the ultimate tensile stress and elongation at break both increased for KCl concentration from 0.1 to 0.5 M with and without ethanol, with no significant change above ...
Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals.
Kronik, Leeor; Stein, Tamar; Refaely-Abramson, Sivan; Baer, Roi
2012-05-08
Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview
Finite-size scaling relations for a four-dimensional Ising model on Creutz cellular automatons
Merdan, Z.; Güzelsoy, E.
2011-06-01
The four-dimensional Ising model is simulated on Creutz cellular automatons using finite lattices with linear dimensions 4 ≤ L ≤ 8. The temperature variations and finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for 7, 14, and 21 independent simulations. Approximate values for the critical temperature of the infinite lattice of Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without the logarithmic factor), 6.6921(22) (without the logarithmic factor), 6.6909(2) (without the logarithmic factor), 6.6822(13) (with the logarithmic factor), 6.6819(11) (with the logarithmic factor), and 6.6808(8) (with the logarithmic factor) are obtained from the intersection points of the specific heat curves, the Binder parameter curves, and straight line fits of specific heat maxima for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the results, 6.6802(1) and 6.6808(8), are in very good agreement with the results of a series expansion of Tc(∞), 6.6817(15) and 6.6802(2), the dynamic Monte Carlo value Tc(∞) = 6.6803(1), the cluster Monte Carlo value Tc(∞) = 6.680(1), and the Monte Carlo value using the Metropolis-Wolff cluster algorithm Tc(∞) = 6.6802632 ± 5 . 10-5. The average values calculated for the critical exponent of the specific heat are α =- 0.0402(15), - 0.0393(12), - 0.0391(11) with 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the result, α =- 0.0391(11), agrees with the series expansions result, α =- 0.12 ± 0.03 and the Monte Carlo result using the Metropolis-Wolff cluster algorithm, α ≥ 0 ± 0.04. However, α =- 0.0391(11) is inconsistent with the renormalization group prediction of α = 0.
Energy Technology Data Exchange (ETDEWEB)
Ladrem, M.; Ait-El-Djoudi, A. [Ecole Normale Superieure-Kouba, Laboratoire de Physique des Particules et Physique Statistique, B.P. 92, Vieux-Kouba, Algiers (Algeria)
2005-10-01
We study the finite-size effects for the thermal quantum chromodynamics (QCD) deconfinement phase transition, and use a numerical finite-size scaling analysis to extract the scaling exponents characterizing its scaling behavior when approaching the thermodynamic limit (V{yields}{infinity}). For this, we use a simple model of coexistence of hadronic gas and color-singlet quark gluon plasma (QGP) phases in a finite volume. The color-singlet partition function of the QGP cannot be exactly calculated and is usually derived within the saddle-point approximation. When we try to do calculations with such an approximate color-singlet partition function, a problem arises in the limit of small temperatures and/or volumes VT{sup 3}<<1, requiring additional approximations if we want to carry out calculations. We propose in this work a method for an accurate calculation of any quantity of the finite system, without any approximation. By probing the behavior of some useful thermodynamic response functions on the whole range of temperature, it turns out that, in a finite-size system, all singularities in the thermodynamic limit are smeared out and the transition point is shifted away. A numerical finite-size scaling (FSS) analysis of the obtained data allows us to determine the scaling exponents of the QCD deconfinement phase transition. Our results expressing the equality between their values and the space dimensionality is a consequence of the singularity characterizing a first-order phase transition and agree very well with the predictions of other FSS theoretical approaches to a first-order phase transition and with the results of calculations using Monte Carlo methods in both lattice QCD and statistical physics models. (orig.)
Derrida, Bernard; Retaux, Martin
2013-09-01
The symmetric simple exclusion process is one of the simplest out-of-equilibrium systems for which the steady state is known. Its large deviation functional of the density has been computed in the past both by microscopic and macroscopic approaches. Here we obtain the leading finite size correction to this large deviation functional. The result is compared to the similar corrections for equilibrium systems.
Chang-Wan Kim; Mai Duc Dai; Kilho Eom
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on...
Palma, G; Niedermayer, F; Rácz, Z; Riveros, A; Zambrano, D
2016-08-01
The zero-temperature, classical XY model on an L×L square lattice is studied by exploring the distribution Φ_{L}(y) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of Φ_{L}(y), and the limit distribution Φ_{L→∞}(y)=Φ_{0}(y) is obtained with high precision. The two leading finite-size corrections Φ_{L}(y)-Φ_{0}(y)≈a_{1}(L)Φ_{1}(y)+a_{2}(L)Φ_{2}(y) are also extracted both from numerics and from analytic calculations. We find that the amplitude a_{1}(L) scales as ln(L/L_{0})/L^{2} and the shape correction function Φ_{1}(y) can be expressed through the low-order derivatives of the limit distribution, Φ_{1}(y)=[yΦ_{0}(y)+Φ_{0}^{'}(y)]^{'}. Thus, Φ_{1}(y) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a_{2}(L)∝1/L^{2} and one finds that a_{2}Φ_{2}(y)≪a_{1}Φ_{1}(y) already for small system size (L>10). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the XY model at low temperatures, including T=0.
2010-01-01
[EN] A bath, particularly for use in laboratory experiments and research centres, for heating a liquid (10) unifonnly all along the length thereof, with temperature variations of les s than ±0.5°C, said liquid (10) remaining under static conditions, said bath comprising a channel (2) containing a volume ofliquid (10) to be heated; a resistance heating wire (3) on the outside face of the channel (2), connected to an external power source (11) that supplies it with electricity, heating...
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Suto, Y; Suto, Yasushi; Jing, Yi-Peng
1996-01-01
We discuss the effect of the finite size of galaxies on estimating small-scale relative pairwise peculiar velocity dispersions from the cosmic virial theorem (CVT). Specifically we evaluate the effect by incorporating the finite core radius $r_c$ in the two-point correlation function of mass, i.e. softening $r_s$ on small scales. We analytically obtain the lowest-order correction term for $\\gamma 2$. Compared with the idealistic point-mass approximation ($r_s=r_c=0$), the finite size effect can significantly reduce the small-scale velocity dispersions of galaxies at scales much larger than $r_s$ and $r_c$. Even without considering the finite size of galaxies, nonzero values for $r_c$ are generally expected, for instance, for cold dark matter (CDM) models with a scale-invariant primordial spectrum. For these CDM models, a reasonable force softening $r_s\\le 100 \\hikpc$ would have rather tiny effect. We present the CVT predictions for the small-scale pairwise velocity dispersion in the CDM models normalized by t...
General finite-size effects for zero-entropy states in one-dimensional quantum integrable models
Eliëns, Sebas; Caux, Jean-Sébastien
2016-12-01
We present a general derivation of the spectrum of excitations for gapless states of zero entropy density in Bethe ansatz solvable models. Our formalism is valid for an arbitrary choice of bare energy function which is relevant to situations where the Hamiltonian for time evolution differs from the Hamiltonian in a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle and hole excitations, as measured with the time-evolution Hamiltonian, is shown to include additional contributions stemming from the shifts of the Fermi points that may now have finite energy. The finite-size effects are also derived and the connection with conformal field theory discussed. The critical exponents can still be obtained from the finite-size spectrum, however the velocity occurring here differs from the one in the constant Casimir term. The derivation highlights the importance of the phase shifts at the Fermi points for the critical exponents of asymptotes of correlations. We generalize certain results known for the ground state and discuss the relation to the dressed charge (matrix). Finally, we discuss the finite-size corrections in the presence of an additional particle or hole, which are important for dynamical correlation functions.
... in Missouri. She won the 3rd place 2013 Addiction Science Award . Read More » 0 Comments Bath Salts: An Emerging Danger February 05, 2013 / Sara Bellum ... copy Listen Drug Facts ... Nicotine, & E-Cigarettes Brain and Addiction Drug Overdoses in Youth HIV/AIDS and Drug ...
Channel capacities of an exactly solvable spin-star system
Arshed, Nigum; Toor, A. H.; Lidar, Daniel A.
2010-06-01
We calculate the entanglement-assisted and -unassisted channel capacities of an exactly solvable spin star system, which models the quantum dephasing channel. The capacities for this non-Markovian model exhibit a strong dependence on the coupling strengths of the bath spins with the system, the bath temperature, and the number of bath spins. For equal couplings and bath frequencies, the channel becomes periodically noiseless.
Channel Capacities of an Exactly Solvable Spin-Star System
Arshed, N; Lidar, D A
2010-01-01
We calculate the entanglement-assisted and unassisted channel capacities of an exactly solvable spin star system, which models the quantum dephasing channel. The capacities for this non-Markovian model exhibit a strong dependence on the coupling strengths of the bath spins with the system, the bath temperature, and the number of bath spins. For equal couplings and bath frequencies, the channel becomes periodically noiseless.
... medlineplus.gov/ency/patientinstructions/000427.htm Bathing a patient in bed To use the sharing features on this page, please enable JavaScript. Some patients cannot safely leave their beds to bathe. For ...
Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling.
Mishchenko, E G; Shytov, A V; Halperin, B I
2004-11-26
We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio between spin-orbit energy splitting Delta and elastic scattering rate tau(-1). We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.
Gupta, A.F.
2005-01-01
A report on two prominent dialectal variables in England. Using rather informally collected data, The author looks here at two well-known variables in the English of England: first, whether there is a short or long vowel in words such as grass and bath; second, what regional words people know for streams. The treatment of these variables is consistent over time, and seems to have little to do with social status or carefulness of speech.\\ud
Energy Technology Data Exchange (ETDEWEB)
Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)
2017-04-15
We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)
Izumida, Yuki; Okuda, Koji
2014-05-01
We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.
Nouri, N
2013-01-01
A significant challenge for experiments requiring a highly uniform magnetic field concerns the identification and design of a discretized and finite-sized magnetic field coil of minimal size. In this work we compare calculations of the magnetic field uniformities and field gradients for three different standard (i.e., non-optimized) types of coils: $\\cos\\theta$, solenoidal, and spherical coils. For an experiment with a particular requirement on either the field uniformity or the field gradient, we show that the volume required by a spherical coil form which satisfies these requirements can be significantly less than the volumes required by $\\cos\\theta$ and solenoidal coil forms.
Finite size dependence of scaling functions of the three dimensional O(4) model in an external field
Engels, J
2014-01-01
We calculate universal finite size scaling functions for the order parameter and the longitudinal susceptibility of the three-dimensional O(4) model. The phase transition of this model is supposed to be in the same universality class as the chiral transition of two-flavor QCD. The scaling functions serve as a testing device for QCD simulations on small lattices, where, for example, pseudocritical temperatures are difficult to determine. In addition, we have improved the infinite volume limit parametrization of the scaling functions by using newly generated high statistics data for the 3d O(4) model in the high temperature region on an L=120 lattice.
Rajabpour, M. A.
2016-12-01
We calculate formation probabilities of the ground state of the finite size quantum critical chains using conformal field theory (CFT) techniques. In particular, we calculate the formation probability of one interval in the finite open chain and also formation probability of two disjoint intervals in a finite periodic system. The presented formulas can be also interpreted as the Casimir energy of needles in particular geometries. We numerically check the validity of the exact CFT results in the case of the transverse field Ising chain.
Lopes Cardozo, David; Holdsworth, Peter C. W.
2016-04-01
The magnetization probability density in d = 2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.
Finite-size effect of \\eta-deformed AdS_5 x S^5 at strong coupling
Ahn, Changrim
2016-01-01
We compute Luscher corrections for a giant magnon in the \\eta-deformed (AdS_5\\times S^5)_{\\eta} using the su(2|2)_q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2)_q-invariant S-matrix is describing world-sheet excitations of the \\eta-deformed background.
Merdan, Ziya; Kürkçü, Cihan; Öztürk, Mustafa K.
2014-12-01
The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ ( ∞ ) = 6 , 680 (1) obtained for h = 0 agrees well with the values T c ( ∞ ) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finite-size scaling relations of | M L ( t ) | and χ L ( t ) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified.
DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction
Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus
2013-01-01
We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...
Banerjee, Debasish; Chandrasekharan, Shailesh
2010-06-01
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the “worm algorithm.” Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane.
Vink, R L C; Fischer, T; Binder, K
2010-11-01
In systems belonging to the universality class of the random field Ising model, the standard hyperscaling relation between critical exponents does not hold, but is replaced with a modified hyperscaling relation. As a result, standard formulations of finite-size scaling near critical points break down. In this work, the consequences of modified hyperscaling are analyzed in detail. The most striking outcome is that the free-energy cost ΔF of interface formation at the critical point is no longer a universal constant, but instead increases as a power law with system size, ΔF∝L(θ), with θ as the violation of hyperscaling critical exponent and L as the linear extension of the system. This modified behavior facilitates a number of numerical approaches that can be used to locate critical points in random field systems from finite-size simulation data. We test and confirm the approaches on two random field systems in three dimensions, namely, the random field Ising model and the demixing transition in the Widom-Rowlinson fluid with quenched obstacles.
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
Pan, Xue; Chen, Li-Zhu; Wu, Yuan-Fang
2016-09-01
The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign. Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)
Alimonti, L.; Atalla, N.
2017-02-01
This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.
Sadeghi, Sina; Vink, R L C
2012-06-01
We consider the main transition in single-component membranes using computer simulations of the Pink model [D. A. Pink et al., Biochemistry 19, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E 47, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multidomain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.
Laser spectroscopy of finite size and covering effects in magnetite nanoparticles
Nikiforov, V. N.; Ignatenko, A. N.; Ivanov, A. V.; Irkhin, V. Yu
2016-02-01
Experiments on the impact of the size of magnetite clusters on various magnetic properties (magnetic moment, Curie temperature, blocking temperature etc) have been carried out. The methods of magnetic separation and centrifugation of water suspensions of biocompatible iron oxide nanoparticles (NPs) allow one to produce fractions with diameters of nanoparticles in the range of 4-22 nm. The size of the NPs is controlled by the methods of dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). For the first time the DLS method is applied in real time to control the size during the process of the separation of the NPs in aqueous suspensions. The changes of the size of NPs cause a shift in the Curie temperature and changes in the specific magnetic properties of the iron NPs. The experimental data is interpreted on the basis of Monte Carlo simulations for the classical Heisenberg model with different bulk and surface magnetic moments. It is demonstrated experimentally and by theoretical modeling that the magnetic properties of magnetite NPs are determined not only by their sizes, but also by their surface spin states, while both growing and falling dependences of the magnetic moment (per Fe3O4 formula unit) are possible, depending on the number of magnetic atoms in the nanoparticle. NPs that are both clean and covered with bioresorbable layer clusters have been investigated.
Guidelines for bath PUVA, bathing suit PUVA and soak PUVA
Directory of Open Access Journals (Sweden)
Sathish B Pai
2015-01-01
Full Text Available Background: The aim of these guidelines is to encourage dermatologists to use bath psoralen plus ultraviolet A (PUVA, bathing suit PUVA and soak PUVA in the treatment of psoriasis vulgaris and other conditions. Methods: Evidence was collected using searches of the PubMed, MEDLINE and COCHRANE databases using the keywords “bath PUVA,” “soak PUVA,” “bathing suit PUVA” and “turban PUVA.” Only publications in English were reviewed. Results: One hundred and thirty-eight studies were evaluated, 57 of which fulfilled the criteria for inclusion. Conclusions: Both bath PUVA and bathing suit PUVA are very effective and safe treatments for generalized stable plaque psoriasis (strength of recommendation, A. Soak PUVA is very effective in the treatment of both palmoplantar psoriasis and chronic palmoplantar eczema (strength of recommendation, A.
Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions
National Research Council Canada - National Science Library
Morris, E; Weisenberger, Matthew; Rice, Gregory
2015-01-01
...), while carefully altering the composition of the coagulation bath, in order to determine the effect on the resulting fiber shape, density, orientation, and tensile properties at varying points in the spinning process...
Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia
2016-11-01
Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.
Wang, Yucheng; Wang, Yancheng; Chen, Shu
2016-11-01
We study the spectral and wavefunction properties of a one-dimensional incommensurate system with p-wave pairing and unveil that the system demonstrates a series of particular properties in its ciritical region. By studying the spectral statistics, we show that the bandwidth distribution and level spacing distribution in the critical region follow inverse power laws, which however break down in the extended and localized regions. By performing a finite-size scaling analysis, we can obtain some critical exponents of the system and find these exponents fulfilling a hyperscaling law in the whole critical region. We also carry out a multifractal analysis on system's wavefuntions by using a box-counting method and unveil the wavefuntions displaying different behaviors in the critical, extended and localized regions.
Antezza, Mauro; Castin, Yvan
2013-09-01
We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a Jg=0→Je=1 atomic transition, and for atomic lattices containing up to N≈3×104 atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.
Proton form-factor dependence of the finite-size correction to the Lamb shift in muonic hydrogen
Carroll, J D; Rafelski, J; Miller, G A
2011-01-01
The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, corresponding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.
Hagelstein, Franziska
2015-01-01
We point out a limitation of the standard way of accounting the finite-size effects, i.e., when the leading $[(Z\\alpha)^4]$ and subleading $[(Z\\alpha)^5]$ contributions to the Lamb shift are given by the mean-square radius and the third Zemach moment of the charge distribution. This limitation may have profound consequences for the interpretation of the "proton size puzzle". We find, for instance, that the de R\\'ujula toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third Zemach moment. Given the formula which does not rely on the radii expansion, we show how tiny (less than a hundredth of percent) changes in the proton electric form factor at a MeV scale would be able to explain the puzzle.
Sharma, P.; Mišković, Z. L.
2014-09-01
We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.
Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot
Institute of Scientific and Technical Information of China (English)
Wu Shao-Quan; Wang Shun-Jin; Sun Wei-Li; Yu Wan-Lun
2004-01-01
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility Ximp directly in future experiments.
Degrand, Thomas
2011-12-01
I carry out a finite-size scaling study of the correlation length in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, using recent data published by Fodor, Holland, Kuti, Nógradi and Schroeder [Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B 703, 348 (2011).PYLBAJ0370-269310.1016/j.physletb.2011.07.037]. I make the assumption that the system is conformal in the zero-mass, infinite volume limit, that scaling is violated by both nonzero fermion mass and by finite volume, and that the scaling function in each channel is determined self-consistently by the data. From several different observables I extract a common exponent for the scaling of the correlation length ξ with the fermion mass mq, ξ˜mq-1/ym with ym˜1.35. Shortcomings of the analysis are discussed.
Román, F L; White, J A; González, A; Velasco, S
2006-04-21
We examine the microscopic structure of a hard-sphere fluid confined to a small cylindrical pore by means of Monte Carlo simulation. In order to analyze finite-size effects, the simulations are carried out in the framework of different statistical mechanics ensembles. We find that the size effects are specially relevant in the canonical ensemble where noticeable differences are found with the results in the grand canonical ensemble (GCE) and the isothermal isobaric ensemble (IIE) which, in most situations, remain very close to the infinite system results. A customary series expansion in terms of fluctuations of either the number of particles (GCE) or the inverse volume (IIE) allows us to connect with the results of the canonical ensemble.
Pustovit, Vitaliy N.; Shahbazyan, Tigran V.
2006-06-01
We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.
Vörtler, Horst L; Schäfer, Katja; Smith, William R
2008-04-17
We study the simulation cell size dependence of chemical potential isotherms in subcritical square-well fluids by means of series of canonical ensemble Monte Carlo simulations with increasing numbers of particles, for both three-dimensional bulk systems and two-dimensional planar layers, using Widom-like particle insertion methods. By estimating the corresponding vapor/liquid coexistence densities using a Maxwell-like equal area rule for the subcritical chemical potential isotherms, we are able to study the influence of system size not only on chemical potentials but also on the coexistence properties. The chemical potential versus density isotherms show van der Waals-like loops in the subcritical vapor/liquid coexistence range that exhibit distinct finite size effects for both two- and three-dimensional fluids. Generally, in agreement with recent findings for related studies of Lennard-Jones fluids, the loops shrink with increasing number of particles. In contrast to the subcritical isotherms themselves, the equilibrium vapor/liquid densities show only a weak system size dependence and agree quantitatively with the best-known literature values for three-dimensional fluids. This allows our approach to be used to accurately predict the phase coexistence properties. Our resulting phase equilibrium results for two-dimensional square-well fluids are new. Knowledge concerning finite size effects of square-well systems is important not only for the simulation of thermodynamic properties of simple fluids, but also for the simulation of models of more complex fluids (such as aqueous or polymer fluids) involving square-well interactions.
Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa
2016-08-01
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Aoki, Yoshitaka; Habazaki, Hiroki; Nagata, Shinji; Nakao, Aiko; Kunitake, Toyoki; Yamaguchi, Shu
2011-03-16
The finite size effect of proton conductivity of amorphous silicate thin films, a-M(0.1)Si(0.9)O(x) (M = Al, Ga, Hf, Ti, Ta, and La), was investigated. The proton conductivity across films, σ, was measured in dry air by changing the thickness in the range of 10-1000 nm. σ of the films with M = Al, Ga, and Ta was elevated in a power law by decreasing thickness into less than a few hundred nanometers, and the increment was saturated at a thickness of several 10's of nanometers. On the other hand, σ of the films with M = Hf, Ti, and La was not related to the decrease of the thickness in the range of >10 nm. Thickness-dependent conductivity of the former could be numerically simulated by a percolative resistor network model that involves the randomly distributed array of two kinds of resistors R(1) and R(2) (R(1) > R(2)) in the form of a simple cubic-type lattice. High-resolution TEM clarified that a-M(0.1)Si(0.9)O(x) films involved heterogeneous microstructures made of the condensed domain and the surrounding uncondensed matrix due to the fluctuation of glass networks on the nanometer scale. The condensed domain had a wormlike shape with an average length of several 10's of nanometers and performed the role of the proton conduction pathway penetrating through the poorly conducting matrix. It was concluded that the thickness-dependent conductivity could be identical to finite-size scaling of the percolative network of the interconnected domains in the nanometer range.
A model to predict modal radiation by finite-sized sources in semi-infinite isotropic plates
Stévenin, M.; Lhémery, A.; Grondel, S.
2017-01-01
Elastic guided wave (GW) propagation is involved in various non-destructive testing (NDT) techniques of plate-like structures. The present paper aims at describing an efficient model to predict the GW field radiated by various sources attached at a distance of the straight boundary of an isotropic plate, a configuration often encountered in typical examinations. Since the interpretation of GW propagation and scattering in plates is made easier by the use of modal description, the model is derived in the classical theoretical framework of modal solutions. Direct radiation by a uniform source of finite size in an isotropic plate can be efficiently modelled by deriving Fraunhofer-like approximation. A rigorous treatment is proposed based upon i) the stationary phase method to describe the field after reflection at a plate edge, ii) on the computation of modal reflection coefficients for an arbitrary incidence relative to the edge and iii) on the Fraunhofer approximation to account for the finite size of the source. The stationary phase method allows us to easily express the amplitude of reflected modes, that is to say, the way waves spread, including reflections involving mode conversions. The computation of modal reflection coefficients for plane GW at oblique incidence was recently treated in the literature and our work for this very problem simply consisted in adapting it to the SAFE calculation we use to compute modal solutions. The overall computation of the direct and reflected contributions is numerically very efficient. Once the total field is computed at a given frequency, the time-dependent field is obtained by simple Fourier synthesis.
Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions
Directory of Open Access Journals (Sweden)
E. Ashley Morris
2015-12-01
Full Text Available In this work, multifilament, continuous polyacrylonitrile (PAN fiber tow was solution spun mimicking industrial processing at the small pilot scale (0.5 k tow, while carefully altering the composition of the coagulation bath, in order to determine the effect on the resulting fiber shape, density, orientation, and tensile properties at varying points in the spinning process. Novel here are the abnormally high coagulation bath solvent compositions investigated, which surpass those often reported in the literature. In addition, the coagulation bath was maintained at a slightly chilled temperature, contrary to reported methods to produce round fibers. Further, by altering the composition of the bath in a step-wise fashion during a single spinning run, variations in all other process parameters were minimized. We found that with increasing solvent composition in the coagulation bath, the fibers not only became round in cross section, but also became smaller in diameter, which persisted down the spin line. With this decrease in diameter, all else equal, came an accompanying increase in apparent fiber density via a reduction in microvoid content. In addition, molecular orientation and tensile properties also increased. Therefore, it was found that inadequate understanding of the coagulation bath effects, and spinning at low coagulation bath solvent compositions, can hinder the ability of the fiber to reach optimum properties.
Gündüç, Semra; Dilaver, Mehmet; Aydın, Meral; Gündüç, Yiğit
2005-02-01
In this work we have studied the dynamic scaling behavior of two scaling functions and we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic finite size scaling of scaling functions opens possibilities for a wide range of applications. As an application we have calculated the dynamic critical exponent (z) of Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial magnetization are chosen in order to avoid complications due to initial magnetization. The observed dynamic finite size scaling behavior during early stages of the Monte Carlo simulation yields z for Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models with vanishing values which are consistent with the values obtained from the autocorrelations. Especially, the vanishing dynamic critical exponent we obtained for d=3 implies that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte Carlo simulations than previously reported.
Pan, Xue; Wu, Yuan-Fang
2016-01-01
The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). The order has been calculated to the sixth one at experiments. The corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class with QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that when the critical point is approached from the crossover side, the sixth order cumulant is negative. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising mod...
Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data
Fraga, Eduardo S; Sorensen, Paul
2011-01-01
Given the short lifetime and the reduced volume of the quark-gluon plasma (QGP) formed in high-energy heavy ion collisions, a possible critical endpoint (CEP) will be blurred in a region and the effects from criticality severely smoothened. Nevertheless, the non-monotonic behavior of correlation functions near criticality for systems of different sizes, given by different centralities in heavy ion collisions, must obey finite-size scaling. We apply the predicting power of scaling plots to the search for the CEP of strong interactions in heavy ion collisions using data from RHIC and SPS. The results of our data analysis exclude a critical point below chemical potentials $\\mu\\sim 450 $MeV. Extrapolating the analysis, we speculate that criticality could appear slightly above $\\mu\\sim 500 $MeV. Using available data we extrapolate our scaling curves to predict the behavior of new data at lower center-of-mass energy, currently being investigated in the Beam Energy Scan program at RHIC. If it turns out that the QGP ...
Coluzzi, Barbara; Yeramian, Edouard
2016-04-01
We perform an extensive numerical study of the disordered Poland-Scheraga (PS) model for DNA denaturation in which self-avoidance is completely taken into account. To complement to our previous work, we focus here on the finite size scaling in terms of pseudo-critical temperatures. Notably, we find that the mean value and the fluctuations of the pseudo-T c scale with the same exponent, the correlation length exponent {ν\\text{r}} (for which we provide the refined evaluation {ν\\text{r}}=2.9+/- 0.4 ). This result (coherent with the typical picture that describes random ferromagnets when disorder is relevant) is at variance with the numerical results reported in the literature for the PS model with self-avoidance, leading to an alternative scenario with a pseudo-first-order transition. We moreover introduce a crossover chain length N *, which we evaluate, appropriate for characterizing the approach to the asymptotic regime in this model. Essentially, below N *, the behaviour of the model in our study could also agree with such an alternative scenario. Based on an approximate prediction of the dependence of N * on the parameters of the model, we show that following the choice of such parameters it would not be possible to reach the asymptotic regime in practice. In such a context it becomes then possible to reconcile the apparently contradictory numerical studies.
Takane, Yositake
2016-09-01
Two-dimensional (2D) massless Dirac electrons appear on a surface of three-dimensional topological insulators. The conductivity of such a 2D Dirac electron system is studied for strong topological insulators in the case of the Fermi level being located at the Dirac point. The average conductivity is numerically calculated for a system of length L and width W under the periodic or antiperiodic boundary condition in the transverse direction, and its behavior is analyzed by applying a finite-size scaling approach. It is shown that is minimized at the clean limit, where it becomes scale-invariant and depends only on L/W and the boundary condition. It is also shown that once disorder is introduced, monotonically increases with increasing L. Hence, the system becomes a perfect metal in the limit of L → ∞ except at the clean limit, which should be identified as an unstable fixed point. Although the scaling curve of strongly depends on L/W and the boundary condition near the unstable fixed point, it becomes almost independent of them with increasing , implying that it asymptotically obeys a universal law.
Wang, Lu; Yeung, Ronald W.
2016-07-01
The full and partial ground effects on the lift generation of a flapping airfoil in normal hovering mode are investigated numerically using the discrete vortex method in two dimensions. To achieve full ground effect, the airfoil of chord c is made to hover above the center of a finite-sized platform of length 10c. We have observed the force-enhancement, force-reduction, and force-recovery regimes at low, medium, and high ground clearances in line with the existing literature. This paper puts special focus on partial ground effect when the airfoil is hovering near the edge of the platform. Lift-modifying mechanisms not previously observed under full ground effect have been discovered. When stroke reversal occurs near the edge of the platform, a relatively stationary strong vortex may form above the platform edge. This strong vortex can either increase or decrease the instantaneous lift force on the airfoil depending on the position of the airfoil relative to the platform edge. Also, the platform edge may lead to the formation of an additional vortex pair which increases the instantaneous lift force as the airfoil sweeps past the edge under suitable conditions. Lastly, the platform edge can lead to the formation of a reverse von Kármán vortex street that extends well below the stroke plane under suitable geometric arrangements.
Gu, Xuejun; Li, Jinsheng; Jia, Xun; Jiang, Steve B
2011-01-01
Targeting at developing an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against MCSIM Monte Carlo dose calculations are conducted on 10 IMRT treatment plans with heterogeneous treatment regions (5 head-and-neck cases and 5 lung cases). For head and neck cases, when cavities exist near the target, the improvement with the 3D-density correction over the conventional FSPB algorithm is significant. However, when there are high-density dental filling materials in beam paths, the improvement is small and the accuracy of the new algorithm is still unsatisfactory. On the other hand, significant improvement of dose calculation accuracy is observed in all lung cases. Especially when the target is in the m...
Lee, Jae Yong; Hahn, Jae Won; Lee, Hai-Woong
2002-05-01
The transmission of a plane-mirror Fabry-Perot (PFP) interferometer is theoretically modeled and investigated by treating the spatial and spectral features in a unified manner. A spatiospectral transfer function is formulated and utilized to describe the beam propagation and the multiple-beam interference occurring in an ideal one-dimensional strip PFP interferometer with no diffraction loss. The spatial-frequency filtration of a finite-size beam input not only determines the transmitted spatial beam profile but also plays a crucial role in affecting the overall spectral transmittance. The inherent deviations of the spectral transmittance from what we know as the standard Airy's formula are revealed in diverse aspects, including the less-than-unity peak transmittance, the displacement of a resonance peak frequency, and the asymmetric detuning profile. Our theoretical analysis extends to the misaligned PFP interferometers, such as the cases in which non-normal-incidence beams or wedge-aligned mirrors are used that could severely degrade the effective interferometer finesse.
Directory of Open Access Journals (Sweden)
Sebastián Bustingorry
2010-02-01
Full Text Available We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning. Received: 20 October 2010, Accepted: 1 December 2010; Edited by: A. Vindigni; Reviewed by: A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; DOI: 10.4279/PIP.020008
Ruiz Chavarria, Gerardo; Lopez Sanchez, Erick Javier
2016-11-01
The motion of particles in a fluid is an open problem. The main difficulty arises from the fact that hydrodynamical forces acting on a particle depend on the flow properties. In addition, the form and the size of particles must be taken into account. In this work we present numerical results of the particle transport in a periodic driving flow in a channel flushing into an open domain. To study the transport of particles we solve the equation of motion for a spherical particle in which we include the drag, the gravity, the buoyancy, the added mass and the history force. Additionally we include the corrections for a particle of finite size. For solving this equation a knowledge of the velocity field is required. To obtain the velocity field we solve the Navier Stokes and the continuity equations with a finite volume method. In the flow under study a vorticity dipole and a spanwise vortex are present, both have an important influence on the motion of particles. The dipole enhances displacement of particles because flow between vortices behaves like a jet and the spanwise vortex produces the lifting and deposition of particles from/to the bottom. We observe clustering of particles both into the channel and in the open domain as observed in coastal systems. The authors acknowledge DGAPA-UNAM by support under project PAPIIT IN115315 "Ondas y estructuras coherentes en dinámica de fluidos".
Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric
2013-12-01
The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.
Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data
Palhares, L. F.; Fraga, E. S.
2012-07-01
We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.
Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data
Energy Technology Data Exchange (ETDEWEB)
Palhares, L. F., E-mail: leticia@if.ufrj.br [CEA Saclay, Institut de Physique Theorique (France); Fraga, E. S., E-mail: fraga@if.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil)
2012-07-15
We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.
Energy Technology Data Exchange (ETDEWEB)
Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray, E-mail: liucr@ufl.edu [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385 (United States)
2015-04-15
Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm{sup 2} square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm{sup 2} beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm{sup 2}, where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm{sup 2} beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (
Müller, M.; Binder, K.
2001-02-01
Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e., the left wall attracts the A component of the mixture with the same strength as the right wall does the B component, and this gives rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localization-delocalization transition, and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis φ=1/2 of the phase diagram, and for D~2Rg we encounter a tricritical point. For an even smaller film thickness the interface localization-delocalization transition is second order, and we find a single critical point at φ=1/2. Measuring the probability distribution of the interface position, we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in the framework of a microscopic model.
Müller, M; Binder, K
2001-02-01
Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e., the left wall attracts the A component of the mixture with the same strength as the right wall does the B component, and this gives rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localization-delocalization transition, and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis straight phi=1/2 of the phase diagram, and for D approximately 2R(g) we encounter a tricritical point. For an even smaller film thickness the interface localization-delocalization transition is second order, and we find a single critical point at straight phi=1/2. Measuring the probability distribution of the interface position, we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in the framework of a microscopic model.
Microbiologists meet geologists in Bath
Onstott, T. C.
A diverse group of microbiologists, molecular biologists, chemical engineers, and geologists met in Bath, United Kingdom, in September 1993 to reach across the barriers separating their disciplines and report new findings in the expanding field of geomicrobiology. The occasion was the second International Symposium on Subsurface Microbiology, cosponsored by the Subsurface Science Program of the U.S. Department of Energy. Historically, Bath was a resort centered around the emission of thermal waters credited with the potential to cure numerous ills. The location was appropriate given that biotechnology appears to have considerable potential to cure some challenging environmental ailments.
Bathing and Associated Treatments in Atopic Dermatitis.
Gittler, Julia K; Wang, Jason F; Orlow, Seth J
2017-02-01
Atopic dermatitis is one of the most common complaints presenting to dermatologists, and patients typically inquire as to appropriate bathing recommendations. Although many dermatologists, allergists, and primary-care practitioners provide explicit bathing instructions, recommendations regarding frequency of bathing, duration of bathing, and timing related to emollient and medication application relative to bathing vary widely. Conflicting and vague guidelines stem from knowledge related to the disparate effects of water on skin, as well as a dearth of studies, especially randomized controlled trials, evaluating the effects of water and bathing on the skin of patients with atopic dermatitis. We critically review the literature related to bathing and associated atopic dermatitis treatments, such as wet wraps, bleach baths, bath additives, and balneotherapy. We aim to provide readers with a comprehensive understanding of the impact of water and related therapies on atopic dermatitis as well as recommendations based upon the published data.
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density
Gallo, Paola; Sciortino, Francesco
2012-10-26
We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and determine the size-dependent critical parameters. Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size study allows us to establish that critical fluctuations are consistent with the Ising universality class and to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous one-component liquids like water.
Palma, G.; Niedermayer, F.; Rácz, Z.; Riveros, A.; Zambrano, D.
2016-08-01
The zero-temperature, classical X Y model on an L ×L square lattice is studied by exploring the distribution ΦL(y ) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of ΦL(y ) , and the limit distribution ΦL →∞(y ) =Φ0(y ) is obtained with high precision. The two leading finite-size corrections ΦL(y ) -Φ0(y ) ≈a1(L ) Φ1(y ) +a2(L ) Φ2(y ) are also extracted both from numerics and from analytic calculations. We find that the amplitude a1(L ) scales as ln(L /L0) /L2 and the shape correction function Φ1(y ) can be expressed through the low-order derivatives of the limit distribution, Φ1(y ) =[yΦ0(y ) +Φ0'(y ) ] ' . Thus, Φ1(y ) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a2(L ) ∝1 /L2 and one finds that a2Φ2(y ) ≪a1Φ1(y ) already for small system size (L >10 ). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the X Y model at low temperatures, including T =0 .
Zhou, Chenggang; Landau, D. P.; Schulthess, Thomas C.
2006-01-01
By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in $2+\\epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $\\sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dime...
Turban, L
2016-01-01
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($t\\to\\infty$, $N\\to\\infty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the ...
[Turpentined vapour baths with coniferous oil].
Raynal, Cécile
2007-10-01
This article presents the history of turpentined vapour baths used to treat rheumatismes. In the same time appeared patent medicines made with coniferous oil, sold by chemist near those baths establishments.
21 CFR 890.5110 - Paraffin bath.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and... PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a) Identification. A paraffin bath is a device intended for medical purposes that consists of a tub to be filled...
The Luther-Emery liquid: Spin gap and anomalous flux period
Seidel, Alexander; Lee, Dung-Hai
2005-01-01
We study the dependence of the ground state energy on an applied Aharonov-Bohm flux Φ for the Luttinger model with large momentum scattering. Employing the method of finite size bosonization, we show that for systems with a spin gap but with gapless charge degrees of freedom, the ground state energy has an exact period of hc/2e , i.e., half a flux quantum, in the limit of large system size L . Finite size corrections are found to vanish exponentially in L . This behavior is contrasted to that of the spin gapless case, for both even and odd particle number. Generalizations to finite temperature are also discussed.
Spin-glass transition of the three-dimensional Heisenberg spin glass.
Campos, I; Cotallo-Aban, M; Martin-Mayor, V; Perez-Gaviro, S; Tarancon, A
2006-11-24
It is shown, by means of Monte Carlo simulation and finite size scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass ordering develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes it possible to thermalize lattices of size L = 32, larger than in any previous spin-glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allows us to consider scaling corrections.
Numerical renormalization group for quantum impurities in a bosonic bath
Bulla, Ralf; Lee, Hyun-Jung; Tong, Ning-Hua; Vojta, Matthias
2005-01-01
We present a detailed description of the recently proposed numerical renormalization group method for models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic quantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy data over the whole range of model parameters and temperatures, which are in agreement with exact results and other numerical data from the literature.
Kastening, Boris
2012-10-01
Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ(>) the largest and ξ(temperature near criticality, we find that the dependence of these functions on the ratio ξ() and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞(d-1) geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.
Kastening, Boris; Dohm, Volker
2010-06-01
Finite-size effects are investigated in the Gaussian model with isotropic and anisotropic short-range interactions in film geometry with nonperiodic boundary conditions (bc) above, at, and below the bulk critical temperature Tc. We have obtained exact results for the free energy and the Casimir force for antiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed bc in 1film critical temperature Tc,film(L)film thickness L . Our results include an exact description of the dimensional crossover between the d -dimensional finite-size critical behavior near bulk Tc and the (d-1) -dimensional critical behavior near Tc,film(L). This dimensional crossover is illustrated for the critical behavior of the specific heat. Particular attention is paid to an appropriate representation of the free energy in the region Tc,film(L)≤T≤Tc. For 2theory at fixed dimension d and are then compared with the ε=4-d expansion results at ε=1 as well as with d=3 Monte Carlo data. For d=2 , the Gaussian results for the Casimir force scaling function are compared with those for the Ising model with periodic, antiperiodic, and free bc; unexpected exact relations are found between the Gaussian and Ising scaling functions. For both the d -dimensional Gaussian model and the two-dimensional Ising model it is shown that anisotropic couplings imply nonuniversal scaling functions of the Casimir force that depend explicitly on microscopic couplings. Our Gaussian results provide the basis for the investigation of finite-size effects of the mean spherical model in film geometry with nonperiodic bc above, at, and below the bulk critical temperature.
Albano, Ezequiel V.; Binder, Kurt
2012-07-01
Clarification of critical wetting with short-range forces by simulations has been hampered by the lack of accurate methods to locate where the transition occurs. We solve this problem by developing an anisotropic finite-size scaling approach and show that then the wetting transition is a “bulk” critical phenomenon with order parameter exponent equal to zero. For the Ising model in two dimensions, known exact results are straightforwardly reproduced. In three dimensions, it is shown that previous estimates for the location of the transition need revision, but the conclusions about a slow crossover away from mean-field behavior remain unaltered.
Schmitz, Fabian; Virnau, Peter; Binder, Kurt
2014-03-01
The ensemble-switch method for computing wall excess free energies of condensed matter is extended to estimate the interface free energies between coexisting phases very accurately. By this method, system geometries with linear dimensions L parallel and Lz perpendicular to the interface with various boundary conditions in the canonical or grand canonical ensemble can be studied. Using two- and three-dimensional Ising models, the nature of the occurring logarithmic finite-size corrections is studied. It is found crucial to include interfacial fluctuations due to "domain breathing."
Napolitano, R. E.; Şerefoğlu, Melis
2012-01-01
Transparent metal-analog materials offer a great opportunity for in situ investigation of the morphological dynamics that govern the formation of microstructure in metallic alloys. There are, however, several experimental factors that must be controlled or considered for proper and reproducible interpretation. We examine some of these issues here, summarizing our recent findings related to the case of rod-type eutectic solidification, for which we examine the importance of ampoule geometry and initial conditions. Employing directional solidification experiments with thin-slab specimens, we look specifically at finite-size effects on growth morphology and the influence of initial structure on the mechanisms of eutectic onset.
Directory of Open Access Journals (Sweden)
Mateusz Dyndal
2015-02-01
Full Text Available Photon–photon interactions represent an important class of physics processes at the LHC, where quasi-real photons are emitted by both colliding protons. These reactions can result in the exclusive production of a final state X, p+p→p+p+X. When computing such cross sections, it has already been shown that finite size effects of colliding protons are important to consider for a realistic estimate of the cross sections. These first results have been essential in understanding the physics case of heavy-ion collisions in the low invariant mass range, where heavy ions collide to form an exclusive final state like a J/Ψ vector meson. In this paper, our purpose is to present some calculations that are valid also for the exclusive production of high masses final states in proton–proton collisions, like the production of a pair of W bosons or the Higgs boson. Therefore, we propose a complete treatment of the finite size effects of incident protons irrespective of the mass range explored in the collision. Our expectations are shown to be in very good agreement with existing experimental data obtained at the LHC.
Banerjee, Debasish
2010-01-01
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind non-trivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical non-linear O(2) sigma model with a coupling $\\beta$ and chemical potential $\\mu$ on a 2+1 dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at non-zero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of world-line of particles, the sign problem is absent and the model can be studied efficiently with the "worm algorithm". Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum ...
Finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3
Astolfi, Davide; Grignani, Gianluca; Harmark, Troels; Orselli, Marta
2008-01-01
We consider finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3, which is the string dual of the recently constructed N=6 superconformal Chern-Simons theory of Aharony, Bergman, Jafferis and Maldacena (ABJM theory). The string states we consider are in the R x S^2 x S^2 subspace of AdS_4 x CP^3 with an angular momentum J on CP^3 being large. We compute the finite-size corrections using two different methods, one is to consider curvature corrections to the Penrose limit giving an expansion in 1/J, the other by considering a low energy expansion in lambda'=lambda/J^2 of the string theory sigma-model, lambda being the 't Hooft coupling of the dual ABJM theory. For both methods there are interesting issues to deal with. In the near-pp-wave method there is a 1/\\sqrt{J} interaction term for which we use zeta-function regularization in order to compute the 1/J correction to the energy. For the low energy sigma-model expansion we have to take into account a non-trivial coupli...
Hotta, Chisa; Nishimoto, Satoshi; Shibata, Naokazu
2013-03-01
The grand canonical numerical analysis recently developed for quantum many-body systems on a finite cluster [C. Hotta and N. Shibata, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.86.041108 86, 041108(R) (2012)] is the technique to efficiently obtain the physical quantities in an applied field. There, the observables are the continuous and real functions of fields, mimicking their thermodynamic limit, even when a small cluster is adopted. We develop a theory to explain the mechanism of this analysis based on the deformation of the Hamiltonian. The deformation spatially scales down the energy unit from the system center toward zero at the open edge sites, which introduces the renormalization of the energy levels in a way reminiscent of Wilson's numerical renormalization group. However, compared to Wilson's case, our deformation generates a number of far well-localized edge states near the chemical potential level, which are connected via a very small quantum fluctuation in k space with the “bulk” states which spread at the center of the system. As a response to the applied field, the particles on the cluster are self-organized to tune the particle number of the bulk states to their thermodynamic limit by using the “edges” as a buffer. We demonstrate the present analysis in two-dimensional quantum spin systems on square and triangular lattices, and determine the smooth magnetization curve with a clear (1)/(3) plateau structure in the latter.
Taking a Bath In Tibetan Medicinal Water
Institute of Scientific and Technical Information of China (English)
2002-01-01
Lighting incense in a room and planting oneself into the environment scented by the smoke is one of the ways Tibetans keep fit. And they say they are taking a bath when doing so.According to the Tibetan medical code, the Tibetans had long produced many ways for "taking baths" to cleanse themselves, build up their physique and prolong life. Most popular ones include taking baths in
The Open-System Dicke-Model Quantum Phase Transition with a Sub-Ohmic Bath
Nagy, D
2015-01-01
We show that the critical exponent of a quantum phase transition in a damped-driven open system is determined by the spectral density function of the reservoir. We consider the open-system variant of the Dicke model, where the driven boson mode and also the large N-spin couple to independent reservoirs at zero temperature. The critical exponent, which is $1$ if there is no spin-bath coupling, decreases below 1 when the spin couples to a sub-Ohmic reservoir.
Intrinsic cutoff and acausality for massive spin 2 fields coupled to electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Porrati, Massimo [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)], E-mail: massimo.porrati@nyu.edu; Rahman, Rakibur [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2008-09-21
We couple a massive spin 2 particle to electromagnetism. By introducing new, redundant degrees of freedom using the Stueckelberg formalism, we extract an intrinsic, model independent UV cutoff of the effective field theory describing this system. The cutoff signals both the onset of a strongly interacting dynamical regime and a finite size for the spin 2 particle. We show that the existence of a cutoff is strictly connected to other pathologies of interacting high-spin fields, such as the Velo-Zwanziger acausality. We also briefly comment on implications of this result for the detection of high spin states and on its possible generalization to arbitrary spin.
Institute of Scientific and Technical Information of China (English)
B. Kutlu; M. Civi
2006-01-01
@@ We study the order parameter probability distribution at the critical point for the three-dimensional spin-1/2 and spin-1 Ising models on the simple cubic lattice under periodic boundary conditions.
Quantum phase transition of a magnet in a spin bath
DEFF Research Database (Denmark)
Rønnow, H.M.; Parthasarathy, R.; Jensen, J.;
2005-01-01
The excitation spectrum of a model magnetic system, LiHoF(4), was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine...
Ceccarelli, Giacomo; Delfino, Francesco; Mesiti, Michele; Vicari, Ettore
2016-11-01
We investigate the equilibrium phase-coherence properties of Bose-condensed particle systems, focusing on their shape dependence and finite-size scaling (FSS). We consider three-dimensional (3D) homogeneous systems confined to anisotropic L ×L ×La boxes, below the Bose-Einstein-condensate (BEC) transition temperature Tc. We show that the phase correlations develop peculiar anisotropic FSS for any T universality is confirmed by quantum Monte Carlo simulations of the 3D Bose-Hubbard model in the BEC phase. The phase-coherence correlations of very elongated BEC systems, λ →∞ , are characterized by the coherence length ξa˜Atρs/T , where At is the transverse area and ρs is the superfluid density.
Bonfiglio, Paolo; Pompoli, Francesco; Lionti, Riccardo
2016-04-01
The transfer matrix method is a well-established prediction tool for the simulation of sound transmission loss and the sound absorption coefficient of flat multilayer systems. Much research has been dedicated to enhancing the accuracy of the method by introducing a finite size effect of the structure to be simulated. The aim of this paper is to present a reduced-order integral formulation to predict radiation efficiency and radiation impedance for a panel with equal lateral dimensions. The results are presented and discussed for different materials in terms of radiation efficiency, sound transmission loss, and the sound absorption coefficient. Finally, the application of the proposed methodology for rectangular multilayer systems is also investigated and validated against experimental data.
Klein, Simon; Bérut, Antoine; Bodenschatz, Eberhard
2012-01-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that makes them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/{\\eta} \\approx 100) than the Kolmogorov length scale {\\eta} in a von K\\'arm\\'an swirling water flow (R{\\lambda} \\approx 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the in...
Hida, Kazuo; Iino, Takashi
2012-03-01
Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interactions are investigated using the modified spin wave approximation in the region with ferromagnetic ground states. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.
Zeno and Anti Zeno effect for a two level system in a squeezed bath
Mundarain, D F
2005-01-01
We discuss the appearance of Zeno (QZE) or anti-Zeno (QAE) effect in an exponentially decaying system. We consider the quantum dynamics of a continuously monitored two level system interacting with a squeezed bath. We find that the behavior of the system depends critically on the way in which the squeezed bath is prepared. For specific choices of the squeezing phase the system shows Zeno or anti-Zeno effect in conditions for which it would decay exponentially if no measurements were done. This result allows for a clear interpretation in terms of the equivalent spin system interacting with a fictitious magnetic field.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
@@ The history of Russian bath originates in old times. From descriptions of Greece Herodotus1,it is possible to find out that the Scythians that lived in Ukraine in ancient times used bath.They established three poles inclined by the top ends to each other,and covered them with felt.Then threw into the tub put in the middle of this hut the red-hot stones. They brought hempen2 seeds into this felt bath and threw them on the heated stones.
Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field
Dias, D. A.; Xavier, J. C.; Plascak, J. A.
2017-01-01
The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.
The Thermal Bath of de Sitter from Holography
Chu, Chong-Sun
2016-01-01
We consider the AdS/dS CFT correspondence and study the nature of the thermal bath of the de Sitter field theory using holography. Unlike the temperature of a thermal field theory in flat spacetime, the temperature of a superconformal field theory on de Sitter space is an integral part of the theory and leaves intact the conformal symmetry and supersymmetry. In the dual AdS side, there is no black hole. Instead we have cosmological expansion of the de Sitter factor. We consider a number of different observables, such as the entanglement entropy, two point correlation function, Wilson loops corresponding to static and spinning mesons in the field theory, and study their thermal properties using holography. The former two quantities have trivial temperature dependence due to conformal symmetry. We compute the energy of the quark anti-quark bound state for a static meson, as well as the energy and the angular momentum for a spinning meson. We find that there is a maximum distance, as well as a maximum spin for t...
Nickel electrodeposition from novel citrate bath
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.
Fidelity of the surface code in the presence of a bosonic bath
Jouzdani, P.; Novais, E.; Mucciolo, E. R.
2013-07-01
We study the resilience of the surface code to decoherence caused by the presence of a bosonic bath. This approach allows us to go beyond the standard stochastic error model commonly used to quantify decoherence and error threshold probabilities in this system. The full quantum mechanical system-bath dynamics is computed exactly over one quantum error correction cycle. Since all physical qubits interact with the bath, space-time correlations between errors are taken into account. We compute the fidelity of the surface code as a function of the quantum error correction time. The calculation allows us to map the problem onto an Ising-like statistical spin model with two-body interactions and a fictitious temperature which is related to the inverse bath coupling constant. The model departs from the usual Ising model in the sense that interactions can be long ranged and can involve complex exchange couplings; in addition, the number of allowed configurations is restricted by the syndrome extraction. Using analytical estimates and numerical calculations, we argue that, in the limit of an infinite number of physical qubits, the spin model sustains a phase transition which can be associated to the existence of an error threshold in the surface code. An estimate of the transition point is given for the case of nearest-neighbor interactions.
Yamamoto, Kouhei; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya
2015-08-01
Spin-coated perovskite solar cells from sol-gels result in high processing costs because of the need for high temperatures. Here, we report a low-temperature spin-coating route to fabricate planar heterojunction perovskite solar cells using chemical bath deposition of compact-TiOx layers. Comparison of the solar cell properties of compact-TiOx and compact-TiO2 layers show that the power conversion efficiency of the planar heterojunction perovskite solar cell fabricated by the low-temperature, compact-TiOx route is comparable to that of conventional TiO2. The chemical bath deposition method requires heating to 150 °C only to form amorphous compact-TiOx films compared with the 450 °C required for crystalline anatase compact-TiO2 films.
Energy Technology Data Exchange (ETDEWEB)
Snyder, Chad R., E-mail: chad.snyder@nist.gov; Guttman, Charles M., E-mail: charles.guttman@nist.gov [Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899 (United States); Di Marzio, Edmund A., E-mail: edmund.dimarzio@nist.gov [Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899 (United States); Bio-Poly-Phase, 14205 Parkvale Road, Rockville, Maryland 20853 (United States)
2014-01-21
We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.
Ozaki, Sho
2012-01-01
We investigate an application of twisted boundary conditions for study of low-energy hadron-hadron interactions with L\\"ushcer's finite size method. It allows us to calculate the phase shifts for elastic scattering of two hadrons at any small value of the scattering momentum even in a finite volume. We then can extract model independent information of low-energy scattering parameters such as the scattering length, the effective range and the effective volume from the $S$-wave and $P$-wave scattering phase shifts through the effective range expansion. This approach also enables us to examine the existence of near-threshold and narrow resonance states, of which characteristic is observed in many of newly discovered charmonium-like $XYZ$ mesons. As a simple example, we demonstrate our method for low-energy $J/\\psi$-$\\phi$ scatterings to search for Y(4140) resonance using 2+1 flavor PACS-CS gauge configurations at the lightest pion mass, $m_{\\pi}=156$ MeV.
Resonator-assisted quantum bath engineering of a flux qubit
Zhang, Xian-Peng; Shen, Li-Tuo; Yin, Zhang-Qi; Wu, Huai-Zhi; Yang, Zhen-Biao
2015-01-01
We demonstrate quantum bath engineering for preparation of any orbital state with the controllable phase factor of a superconducting flux qubit assisted by a microwave coplanar waveguide resonator. We investigate the polarization efficiency of the arbitrary direction rotating on the Bloch sphere, and obtain an effective Rabi frequency by using the convergence condition of the Markovian master equation. The processes of polarization can be implemented effectively in a dissipative environment created by resonator photon loss when the spectrum of the microwave resonator matches with the specially tailored Rabi and resonant frequencies of the drive. Our calculations indicate that state-preparation fidelities in excess of 99% and the required time on the order of magnitude of a microsecond are in principle possible for experimentally reasonable sample parameters. Furthermore, our proposal could be applied to other systems with spin-based qubits.
A study of electron transfer using a three-level system coupled to an ohmic bath
Takasu, Masako; Chandler, David
1993-01-01
Electron transfer is studied using a multi-level system coupled to a bosonic bath. Two body correlation functions are obtained using both exact enumeration of spin paths and Monte Carlo simulation. It was found that the phase boundary for the coherent-incoherent transition lies at a smaller friction in the asymmetric two-level model than in the symmetric two-level model. A similar coherent-incoherent transition is observed for three-level system.
Plaquette ordered phase and quantum phase diagram in the spin-1/2 J(1)-J(2) square Heisenberg model.
Gong, Shou-Shu; Zhu, Wei; Sheng, D N; Motrunich, Olexei I; Fisher, Matthew P A
2014-07-11
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J(1) and J(2), which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z(2) spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J(2), we find a Néel phase and a plaquette valence-bond (PVB) phase with a finite spin gap. From the finite-size scaling of the magnetic order parameter, we estimate that the Néel order vanishes at J(2)/J(1)≃0.44. For 0.5
Venkataraman, Charulatha
2011-11-28
The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.
Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia.
Cleary, Gráinne P; Parsons, Holly; Davis, Adrian; Coleman, Bill R; Jones, Darryl N; Miller, Kelly K; Weston, Michael A
2016-01-01
Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas.
Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry
Chen, Pochung; Xue, Zhi-Long; McCulloch, I. P.; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S.-K.
2015-04-01
We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU (3 )1 Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.
Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G
2010-04-14
We perform histogram-reweighting grand canonical Monte Carlo simulations of the Lennard-Jones fluid confined between two parallel hard walls and determine the vapor-liquid critical and coexistence properties in the range of sigmasigma and 10sigmasigma, where H is the wall separation, L(x)=L(y) is the system size and sigma is the characteristic length. By matching the probability distribution of the ordering operator, P(M), to the three-dimensional (3D) and two-dimensional (2D) Ising universality classes according to the mixed-field finite-size scaling approach, we establish a "phase diagram" in the (H,L) plane, showing the boundary between four types of behavior: 3D, quasi-3D, quasi-2D, and 2D. In order to facilitate 2D critical point calculation, we present a four-parameter analytical expression for the 2D Ising universal distribution. We show that the infinite-system-size critical points obtained by extrapolation from the apparent 3D and 2D critical points have only minor differences with each other. In agreement with recent reports in the literature [Jana et al., J. Chem. Phys. 130, 214707 (2009)], we find departure from linearity in the relationship between critical temperature and inverse wall separation, as well as nonmonotonic dependence of the critical density and the liquid density at coexistence upon wall separation. Additional studies of the ST2 model of water show similar behavior, which suggests that these are quite general properties of confined fluids.
Chlorhexidine: Patient Bathing and Infection Prevention.
Abbas, Salma; Sastry, Sangeeta
2016-08-01
Healthcare-associated infections (HAIs) are an important cause of morbidity and mortality in the USA. They are associated with a substantial increase in health care costs each year. Fortunately, many HAIs are preventable, and their eradication is a national priority. Chlorhexidine (CHG) bathing has been used as an infection prevention measure, either alone or bundled with other interventions, with mostly beneficial results. The recent surge in its use as an agent of choice for skin antisepsis has lead to concerns over emerging resistance among microorganisms. Moreover, compliance with CHG-bathing protocols is not routinely monitored. Policies developed to determine the best infection prevention practice must consider that a "one-size-fits-all" strategy may lead to the selection of CHG-tolerant microorganisms, thereby emphasizing the need for more robust guidelines and additional studies on the role of chlorhexidine bathing for the prevention of HAIs.
Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method
Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.
2016-05-01
Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain
Tiegel, A. C.; Dargel, P. E.; Hallberg, K. A.; Frahm, H.; Pruschke, T.
2013-02-01
In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we reexamine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior can not be extracted from these finite-size systems with open boundary conditions.
[New procedure for protein spinning: the hydrodynamic process].
Castaigne, F; Liber, E; Carbillet, L; Boulet, M; Riel, R R
1978-01-01
In this text, we describe a new protein spinning process called hydrodynamic process. Parameters which are related to production of fibers and which can influence diameter and texture are explained extensively. In this process, a spinning dope is extruded through a spinnerette in a moving coagulation bath in which the fibers are coagulated, stretched and carried.
Design parameter investigation of industrial size ultrasound textile treatment bath.
Perincek, Seher; Uzgur, A Erman; Duran, Kerim; Dogan, Aydin; Korlu, Aysegul E; Bahtiyari, Ibrahim M
2009-01-01
Design requirements for industrial size ultrasound bath for textile treatments have been determined. For this purpose, effects of sound pressure level, bath temperature, bath volume, textile material type and hydrophility degree of fabric were examined extensively. Finite element analysis (FEA) was used to investigate spacing and alignment of the ultrasound source transducers to reach effective and homogenous acoustic pressure distribution in the bath. It was found that textile material type, bath temperature and volume led to significant changes at sound pressure level. These parameters should be taken into consideration in designing of industrial size ultrasound bath for textile treatments. Besides, wettability of textiles is highly dependent to the distance from the transducers.
Hyperfine coupling of hole and nuclear spins in symmetric GaAs quantum dots
Vidal, M.; Durnev, M. V.; Bouet, L.; Amand, T.; Glazov, M. M.; Ivchenko, E. L.; Zhou, P; Wang, G.; Mano, T; Kuroda, T.; Marie, X.; Sakoda, K.; Urbaszek, B.
2016-01-01
In self assembled III-V semiconductor quantum dots, valence holes have longer spin coherence times than the conduction electrons, due to their weaker coupling to nuclear spin bath fluctuations. Prolonging hole spin stability relies on a better understanding of the hole to nuclear spin hyperfine coupling which we address both in experiment and theory in the symmetric (111) GaAs/AlGaAs droplet dots. In magnetic fields applied along the growth axis, we create a strong nuclear spin polarization d...
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin
Friedman, Greg
2004-01-01
This is an introduction to the construction of higher-dimensional knots by spinning methods. Simple spinning of classical knots was introduced by E. Artin in 1926, and several generalizations have followed. These include twist spinning, superspinning or p-spinning, frame spinning, roll spinning, and deform spinning. We survey these constructions and some of their most important applications, as well as some newer hybrids due to the author. The exposition, meant to be accessible to a broad aud...
Large-spin and large-winding expansions of giant magnons and single spikes
Floratos, Emmanuel; Linardopoulos, Georgios
2015-08-01
We generalize the method of our recent paper on the large-spin expansions of Gubser-Klebanov-Polyakov (GKP) strings to the large-spin and large-winding expansions of finite-size giant magnons and finite-size single spikes. By expressing the energies of long open strings in R ×S2 in terms of Lambert's W-function, we compute the leading, subleading and next-to-subleading series of classical exponential corrections to the dispersion relations of Hofman-Maldacena giant magnons and infinite-winding single spikes. We also compute the corresponding expansions in the doubled regions of giant magnons and single spikes that are respectively obtained when their angular and linear velocities become smaller or greater than unity.
Large-Spin and Large-Winding Expansions of Giant Magnons and Single Spikes
Floratos, Emmanuel
2014-01-01
We generalize the method of our recent paper on large-spin expansions of Gubser-Klebanov-Polyakov (GKP) strings to the large-spin and large-winding expansions of finite-size giant magnons and finite-size single spikes. By expressing the energies of long open strings in RxS2 in terms of Lambert's W-function, we compute the leading, subleading and next-to-subleading series of exponential corrections to the dispersion relations of Hofman-Maldacena giant magnons and infinite-winding single spikes. We also compute the corresponding expansions in the doubled regions of giant magnons and single spikes that are respectively obtained when their angular and linear velocities become smaller or greater than unity.
Large-spin and large-winding expansions of giant magnons and single spikes
Directory of Open Access Journals (Sweden)
Emmanuel Floratos
2015-08-01
Full Text Available We generalize the method of our recent paper on the large-spin expansions of Gubser–Klebanov–Polyakov (GKP strings to the large-spin and large-winding expansions of finite-size giant magnons and finite-size single spikes. By expressing the energies of long open strings in R×S2 in terms of Lambert's W-function, we compute the leading, subleading and next-to-subleading series of classical exponential corrections to the dispersion relations of Hofman–Maldacena giant magnons and infinite-winding single spikes. We also compute the corresponding expansions in the doubled regions of giant magnons and single spikes that are respectively obtained when their angular and linear velocities become smaller or greater than unity.
28 CFR 551.7 - Bathing and clothing.
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Bathing and clothing. 551.7 Section 551.7... Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and clothing that exist in the institution as required by standards of § 551.1....
Global phase diagram and quantum spin liquids in a spin-1/2 triangular antiferromagnet
Gong, Shou-Shu; Zhu, W.; Zhu, J.-X.; Sheng, D. N.; Yang, Kun
2017-08-01
We study the spin-1 /2 Heisenberg model on the triangular lattice with the nearest-neighbor J1>0 , the next-nearest-neighobr J2>0 Heisenberg interactions, and the additional scalar chiral interaction Jχ(S⃗i×S⃗j) .S⃗k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J2 (J2/J1≤0.3 ) and Jχ (Jχ/J1≤1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120∘, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν =1 /2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J1-J2 triangular model (0.08 ≲J2/J1≲0.15 ) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. We discuss the implications of our results on the nature of the spin liquid phases.
Pati, Satya Prakash; Al-Mahdawi, Muftah; Ye, Shujun; Shiokawa, Yohei; Nozaki, Tomohiro; Sahashi, Masashi
2016-12-01
The scaling of antiferromagnetic ordering temperature of corundum-type chromia films has been investigated. Néel temperature TN was determined from the effect of perpendicular exchange bias on the magnetization of a weakly-coupled adjacent ferromagnet. For a thick-film case, the validity of detection is confirmed by a susceptibility measurement. Detection of TN was possible down to 1-nm-thin chromia films. The scaling of ordering temperature with thickness was studied using different buffering materials and compared with Monte-Carlo simulations. The spin-correlation length and the corresponding critical exponent were estimated, and they were consistent between experimental and simulation results. The spin-correlation length is an order of magnitude less than cubic antiferromagnets. We propose that the difference is from the change of number of exchange-coupling links in the two crystal systems.
Bath vaccination of rainbow trout against yersiniosis
DEFF Research Database (Denmark)
Raida, Martin Kristian; Buchmann, Kurt
2007-01-01
Studies have been conducted on the temperature-dependent effect of bath vaccination of rainbow trout against Yersinia ruckeri O1. Protection of rainbow trout fry against challenge, following bath vaccination with a bacterin of Yersinia ruckeri O1, the bacterial pathogen causing enteric red mouth...... disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout fry were kept at controlled temperatures for two month before they were immersed in a commercial Yersinia ruckeri O1 bacterin for 10 minutes. Control groups were sham vaccinated using pure water. Fish were challenged with Yersinia ruckeri O......1 one and two month post vaccination at the three temperatures. Protection of vaccinated fish was seen one and two month post vaccination in rainbow trout reared at 15° C. There was no effect of vaccination in rainbow trout reared at 5 and 25° C. Spleen tissue was sampled from 5 vaccinated and 5...
Hot Particles Attract in a Cold Bath
Tanaka, Hidenori; Brenner, Michael P
2016-01-01
Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles, and demonstrate a novel mechanism for long ranged attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction even though all particles have the same size. Although the mechanism occurs outside the parameter range of typical biological organisms, the mechanism could be realized in ...
Hnybida, Jeff
2015-01-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Uniformly accelerated observer in a thermal bath
Kolekar, Sanved
2013-01-01
We investigate the quantum field aspects in flat spacetime for an uniformly accelerated observer moving in a thermal bath. In particular, we obtain an exact closed expression of the reduced density matrix for an uniformly accelerated observer with acceleration $a = 2\\pi T$ when the state of the quantum field is a thermal bath at temperature $T^\\prime$. We find that the density matrix has a simple form with an effective partition function $Z$ being a product, $Z = Z_T Z_{T^\\prime}$, of two thermal partition functions corresponding to temperatures $T$ and $T^\\prime$ and hence is not thermal, even when $T = T^\\prime$. We show that, even though the partition function has a product structure, the two thermal baths are, in fact, interacting systems; although in the high frequency limit $\\omega_k \\gg T$ and $\\omega_k \\gg T^\\prime$, the interactions are found to become sub-dominant. We further demonstrate that the resulting spectrum of the Rindler particles can be interpreted in terms of spontaneous and stimulated em...
Protecting coherence by reservoir engineering: intense bath disturbance
Zhou, Zixian; Lü, Zhiguo; Zheng, Hang
2016-08-01
We put forward a scheme based on reservoir engineering to protect quantum coherence from leaking to bath, in which we intensely disturb the Lorentzian bath by N harmonic oscillators. We show that the intense disturbance changes the spectrum of the bath and reduces the qubit-bath interaction. Furthermore, we give the exact time evolution with the Lorentzian spectrum by a master equation and calculate the concurrence and survival probability of the qubits to demonstrate the effect of the intense bath disturbance on the protection of coherence. Meanwhile, we reveal the dynamic effects of counter-rotating interaction on the qubits as compared to the results of the rotating-wave approximation.
General theory of many body localized systems coupled to baths
Nandkishore, Rahul; Gopalakrishnan, Sarang
2016-01-01
We consider what happens when a many body localized system is coupled to a heat bath. Unlike previous works, we do not restrict ourselves to the limit where the bath is large and effectively Markovian, nor to the limit where back action on the bath is negligible. We identify limits where the effect of the bath can be captured by classical noise, and limits where it cannot. We also identify limits in which the bath delocalizes the system, as well as limits in which the system localizes the bat...
"Roman Baths" in Contemporary Spa Tourism
Directory of Open Access Journals (Sweden)
Vesna Merc
2005-07-01
Full Text Available The commercialisation of images and symbols from antiquity, so characteristic of Slovenia since its independence, has been reflected over the last decade in spa tourism as well. Since the great crises in the sixties, and especially since the eighties, fifteen Slovene natural health resorts have concentrated on developing wellness and activities programs. This change in orientation has been accompanied by renovations, an expansion of the water surfaces and capacities, and new wellbeing, wellness, spirituality and beauty programs. An analysis of Slovene spas, wellness centres and hotel web pages shows that they frequently offer rooms, usually saunas, which are imitations of the Roman baths. These rooms are usually called "Roman saunas", "Tepidarium", "Caldarium", and "Roman-Irish baths". At Terme Ptuj, Zdravilišče Laško, Šmarješke Toplice, Grand Hotel Palace in Portorož, and Terme Čatež, saunas have been built or renovated in the Roman style. This trend of Roman rooms is a novelty, less than a decade old in Slovenia. The first sauna with a Roman theme, a Roman-Irish bath, was opened in 1997 in the Health and Beauty Centre at Terme Čatež. Modern Roman saunas are very popular, found not only in Slovenia but also in other parts of Europe, especially Germany and Austria. Their popularity has spread from the areas formerly occupied by the Romans to other parts of world, for example the USA and the Republic of South Africa. An analysis of Slovene saunas and wellness centres reveals a well-established trend to recreate certain parts of the Roman baths. This is attempted not only through Roman-style decorations, but also through certain structures particular to the Roman baths, such as the caldarium, tepidarium, and in one case even a laconicum. The approach, however, is highly eclectic, blending Roman, Greek and, above all, modern elements. The purpose of such rooms is to increase the appeal of the spas, while their design is mostly based on
Quantum decoration transformation for spin models
Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre
2016-09-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Orbiting droplets on a vibrated bath
Sampara, Naresh; Burger, Loic; Gilet, Tristan; Microfluidics, university of liege Team
2015-11-01
A millimeter-sized oil droplet can bounce on a vertically vibrated liquid bath for unlimited time. It may couple to the surface wave it emits; leading to horizontal self-propulsion called walking. When several walkers coexist close to one another, they either repel or attract each other, in response to the superposition of the waves they generate. Attraction leads to various bound states, including droplets that orbit around each other. We have experimentally investigated the variety of quantized orbital motions exhibited by two, three and more identical walkers, as a function of forcing acceleration. Each motion is quantified in terms of droplet and wave energy.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Nonequilibrium spin glass dynamics with the Janus computer
Yllanes, David; Belletti, F.; Cruz, A.; Fernandez, L. A.; Gordillo-Guerrero, A.; Guidetti, M.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte, J.; Munoz Sudupe, A.; Navarro, D.; Parisi, G.; Perez-Gaviro, S.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Sciretti, D.; Tarancon, A.; Tripiccione, R.
2009-03-01
The out of equilibrium evolution of the Edwards-Anderson spin glass is followed for a tenth of a second, effectively halving the (logarithmic) temporal gap between previous simulations and experiments. In fact, we have been able to make safe predictions about the behavior at experimental times, using mild extrapolations. This work has been made possible by Janus, a special purpose computer designed by our collaboration. We have thoroughly studied the spin glass correlation functions and the growth of the coherence length for L 0 lattices in 3D,using L 4,40 lattices to check for finite size effects. We present clear evidence for a replicon correlator. Our main conclusion is that these spin glasses follow non-coarsening dynamics, at least up to the experimentally relevant time scales.
Fabrication of κ-Carrageenan Fibers by Wet Spinning: Spinning Parameters
Directory of Open Access Journals (Sweden)
Lingyan Kong
2011-10-01
Full Text Available This study demonstrates the fabrication of κ-carrageenan fibers by a wet-spinning method and discusses three important spinning parameters: coagulation bath composition, spinning rate and post-spinning mechanical drawing. The as-spun fiber diameter decreased with KCl and ethanol concentration in the coagulation bath. In general, the ultimate tensile stress and elongation at break both increased for KCl concentration from 0.1 to 0.5 M with and without ethanol, with no significant change above 0.5 M. Spinning rate affected the dope flow and thus the polymer orientation (apparent viscosity and fiber morphology. At spinning rates between 0.25 mL/min and 0.33 mL/min, the fiber diameter reached a minimum and the fiber surface was smooth. Both an increase and decrease from this spinning rate range increased the fiber diameter and roughness of the fiber surface. Post-spinning drawing of the fiber resulted in even smaller fiber diameter.
Fabrication of κ-Carrageenan Fibers by Wet Spinning: Spinning Parameters.
Kong, Lingyan; Ziegler, Gregory R
2011-10-11
This study demonstrates the fabrication of κ-carrageenan fibers by a wet-spinning method and discusses three important spinning parameters: coagulation bath composition, spinning rate and post-spinning mechanical drawing. The as-spun fiber diameter decreased with KCl and ethanol concentration in the coagulation bath. In general, the ultimate tensile stress and elongation at break both increased for KCl concentration from 0.1 to 0.5 M with and without ethanol, with no significant change above 0.5 M. Spinning rate affected the dope flow and thus the polymer orientation (apparent viscosity) and fiber morphology. At spinning rates between 0.25 mL/min and 0.33 mL/min, the fiber diameter reached a minimum and the fiber surface was smooth. Both an increase and decrease from this spinning rate range increased the fiber diameter and roughness of the fiber surface. Post-spinning drawing of the fiber resulted in even smaller fiber diameter.
Recovery process for electroless plating baths
Anderson, Roger W.; Neff, Wayne A.
1992-01-01
A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.
Infant's physiological response to short heat stress during sauna bath.
Rissmann, A; Al-Karawi, J; Jorch, G
2002-01-01
Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.
Thermal baths as quantum resources: more friends than foes?
Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia
2015-12-01
In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.
Bath and colonization of the preterm newborn skin.
Chollopetz da Cunha, Maria Luzia; Soibelmann Procianoy, Renato
2008-01-01
This article aims at determining the bathing role in skin colonization of preterm newborn by reviewing the literature from MEDLINE database. Clinical researches have demonstrated that bathing with soap triggers pH increase interfering with the skin physiological protection and provoking changes in the cutaneous microflora composition. Preterm neonates in NICU tend to acquire nosocomial skin flora from the action of bathing with cleansing products on the epidermal barrier function with direct ...
Entanglement dynamics of a two-qubit system coupled individually to Ohmic baths
Duan, Liwei; Chen, Qinghu; Zhao, Yang
2013-01-01
The Davydov D1 ansatz, which assigns an individual bosonic trajectory to each spin state, is an efficient, yet accurate trial state for time-dependent variation of the the spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime the entanglement sudden death is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement sudden death and revival.
Unconventional critical activated scaling of two-dimensional quantum spin glasses
Matoz-Fernandez, D. A.; Romá, F.
2016-07-01
We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations. Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an exhaustive finite-size analysis, we show that the cumulant probably follows an unconventional activated scaling, which we interpret as new evidence supporting the hypothesis that the quantum critical behavior is governed by an infinite randomness fixed point.
Spin glass transition in canonical AuFe alloys: A numerical study
Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan
2012-05-01
Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments.
Bose-Einstein condensation of spin-1 field in an Einstein universe
Altaie, M. B.; Malkawi, Ehab
2000-10-01
In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized.
Bose-Einstein condensation of spin-1 field in an Einstein universe
Energy Technology Data Exchange (ETDEWEB)
Altaie, M.A. [Department of Physics, University of Yarmouk, Irbid (Jordan)]. E-mail: maltaie@yu.edu.jo; Malkawi, Ehab [Department of Physics, Jordan University of Science and Technology, Irbid (Jordan)
2000-10-13
In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized. (author)
Ultrasonic bath depth control and regulation in single cell recordings.
Duong Dinh, Thien An; Jüngling, Eberhard; Strotmann, Karl-Heinz; Westhofen, Martin; Lückhoff, Andreas
2006-09-01
Control of the bath depth is critical in many applications of the patch-clamp technique, particularly when the capacitance of cells is determined to assess secretion or transmitter release or in studies of ion currents sensitive to small changes in the hydrostatic pressure. We describe an inexpensive technique for tight control of the bath depth with the aid of a commercially available ultrasound sensor. The sensor continuously determines changes in the distance to the bath surface with a resolution of about 10 mum. The signal from the sensor is digitized in a microcontroller card and used to send on or off signals at 100 Hz to a peristaltic pump that removes volume from the bath. The inflow into the bath can be realized in a versatile way. The capacitance of Sylgard-coated patch-clamp glass electrodes, demonstrated to be extremely sensitive to small changes in the area moistened by bath solution, is constant within the noise level of +/-3 fF when immersed into a depth-controlled bath, even during exchange of the bath medium. Thus, when small changes in the cell capacitance are measured in patch-clamp experiments, errors due to alterations in the pipette capacitance caused by bath depth fluctuations are eliminated.
Bath Salts: A Newly Recognized Cause of Acute Kidney Injury
Directory of Open Access Journals (Sweden)
Jonathan McNeely
2012-01-01
Full Text Available Bath salts are substance of abuse that are becoming more common and are difficult to recognize due to negative toxicology screening. Acute kidney injury due to bath salt use has not previously been described. We present the case of a previously healthy male who developed acute kidney injury and dialysis dependence after bath salt ingestion and insufflation. This was self-reported with negative toxicology screening. Clinical course was marked by severe hyperthermia, hyperkalemia, rhabdomyolysis, disseminated intravascular coagulation, oliguria, and sepsis. We discuss signs and symptoms, differential diagnoses, potential mechanisms of injury, management, and review of the literature related to bath salt toxicity.
Bath salts: a newly recognized cause of acute kidney injury.
McNeely, Jonathan; Parikh, Samir; Valentine, Christopher; Haddad, Nabil; Shidham, Ganesh; Rovin, Brad; Hebert, Lee; Agarwal, Anil
2012-01-01
Bath salts are substance of abuse that are becoming more common and are difficult to recognize due to negative toxicology screening. Acute kidney injury due to bath salt use has not previously been described. We present the case of a previously healthy male who developed acute kidney injury and dialysis dependence after bath salt ingestion and insufflation. This was self-reported with negative toxicology screening. Clinical course was marked by severe hyperthermia, hyperkalemia, rhabdomyolysis, disseminated intravascular coagulation, oliguria, and sepsis. We discuss signs and symptoms, differential diagnoses, potential mechanisms of injury, management, and review of the literature related to bath salt toxicity.
Energy Technology Data Exchange (ETDEWEB)
Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non
Nonequilibrium antiferromagnetic mixed-spin Ising model.
Godoy, Mauricio; Figueiredo, Wagner
2002-09-01
We studied an antiferromagnetic mixed-spin Ising model on the square lattice subject to two competing stochastic processes. The model system consists of two interpenetrating sublattices of spins sigma=1/2 and S=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip (Glauber dynamics). Besides, the system interacts with an external agency of energy, which supplies energy to it whenever two nearest neighboring spins are simultaneously flipped. By employing Monte Carlo simulations and a dynamical pair approximation, we found the phase diagram for the stationary states of the model in the plane temperature T versus the competition parameter between one- and two-spin flips p. We observed the appearance of three distinct phases, that are separated by continuous transition lines. We also determined the static critical exponents along these lines and we showed that this nonequilibrium model belongs to the universality class of the two-dimensional equilibrium Ising model.
Fluctuation-dissipation ratio of the Heisenberg spin glass.
Kawamura, Hikaru
2003-06-13
The fluctuation-dissipation (FD) relation of the three-dimensional Heisenberg spin glass with weak random anisotropy is studied by off-equilibrium Monte Carlo simulation. The numerically determined FD ratio exhibits a "one-step-like" behavior, the effective temperature of the spin-glass state being about twice the spin-glass transition temperature, T(eff) approximately 2T(g), irrespective of the bath temperature. The results are discussed in conjunction with the recent experiment by Hérisson and Ocio, and with the chirality scenario of the spin-glass transition.
30 CFR 75.1712 - Bath houses and toilet facilities.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath...
21 CFR 740.17 - Foaming detergent bath products.
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products. (a) For the purpose of this section,...
20 CFR 654.412 - Bathing, laundry, and handwashing.
2010-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold.... Shower floors shall be constructed of nonabsorbent nonskid materials and sloped to properly constructed floor drains. Except in individual family units, separate shower facilities shall be provided each sex...
Influence of bath temperature and bath composition on Co-Ag electrodeposition
Energy Technology Data Exchange (ETDEWEB)
Garcia-Torres, Jose; Valles, Elisa [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Gomez, Elvira, E-mail: e.gomez@ub.ed [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)
2010-08-01
A study of the best conditions to prepare smooth heterogeneous Co-Ag films with low amounts of S from a thiourea-based electrolytic bath has been performed. Using a 0.01 M AgClO{sub 4} + 0.1 M Co(ClO{sub 4}){sub 2} + 0.1 M thiourea + 0.1 M sodium gluconate + 0.3 M H{sub 3}BO{sub 3} + 0.1 M NaClO{sub 4} bath, low temperature (10 {sup o}C) allowed obtaining compact and smooth deposits containing 2 wt.% sulphur. Decreasing thiourea content 0.06 M and increasing gluconate concentration up to 0.3 M, better deposits (more compact with lower sulphur content (1.2 wt.%)) were obtained. A clear influence of the species present in the bath on the film quality was observed: while gluconate favoured film cohesion, boric acid hindered hydrogen adsorption. For all films, fcc-Ag, hcp-Co and hcp-CoAg{sub 3} phases were always detected by XRD, TEM and electron diffraction, their proportions varying with the electrodeposition conditions. Magnetic measurements revealed that the increase in the CoAg{sub 3} led to an increase in the film coercivity. GMR values were only measured at cryogenic temperatures, they being higher for the deposits with the lowest sulphur content revealing that sulphur exerts a negative effect on magnetoresistance.
Copper Plating from Non-Cyanide Alkaline Baths
Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze
2014-12-01
Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.
Achterberg, T. van; Gaal, B. van; Geense, W.W.; Verbeke, G.; Vleuten, C.J.M. van der; Schoonhoven, L.
2016-01-01
BACKGROUND: Bathing assistance is a core element of essential care in nursing homes, yet little is known for quality of assisted bathing or its determinants. AIM: To explore differences in completeness of assisted bathing in relation to bathing method and resident characteristics. METHODS: Secondary
Probing an NV Center's Nuclear Spin Environment with Coherent Population Trapping
Levonian, David; Goldman, Michael; Singh, Swati; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2016-05-01
Nitrogen-vacancy (NV) centers in diamond have emerged as a versatile atom-like system, finding diverse applications in metrology and quantum information science, but interaction between the NV center's electronic spin and its nuclear spin environment represent a major source of decoherence. We use optical techniques to monitor and control the nuclear bath surrounding an NV center. Specifically, we create an optical Λ-system using the | +/- 1 > components of the NV center's spin-triplet ground state. When the Zeeman splitting between the two states is equal to the two-photon detuning between the lasers, population is trapped in the resulting dark state. Measuring the rate at which the NV center escapes from the dark state therefore gives information on how spin bath dynamics change the effective magnetic field experienced by the NV center. By monitoring statistics of the emitted photons, we plan to probe non-equilibrium dynamics of the bath.
Half-metallic superconducting triplet spin valve
Halterman, Klaus; Alidoust, Mohammad
2016-08-01
We theoretically study a finite-size S F1N F2 spin valve, where a normal metal (N ) insert separates a thin standard ferromagnet (F1) and a thick half-metallic ferromagnet (F2). For sufficiently thin superconductor (S ) widths close to the coherence length ξ0, we find that changes to the relative magnetization orientations in the ferromagnets can result in substantial variations in the transition temperature Tc, consistent with experimental results [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019]. Our results demonstrate that, in good agreement with the experiment, the variations are largest in the case where F2 is in a half-metallic phase and thus supports only one spin direction. To pinpoint the origins of this strong spin-valve effect, both the equal-spin f1 and opposite-spin f0 triplet correlations are calculated using a self-consistent microscopic technique. We find that when the magnetization in F1 is tilted slightly out of plane, the f1 component can be the dominant triplet component in the superconductor. The coupling between the two ferromagnets is discussed in terms of the underlying spin currents present in the system. We go further and show that the zero-energy peaks of the local density of states probed on the S side of the valve can be another signature of the presence of superconducting triplet correlations. Our findings reveal that for sufficiently thin S layers, the zero-energy peak at the S side can be larger than its counterpart in the F2 side.
Merdan, Z.; Güzelsoy, E.
2012-05-01
The four-dimensional Ising model is simulated on the Creutz cellular automaton using finite-size lattices with linear dimension 4≤ L≤8. The exponents in the finite-size scaling relations for the order parameter and the magnetic susceptibility at the finite-lattice critical temperature are computed to be β=0.49(7), β=0.49(5), β=0.50(1) and γ=1.04(4), γ=1.03(4), γ=1.02(4) for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are consistent with the renormalization group predictions of β=0.5 and γ=1. The values for the critical temperature of the infinite lattice T c (∞)=6.6788(65), T c (∞)=6.6798(69), T c (∞)=6.6802(70) are obtained from the straight-line fit of the magnetic susceptibility maxima using 4≤ L≤8 for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are in very good agreement with the series expansion results of T c (∞)=6.6817(15), T c (∞)=6.6802(2), the dynamic Monte Carlo result of T c (∞)=6.6803(1), the cluster Monte Carlo result of T c (∞)=6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm result of T c (∞)=6.6802632±5×10-5.
Mephedrone ("bath salt") pharmacology: insights from invertebrates.
Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M
2012-04-19
Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning.
Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons.
Gauyacq, J-P; Lorente, N
2014-10-01
Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition.
Santer, Miriam; Rumsby, Kate; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Chorozoglou, Maria; Wood, Wendy; Roberts, Amanda; Thomas, Kim S; Williams, Hywel C; Little, Paul
2015-01-01
Introduction Bath emollients are widely prescribed for childhood eczema, yet evidence of their benefits over direct application of emollients is lacking. Objectives To determine the clinical and cost-effectiveness of adding bath emollient to the standard management of eczema in children Methods and analysis Design: Pragmatic open 2-armed parallel group randomised controlled trial. Setting: General practitioner (GP) practices in England and Wales. Participants: Children aged over 12 months and less than 12 years with eczema, excluding inactive or very mild eczema (5 or less on Nottingham Eczema Severity Scale). Interventions: Children will be randomised to either bath emollients plus standard eczema care or standard eczema care only. Outcome measures: Primary outcome is long-term eczema severity, measured by the Patient-Oriented Eczema Measure (POEM) repeated weekly for 16 weeks. Secondary outcomes include: number of eczema exacerbations resulting in healthcare consultations over 1 year; eczema severity over 1 year; disease-specific and generic quality of life; medication use and healthcare resource use; cost-effectiveness. Aiming to detect a mean difference between groups of 2.0 (SD 7.0) in weekly POEM scores over 16 weeks (significance 0.05, power 0.9), allowing for 20% loss to follow-up, gives a total sample size of 423 children. We will use repeated measures analysis of covariance, or a mixed model, to analyse weekly POEM scores. We will control for possible confounders, including baseline eczema severity and child's age. Cost-effectiveness analysis will be carried out from a National Health Service (NHS) perspective. Ethics and dissemination This protocol was approved by Newcastle and North Tyneside 1 NRES committee 14/NE/0098. Follow-up will be completed in 2017. Findings will be disseminated to participants and carers, the public, dermatology and primary care journals, guideline developers and decision-makers. Trial registration number ISRCTN
Energy Technology Data Exchange (ETDEWEB)
Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)
2017-02-05
The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.
Quantum kicked harmonic oscillator in contact with a heat bath
Prado Reynoso, M. Á.; López Vázquez, P. C.; Gorin, T.
2017-02-01
We consider the quantum harmonic oscillator in contact with a finite-temperature bath, modeled by the Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different dynamical regimes between classical integrability and chaos, on the one hand, and ballistic or diffusive energy absorption, on the other. We then investigate the influence of the heat bath on the oscillator in each case. Phase-space techniques allow us to simulate the evolution of the system efficiently. In this way, we calculate high-resolution Wigner functions at long times, where the system approaches a quasistationary cyclic evolution. Thereby, we perform an accurate study of the thermodynamic properties of a nonintegrable, quantum chaotic system in contact with a heat bath at finite temperature. In particular, we find that the heat transfer between harmonic oscillator and heat bath is governed by Fourier's law.
Universe unveiled the cosmos in my bubble bath
Vishveshwara, C V
2015-01-01
The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...
Production rate of the system-bath mutual information
Li, Sheng-Wen
2017-07-01
When an open system comes into contact with several thermal baths, the entropy produced by the irreversible processes (d Si=d S -∑α đQα/Tα ) keeps increasing, and this entropy production rate is always non-negative. However, when the system comes into contact with nonthermal baths containing quantum coherence or squeezing, this entropy production formula does not apply. In this paper, we study the increasing rate of mutual information between an open system and its environment. In the case of canonical thermal baths, we prove that this mutual information production rate could return exactly to the previous entropy production rate. Furthermore, we study an example of a single boson mode that comes into contact with multiple squeezed thermal baths, where the conventional entropy production rate does not apply, and we find that this mutual information production rate remains non-negative, which indicates a monotonic increase in the correlation between the system and its environment.
Holmes, Adam; Umrigar, Cyrus
2016-01-01
We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the tradeoff between speed and accuracy, one which controls the selection of determinants to add to a variational wavefunction, and one which controls the the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly-correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few min...
EOF cold model-study of bath behavior
Directory of Open Access Journals (Sweden)
Breno Totti Maia
2016-01-01
Full Text Available The EOF reactor was developed in Brazil in the eighties with unique features. The preheating of scrap and distribution of injection points oxidizing gases and fuels make up these features. This paper aims to reproduce the behavior of the metal bath an EOF of 45 tons comparing their top three gas injection equipment: supersonic lances, atmospheric injectors and tuyeres. The lances and tuyeres promoted greater agitation of the bath with atmospheric injectors a great opportunity for improvement.
Study and Practice of Forest-bathing Field in Japan
Institute of Scientific and Technical Information of China (English)
Qunming; ZHENG; Xiaoya; YANG
2013-01-01
Japan has made remarkable achievements in the study and development of forest tourism for health care reason. Through the comprehensive investigation into the development of forest-bathing field in Japan, this paper studied the forest tourism for health care factor in Japan and concluded the evaluation standard and construction of forest-bathing field, as well as personnel training. In the end, some suggestions were proposed for the study and development of forest tourism for health care factor in Asia.
Morioka, Ikuharu; Izumi, Yurina; Inoue, Miyabi; Okada, Kanako; Sakaguchi, Kaho; Miyai, Natsuki
2014-01-01
The purpose of this study was to clarify the effect of stone spa bathing (Ganban-yoku) and hot-spring bathing on brachial-ankle pulse wave velocity (baPWV) in healthy, late middle-aged females. The subjects were 13 females (mean age, 47.3 years). The skin and tympanic temperatures, blood pressure, and baPWV were measured before and after stone spa bathing and hot-spring bathing. For the stone spa bathing, the subjects lay down three times for approximately 10 min each time over warm stone beds. Although body weight showed no change after the hot-spring bathing, it significantly increased after the stone spa bathing. The increase was significantly related to the amount of water intake. The skin and tympanic temperatures increased to a smaller degree after the stone spa bathing than after the hot-spring bathing. The diastolic blood pressure decreased to a smaller degree after the stone spa bathing. BaPWV showed no significant change after bathing both in the stone spa and in the hot-spring. The results of multiple regression analysis showed that the factors significantly related to the change in baPWV after the stone spa bathing were the changes in skin and tympanic temperatures and habit of smoking, and that after the hot-spring bathing was the change in skin temperature. The results suggest that, compared with the hot-spring bathing, stone spa bathing causes less strain on the body. The stone spa bathing and hot-spring bathing showed no marked effect on baPWV. However, there is a possibility that the stone spa bathing may be used as a load for investigating arterial stiffness.
Effect of hyperthermic water bath on parameters of cellular immunity.
Blazícková, S; Rovenský, J; Koska, J; Vigas, M
2000-01-01
Effects of hyperthermic water bath on selected immune parameters (lymphocyte subpopulations, natural killer (NK) cell counts and their activity) were studied in a group of 10 volunteers. Application of hyperthermic water bath (both topical and whole-body) was followed by a significant reduction of relative B lymphocyte counts. Whole-body hyperthermic water bath reduced relative total T lymphocyte counts, increased relative CD8+ T lymphocyte and NK cell counts and increased NK activity. Whole-body hyperthermic bath increased somatotropic hormone (STH) activity in eight out of 10 volunteers; higher relative counts of CD8+ lymphocytes and NK cells were observed compared with the group of volunteers not responding to hyperthermic water bath by STH secretion. In five volunteers STH was released in response to local hyperthermic water bath and the NK activity of lymphocytes also increased but their relative counts did not. The results suggest that these increases in CD8+ lymphocyte and NK cell counts are probably dependent on increased STH production.
Engle, Jonathan
2013-01-01
The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.
Over the last decade electrodialysis has emerged as an effective technique for removing accumulated reactant counterions (sodium and sulfate) and reaction products (orthophosphite) that interfere with the electroless nickel plating process, thus extending bath life by up to 50 me...
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Mode coupling in spin torque oscillators
Energy Technology Data Exchange (ETDEWEB)
Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)
2016-09-15
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.
Santer, Miriam; Rumsby, Kate; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Chorozoglou, Maria; Wood, Wendy; Roberts, Amanda; Thomas, Kim S; Williams, Hywel C; Little, Paul
2015-11-01
Bath emollients are widely prescribed for childhood eczema, yet evidence of their benefits over direct application of emollients is lacking. Objectives To determine the clinical and cost-effectiveness of adding bath emollient to the standard management of eczema in children Pragmatic open 2-armed parallel group randomised controlled trial. General practitioner (GP) practices in England and Wales. Children aged over 12 months and less than 12 years with eczema, excluding inactive or very mild eczema (5 or less on Nottingham Eczema Severity Scale). Children will be randomised to either bath emollients plus standard eczema care or standard eczema care only. Primary outcome is long-term eczema severity, measured by the Patient-Oriented Eczema Measure (POEM) repeated weekly for 16 weeks. Secondary outcomes include: number of eczema exacerbations resulting in healthcare consultations over 1 year; eczema severity over 1 year; disease-specific and generic quality of life; medication use and healthcare resource use; cost-effectiveness. Aiming to detect a mean difference between groups of 2.0 (SD 7.0) in weekly POEM scores over 16 weeks (significance 0.05, power 0.9), allowing for 20% loss to follow-up, gives a total sample size of 423 children. We will use repeated measures analysis of covariance, or a mixed model, to analyse weekly POEM scores. We will control for possible confounders, including baseline eczema severity and child's age. Cost-effectiveness analysis will be carried out from a National Health Service (NHS) perspective. This protocol was approved by Newcastle and North Tyneside 1 NRES committee 14/NE/0098. Follow-up will be completed in 2017. Findings will be disseminated to participants and carers, the public, dermatology and primary care journals, guideline developers and decision-makers. ISRCTN84102309. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Antiferromagnetic nuclear spin helix and topological superconductivity in 13C nanotubes
Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel
2015-12-01
We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from the hyperfine coupling between localized nuclear spins and conduction electrons in interacting 13C carbon nanotubes. Using the Luttinger liquid formalism, we show that the RKKY interaction is sublattice dependent, consistent with the spin susceptibility calculation in noninteracting carbon nanotubes, and it leads to an antiferromagnetic nuclear spin helix in finite-size systems. The transition temperature reaches up to tens of mK, due to a strong boost by a positive feedback through the Overhauser field from ordered nuclear spins. Similar to GaAs nanowires, the formation of the helical nuclear spin order gaps out half of the conduction electrons, and is therefore observable as a reduction of conductance by a factor of 2 in a transport experiment. The nuclear spin helix leads to a density wave combining spin and charge degrees of freedom in the electron subsystem, resulting in synthetic spin-orbit interaction, which induces nontrivial topological phases. As a result, topological superconductivity with Majorana fermion bound states can be realized in the system in the presence of proximity-induced superconductivity without the need of fine tuning the chemical potential. We present the phase diagram as a function of system parameters, including the pairing gaps, the gap due to the nuclear spin helix, and the Zeeman field perpendicular to the helical plane.
2013-08-30
... infant bath seats. 75 FR 31691. On July 31, 2012, the Commission adopted the revised ASTM standard for infant bath seats, ASTM F1967-11a. 77 FR 45242. The requirements for infant bath seats are set forth... COMMISSION Proposed Extension of Approval of Information Collection; Comment Request--Infant Bath...
Automated Traffic and the Finite Size Resonance
Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.
2009-10-01
We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.
Spin-dynamics simulations of the triangular antiferromagnetic XY model*
Nho, Kwangsik; Landau, D. P.
2003-03-01
Using Monte Carlo and spin-dynamics methods, we have studied the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. We calculated the dynamic structure factor S(q,w) for momentum q and frequency w. Below T_KT (Kosteritz-Thouless transition), both the in-plane (S^xx) and out-of-plane (S^zz) components exhibit very strong and sharp spin-wave peaks. Well above T_KT, S^xx and S^zz apparently display a central peak, and spin-wave signatures are still seen in S^zz. In addition, we also observed an almost dispersionless domain-wall peak at high w below Tc (Ising transition), where long-range order appears in the staggered chirality[1]. We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequency wm and S(q,w). *Supported by NSF [1] D.H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P. Landau, Phys. Rev. Lett. 52, 433 (1984)
Zhang, Weiwei; Xue, Zhixin; Yan, Miao; Liu, Jingjing; Xia, Yanzhi
2016-10-01
Motivated by the extensive application of carrageenans, this work prepared carrageenan fibers via wet spinning. The optimum spinning parameters were explored by means of an orthogonal test. According to the results of tensile test, dope concentration, draw ratio, coagulation bath temperature, and coagulation bath concentration set to 9%, 1.2, 15°C and 5%, respectively, were the optimum spinning conditions. These parameters were then applied to fabricate fibers treated with epichlorohydrin in a stretch bath. The result of tensile testing demonstrated a positive improvement in the intensity, and SEM showed obvious necking phenomenon of the crosslinked carrageenan fibers. The structures and special groups were characterized with X-ray diffraction and FTIR, and the results indicated the regularity of the net structure and the increase in ether bond and methylene. In some, crosslinking reactions in optimum parameter conditions yield excellent fibers and thus present promising applications.
Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.
2008-12-01
The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Directory of Open Access Journals (Sweden)
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Universal critical behavior of the two-dimensional Ising spin glass
Fernandez, L. A.; Marinari, E.; Martin-Mayor, V.; Parisi, G.; Ruiz-Lorenzo, J. J.
2016-07-01
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
Universal and nonuniversal level statistics in a chaotic quantum spin chain.
Pineda, Carlos; Prosen, Tomaz
2007-12-01
We study the level statistics of an interacting multiqubit system, namely the kicked Ising spin chain, in the regime of quantum chaos. Long range quasienergy level statistics show effects analogous to the ones observed in semiclassical systems due to the presence of short classical periodic orbits, while short range level statistics display perfect statistical agreement with random matrix theory. Even though our system possesses no classical limit, our results suggest existence of an important nonuniversal system specific behavior at short time scale, which clearly goes beyond finite size effects in random matrix theory.
On the limit distribution of layer block spin variables in the mean spherical model
Energy Technology Data Exchange (ETDEWEB)
Amin, Magdy E
2004-01-12
The limit distribution of the layer block spin variables of the mean spherical model under Neumann-Dirichlet boundary conditions is investigated in the presence of an inhomogeneous external field which changes sign at distance Lx (0{<=}x{<=}1) from the Neumann boundary. The behaviour of the equation of state is studied in different temperature and field regimes: high-temperature bulk limit, critical finite-size scaling regime, and low-temperature moderate-field regime. A new classes of critical behaviour for the characteristic function of the limit distributions are obtained and studied in the three different regimes.
Thermal entanglement in fully connected spin systems and its RPA description
Matera, Juan Mauricio; Canosa, Norma
2011-01-01
We examine the thermal pairwise entanglement in a symmetric system of $n$ spins fully connected through anisotropic $XYZ$-type couplings embedded in a transverse magnetic field. We consider both the exact evaluation together with that obtained with the static path + random phase approximation (RPA) and the ensuing mean field + RPA. The latter is shown to provide an accurate analytic description of both the parallel and antiparallel thermal concurrence in large systems. We also analyze the limit temperature for pairwise entanglement, which is shown to increase for large fields and to decrease logarithmically with increasing $n$. Special finite size effects are as well discussed.
The quench action approach in finite integrable spin chains
Alba, Vincenzo; Calabrese, Pasquale
2016-04-01
We consider the problem of constructing the stationary state following a quantum quench, using the exact overlaps for finite size integrable models. We focus on the isotropic Heisenberg spin chain with initial state Néel or Majumdar-Ghosh (dimer), although the proposed approach is valid for an arbitrary integrable model. We consider only eigenstates which do not contain zero-momentum strings because the latter are affected by fictitious singularities that are very difficult to take into account. We show that the fraction of eigenstates that do not contain zero-momentum strings is vanishing in the thermodynamic limit. Consequently, restricting to this part of the Hilbert space leads to vanishing expectation values of local observables. However, it is possible to reconstruct the asymptotic values by properly reweighting the expectations in the considered subspace, at the price of introducing finite-size corrections. We also develop a Monte Carlo sampling of the Hilbert space which allows us to study larger systems. We accurately reconstruct the expectation values of the conserved charges and the root distributions in the stationary state, which turn out to match the exact thermodynamic results. The proposed method can be implemented even in cases in which an analytic thermodynamic solution is not obtainable.
System-reservoir theory with anharmonic baths: a perturbative approach
Bhadra, Chitrak; Banerjee, Dhruba
2016-04-01
In this paper we develop the formalism of a general system coupled to a reservoir (the words ‘bath’ and ‘reservoir’ will be used interchangeably) consisting of nonlinear oscillators, based on perturbation theory at the classical level, by extending the standard Zwanzig approach of elimination of bath degrees of freedom order by order in perturbation. We observe that the fluctuation dissipation relation (FDR) of the second kind in its standard form for harmonic baths gets modified due to the nonlinearity and this is manifested through higher powers of {{k}\\text{B}}T in the expression for two-time noise correlation. On the flip side, this very modification allows us to define a dressed (renormalized) system-bath coupling that depends on the temperature and the nonlinear parameters of the bath in such a way that the structure of the FDR (of the second kind) is maintained. As an aside, we also observe that the first moment of the noise arising from a nonlinear bath can be non-zero, even in the absence of any external drive, if the reservoir potential is asymmetric with respect to one of its minima, about which one builds up the perturbation theory.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
Cheng, Jun-Qing; Wu, Wei; Xu, Jing-Bo
2017-09-01
We investigate the multipartite entanglement and trace distance of the one-dimensional anisotropic spin-1/2 XXZ spin chain with the Dzyaloshinskii-Moriya interaction and find that the Dzyaloshinskii-Moriya interaction can influence the entanglement distribution and increase the proportion of multipartite entanglement in the entanglement structure. Furthermore, we explore the quantum phase transition of the XXZ spin chain with Dzyaloshinskii-Moriya interaction by making use of the multipartite entanglement and trace distance along with the quantum renormalization group method. It is found that the first derivatives of renormalized multipartite entanglement and trace distance for the ground state have dramatic changes near the critical point, and the renormalized multipartite entanglement and trace distance obey the universal finite-size scaling laws in the vicinity of the quantum critical point.
An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model
Energy Technology Data Exchange (ETDEWEB)
Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)
2014-11-15
We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.
Displacement of an Electrically Charged Drop on a Vibrating Bath
Brandenbourger, M.; Vandewalle, N.; Dorbolo, S.
2016-01-01
In this work, the manipulation of an electrically charged droplet bouncing on a vertically vibrated bath is investigated. When a horizontal, uniform, and static electric field is applied to it, a motion is induced. The droplet is accelerated when the droplet is small. On the other hand, large droplets appear to move with a constant speed that depends linearly on the applied electrical field. In the latter regime, high-speed imaging of one bounce reveals that the droplet experiences an acceleration due to the electrical force during the flight and decelerates to 0 when interacting with the surface of the bath. Thus, the droplet moves with a constant average speed on a large time scale. We propose a criterion based on the force necessary to move a charged droplet at the surface of the bath to discriminate between constant speed and accelerated droplet regimes.
Harbour bathing and the urban transition of water in Copenhagen
DEFF Research Database (Denmark)
Jensen, Jens Stissing; Lauridsen, Erik Hagelskjær; Farné Fratini, Chiara
2015-01-01
n 2002 the first public harbour swimming bath in the inner harbour of Copenhagen opened. By translating the old industrial harbour into a site of urban living and recreation, the practice of swimming in the harbour has been instrumental in aligning and catalysing a series of broader urban...... transformations pertaining to the wastewater infrastructure, industrial activities, urban development, and international marketing of the city. Through a study of the processes by which swimming in the harbour came into being as a transformative urban practice, we develop a navigational conceptualisation of urban...... transition processes. Our study suggests that the creation of the first harbour bath was not the end result of an overall master plan. Rather, we demonstrate that the harbour baths were the outcome of a contingent interplay among embedded actors’ myopic and navigational actions over a period of twenty years...
Correlation-driven transport asymmetries through coupled spins in a tunnel junction
Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus
2017-01-01
Spin-spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin-spin correlations in the tip.
Spin-resolved correlations in the warm-dense homogeneous electron gas
Arora, Priya; Kumar, Krishan; Moudgil, R. K.
2017-04-01
We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y
Quantum dot spin coherence governed by a strained nuclear environment
Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.
2016-01-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704
REGENABATH -- novel regeneration methods for strongly acidic metal treatment baths
Energy Technology Data Exchange (ETDEWEB)
Collins, J. [Capenhurst Tech Limited, Capenhurst, Chester (United Kingdom); Hendou, M. [Lacaze S.A., Leyme (France)
2001-07-01
This European Union-sponsored project is designed to investigate the potential of integrating existing and novel technologies for use in regenerating strong acids used in the treatment of metal surfaces. At present, the acid bath must be bled off to remove the metal content, or the whole bath may be periodically discarded, a process which is hazardous, costly and injurious to the environment. This paper provides a full description of the project objectives, expected results, challenges, proposed applications and technology transfer potential. It is expected that the techniques developed can be extended to other highly acidic waste streams generated by metallurgical facilities.
Detailed model of bouncing drops on a bounded, vibrated bath
Blanchette, Francois; Gilet, Tristan
2014-11-01
We present a detailed model of drops bouncing on a bounded vibrated bath. These drops are known to bounce indefinitely and to exhibit complex and varied vertical dynamics depending on the acceleration of the bath. In addition, in a narrow parameter regime, these drops travel horizontally while being guided by the waves they generate. Our model tracks the drop's vertical radius and position, as well as the eigenmodes of the waves generated via ordinary differential equations only. We accurately capture the vertical dynamics, as well as some of the horizontal dynamics. Our model may be extended to account for interactions with other drops or obstacles, such as slits and corrals.
Stochastic Stirling Engine Operating in Contact with Active Baths
Directory of Open Access Journals (Sweden)
Ruben Zakine
2017-04-01
Full Text Available A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non-Gaussian effects, are responsible for this result.
Stochastic Stirling Engine Operating in Contact with Active Baths
Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric
2017-04-01
A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.
Perez-Morelo, D. J.; Ramirez-Pastor, A. J.; Romá, F.
2012-02-01
We study the two-dimensional Edwards-Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provides accurate values of this quantity for finite-size lattices. By extrapolating to the thermodynamic limit, the ground-state energy and entropy of the different versions of the spin-glass model are determined.
Classical gravitational spin-spin interaction
Bonnor, W. B.
2002-01-01
I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.
Spin-Orbit induced semiconductor spin guides
Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens
2002-01-01
The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.
Finite Systems in a Heat Bath: Spectrum Perturbations and Thermodynamics.
de Miguel, Rodrigo; Rubi, J Miguel
2016-09-01
When a finite system is at equilibrium with a heat bath, the equilibrium temperature is dictated by the heat bath and not by the intrinsic thermostatistics of the finite system. If not sufficiently large, it may be necessary for the finite system to change its thermostatistics in order to be at equilibrium with the heat bath. We account for this process by invoking Landsberg's notion of temperature-dependent energy levels. We establish that the mismatch between the intrinsic temperature of the excited finite system and that of the heat bath drives a spectrum perturbation which enables thermal equilibrium. We show that the temperature-induced spectrum perturbation is equivalent to Hill's purely thermodynamic subdivision potential. The difference between intrinsic and equilibrium temperature provides us with a measure for how large a system can be before it no longer needs to be regarded as small. The theoretical framework proposed in this paper identifies the role of temperature in a bottom-up thermostatistical description of finite systems.
75 FR 51177 - Safety Standard for Infant Bath Seats; Correction
2010-08-19
..., 2010 (75 FR 31691). The document established a standard for infant bath seats by incorporating by... published in the Federal Register of June 4, 2010 (75 FR 31691) a final rule establishing a standard for... final rule, this phrase is redundant, and the final rule, therefore eliminates it.'' 75 FR...
Experimental bath engineering for quantitative studies of quantum control
CSIR Research Space (South Africa)
Soare, A
2014-04-01
Full Text Available We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a...
21 CFR 890.5125 - Nonpowered sitz bath.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonpowered sitz bath. 890.5125 Section 890.5125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... to accelerate the healing of inflamed or traumatized tissues of the perianal and perineal areas. (b...
Debate on Uncertainty in Estimating Bathing Water Quality
DEFF Research Database (Denmark)
Larsen, Torben
1992-01-01
Estimating the bathing water quality along the shore near a planned sewage discharge requires data on the source strength of bacteria, the die-off of bacteria and the actual dilution of the sewage. Together these 3 factors give the actual concentration of bacteria on the interesting spots...
Debate on Uncertainty in Estimating Bathing Water Quality
DEFF Research Database (Denmark)
Larsen, Torben
1992-01-01
Estimating the bathing water quality along the shore near a planned sewage discharge requires data on the source strength of bacteria, the die-off of bacteria and the actual dilution of the sewage. Together these 3 factors give the actual concentration of bacteria on the interesting spots...
Sun, Qing-feng; Guo, Hong; Wang, Jian
2003-06-27
We propose and investigate a spin-cell device which provides the necessary spin-motive force to drive a spin current for future spintronic circuits. Our spin cell has four basic characteristics: (i) it has two poles so that a spin current flows in from one pole and out from the other pole, and in this way a complete spin circuit can be established; (ii) it has a source of energy to drive the spin current; (iii) it maintains spin coherence so that a sizable spin current can be delivered; (iv) it drives a spin current without a charge current. The proposed spin cell for spin current should be realizable using technologies presently available.
Magnetic anisotropy and quantized spin waves in hematite nanoparticles
DEFF Research Database (Denmark)
Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker
2004-01-01
We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... the temperature dependence of the magnetic anisotropy, which is strongly related to the suppression of the Morin transition in nanoparticles of hematite. Further, the localization of the signal in both energy and momentum transfer brings evidence for finite-size quantization of spin waves in the system....... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...
Bath Stone - a Possible Global Heritage Stone from England
Marker, Brian
2014-05-01
The Middle Jurassic strata of England have several horizons of oolitic and bioclastic limestones that provide high quality dimension stone. One of the most important is found in and near the City of Bath. The Great Oolite Group (Upper Bathonian) contains the Combe Down and Bath Oolites, consisting of current bedded oolites and shelly oolites, that have been used extensively as freestones for construction nearby, for prestigious buildings through much of southern England and more widely. The stone has been used to some extent since Roman times when the city, then known as Aquae Sulis, was an important hot spa. The stone was used to a limited extent through medieval times but from the early 18th century onwards was exploited on a large scale through surface quarrying and underground mining. The City was extensively redeveloped in the 18th to early 19th century, mostly using Bath Stone, when the spas made it a fashionable resort. Buildings from that period include architectural "gems" such as the Royal Crescent and Pulteney Bridge, as well as the renovated Roman Baths. Many buildings were designed by some of the foremost British architects of the time. The consistent use of this stone gives the City an architectural integrity throughout. These features led to the designation of the City as a World Heritage Site. It is a requirement in current City planning policy documents that Bath Stone should be used for new building to preserve the appearance of the City. More widely the stone was used in major houses (e.g. Buckingham Palace and Apsley House in London; King's Pavilion in Brighton); civic buildings (e.g. Bristol Guildhall; Dartmouth Naval College in Devon); churches and cathedrals (e.g. Truro Cathedral in Cornwall); and engineered structures (e.g. the large Dundas Aqueduct on the Kennet and Avon Canal). More widely, Bath Stone has been used in Union Station in Washington DC; Toronto Bible College and the Town Hall at Cape Town, South Africa. Extraction declined in
Directory of Open Access Journals (Sweden)
Lee Soomin
2012-09-01
Full Text Available Abstract Background Recently, mist saunas have been used in the home as a new bathing style in Japan. However, there are still few reports on the effects of bathing methods on recovery from muscle fatigue. Furthermore, the effect of mist sauna bathing on human physiological function has not yet been revealed. Therefore, we measured the physiological effects of bathing methods including the mist sauna on recovery from muscle fatigue. Methods The bathing methods studied included four conditions: full immersion bath, shower, mist sauna, and no bathing as a control. Ten men participated in this study. The participants completed four consecutive sessions: a 30-min rest period, a 10-min all out elbow flexion task period, a 10-min bathing period, and a 10-min recovery period. We evaluated the mean power frequency (MNF of the electromyogram (EMG, rectal temperature (Tre, skin temperature (Tsk, skin blood flow (SBF, concentration of oxygenated hemoglobin (O2Hb, and subjective evaluation. Results We found that the MNF under the full immersion bath condition was significantly higher than those under the other conditions. Furthermore, Tre, SBF, and O2Hb under the full immersion bath condition were significantly higher than under the other conditions. Conclusions Following the results for the full immersion bath condition, the SBF and O2Hb of the mist sauna condition were significantly higher than those for the shower and no bathing conditions. These results suggest that full immersion bath and mist sauna are effective in facilitating recovery from muscle fatigue.
Exotic pairing in 1D spin-3/2 atomic gases with SO(4 symmetry
Directory of Open Access Journals (Sweden)
Yuzhu Jiang
2015-06-01
Full Text Available Tuning interactions in the spin singlet and quintet channels of two colliding atoms could change the symmetry of the one-dimensional spin-3/2 fermionic systems of ultracold atoms while preserving the integrability. Here we find a novel SO(4 symmetry integrable point in the spin-3/2 Fermi gas and derive the exact solution of the model using the Bethe ansatz. In contrast to the model with SU(4 and SO(5 symmetries, the present model with SO(4 symmetry preserves spin singlet and quintet Cooper pairs in two sets of SU(2⊗SU(2 spin subspaces. We obtain full phase diagrams, including the Fulde–Ferrel–Larkin–Ovchinnikov like pair correlations, spin excitations and quantum criticality through the generalized Yang–Yang thermodynamic equations. In particular, various correlation functions are calculated by using finite-size corrections in the frame work of conformal field theory. Moreover, within the local density approximation, we further find that spin singlet and quintet pairs form subtle multiple shell structures in density profiles of the trapped gas.
Spin squeezing in nonlinear spin coherent states
Wang, Xiaoguang
2001-01-01
We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...
Brahms, N
2010-01-01
The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.
Technological choice and change in the Southwest Bath in the Athenian Agora
Directory of Open Access Journals (Sweden)
Artz, James
2012-04-01
Full Text Available During its five architectural phases, the Southwest bath in the Athenian Agora changes from a Greek-style bath into a Roman-style bath. This article will focus on the first two phases, when Roman elements begin to be incorporated into the traditional forms of Greek bath architecture – particularly, a hypocaust floor system and a concrete vaulted ceiling built into a traditional Greek tholos bath. After describing these architectural features and analyzing the techniques used in their construction, I will examine possible sources of influence on the design and construction of the Southwest baths. The Roman army, citizenry, and workmen could all have potentially affected the incorporation of Roman bathing technologies and building techniques into the Southwest bath. The available evidence, however, indicates that the most likely source of influence is Roman workmen, who were employed in large numbers for the numerous building projects underway in Augustan Athens.
INVESTIGATION INTO THE REJUVENATION OF SPENT ELECTROLESS NICKEL BATHS BY ELECTRODIALYSIS
Electroless nickel plating generates substantially more waste than other metal-finishing processes due to the inherent limited bath life and the need for regular bath disposal. Electrodialysis can be used to generate electroless nickel baths, but poor membrane permselectivity, l...
Bath of my home (50 yeras report No.1); Wagaya no ofuro (50 nenshi No.1)
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-01-10
Looking back at the history of bath after the war, the fuel, water heating method, hot water method, bathtub, shape of bathroom, bathing tools and bathing method have undergone surprising changes, from the period just after the war for which the number of households having their baths was small and public baths were at the height of their prosperity, to the present period for which households are generally equipped with a shower and bathtub. This paper describes the history of bath after the war in Japan, including the bathing methods and goods which came to stay in each period, placing the focus on the bathing acts and equipment. For 10 years since 1945, the housing shortage had been serious, and public baths had prospered. For this period, the bath heating fuel was mainly coal and firewood, and soap was still valuable. Since 1955, the housing situation had changed better, and the time had entered the age of bath-at-home. Since this period, aluminum bath furnaces had been mass-produced. Neutral shampoo appeared on the market and were sold like hot cakes.
The Medical Risks and Benefits of Sauna, Steam Bath, and Whirlpool Use.
Duda, Marty
1987-01-01
Saunas, steam baths, and whirlpools--popular fixtures at health clubs--are safe means of relaxation if used properly. Ignoring the recommendations for moderate, commonsense enjoyment of these baths may expose users to health risks, including sudden death, arrhythmias, and skin infections. A guide to safe use of such baths is presented. (Author/CB)
Size effect on quantum magnetic and thermo-magnetic oscillations in the non-spin domain phase
Bakaleinikov, L. A.; Gordon, A.
2016-12-01
Magnetic and thermo-magnetic (magneto-caloric) oscillations are studied in quantizing magnetic fields in slabs under conditions of the existence of non-spin (Condon) domains. Size effects on the magnetization oscillations in thin samples are calculated in the domain phase. Computations are carried out in the center of the period of the magnetization and temperature oscillations, taking into account the sample size. Phase diagrams, describing diamagnetic phase transitions and formation of Condon domains, are presented in finite size silver and quasi-two-dimensional organic conductors (2D) samples.
Size effect on quantum magnetic and thermo-magnetic oscillations in the non-spin domain phase
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021 (Russian Federation); Department of Exact Sciences, Faculty of Natural Sciences, University of Haifa, Oranim Campus, Tivon 36006 (Israel); Gordon, A. [Department of Exact Sciences, Faculty of Natural Sciences, University of Haifa, Oranim Campus, Tivon 36006 (Israel)
2016-12-01
Magnetic and thermo-magnetic (magneto-caloric) oscillations are studied in quantizing magnetic fields in slabs under conditions of the existence of non-spin (Condon) domains. Size effects on the magnetization oscillations in thin samples are calculated in the domain phase. Computations are carried out in the center of the period of the magnetization and temperature oscillations, taking into account the sample size. Phase diagrams, describing diamagnetic phase transitions and formation of Condon domains, are presented in finite size silver and quasi-two-dimensional organic conductors (2D) samples.
Pulse-noise approach for classical spin systems
Garanin, D A
2016-01-01
For systems of classical spins interacting with the bath via damping and thermal noise, the approach is suggested to replace the white noise by a pulse noise acting at regular time intervals $\\Delta t$, within which the system evolves conservatively. The method is working well in the typical underdamped case $\\lambda\\ll1$ and allows a considerable speed-up of computations by using high-order numerical integrators with a large time step $\\delta t$ in most cases when spin precession is important, while keeping $\\delta t\\ll\\Delta t$ to reduce the relative contribution of noise-related operations. In cases when precession can be discarded, one can choose $\\delta t\\propto1/\\lambda$ that leads to a further speed-up, making equilibration speed comparable with that of Metropolis Monte Carlo. The pulse-noise approach is tested on single-spin and multi-spin models.
Thermal conduction effects in spin-lattice relaxation experiments on ytterbium chloride hexahydrate
Flokstra, Jakob; Gerritsma, G.J.; Blokhuis, A.C.
1979-01-01
The anomalous behaviour of the spin-lattice relaxation observed for single crystals of ytterbium chloride hexahydrate at fields stronger than 5 kOe is due to the poor heat transfer in the liquid-helium bath. The thermal conduction effects can be explained by means of a thermal conduction model for
Nonequlibrium dynamics of scalar fields in a thermal bath
Energy Technology Data Exchange (ETDEWEB)
Anisimov, A.; Buchmueller, W.; Drewes, M.; Mendizabal, S.
2008-12-15
We study the approach to equilibrium for a scalar field which is coupled to a large thermal bath. Our analysis of the initial value problem is based on Kadanoff-Baym equations which are shown to be equivalent to a stochastic Langevin equation. The interaction with the thermal bath generates a temperature-dependent spectral density, either through decay and inverse decay processes or via Landau damping. In equilibrium, energy density and pressure are determined by the Bose-Einstein distribution function evaluated at a complex quasi-particle pole. The time evolution of the statistical propagator is compared with solutions of the Boltzmann equations for particles as well as quasi-particles. The dependence on initial conditions and the range of validity of the Boltzmann approximation are determined. (orig.)
Activities of binary baths with 1% solute as standard states
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The relationships of activities with 1% solute as standard state and mass fraction of solute, and hot-dip temperature, were given on the base of Miedema's model, Tanaka expression, some basic thermodynamic relationships; and discussion was carried out on Zn-Mn and Zn-Ti binary alloys by calculation, in which varied colors can be achieved on the hot-dip steel sheets. The results indicate that the activity of solute shows positive deviation relative to Henry's law for both Zn-Mn and Zn-Ti binary dilute solution. The degree of deviation increases with increasing solute and decreases with increasing bath temperature. As the solution is very dilute solution (w(Mn)≤40% for Zn-Mn alloy，w(Ti)≤8% for Zn-Ti alloy), the two binary baths can all be treated as ideal dilute solutions.
Shallow bath chemical deposition of CdS thin film
Energy Technology Data Exchange (ETDEWEB)
Lo, Y.S. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Choubey, R.K. [Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi, 835 215 (India); Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China); Yu, W.C. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Hsu, W.T. [Green Energy and Environmental Research Laboratory, Industrial Technology Research Institute, Hsin-Chu, Taiwan (China); Lan, C.W., E-mail: cwlan@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)
2011-10-31
Cadmium sulfide thin film was grown by shallow chemical bath deposition technique. This technique used a highly conducted hot plate to heat the substrate, while using a shallow bath for higher thermal gradients. As a result, large area uniformity could be achieved and the homogeneous nucleation was suppressed. More importantly, the solution used was greatly reduced, which is crucial for cost reduction in practice. The effects of temperature and shaking on the growth kinetics and film properties were investigated. The reaction activation energy was obtained to be 0.84 eV, and was not affected much by shaking indicating that the deposition is essentially reaction controlled. Furthermore, the films deposited at low or high temperature conditions had better photoconductivity.
Effective run-and-tumble dynamics of bacteria baths.
Paoluzzi, M; Di Leonardo, R; Angelani, L
2013-10-16
E. coli bacteria swim in straight runs interrupted by sudden reorientation events called tumbles. The resulting random walks give rise to density fluctuations that can be derived analytically in the limit of non-interacting particles or equivalently of very low concentrations. However, in situations of practical interest, the concentration of bacteria is always large enough to make interactions an important factor. Using molecular dynamics simulations, we study the dynamic structure factor of a model bacterial bath for increasing values of densities. We show that it is possible to reproduce the dynamics of density fluctuations in the system using a free run-and-tumble model with effective fitting parameters. We discuss the dependence of these parameters, e.g., the tumbling rate, tumbling time and self-propulsion velocity, on the density of the bath.
Spin-Circuit Representation of Spin Pumping
Roy, Kuntal
2017-07-01
Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.
Temperature Modeling of the Molten Glass in Tin Bath
Institute of Scientific and Technical Information of China (English)
WEI Zhihua; CHEN Jinshu; NIE Yingsong
2009-01-01
Based on the experimental investigation by quantitative analysis, temperature fields of the molten glass in tin bath were numerically simulated by the finite elememt method. The ex-perimental results show that the cooling rate of glass is directly proportional to the draught speed, but inversely proportional to the thickness of the glass. This model lays the foundation for computer simulation system about float glass.
Rayleigh wave inversion using heat-bath simulated annealing algorithm
Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng
2016-11-01
The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.
CdS films deposited by chemical bath under rotation
Energy Technology Data Exchange (ETDEWEB)
Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)
2010-08-01
Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.
Integrated hydro-bacterial modelling for predicting bathing water quality
Huang, Guoxian; Falconer, Roger A.; Lin, Binliang
2017-03-01
In recent years health risks associated with the non-compliance of bathing water quality have received increasing worldwide attention. However, it is particularly challenging to establish the source of any non-compliance, due to the complex nature of the source of faecal indicator organisms, and the fate and delivery processes and scarcity of field measured data in many catchments and estuaries. In the current study an integrated hydro-bacterial model, linking a catchment, 1-D model and 2-D model were integrated to simulate the adsorption-desorption processes of faecal bacteria to and from sediment particles in river, estuarine and coastal waters, respectively. The model was then validated using hydrodynamic, sediment and faecal bacteria concentration data, measured in 2012, in the Ribble river and estuary, and along the Fylde coast, UK. Particular emphasis has been placed on the mechanism of faecal bacteria transport and decay through the deposition and resuspension of suspended sediments. The results showed that by coupling the E.coli concentration with the sediment transport processes, the accuracy of the predicted E.coli levels was improved. A series of scenario runs were then carried out to investigate the impacts of different management scenarios on the E.coli concentration levels in the coastal bathing water sites around Liverpool Bay, UK. The model results show that the level of compliance with the new EU bathing water standards can be improved significantly by extending outfalls and/or reducing urban sources by typically 50%.
Blackbody radiation: rosetta stone of heat bath models
O'Connell, R. F.
2007-06-01
The radiation field can be regarded as a collection of independent harmonic oscillators and, as such, constitutes a heat bath. Moreover, the known form of its interaction with charged particles provides a "rosetta stone" for deciding on and interpreting the correct interaction for the more general case of a quantum particle in an external potential and coupled to an arbitrary heat bath. In particular, combining QED with the machinery of stochastic physics, enables the usual scope of applications to be widened. We discuss blackbody radiation effects on: the equation of motion of a radiating electron (obtaining an equation of motion which is free from runaway solutions), anomalous diffusion, the spreading of a Gaussian wave packet, and decoherence effects due to zero-point oscillations. In addition, utilizing a formula we obtained for the free energy of an oscillator in a heat bath, enables us to determine all the quantum thermodynamic functions of interest (particularly in the areas of quantum information and nanophysics where small systems are involved) and from which we obtain temperature dependent Lamb shifts, quantum effects on the entropy at low temperature and implications for Nernst's law.
Quantum energy decays and decoherence in discrete baths
Galiceanu, M D; Strunz, W
2011-01-01
The quantum average energy decay and the purity decay are studied for a system particle as a function of the number of constituents of a discrete bath model. The system particle is subjected to two distinct physical situations: the harmonic oscillator (HO) and the Morse potential. The environment (bath) is composed by a {\\it finite} number N of uncoupled HOs, characterizing the structured bath, which in the limit $N\\to\\infty$ is assumed to have an ohmic, sub-ohmic or super-ohmic spectral density. For very low values of N the mean energy and purity remain constant in time but starts to decay for intermediate values (10
Monte Carlo simulation of classical spin models with chaotic billiards.
Suzuki, Hideyuki
2013-11-01
It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.
The glass crossover from mean-field Spin-Glasses to supercooled liquids
Rizzo, Tommaso
2016-03-01
Stochastic-Beta-Relaxation provides a characterisation of the glass crossover in discontinuous Spin-Glasses and supercoooled liquid. Notably it can be derived through a rigorous computation from a dynamical Landau theory. In this paper, I will discuss the precise meaning of this connection in a language that does not require familiarity with statistical field theory. I will discuss finite-size corrections in mean-field Spin-Glass models and loop corrections in finite-dimensional models that are both described by the dynamical Landau theory considered. Then I will argue that the same Landau theory can be associated to supercooled liquid described by Mode-Coupling Theory invoking a physical principle of time-scale invariance.
Many-body localization transition in random quantum spin chains with long-range interactions
Moure, N.; Haas, S.; Kettemann, S.
2015-07-01
While there are well-established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many-body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power α, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing α. At αc the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many-body localization transition in disordered antiferromagnetic spin chains with long-range interactions.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
Phase transitions in two-dimensional uniformly frustrated XY spin systems
Berge, B.; Diep, H. T.; Ghazali, A.; Lallemand, P.
1986-09-01
We investigate the nature of phase transitions in a generalized uniformly frustrated square-lattice model with XY spins. The frustration is made to vary by changing the negative bond strength η. From ground-state (GS) analysis we find that, below the critical value η=(1/3), the GS is ferromagnetic, while for η>(1/3), it is doubly degenerate with canted spin configurations. This suggests the existence of an Ising-like transition. This is confirmed by our extensive Monte Carlo simulations. In addition, there is a Kosterlitz-Thouless-like transition at higher temperature for η≠1. In the fully frustrated case (η=1), these two transitions are merged into a single one of dominant Ising character. These conclusions follow from a finite-size-scaling analysis and a visualization of the ordering.
Alvermann, A; Fehske, H
2009-04-17
We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.
Spin currents, spin torques, and the concept of spin superfluidity
Rückriegel, Andreas; Kopietz, Peter
2017-03-01
In magnets with noncollinear spin configuration the expectation value of the conventionally defined spin current operator contains a contribution which renormalizes an external magnetic field and hence affects only the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun and Xie [Phys. Rev. B 72, 245305 (2005)], 10.1103/PhysRevB.72.245305, does not describe the translational motion of magnetic moments. We give a prescription for how to separate these two types of spin transport and show that the translational movement of the spin is always polarized along the direction of the local magnetization. We also show that at vanishing temperature the classical magnetic order parameter in magnetic insulators cannot carry a translational spin current and elucidate how this affects the interpretation of spin supercurrents.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Fujita, Takatoshi; Yung, Man-Hong; Aspuru-Guzik, Alán
2014-01-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly-coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.
Electrical control of spin in topological insulators
Chang, Kai
2012-02-01
All-electrical manipulation of electron spin in solids becomes a central issue of quantum information processing and quantum computing. The many previous proposals are based on spin-orbit interactions in semiconductors. Topological insulator, a strong spin-orbit coupling system, make it possible to control the spin transport electrically. Recent calculations proved that external electric fields can drive a HgTe quantum well from normal band insulator phase to topological insulator phase [1]. Since the topological edge states are robust against local perturbation, the controlling of edge states using local fields is a challenging task. We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI [2]. An electrical switching of the edge-state transport can also be realized using quantum point contacts in quantum spin Hall bars. The switch-on/off of the edge channel is caused by the finite size effect of the quantum point contact and therefore can be manipulated by tuning the voltage applied on the split gate [3,4]. The magnetic ions doped on the surface of 3D TI can be correlated through the helical electrons. The RKKY interaction mediated by the helical Dirac electrons consists of the Heisenberg-like, Ising-like, and Dzyaloshinskii-Moriya (DM)-like terms, which can be tuned
Institute of Scientific and Technical Information of China (English)
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Copper selenide thin films by chemical bath deposition
García, V. M.; Nair, P. K.; Nair, M. T. S.
1999-05-01
We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.
[History of hot spring bath treatment in China].
Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin
2011-07-01
As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment.
Quantum kinetics and thermalization in a particle bath model.
Alamoudi, S M; Boyanovsky, D; de Vega, H J
1999-07-01
We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the relaxational dynamics and to compare the exact evolution of the distribution function with approximate Markovian and non-Markovian quantum kinetics. There are two different cases that are studied in detail: (i) a quasiparticle (resonance) when the renormalized frequency of the particle is above the frequency threshold of the bath and (ii) a stable renormalized "particle" state below this threshold. The time evolution of the occupation number for the particle is evaluated exactly using different approaches that yield to complementary insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distribution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation (energy conserving) are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.
Tibetan Medicated-Bath Therapy May Improve Adjuvant Arthritis in Rat
Directory of Open Access Journals (Sweden)
Huayue Chen
2009-01-01
Full Text Available Tibetan medicated-bath therapy has been applied to patients with rheumatoid arthritis for centuries. However, the detailed action mechanism of Tibetan medicated-bath therapy on the morphology and function of joints remains unknown. We designed our investigation to evaluate the efficacy of Tibetan medicated-bath therapy on adjuvant arthritis (AA of rats in comparison with water-bath and dexamethasone administration. AA was induced by intradermal injection of Mycobacterium butyricum suspended in sterile mineral oil. The control animals were similarly injected with sterile vehicle. Eight days after injection, rats were treated with fresh-water bath, Tibetan medicated-bath (40°C, 15 min or intramuscular injection with dexamethasone for 21 consecutive days after which we evaluated the severity of arthritis visually and microscopically and measured serum interleukin (IL-6 and tumor necrosis factor (TNF-α levels. While arthritis did not significantly change after water-bath treatment, the Tibetan medicated-bath and dexamethasone groups showed diminished joint swelling and alleviation of, inflammatory cell infiltration and the destruction of bone and cartilage. Serum IL-6 and TNF-α levels significantly decreased. Our results demonstrated that Tibetan medicated-bath therapy exerted a reliable effect on rat adjuvant arthritis, which may be involved in the inflammatory cytokines, IL-6 and TNF-α. Our data provide evidence for clinical use of Tibetan-medicated bath therapy for arthritis patients.
[The use of white and yellow turpentine baths with diabetic patients].
Davydova, O B; Turova, E A; Golovach, A V
1998-01-01
In patients with insulin-dependent diabetes mellitus while and yellow turpentine baths produced a positive effect on carbohydrate metabolism. White baths were more effective in respect to lipid metabolism, blood viscosity, produced a good effect on plasmic hemocoagulation factors. Both while and yellow turpentine baths were beneficial for capillary blood flow: initially high distal blood flow in patients with prevailing distal polyneuropathy decreased while in patients with macroangiopathy initially subnormal blood flow increased. Both white and yellow turpentine baths promoted better pulse blood filling of the lower limbs and weaker peripheral resistance of large vessels. In patients with non-insulin-dependent diabetes mellitus white and yellow turpentine baths contributed to normalization of carbohydrate metabolism. Yellow baths were more effective in lowering lipids. White baths induced inhibition of platelet aggregation but had no effect on coagulation, yellow baths promoted a reduction of fibrinogen but had no effect on platelet aggregation. Yellow baths produced more pronounced effect than white ones on blood viscosity and microcirculation. Both yellow and white baths stimulated pulse blood filling, corrected peripheral resistance of large and small vessels of the lower limbs.
A variational surface hopping algorithm for the sub-Ohmic spin-boson model
Yao, Yao
2013-01-01
The Davydov D1 ansatz, which assigns an individual bosonic trajectory to each spin state, is an efficient, yet extremely accurate trial state for time-dependent variation of the the sub-Ohmic spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. A surface hopping algorithm is developed employing the Davydov D1 ansatz to study the spin dynamics with a sub-Ohmic bosonic bath. The algorithm takes into account both coherent and incoherent dynamics of the population evolution in a unified manner, and compared with semiclassical surface hopping algorithms, hopping rates calculated in this work follow more closely the Marcus formula.
Exact solution of the Schrodinger equation with the spin-boson Hamiltonian
Gardas, Bartlomiej
2011-01-01
We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (enviroment). An exact solution of the Schrodinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.
A new cobalt oxide electrodeposit bath for solar absorbers
Energy Technology Data Exchange (ETDEWEB)
Barrera, Enrique [Departmento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico); Gonzalez, Ignacio [Departmento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico); Viveros, Tomas [Departmento de IPH, Area de Ingenieria Quimica, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico)
1997-12-19
A study was carried out in a Hull cell in order to optimize the deposition conditions of cobalt oxide (black cobalt) in an electrolytic bath, which uses cobalt nitrate for direct obtention of black cobalt. Thermal stability of the material was surveyed on several samples of black cobalt prepared on stainless-steel with a thickness of approximately of 2.5 {mu}m. It was found that the optical properties change, in respect to the initial values, with time of treatment until an equilibrium is reached. This equilibrium depends on the substrate and the temperature of the treatment used
Transport of thermal water from well to thermal baths
Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara
2013-04-01
The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2
Entanglement Dynamics of Two Qubits in a Common Bath
Ma, Jian; Wang, Xiaoguang; Nori, Franco
2012-01-01
We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation method used here, we observe significant differences in the resulting physics, compared to the previous results with various approximations. Double excitations due to counter-rotating-wave terms are also found to have remarkable effects on the dynamics of entanglement.
Finite size effect on Gd{sup 3+} doped CoGd{sub x}Fe{sub 2-x}O{sub 4} (0.0{<=}x{<=}0.5) particles
Energy Technology Data Exchange (ETDEWEB)
Pant, R.P., E-mail: rppant@mail.nplindia.ernet.i [EPR Spectroscopy Section, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Arora, Manju; Kaur, Balwinder; Kumar, Vinod; Kumar, Ashok [EPR Spectroscopy Section, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)
2010-11-15
Nanoparticles of CoGd{sub x}Fe{sub 2-x}O{sub 4} (where x=0.0, 0.1, 0.3, 0.5) series have been prepared by chemical co-precipitation. The effect of Gd{sup 3+} ion concentration on crystalline phase, crystallinity, crystallite size, molecular vibrations and magnetic resonance has been investigated in detail. The crystallinity decreases with an increase in Gd{sup 3+} ion concentration and changes the structural parameters. The spin lattice relaxation has been correlated with the doping ion concentration. Similarly, the superparamagnetic behavior of these particles has been observed with EPR spectroscopy.
Spin-1 Ising model: exact damage-spreading relations and numerical simulations.
Anjos, A S; Mariz, A M; Nobre, F D; Araujo, I G
2008-09-01
The nearest-neighbor-interaction spin-1 Ising model is investigated within the damage-spreading approach. Exact relations involving quantities computable through damage-spreading simulations and thermodynamic properties are derived for such a model, defined in terms of a very general Hamiltonian that covers several spin-1 models of interest in the literature. Such relations presuppose translational invariance and hold for any ergodic dynamical procedure, leading to an efficient tool for obtaining thermodynamic properties. The implementation of the method is illustrated through damage-spreading simulations for the ferromagnetic spin-1 Ising model on a square lattice. The two-spin correlation function and the magnetization are obtained, with precise estimates of their associated critical exponents and of the critical temperature of the model, in spite of the small lattice sizes considered. These results are in good agreement with the universality hypothesis, with critical exponents in the same universality class of the spin- 12 Ising model. The advantage of the present method is shown through a significant reduction of finite-size effects by comparing its results with those obtained from standard Monte Carlo simulations.
Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo
2015-09-01
Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.
Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution
Directory of Open Access Journals (Sweden)
R. Idhayachander
2010-01-01
Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.
Effects of system-bath coupling on Photosynthetic heat engine: A polaron master equation approach
Qin, M; Zhao, X L; Yi, X X
2016-01-01
In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect charge transfer processes in Photosystem II reaction center (PSII RC) inspired quantum heat engine (QHE) model in a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in details. The results show a variety of dynamical behaviours. We interpret these results in terms of noise-assisted transport effect and dynamical localization which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization...
Raulji, Chittalsinh M; Clay, Kristin; Velasco, Cruz; Yu, Lolie C
2015-01-01
Infections remain a serious complication in pediatric oncology patients. To determine if daily bathing with Chlorhexidine gluconate can decrease the rate of nosocomial infection in pediatric oncology patients, we reviewed rates of infections in pediatric oncology patients over a 14-month span. Intervention group received daily bath with Chlorhexidine, while the control group did not receive daily bath. The results showed that daily bath with antiseptic chlorhexidine as daily prophylactic antiseptic topical wash leads to decreased infection density amongst the pediatric oncology patients, especially in patients older than 12 years of age. Furthermore, daily chlorhexidine bathing significantly reduced the rate of hospital acquired infection in patients older than 12 years of age. The findings of this study suggest that daily bathing with chlorhexidine may be an effective measure of reducing nosocomial infection in pediatric oncology patients.
López, Iago; Alvarez, César; Gil, José L; Revilla, José A
2012-11-30
Data on the 95th and 90th percentiles of bacteriological quality indicators are used to classify bathing waters in Europe, according to the requirements of Directive 2006/7/EC. However, percentile values and consequently, classification of bathing waters depend both on sampling effort and sample-size, which may undermine an appropriate assessment of bathing water classification. To analyse the influence of sampling effort and sample size on water classification, a bootstrap approach was applied to 55 bacteriological quality datasets of several beaches in the Balearic Islands (Spain). Our results show that the probability of failing the regulatory standards of the Directive is high when sample size is low, due to a higher variability in percentile values. In this way, 49% of the bathing waters reaching an "Excellent" classification (95th percentile of Escherichia coli under 250 cfu/100 ml) can fail the "Excellent" regulatory standard due to sampling strategy, when 23 samples per season are considered. This percentage increases to 81% when 4 samples per season are considered. "Good" regulatory standards can also be failed in bathing waters with an "Excellent" classification as a result of these sampling strategies. The variability in percentile values may affect bathing water classification and is critical for the appropriate design and implementation of bathing water Quality Monitoring and Assessment Programs. Hence, variability of percentile values should be taken into account by authorities if an adequate management of these areas is to be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kobayashi, Michiko; Oana, Kozue; Kawakami, Yoshiyuki
2014-01-01
Bath water samples were collected from 116 hot springs, 197 public bathhouses, and 38 24-hour home baths in Nagano Prefecture, Japan, during the period of April 2009 to November 2011, for determining the presence and extent of contamination with Legionella and nontuberculous mycobacteria. Cultures positive for Legionella were observed in 123 of the 3,314 bath water samples examined. The distribution and abundance of Legionella and/or combined contamination with Legionella and nontuberculous mycobacteria were investigated to clarify the contamination levels. The abundance of Legionella was demonstrated to correlate considerably with the levels of combined contamination with Legionella and nontuberculous mycobacteria. Legionella spp. were obtained from 61% of the water samples from 24-hour home baths, but only from 3% of the samples from public bathhouses and hot springs. This is despite the fact that a few outbreaks of Legionnaires' disease in Nagano Prefecture as well as other regions of Japan have been traced to bath water contamination. The comparatively higher rate of contamination of the 24-hour home baths is a matter of concern. It is therefore advisable to routinely implement good maintenance of the water basins, particularly of the 24-hour home baths.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Control of Decoherence and Relaxation by Frequency Modulation of Heat Bath
Agarwal, G S
2000-01-01
We demonstrate in a very general fashion, considerable slowing down of decoherence and relaxation by fast frequency modulation of the system heat bath coupling. The slowing occurs as the decoherence rates are now determined by the spectral components of bath correlations which are shifted due to fast modulation. We present several examples including the slowing down of the heating of a trapped ion, where the system - bath interaction is not necessarily Markovian.
Incidence of Symptoms and Accidents During Baths and Showers Among the Japanese General Public
Hayasaka, Shinya; Shibata, Yosuke; Noda, Tatsuya; Goto, Yasuaki; Ojima, Toshiyuki
2011-01-01
Background Bathing is a deeply ingrained custom among Japanese; however, data on the incidence rate of symptoms and accidents during bathing have not yet been reported for the Japanese general public. Methods We conducted a population-based cross-sectional study of 617 Japanese adults who attended a specialized health checkup. Participants completed a self-administered questionnaire to assess weekly frequencies of bathtub bathing and showering and the frequency of symptoms/accidents (falling,...
Total Quantum Zeno effect and Intelligent States for a two level system in a squeezed bath
Mundarain, D; Stephany, J
2006-01-01
In this work we show that by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the the squeezing parameters of the bath. The initial states which display Total Zeno Effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.
The Finnish sauna bath and its use in patients with cardiovascular disease.
Keast, M L; Adamo, K B
2000-01-01
The Finnish tradition of sauna bathing is meant to be an experience in relaxation, and the length of time spent in the sauna and the preferred temperature vary considerably among individuals. The pleasures of sauna bathing can be considered safe and without undue risk of cardiac complications even for CVD patients, providing bathing is conducted sensibly for an appropriate period of time, and extremes in temperature are voided.
Spectral characteristics of time resolved magnonic spin Seebeck effect
Energy Technology Data Exchange (ETDEWEB)
Etesami, S. R.; Chotorlishvili, L.; Berakdar, J. [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)
2015-09-28
Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.
Spectral characteristics of time resolved magnonic spin Seebeck effect
Etesami, S. R.; Chotorlishvili, L.; Berakdar, J.
2015-09-01
Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.
Harmonic bath averaged Hamiltonian: an efficient tool to capture quantum effects of large systems.
Yang, Yonggang; Liu, Xiaomeng; Meuwly, Markus; Xiao, Liantuan; Jia, Suotang
2012-11-26
Starting from a reaction path Hamiltonian, a suitably reduced harmonic bath averaged Hamiltonian is derived by averaging over all the normal mode coordinates. Generalization of the harmonic bath averaged Hamiltonian to any dimensions are performed and the feasibility to use a linear reaction path/surface are investigated and discussed. By use of a harmonic bath averaged Hamiltonian, the tunneling splitting and proton transfer dynamics of malonaldehyde is briefly discussed and shows that the harmonic bath averaged Hamiltonian is an efficient tool to capture quantum effects in larger systems.