WorldWideScience

Sample records for finite-difference poisson-boltzmann solvers

  1. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    International Nuclear Information System (INIS)

    Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.

    2016-01-01

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes

  3. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    Science.gov (United States)

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  4. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  5. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    Science.gov (United States)

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  6. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    Science.gov (United States)

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE

  7. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    Science.gov (United States)

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    Science.gov (United States)

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  9. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    Science.gov (United States)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  10. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  11. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  12. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  13. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    Science.gov (United States)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  14. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  15. Comparison of Einstein-Boltzmann solvers for testing general relativity

    Science.gov (United States)

    Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.

    2018-01-01

    We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.

  16. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  17. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  18. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad

    2013-01-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  19. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  20. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    Science.gov (United States)

    Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk

    2018-05-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  1. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    KAUST Repository

    Gerke, Kirill M.

    2018-01-17

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  2. Boltzmann Solver with Adaptive Mesh in Velocity Space

    International Nuclear Information System (INIS)

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-01-01

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  3. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    Science.gov (United States)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  4. Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP

    Science.gov (United States)

    Chan, Tony F.; Fatoohi, Rod A.

    1990-01-01

    The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.

  5. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    Science.gov (United States)

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  6. A generalized gyrokinetic Poisson solver

    International Nuclear Information System (INIS)

    Lin, Z.; Lee, W.W.

    1995-03-01

    A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms

  7. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations

    Science.gov (United States)

    Blossey, R.; Maggs, A. C.; Podgornik, R.

    2017-06-01

    We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.

  9. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

    Science.gov (United States)

    Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.

    2013-01-01

    The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784

  10. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    Science.gov (United States)

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  11. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  12. Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.

  13. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  14. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  15. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  16. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pair production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang

  17. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas

    2016-10-17

    We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

  18. Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models

    International Nuclear Information System (INIS)

    Trizac, Emmanuel; Aubouy, Miguel; Bocquet, Lyderic

    2003-01-01

    We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model

  19. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    International Nuclear Information System (INIS)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-01-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated

  20. A non-conforming 3D spherical harmonic transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Commissariat a l' Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  1. A non-conforming 3D spherical harmonic transport solver

    International Nuclear Information System (INIS)

    Van Criekingen, S.

    2006-01-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  2. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2014-06-27

    Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.

  3. Extending the Finite Domain Solver of GNU Prolog

    NARCIS (Netherlands)

    Bloemen, Vincent; Diaz, Daniel; van der Bijl, Machiel; Abreu, Salvador; Ströder, Thomas; Swift, Terrance

    This paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to

  4. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    Science.gov (United States)

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  5. Poisson-Boltzmann-Nernst-Planck model

    International Nuclear Information System (INIS)

    Zheng Qiong; Wei Guowei

    2011-01-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  6. A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions

    Science.gov (United States)

    Exl, Lukas

    2017-12-01

    An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.

  7. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    Science.gov (United States)

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  8. Exact Analytic Result of Contact Value for the Density in a Modified Poisson-Boltzmann Theory of an Electrical Double Layer.

    Science.gov (United States)

    Lou, Ping; Lee, Jin Yong

    2009-04-14

    For a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, we have derived the exact analytic expression for the contact values of the difference profile of the counterion and co-ion, as well as of the sum (density) and product profiles, near a charged planar electrode that is immersed in a binary symmetric electrolyte. In the zero ionic size or dilute limit, these contact values reduce to the contact values of the Poisson-Boltzmann (PB) theory. The analytic results of the SMPB theory, for the difference, sum, and product profiles were compared with the results of the Monte-Carlo (MC) simulations [ Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54 ; Bhuiyan, L. B.; Henderson, D. J. Chem. Phys. 2008, 128, 117101 ], as well as of the PB theory. In general, the analytic expression of the SMPB theory gives better agreement with the MC data than the PB theory does. For the difference profile, as the electrode charge increases, the result of the PB theory departs from the MC data, but the SMPB theory still reproduces the MC data quite well, which indicates the importance of including steric effects in modeling diffuse layer properties. As for the product profile, (i) it drops to zero as the electrode charge approaches infinity; (ii) the speed of the drop increases with the ionic size, and these behaviors are in contrast with the predictions of the PB theory, where the product is identically 1.

  9. Comparison of density functional and modified Poisson-Boltzmann structural properties for a spherical double layer

    Directory of Open Access Journals (Sweden)

    L.B.Bhuiyan

    2005-01-01

    Full Text Available The density functional and modified Poisson-Boltzmann descriptions of a spherical (electric double layer are compared and contrasted vis-a-vis existing Monte Carlo simulation data (for small ion diameter 4.25·10-10 m from the literature for a range of physical parameters such as macroion surface charge, macroion radius, valencies of the small ions, and electrolyte concentration. Overall, the theoretical predictions are seen to be remarkably consistent between themselves, being also in very good agreement with the simulations. Some modified Poisson-Boltzmann results for the zeta potential at small ion diameters of 3 and 2·10-10 m are also reported.

  10. High-Order Finite-Difference Solution of the Poisson Equation with Interface Jump Conditions II

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Rodolfo

    2010-11-01

    The Poisson equation with jump discontinuities across an interface is of central importance in Computational Fluid Dynamics. In prior work, Marques, Nave, and Rosales have introduced a method to obtain fourth-order accurate solutions for the constant coefficient Poisson problem. Here we present an extension of this method to solve the variable coefficient Poisson problem to fourth-order of accuracy. The extended method is based on local smooth extrapolations of the solution field across the interface. The extrapolation procedure uses a combination of cubic Hermite interpolants and a high-order representation of the interface using the Gradient-Augmented Level-Set technique. This procedure is compatible with the use of standard discretizations for the Laplace operator, and leads to modified linear systems which have the same sparsity pattern as the standard discretizations. As a result, standard Poisson solvers can be used with only minimal modifications. Details of the method and applications will be presented.

  11. Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations

    CERN Document Server

    Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V

    2005-01-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

  12. Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations

    International Nuclear Information System (INIS)

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-01-01

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors

  13. A generalized Poisson solver for first-principles device simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

  14. Poisson-Boltzmann-Nernst-Planck model.

    Science.gov (United States)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  15. Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs

    Science.gov (United States)

    Mawson, Mark J.; Revell, Alistair J.

    2014-10-01

    The Lattice Boltzmann method (LBM) for solving fluid flow is naturally well suited to an efficient implementation for massively parallel computing, due to the prevalence of local operations in the algorithm. This paper presents and analyses the performance of a 3D lattice Boltzmann solver, optimized for third generation nVidia GPU hardware, also known as 'Kepler'. We provide a review of previous optimization strategies and analyse data read/write times for different memory types. In LBM, the time propagation step (known as streaming), involves shifting data to adjacent locations and is central to parallel performance; here we examine three approaches which make use of different hardware options. Two of which make use of 'performance enhancing' features of the GPU; shared memory and the new shuffle instruction found in Kepler based GPUs. These are compared to a standard transfer of data which relies instead on optimized storage to increase coalesced access. It is shown that the more simple approach is most efficient; since the need for large numbers of registers per thread in LBM limits the block size and thus the efficiency of these special features is reduced. Detailed results are obtained for a D3Q19 LBM solver, which is benchmarked on nVidia K5000M and K20C GPUs. In the latter case the use of a read-only data cache is explored, and peak performance of over 1036 Million Lattice Updates Per Second (MLUPS) is achieved. The appearance of a periodic bottleneck in the solver performance is also reported, believed to be hardware related; spikes in iteration-time occur with a frequency of around 11 Hz for both GPUs, independent of the size of the problem.

  16. Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation

    Science.gov (United States)

    Velivelli, A. C.; Bryden, K. M.

    2006-03-01

    Lattice Boltzmann methods are gaining recognition in the field of computational fluid dynamics due to their computational efficiency. In order to quantify the computational efficiency and accuracy of the lattice Boltzmann method, it is compared with efficient traditional finite difference methods such as the alternating direction implicit scheme. The lattice Boltzmann algorithm implemented in previous studies does not approach peak performance for simulations where the data involved in computation per time step is more than the cache size. Due to this, data is obtained from the main memory and this access is much slower than access to cache memory. Using a cache-optimized lattice Boltzmann algorithm, this paper takes into account the full computational strength of the lattice Boltzmann method. The com parison is performed on both a single processor and multiple processors.

  17. High-Order Finite-Difference Solution of the Poisson Equation Involving Complex Geometries in Embedded Meshes

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Ruben

    2011-11-01

    The Poisson equation is of central importance in the description of fluid flows and other physical phenomena. In prior work, Marques, Nave, and Rosales introduced the Correction Function Method (CFM) to obtain fourth-order accurate solutions for the constant coefficient Poisson problem with prescribed jump conditions for the solution and its normal derivative across arbitrary interfaces. Here we combine this method with the ideas introduced by Mayo to solve other Poisson problems involving complex geometries. In summary, we are able to rewrite the problem as a boundary integral equation in terms of a potential distribution over the boundary or interface. The solution of this integral equation is discontinuous across the boundary or interface. Hence, after this integral equation is solved using standard techniques, the potential distribution can be used to determine the jump discontinuities. We are then able to use the CFM to solve the resulting Poisson equation with jump discontinuities. The outcome is a fourth-order accurate scheme to solve general Poisson problems which, over arbitrary geometries, has a cost that is approximately twice that of a fast Poisson solver using FFT on a rectangular geometry of the same size. Details of the method and applications will be presented.

  18. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  19. Topology optimization and lattice Boltzmann methods

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund

    This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...

  20. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    Science.gov (United States)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  1. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  2. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  3. A Kohn–Sham equation solver based on hexahedral finite elements

    International Nuclear Information System (INIS)

    Fang Jun; Gao Xingyu; Zhou Aihui

    2012-01-01

    We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.

  4. Aplicação da equação de Poisson-Boltzmann ao cálculo de propriedades dependentes do pH em proteínas Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    Directory of Open Access Journals (Sweden)

    Thereza A. Soares

    2004-08-01

    Full Text Available The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important biological processes from enzymatic catalysis to protein folding and molecular recognition. In the past 15 years, the theory of Poisson-Boltzmann has been successfully used to estimate the pKa of ionizable sites in proteins yielding results, which may differ by 0.1 unit from the experimental values. In this study, we review the theory of Poisson-Boltzmann under the perspective of its application to the calculation of pKa in proteins.

  5. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    International Nuclear Information System (INIS)

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses

  6. POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity

    International Nuclear Information System (INIS)

    Colman, J.

    2001-01-01

    1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a

  7. A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene

    KAUST Repository

    Brinkman, Daniel; Heitzinger, Clemens Heitzinger; Markowich, Peter A.

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.

  8. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    Science.gov (United States)

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  9. POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid

    International Nuclear Information System (INIS)

    Orvis, W.J.

    1988-01-01

    1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic

  10. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    Directory of Open Access Journals (Sweden)

    Aizat Abas

    2016-01-01

    Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

  11. Green's function enriched Poisson solver for electrostatics in many-particle systems

    Science.gov (United States)

    Sutmann, Godehard

    2016-06-01

    A highly accurate method is presented for the construction of the charge density for the solution of the Poisson equation in particle simulations. The method is based on an operator adjusted source term which can be shown to produce exact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating the discretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green's function of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that the exact calculation of the potential is possible independent of the order of the finite difference scheme but the computational efficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of the charge support.

  12. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  13. A discontinuous Poisson-Boltzmann equation with interfacial jump: homogenisation and residual error estimate.

    Science.gov (United States)

    Fellner, Klemens; Kovtunenko, Victor A

    2016-01-01

    A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.

  14. Lattice Boltzmann Simulations in the Slip and Transition Flow Regime with the Peano Framework

    KAUST Repository

    Neumann, Philipp

    2012-01-01

    We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We validate our code by solving two- and three-dimensional channel flow problems and compare our results with respective experiments from other research groups. We further apply our Lattice Boltzmann solver to the geometrical setup of a microreactor consisting of differently sized channels and a reactor chamber. Here, we apply static adaptive grids to fur-ther reduce computational costs. We further investigate the influence of using a simple BGK collision kernel in coarse grid regions which are further away from the slip boundaries. Our results are in good agreement with theory and non-adaptive simulations, demonstrating the validity and the capabilities of our adaptive simulation software for flow problems at finite Knudsen numbers.

  15. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    International Nuclear Information System (INIS)

    Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.

    2017-01-01

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1^ direction). We show that this eliminates the main NCI modes with moderate |k_1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k_1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1^ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.

  16. Lattice Boltzmann method for solving the bioheat equation

    International Nuclear Information System (INIS)

    Zhang Haifeng

    2008-01-01

    In this work, we develop the lattice Boltzmann method (LBM) as a potential solver for the bioheat problems. The accuracy of the present LBM algorithm is validated through comparison with the analytical solution and the finite element simulation. The results show that the LBM can give a precise prediction of the temperature distribution, and it is efficient to deal with the space- and time-dependent heat source, which are often encountered in the treatment planning of tumor hyperthermia. (note)

  17. A symplectic Poisson solver based on Fast Fourier Transformation. The first trial

    International Nuclear Information System (INIS)

    Vorobiev, L.G.; Hirata, Kohji.

    1995-11-01

    A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)

  18. Efficient CUDA Polynomial Preconditioned Conjugate Gradient Solver for Finite Element Computation of Elasticity Problems

    Directory of Open Access Journals (Sweden)

    Jianfei Zhang

    2013-01-01

    Full Text Available Graphics processing unit (GPU has obtained great success in scientific computations for its tremendous computational horsepower and very high memory bandwidth. This paper discusses the efficient way to implement polynomial preconditioned conjugate gradient solver for the finite element computation of elasticity on NVIDIA GPUs using compute unified device architecture (CUDA. Sliced block ELLPACK (SBELL format is introduced to store sparse matrix arising from finite element discretization of elasticity with fewer padding zeros than traditional ELLPACK-based formats. Polynomial preconditioning methods have been investigated both in convergence and running time. From the overall performance, the least-squares (L-S polynomial method is chosen as a preconditioner in PCG solver to finite element equations derived from elasticity for its best results on different example meshes. In the PCG solver, mixed precision algorithm is used not only to reduce the overall computational, storage requirements and bandwidth but to make full use of the capacity of the GPU devices. With SBELL format and mixed precision algorithm, the GPU-based L-S preconditioned CG can get a speedup of about 7–9 to CPU-implementation.

  19. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    Energy Technology Data Exchange (ETDEWEB)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  20. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  1. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    Science.gov (United States)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  2. Simulation of natural convection in an inclined polar cavity using a finite-difference lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Yang, Haicheng; Guo, Xueyan; Ren Dai [University of Shanghai for Science and Technology, Shanghai (China); Yan, Yonghua [Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai (China); Liu, Chaoqun [University of Texas at Arlington, Arlington (United States)

    2017-06-15

    Natural convection heat transfer in an inclined polar cavity was studied using a Finite-difference lattice Boltzmann method (FDLBM) based on a double-population approach for body-fitted coordinates. A D2G9 model coupled with the simplest TD2Q4 lattice model was applied to determine the velocity field and temperature field. For both velocity and temperature fields, the discrete spatial derivatives were obtained by combining the upwind scheme with the central scheme, and the discrete temporal term is obtained using a fourth-order Runge-Kutta scheme. Studies were carried out for different Rayleigh numbers and different inclination angles. The results in terms of streamlines, isotherms, and Nusselt numbers explain the heat transfer mechanism of natural convection in an inclined polar cavity due to the change of Rayleigh number and inclination angle.

  3. A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins

    Science.gov (United States)

    Xu, Jingjie; Lu, Benzhuo

    2018-01-01

    Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644

  4. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  5. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    Science.gov (United States)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  6. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.

    2010-03-01

    In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.

  7. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    Science.gov (United States)

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry

  8. Using a satisfiability solver to identify deterministic finite state automata

    NARCIS (Netherlands)

    Heule, M.J.H.; Verwer, S.

    2009-01-01

    We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach seems to be competitive with alternative techniques. Our contributions are threefold: First, we

  9. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  10. The Laguerre finite difference one-way equation solver

    Science.gov (United States)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  11. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

    Directory of Open Access Journals (Sweden)

    Juan C. Chimal-Eguía

    2012-12-01

    Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.

  12. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M

    2005-01-01

    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  13. A multiresolution method for solving the Poisson equation using high order regularization

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Walther, Jens Honore

    2016-01-01

    We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates...

  14. The solution of the Poisson-Boltzmann's equation for self-consistent potential of infinite, random, nonlinear and non-uniform system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu

    1998-01-01

    A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)

  15. THE EFFECT OF CHEMICAL-STRUCTURE UPON THE THERMODYNAMICS OF MICELLIZATION OF MODEL ALKYLARENESULPHONATES - PREDICTION OF MICELLAR PROPERTIES WITH THE POISSON-BOLTZMANN MODEL

    NARCIS (Netherlands)

    Bijma, K; Engberts, J B F N

    This paper describes how the theory of the ''dressed micelle'', which is based on the nonlinear Poisson-Boltzmann equation, can be used to calculate a number of thermodynamic quantities for micellization of sodium p-alkylbenzenesulphonates. From the Gibbs energy of micellization, the enthalpy of

  16. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  17. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  18. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  19. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    Science.gov (United States)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  20. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  1. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    Science.gov (United States)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  2. Analysis of a bubble coalescence in the multiphase lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Lee, Chung Chan; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. To study the effect of the mobility coefficient Γ and the width of the interface layer, two stationary bubbles without a collision are considered. The gap of the two bubbles is taken as 4, while the width of the interface (w) and the mobility coefficient Γ are varied. In the present work, the lattice Boltzmann model for multiphase flows proposed by Zheng et al. is used for simulating two stationary bubbles without a collision. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made smaller. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  3. Generalized results on the role of new-time transformations in finite-dimensional Poisson systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)

    2010-01-25

    The problem of characterizing all new-time transformations preserving the Poisson structure of a finite-dimensional Poisson system is completely solved in a constructive way. As a corollary, this leads to a broad generalization of previously known results. Examples are given.

  4. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  5. A vectorized Poisson solver over a spherical shell and its application to the quasi-geostrophic omega-equation

    Science.gov (United States)

    Mullenmeister, Paul

    1988-01-01

    The quasi-geostrophic omega-equation in flux form is developed as an example of a Poisson problem over a spherical shell. Solutions of this equation are obtained by applying a two-parameter Chebyshev solver in vector layout for CDC 200 series computers. The performance of this vectorized algorithm greatly exceeds the performance of its scalar analog. The algorithm generates solutions of the omega-equation which are compared with the omega fields calculated with the aid of the mass continuity equation.

  6. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    Science.gov (United States)

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  7. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    Science.gov (United States)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  8. Numerical Simulation of Flows about a Stationary and a Free-Falling Cylinder Using Immersed Boundary-Finite Difference Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Roberto Rojas

    2013-03-01

    Full Text Available The applicability of the immersed boundary-finite difference lattice Boltzmann method (IB-FDLBM to high Reynolds number flows about a circular cylinder is examined. Two-dimensional simulations of flows past a stationary circular cylinder are carried out for a wide range of the Reynolds number, Re, i.e., 1 ≤ Re ≤ 1×105. An immersed boundary-lattice Boltzmann method (IB-LBM is also used for comparison. Then free-falling circular cylinders are simulated to demonstrate the feasibility of predicting moving particles at high Reynolds numbers. The main conclusions obtained are as follows: (1 steady and unsteady flows about a stationary cylinder are well predicted with IB-LBM and IB-FDLBM, provided that the spatial resolution is high enough to satisfy the conditions of numerical stability, (2 high spatial resolution is required for stable IB-LBM simulation of high Reynolds number flows, (3 IB-FDLBM can stably simulate flows at very high Reynolds numbers without increasing the spatial resolution, (4 IB-FDLBM gives reasonable predictions of the drag coefficient for 1 ≤ Re ≤ 1×105, and (5 IB-FDLBM gives accurate predictions for the motion of free-falling cylinders at intermediate Reynolds numbers.

  9. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.; Pardo, David; Torres-Verdí n, Carlos; Demkowicz, Leszek F.; Calo, Victor M.

    2010-01-01

    measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements

  10. Linear optical response of finite systems using multishift linear system solvers

    Energy Technology Data Exchange (ETDEWEB)

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  11. High-order finite-difference methods for Poisson's equation

    NARCIS (Netherlands)

    van Linde, Hendrik Jan

    1971-01-01

    In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator

  12. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  13. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    Science.gov (United States)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  14. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  15. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  16. Poisson solvers for self-consistent multi-particle simulations

    International Nuclear Information System (INIS)

    Qiang, J; Paret, S

    2014-01-01

    Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation

  17. Primal Domain Decomposition Method with Direct and Iterative Solver for Circuit-Field-Torque Coupled Parallel Finite Element Method to Electric Machine Modelling

    Directory of Open Access Journals (Sweden)

    Daniel Marcsa

    2015-01-01

    Full Text Available The analysis and design of electromechanical devices involve the solution of large sparse linear systems, and require therefore high performance algorithms. In this paper, the primal Domain Decomposition Method (DDM with parallel forward-backward and with parallel Preconditioned Conjugate Gradient (PCG solvers are introduced in two-dimensional parallel time-stepping finite element formulation to analyze rotating machine considering the electromagnetic field, external circuit and rotor movement. The proposed parallel direct and the iterative solver with two preconditioners are analyzed concerning its computational efficiency and number of iterations of the solver with different preconditioners. Simulation results of a rotating machine is also presented.

  18. Comparison of Poisson structures and Poisson-Lie dynamical r-matrices

    OpenAIRE

    Enriquez, B.; Etingof, P.; Marshall, I.

    2004-01-01

    We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.

  19. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.; Collier, Nathan; Pardo, David; Paszyński, Maciej R.

    2011-01-01

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  20. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  1. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    International Nuclear Information System (INIS)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-01

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations

  2. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study

    International Nuclear Information System (INIS)

    Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P

    2009-01-01

    Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage

  3. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  4. MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.

    1996-05-01

    The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

  5. A regularization method for solving the Poisson equation for mixed unbounded-periodic domains

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré

    2018-01-01

    the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...

  6. An h-adaptive finite element solver for the calculations of the electronic structures

    International Nuclear Information System (INIS)

    Bao Gang; Hu Guanghui; Liu Di

    2012-01-01

    In this paper, a framework of using h-adaptive finite element method for the Kohn–Sham equation on the tetrahedron mesh is presented. The Kohn–Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations.

  7. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  8. Modern solvers for Helmholtz problems

    CERN Document Server

    Tang, Jok; Vuik, Kees

    2017-01-01

    This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to b...

  9. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.

    2015-06-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  10. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.; Moshkov, Mikhail; Jopek, K.; Gepner, P.; Kitowski, J.; Paszyn'ski, M.

    2015-01-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  11. GEPOIS: a two dimensional nonuniform mesh Poisson solver

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Freeman, J.R.

    1979-06-01

    A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces

  12. A mixed method Poisson solver for three-dimensional self-gravitating astrophysical fluid dynamical systems

    Science.gov (United States)

    Duncan, Comer; Jones, Jim

    1993-01-01

    A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.

  13. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  14. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    Science.gov (United States)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  15. Computational Aero-Acoustic Using High-order Finite-Difference Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...

  16. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  17. Equilibrium Wall Model Implementation in a Nodal Finite Element Flow Solver JENRE for Large Eddy Simulations

    Science.gov (United States)

    2017-11-13

    finite element flow solver JENRE developed at the Naval Research Laboratory. The Crocco- Busemann relation is used to account for the compressibility. In...3 1. Comparison with the measurement data...Naval Research Laboratory. The Crocco-Busemann relation is used to account for the compressibility. In this wall-model implementation, the first

  18. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  19. Lattice Boltzmann simulations of the contact angle in a liquid-gas system

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The shape of a moving droplet is difficult to investigate analytically because the classical continuum hydrodynamic equations of motion with the usual no-slip condition at the surface predict a singularity in the stress at the contact line. Briant et al. have proposed a wetting boundary condition by using the wetting potential. In this study, we introduce the wetting boundary condition into the LBM proposed by Zheng et al. The static contact angle of a droplet onto a wall in order to validate the method is calculated. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made small in the wall surface. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  20. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...

  1. Structure of cylindrical electric double layers: Comparison of density functional and modified Poisson-Boltzmann theories with Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    V.Dorvilien

    2013-01-01

    Full Text Available The structure of cylindrical double layers is studied using a modified Poisson Boltzmann theory and the density functional approach. In the model double layer the electrode is a cylindrical polyion that is infinitely long, impenetrable, and uniformly charged. The polyion is immersed in a sea of equi-sized rigid ions embedded in a dielectric continuum. An in-depth comparison of the theoretically predicted zeta potentials, the mean electrostatic potentials, and the electrode-ion singlet density distributions is made with the corresponding Monte Carlo simulation data. The theories are seen to be consistent in their predictions that include variations in ionic diameters, electrolyte concentrations, and electrode surface charge densities, and are also able to reproduce well some new and existing Monte Carlo results.

  2. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  3. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  4. On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary Conditions

    KAUST Repository

    Settle, Sean O.

    2013-01-01

    The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.

  5. Analysis of the gravitational coupled collisionless Boltzmann-poisson equations and numerical simulations of the formation of self-gravitating systems

    International Nuclear Information System (INIS)

    Roy, Fabrice

    2004-01-01

    We study the formation of self-gravitating systems and their properties by means of N-body simulations of gravitational collapse. First, we summarize the major analytical results concerning the collisionless Boltzmann equation and the Poisson's equation which describe the dynamics of collisionless gravitational systems. We present a study of some analytical solutions of this coupled system of equations. We then present the software used to perform the simulations. Some of this has been parallelized and implemented with the aid of MPI. For this reason we give a brief overview of it. Finally, we present the results of the numerical simulations. Analysis of these results allows us to explain some features of self-gravitating systems and the initial conditions needed to trigger the Antonov instability and the radial orbit instability. (author) [fr

  6. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    Science.gov (United States)

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Poisson Processes in Free Probability

    OpenAIRE

    An, Guimei; Gao, Mingchu

    2015-01-01

    We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...

  8. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    Science.gov (United States)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  9. On a construction of fast direct solvers

    Czech Academy of Sciences Publication Activity Database

    Práger, Milan

    2003-01-01

    Roč. 48, č. 3 (2003), s. 225-236 ISSN 0862-7940 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : Poisson equation * boundary value problem * fast direct solver Subject RIV: BA - General Mathematics

  10. Ca/Na selectivity coefficients from the Poisson-Boltzmann theory

    International Nuclear Information System (INIS)

    Hedstroem, Magnus; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. A possible scenario in the post-glacial evolution of the bentonite buffer used in a KBS-3 repository for spent nuclear fuel is that parts of the buffer may erode due to sol formation caused by the extensive swelling of, in particular, Na-montmorillonite in water of low ionic strength. Presence of calcium in the interlayer has been shown to promote gel formation even in electrolytes with ionic strengths in the vicinity of those in glacial melt waters. In order to estimate the amount of calcium in the clay at the onset of glaciation one needs information of the selectivity coefficient for Ca/Na exchange. Hitherto, most experimental data for evaluating the Gaines-Thomas selectivity coefficient, K GT have been obtained in batch experiments, i.e. at high water-to-solid ratios. The conditions in highly compacted bentonite are, however, radically different in many respects, e.g. the interlayer space is on the nanometre scale and the concentration of counterions is in molar range. Therefore we would like to theoretically investigate the transferability of the selectivity coefficients, determined in batch experiments, to compacted conditions. We solve the Poisson-Boltzmann (PB) equation for two parallel charged surfaces in equilibrium with an external NaCl/CaCl 2 mixed solution. Integration of the ion concentration profiles obtained from the PB equation gives the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte is all that is needed for the calculation of K GT . With a surface layer-charge density of one charge per 145 A 2 , which is close to the value for Wyoming montmorillonite, we find a variation of the selectivity coefficient from about 4 M in batch to 8 M for compacted montmorillonite with dry density 1700 kg/m 3 . The significance as well as the physics behind these results will be presented in detail. The predictions, based on the PB theory, will

  11. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    Science.gov (United States)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  12. Multivariate fractional Poisson processes and compound sums

    OpenAIRE

    Beghin, Luisa; Macci, Claudio

    2015-01-01

    In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.

  13. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    International Nuclear Information System (INIS)

    Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin

    2017-01-01

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  14. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of)

    2017-02-15

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  15. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    Science.gov (United States)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  16. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  17. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  18. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  19. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  20. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates

    Science.gov (United States)

    Lu, Benzhuo; Zhou, Y.C.

    2011-01-01

    The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582

  1. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    Directory of Open Access Journals (Sweden)

    Franziska eBertelshofer

    2015-11-01

    Full Text Available Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and in particular also their interactions with each other. Additionally, knowledge about solution electrostatics may guide also the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann Equation (PBE. Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and thus need to be carefully considered e.g. in design studies on membrane proteins.

  2. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  3. Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.

    Science.gov (United States)

    Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas

    2013-01-01

    We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Improvements to the APBS biomolecular solvation software suite.

    Science.gov (United States)

    Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A

    2018-01-01

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.

  5. Improvements to the APBS biomolecular solvation software suite: Improvements to the APBS Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Jurrus, Elizabeth [Pacific Northwest National Laboratory, Richland Washington; Engel, Dave [Pacific Northwest National Laboratory, Richland Washington; Star, Keith [Pacific Northwest National Laboratory, Richland Washington; Monson, Kyle [Pacific Northwest National Laboratory, Richland Washington; Brandi, Juan [Pacific Northwest National Laboratory, Richland Washington; Felberg, Lisa E. [University of California, Berkeley California; Brookes, David H. [University of California, Berkeley California; Wilson, Leighton [University of Michigan, Ann Arbor Michigan; Chen, Jiahui [Southern Methodist University, Dallas Texas; Liles, Karina [Pacific Northwest National Laboratory, Richland Washington; Chun, Minju [Pacific Northwest National Laboratory, Richland Washington; Li, Peter [Pacific Northwest National Laboratory, Richland Washington; Gohara, David W. [St. Louis University, St. Louis Missouri; Dolinsky, Todd [FoodLogiQ, Durham North Carolina; Konecny, Robert [University of California San Diego, San Diego California; Koes, David R. [University of Pittsburgh, Pittsburgh Pennsylvania; Nielsen, Jens Erik [Protein Engineering, Novozymes A/S, Copenhagen Denmark; Head-Gordon, Teresa [University of California, Berkeley California; Geng, Weihua [Southern Methodist University, Dallas Texas; Krasny, Robert [University of Michigan, Ann Arbor Michigan; Wei, Guo-Wei [Michigan State University, East Lansing Michigan; Holst, Michael J. [University of California San Diego, San Diego California; McCammon, J. Andrew [University of California San Diego, San Diego California; Baker, Nathan A. [Pacific Northwest National Laboratory, Richland Washington; Brown University, Providence Rhode Island

    2017-10-24

    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.

  6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    Science.gov (United States)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  7. Résumé : La méthode Lattice Boltzmann (LBM)et la celle des ...

    African Journals Online (AJOL)

    JOSLIN

    Lattice Boltzmann Method (LBM ) , Finite Difference Explicit ( DFE ) , Hybrid combines the two previous methods and Finite ... In addition, simulations using four methods show that for Ra = 105 the system is damped oscillating, it is oscillating periodic ..... convection heat transfert in a horizontal concentric annulus".Computer ...

  8. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  9. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.

    Science.gov (United States)

    Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C

    2010-09-20

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

  10. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.; Scacchi, S.; Zampini, Stefano

    2015-01-01

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  11. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.

    2015-07-18

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  12. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2012-01-01

    This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....

  13. Periodic Poisson Solver for Particle Tracking

    International Nuclear Information System (INIS)

    Dohlus, M.; Henning, C.

    2015-05-01

    A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.

  14. The lattice Boltzmann method and the problem of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L. [School of Engineering The University of Newcastle, Callaghan NSW 2308 (Australia)

    2015-03-10

    This paper reports a brief review of numerical simulations of homogeneous isotopic turbulence (HIT) using the lattice Boltzmann method (LBM). The LBM results shows that the details of HIT are well captured and in agreement with existing data. This clearly indicates that the LBM is as good as current Navier-Stokes solvers and is very much adequate for investigating the problem of turbulence.

  15. The lattice Boltzmann method and the problem of turbulence

    International Nuclear Information System (INIS)

    Djenidi, L.

    2015-01-01

    This paper reports a brief review of numerical simulations of homogeneous isotopic turbulence (HIT) using the lattice Boltzmann method (LBM). The LBM results shows that the details of HIT are well captured and in agreement with existing data. This clearly indicates that the LBM is as good as current Navier-Stokes solvers and is very much adequate for investigating the problem of turbulence

  16. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    Science.gov (United States)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  17. Singular Poisson tensors

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1982-01-01

    The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular

  18. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.

    2013-04-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  19. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.; Calo, Victor M.; Pardo, David

    2013-01-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  20. An Eulerian finite volume solver for multi-material fluid flows with cylindrical symmetry

    International Nuclear Information System (INIS)

    Bernard-Champmartin, Aude; Ghidaglia, Jean-Michel; Braeunig, Jean-Philippe

    2013-01-01

    In this paper, we adapt a pre-existing 2D cartesian cell centered finite volume solver to treat the compressible 3D Euler equations with cylindrical symmetry. We then extend it to multi-material flows. Assuming cylindrical symmetry with respect to the z axis (i.e. all the functions do not depend explicitly on the angular variable h), we obtain a set of five conservation laws with source terms that can be decoupled in two systems solved on a 2D orthogonal mesh in which a cell as a torus geometry. A specific up-winding treatment of the source term is required and implemented for the stationary case. Test cases will be presented for vanishing and non-vanishing azimuthal velocity uh. (authors)

  1. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas; Uekermann, Benjamin; Pachajoa Mejí a, Carlos; Bungartz, Hans-Joachim; Neumann, Philipp

    2016-01-01

    to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier

  2. Poisson traces, D-modules, and symplectic resolutions.

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-01-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  3. Poisson traces, D-modules, and symplectic resolutions

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-03-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  4. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Melboe, Hallgeir

    2001-10-01

    This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

  5. Analysis of transient plasmonic interactions using an MOT-PMCHWT integral equation solver

    KAUST Repository

    Uysal, Ismail Enes

    2014-07-01

    Device design involving metals and dielectrics at nano-scales and optical frequencies calls for simulation tools capable of analyzing plasmonic interactions. To this end finite difference time domain (FDTD) and finite element methods have been used extensively. Since these methods require volumetric meshes, the discretization size should be very small to accurately resolve fast-decaying fields in the vicinity of metal/dielectric interfaces. This can be avoided using integral equation (IE) techniques that discretize only on the interfaces. Additionally, IE solvers implicitly enforce the radiation condition and consequently do not need (approximate) absorbing boundary conditions. Despite these advantages, IE solvers, especially in time domain, have not been used for analyzing plasmonic interactions.

  6. Reference manual for the POISSON/SUPERFISH Group of Codes

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finite number of points on a mesh in the plane.

  7. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    Science.gov (United States)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  8. Lattice Boltzmann simulation on the liquid junction potential in a concentration fuel cell. Paper no. IGEC-1-060

    International Nuclear Information System (INIS)

    Park, J.; Huh, K.Y.; Li, X.

    2005-01-01

    The lattice Boltzmann method (LBM) is applied to investigate the liquid junction potential (LJP) at an interface between two electrolyte layers. The Poisson equation for electrostatic field is solved to extend the applicable range to micro and nano scales in which electroneutrality does not hold. The LBM solutions are validated against analytical and finite difference method (FDM) results for evolution of concentration, net charge density and electrostatic potential. Noticeable separation of the concentration profiles of positive and negative ions occurs for kd less than 67 in simulation, where k is the inverse of the thickness of electrical double layer and d is the system length. Parametric study is performed for the peak potential and the time to reach the peak with respect to kd and ξ which is the initial thickness ratio of the lower concentration to entire stream. Simple coding and easy parallelization will allow the LBM to make an efficient analysis tool for complex electrochemical systems. (author)

  9. IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems

    Science.gov (United States)

    Hujeirat, A.

    1998-07-01

    The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and

  10. A General Symbolic PDE Solver Generator: Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available A symbolic solver generator to deal with a system of partial differential equations (PDEs in functions of an arbitrary number of variables is presented; it can also handle arbitrary domains (geometries of the independent variables. Given a system of PDEs, the solver generates a set of explicit finite-difference methods to any specified order, and a Fourier stability criterion for each method. For a method that is stable, an iteration function is generated symbolically using the PDE and its initial and boundary conditions. This iteration function is dynamically generated for every PDE problem, and its evaluation provides a solution to the PDE problem. A C++/Fortran 90 code for the iteration function is generated using the MathCode system, which results in a performance gain of the order of a thousand over Mathematica, the language that has been used to code the solver generator. Examples of stability criteria are presented that agree with known criteria; examples that demonstrate the generality of the solver and the speed enhancement of the generated C++ and Fortran 90 codes are also presented.

  11. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  12. Comparison of different Maxwell solvers coupled to a PIC resolution method of Maxwell-Vlasov equations

    International Nuclear Information System (INIS)

    Fochesato, Ch.; Bouche, D.

    2007-01-01

    The numerical solution of Maxwell equations is a challenging task. Moreover, the range of applications is very wide: microwave devices, diffraction, to cite a few. As a result, a number of methods have been proposed since the sixties. However, among all these methods, none has proved to be free of drawbacks. The finite difference scheme proposed by Yee in 1966, is well suited for Maxwell equations. However, it only works on cubical mesh. As a result, the boundaries of complex objects are not properly handled by the scheme. When classical nodal finite elements are used, spurious modes appear, which spoil the results of simulations. Edge elements overcome this problem, at the price of rather complex implementation, and computationally intensive simulations. Finite volume methods, either generalizing Yee scheme to a wider class of meshes, or applying to Maxwell equations methods initially used in the field of hyperbolic systems of conservation laws, are also used. Lastly, 'Discontinuous Galerkin' methods, generalizing to arbitrary order of accuracy finite volume methods, have recently been applied to Maxwell equations. In this report, we more specifically focus on the coupling of a Maxwell solver to a PIC (Particle-in-cell) method. We analyze advantages and drawbacks of the most widely used methods: accuracy, robustness, sensitivity to numerical artefacts, efficiency, user judgment. (authors)

  13. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    Science.gov (United States)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  14. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  15. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2011-08-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

  16. A high-order finite-difference linear seakeeping solver tool for calculation of added resistance in waves

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.; Read, Robert

    During recent years a computational strategy has been developed at the Technical University of Denmark for numerical simulation of water wave problems based on the high-order nite-dierence method, [2],[4]. These methods exhibit a linear scaling of the computational eort as the number of grid points...... increases. This understanding is being applied to develop a tool for predicting the added resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of this solver will allow us to make a convincing demonstration of convergence of the added resistance calculations based...... on both near-eld and far-eld methods. The solver has been written inside a C++ library known as Overture [3], which can be used to solve partial dierential equations on overlapping grids based on the high-order nite-dierence method. The resulting code is able to solve, in the time domain, the linearised...

  17. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  18. Fully coupled Lattice Boltzmann simulation of fiber reinforced self compacting concrete flow

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    accurately the most important phenomena is introduced. A conventional Lattice Boltzmann method has been chosen as a fluid dynamics solver of the non-Newtonian fluid. A Mass Tracking Algorithm has been implemented to correctly represent a free surface and a modified Immersed Boundary Method (IBM) with direct...

  19. Parallel Auxiliary Space AMG Solver for $H(div)$ Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-18

    We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.

  20. Direct numerical solution of Poisson's equation in cylindrical (r, z) coordinates

    International Nuclear Information System (INIS)

    Chao, E.H.; Paul, S.F.; Davidson, R.C.; Fine, K.S.

    1997-01-01

    A direct solver method is developed for solving Poisson's equation numerically for the electrostatic potential φ(r,z) in a cylindrical region (r wall , 0 wall , z) are specified, and ∂φ/∂z = 0 at the axial boundaries (z = 0, L)

  1. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  2. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    Science.gov (United States)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  3. Parallel Solver for H(div) Problems Using Hybridization and AMG

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chak S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.

  4. IGA-ADS: Isogeometric analysis FEM using ADS solver

    Science.gov (United States)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  5. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements

    KAUST Repository

    Collier, Nathan; Dalcin, Lisandro; Pardo, David; Calo, Victor M.

    2013-01-01

    In this paper we study how the use of a more continuous set of basis functions affects the cost of solving systems of linear equations resulting from a discretized Galerkin weak form. Specifically, we compare performance of linear solvers when discretizing using Co B-splines, which span traditional finite element spaces, and Cp-1 B-splines, which represent maximum continuity We provide theoretical estimates for the increase in cost of the matrix-vector product as well as for the construction and application of black-box preconditioners. We accompany these estimates with numerical results and study their sensitivity to various grid parameters such as element size h and polynomial order of approximation p in addition to the aforementioned continuity of the basis. Finally, we present timing results for a range of preconditioning options for the Laplace problem. We conclude that the matrix-vector product operation is at most 33p2/8 times more expensive for the more continuous space, although for moderately low p, this number is significantly reduced. Moreover, if static condensation is not employed, this number further reduces to at most a value of 8, even for high p. Preconditioning options can be up to p3 times more expensive to set up, although this difference significantly decreases for some popular preconditioners such as incomplete LU factorization. © 2013 Society for Industrial and Applied Mathematics.

  6. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements

    KAUST Repository

    Collier, Nathan

    2013-03-19

    In this paper we study how the use of a more continuous set of basis functions affects the cost of solving systems of linear equations resulting from a discretized Galerkin weak form. Specifically, we compare performance of linear solvers when discretizing using Co B-splines, which span traditional finite element spaces, and Cp-1 B-splines, which represent maximum continuity We provide theoretical estimates for the increase in cost of the matrix-vector product as well as for the construction and application of black-box preconditioners. We accompany these estimates with numerical results and study their sensitivity to various grid parameters such as element size h and polynomial order of approximation p in addition to the aforementioned continuity of the basis. Finally, we present timing results for a range of preconditioning options for the Laplace problem. We conclude that the matrix-vector product operation is at most 33p2/8 times more expensive for the more continuous space, although for moderately low p, this number is significantly reduced. Moreover, if static condensation is not employed, this number further reduces to at most a value of 8, even for high p. Preconditioning options can be up to p3 times more expensive to set up, although this difference significantly decreases for some popular preconditioners such as incomplete LU factorization. © 2013 Society for Industrial and Applied Mathematics.

  7. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  8. From Pore Scale to Turbulent Flow with the Unstructured Lattice Boltzmann Method

    DEFF Research Database (Denmark)

    Matin, Rastin

    Abstract: The lattice Boltzmann method is a class of methods in computational fluid dynamics for simulating fluid flow. Implementations on unstructured grids are particularly relevant for various engineering applications, where geometric flexibility or high resolution near a body or a wall...... is required. The main topic of this thesis is to further develop unstructured lattice Boltzmann methods for simulations of Newtonian fluid flow in three dimensions, in particular porous flow. Two methods are considered in this thesis based on the finite volume method and finite element method, respectively...

  9. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    International Nuclear Information System (INIS)

    Denton, A R

    2010-01-01

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  10. Kinetics of the electric double layer formation modelled by the finite difference method

    Science.gov (United States)

    Valent, Ivan

    2017-11-01

    Dynamics of the elctric double layer formation in 100 mM NaCl solution for sudden potentail steps of 10 and 20 mV was simulated using the Poisson-Nernst-Planck theory and VLUGR2 solver for partial differential equations. The used approach was verified by comparing the obtained steady-state solution with the available exact solution. The simulations allowed for detailed analysis of the relaxation processes of the individual ions and the electric potential. Some computational aspects of the problem were discussed.

  11. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term

    International Nuclear Information System (INIS)

    Johnston, Hans; Liu Jianguo

    2004-01-01

    We present numerical schemes for the incompressible Navier-Stokes equations based on a primitive variable formulation in which the incompressibility constraint has been replaced by a pressure Poisson equation. The pressure is treated explicitly in time, completely decoupling the computation of the momentum and kinematic equations. The result is a class of extremely efficient Navier-Stokes solvers. Full time accuracy is achieved for all flow variables. The key to the schemes is a Neumann boundary condition for the pressure Poisson equation which enforces the incompressibility condition for the velocity field. Irrespective of explicit or implicit time discretization of the viscous term in the momentum equation the explicit time discretization of the pressure term does not affect the time step constraint. Indeed, we prove unconditional stability of the new formulation for the Stokes equation with explicit treatment of the pressure term and first or second order implicit treatment of the viscous term. Systematic numerical experiments for the full Navier-Stokes equations indicate that a second order implicit time discretization of the viscous term, with the pressure and convective terms treated explicitly, is stable under the standard CFL condition. Additionally, various numerical examples are presented, including both implicit and explicit time discretizations, using spectral and finite difference spatial discretizations, demonstrating the accuracy, flexibility and efficiency of this class of schemes. In particular, a Galerkin formulation is presented requiring only C 0 elements to implement

  12. A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...

  13. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  14. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  15. Poisson's ratio and Young's modulus of lipid bilayers in different phases

    Directory of Open Access Journals (Sweden)

    Tayebeh eJadidi

    2014-04-01

    Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.

  16. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  17. NITSOL: A Newton iterative solver for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  18. Alternative Forms of Compound Fractional Poisson Processes

    Directory of Open Access Journals (Sweden)

    Luisa Beghin

    2012-01-01

    Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.

  19. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung; Kwon, Young Kwon

    2007-01-01

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented

  20. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)

    2007-10-15

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.

  1. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna; Jopek, Konrad; Banaś, Krzysztof; Paszyński, Maciej; Gurgul, Piotr; Lenerth, Andrew; Nguyen, Donald; Pingali, Keshav; Dalcind, Lisandro; Calo, Victor M.

    2015-01-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  2. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna

    2015-06-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  3. Fourth-order poisson solver for the simulation of bounded plasmas

    International Nuclear Information System (INIS)

    Knorr, G.; Joyce, G.; Marcus, A.J.

    1980-01-01

    The solution of the two-dimensional Poisson equation in a rectangle with periodic boundaries in one direction and Dirichlet or Neumann boundaries in the other can be handled by a Fast Fourier Transform in one dimension and a fast nonperiodic procedure such as splines in the other. Such a solution is necessary for the simulation of semiperiodic plasma systems. A method is presented which is direct and of fourth order in both the electric potential and the electric fields

  4. Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2017-12-01

    Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.

  5. Experimental investigation of the Boltzmann relation for a bi-Maxwellian distribution in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Bang, Jin Young; Chung, Chin Wook

    2009-01-01

    In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.

  6. Optimized thick-wall cylinders by virtue of Poisson's ratio selection

    International Nuclear Information System (INIS)

    Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.

    2011-01-01

    The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.

  7. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  8. Optimising a parallel conjugate gradient solver

    Energy Technology Data Exchange (ETDEWEB)

    Field, M.R. [O`Reilly Institute, Dublin (Ireland)

    1996-12-31

    This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.

  9. Methods for compressible fluid simulation on GPUs using high-order finite differences

    Science.gov (United States)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  10. Poisson's spot and Gouy phase

    Science.gov (United States)

    da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos

    2016-12-01

    Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.

  11. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  12. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    Science.gov (United States)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  13. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    International Nuclear Information System (INIS)

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-01-01

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10 8 -fold range of Ca 2+ concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to

  14. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1983-01-01

    A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)

  15. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  16. Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver

    Science.gov (United States)

    Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.

    2011-11-01

    This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.

  17. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    Science.gov (United States)

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  18. MINOS: A simplified Pn solver for core calculation

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2007-01-01

    This paper describes a new generation of the neutronic core solver MINOS resulting from developments done in the DESCARTES project. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed-dual finite element approximation of the simplified transport equation. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals, allowing us to treat geometries where fuel pins are exactly represented. For Cartesian geometries, the solver takes into account assembly discontinuity coefficients in the simplified P n context. The solver has been rewritten in C + + programming language using an object-oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performance of the previous version has been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal-hydraulic feedback and depletion calculations. (authors)

  19. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  20. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2016-06-01

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region

  1. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  2. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  3. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej; Pardo, David; Calo, Victor M.

    2015-01-01

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  4. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej

    2015-05-27

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  5. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method.

    Directory of Open Access Journals (Sweden)

    Aizat Abas

    Full Text Available This paper studies the three dimensional (3D simulation of fluid flows through the ball grid array (BGA to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced.

  6. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  7. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

    2008-01-01

    Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy

  8. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 (Japan); Bian, Xin, E-mail: xin_bian@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Li, Zhen, E-mail: zhen_li@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Collaboratory on Mathematics for Mesoscopic Modeling of Materials, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)

  9. The peeling process of infinite Boltzmann planar maps

    DEFF Research Database (Denmark)

    Budd, Timothy George

    2016-01-01

    criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can...

  10. Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications

    Science.gov (United States)

    Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.

    2018-01-01

    The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.

  11. A discontinuous Galerkin finite-element method for a 1D prototype of the Boltzmann equation

    NARCIS (Netherlands)

    Hoitinga, W.; Brummelen, van E.H.

    2011-01-01

    To develop and analyze new computational techniques for the Boltzmann equation based on model or approximation adaptivity, it is imperative to have disposal of a compliant model problem that displays the essential characteristics of the Boltzmann equation and that admits the extraction of highly

  12. An immersed interface vortex particle-mesh solver

    Science.gov (United States)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  13. Refined isogeometric analysis for a preconditioned conjugate gradient solver

    KAUST Repository

    Garcia, Daniel

    2018-02-12

    Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.

  14. Podolsky electromagnetism at finite temperature: Implications on the Stefan-Boltzmann law

    International Nuclear Information System (INIS)

    Bonin, C. A.; Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2010-01-01

    In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use experimental data to limit the possible values for this free parameter.

  15. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    International Nuclear Information System (INIS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-01-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  16. Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis

    KAUST Repository

    Kuźnik, Krzysztof

    2012-06-02

    This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matri-ces at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU, providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU.

  17. Lattice Boltzmann simulation of flow across a staggered tube bundle array

    Energy Technology Data Exchange (ETDEWEB)

    Tiftikçi, A.; Kocar, C., E-mail: ckocar@hacettepe.edu.tr

    2016-04-15

    Highlights: • Large eddy simulation of the cross-flow in a staggered tube bundle array in 3D was made. • LBM and FVM are used separately as numerical solvers and the results of each method compared with experimental data. • Effect of lattice model is studied for tube bundle flow. • Filter size effects, mesh size effects are studied for VLES turbulence model. - Abstract: The decision on the magnitude of the grid size is a crucial problem in large eddy simulations. Finer mesh requires excessive memory and causes long simulation time. Large eddy simulation model becomes inefficient when the extent of the flow geometry to be simulated with the lattice-Boltzmann method is large. Thus, in this study, it is proposed to investigate the capabilities of three turbulence models, namely, very large eddy simulation, Van Driest and Smagorinsky–Lilly. As a test case, a staggered tube bundle flow experiment is used for the validation and comparison purposes. Sensitivity analyses (including mesh and filter size) have been made. Furthermore, the effect of lattice model is investigated and it is showed that the D3Q27 and D3Q19 models do not differ significantly in lattice-Boltzmann method for this type of flow. The results of turbulence model comparisons for staggered tube bundle flow showed that very large eddy simulation is superior at low resolution. This paper might be considered as a good validation of the lattice-Boltzmann method. In turbulent flow conditions, the code successfully captures the velocity and stress profiles even if the flow is quite complicated.

  18. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    Lanteri, H.; Bindi, R.; Rostaing, P.

    1979-01-01

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr

  19. The Mixed Finite Element Multigrid Method for Stokes Equations

    Science.gov (United States)

    Muzhinji, K.; Shateyi, S.; Motsa, S. S.

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

  20. Minos: a SPN solver for core calculation in the DESCARTES system

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2005-01-01

    This paper describes a new development of a neutronic core solver done in the context of a new generation neutronic reactor computational system, named DESCARTES. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed dual finite element approximation of the simplified transport equation. The solver takes into account assembly discontinuity coefficients (ADF) in the simplified transport equation (SPN) context. The solver has been rewritten in C++ programming language using an object oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performances of the old version have been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal hydraulic feedback and depletion calculations. (authors)

  1. A General Symbolic PDE Solver Generator: Beyond Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving a variety of partial differential equation (PDE problems. The main features of our earlier work, which implemented explicit finite-difference schemes, include the ability to handle (1 arbitrary number of dependent variables, (2 arbitrary dimensionality, and (3 arbitrary geometry, as well as (4 developing finite-difference schemes to any desired order of approximation. In the present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator are presented.

  2. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.

    2012-01-01

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  3. Aleph Field Solver Challenge Problem Results Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

  4. GeN-Foam: a novel OpenFOAM"® based multi-physics solver for 2D/3D transient analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Clifford, Ivor; Aufiero, Manuele; Mikityuk, Konstantin

    2015-01-01

    Highlights: • Development of a new multi-physics solver based on OpenFOAM"®. • Tight coupling of thermal-hydraulics, thermal-mechanics and neutronics. • Combined use of traditional RANS and porous-medium models. • Mesh for neutronics deformed according to the predicted displacement field. • Use of three unstructured meshes, adaptive time step, parallel computing. - Abstract: The FAST group at the Paul Scherrer Institut has been developing a code system for reactor analysis for many years. For transient analysis, this code system is currently based on a state-of-the-art coupled TRACE-PARCS routine. This work presents an attempt to supplement the FAST code system with a novel solver characterized by tight coupling between the different equations, parallel computing capabilities, adaptive time-stepping and more accurate treatment of some of the phenomena involved in a reactor transient. The new solver is based on OpenFOAM"®, an open-source C++ library for the solution of partial differential equations using finite-volume discretization. It couples together a multi-scale fine/coarse mesh sub-solver for thermal-hydraulics, a multi-group diffusion sub-solver for neutronics, a displacement-based sub-solver for thermal-mechanics and a finite-difference model for the temperature field in the fuel. It is targeted toward the analysis of pin-based reactors (e.g., liquid metal fast reactors or light water reactors) or homogeneous reactors (e.g., fast-spectrum molten salt reactors). This paper presents each “single-physics” sub-solver and the overall coupling strategy, using the sodium-cooled fast reactor as a test case, and essential code verification tests are described.

  5. Mathematical modeling of influence of ion size effects in an electrolyte in a nanoslit with overlapped EDL

    Science.gov (United States)

    Rajni, Kumar, Prashant

    2017-10-01

    Many nanofluidic systems are being used in a wide range of applications due to advances in nanotechnology. Due to nanoscale size of the system, the physics involved in the electric double layer and consequently the different phenomena related to it are different than those at microscale. The Poisson-Boltzmann equation governing the electric double layer in the system has many shortcomings such as point sized ions. The inclusion of finite size of ions give rise to various electrokinetic phenomena. Electrocapillarity is one such phenomena where the size effect plays an important role. Theeffect of asymmetric finite ion sizes in nano-confinement in the view of osmotic pressure and electrocapillarity is analyzed. As the confinement width of the system becomes comparable with the Debye length, the overlapped electric double layer (EDL) is influenced and significantly deformed by the steric effects. The osmotic pressure from the modified Poisson-Boltzmann equation in nanoslit is obtained. Due to nonlinear nature of the modified PB equation, the solution is obtained through numerical method. Afterwards, the electrocapillarity due to the steric effect is analyzed under constant surface potential condition at the walls of the nanoslit along with the flat interface assumption.

  6. A fast conservative spectral solver for the nonlinear Boltzmann collision operator

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei

    2014-01-01

    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M 2 N 4 logN) from the O(N 6 ) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results

  7. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chávez, Gustavo

    2017-12-15

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  8. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chá vez, Gustavo; Turkiyyah, George; Zampini, Stefano; Ltaief, Hatem; Keyes, David E.

    2017-01-01

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  9. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  10. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  11. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  12. Parallel time domain solvers for electrically large transient scattering problems

    KAUST Repository

    Liu, Yang

    2014-09-26

    Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.

  13. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  14. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    Science.gov (United States)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  15. Mean electrostatic and Poisson-Boltzmann models for multicomponent transport through compacted clay

    International Nuclear Information System (INIS)

    Steefel, C.I.; Galindez, J.M.

    2012-01-01

    -specific diffusion coefficients. Mass is automatically partitioned between the electrical double layer porosity and the bulk water depending on the magnitude of the mineral surface charge to be balanced. The Poisson-Nernst-Planck (NPP) set of equations allows for the determination of the electric potential over the entire domain, along with the spatial distribution of the concentration of ionic species. Although this approach has been considered for some time in the field of nano-fluidics, clay science does not appear to have fully embraced this approach to date. The present work attempts to bridge that gap by proposing the simulation of multicomponent solute transport in compacted clays by means of the resolution of the PNP set of the equations under a two-dimensional finite-element framework. Modeling procedures are presented in detail and then applied to a simple case reported in the literature [2]. Numerical results were found to match experimental data more accurately than those based on Donnan models over a wider range of dry densities. In light of this, it is then argued that the NPP set of equations can provide a more reliable basis for the incorporation of surface phenomena into the modeling of solute transport through compacted clays. (authors)

  16. GeN-Foam: a novel OpenFOAM{sup ®} based multi-physics solver for 2D/3D transient analysis of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, Carlo, E-mail: carlo.fiorina@psi.ch [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland); Clifford, Ivor [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland); Aufiero, Manuele [LPSC-IN2P3-CNRS/UJF/Grenoble INP, 53 avenue des Martyrs, 38026 Grenoble Cedex (France); Mikityuk, Konstantin [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland)

    2015-12-01

    Highlights: • Development of a new multi-physics solver based on OpenFOAM{sup ®}. • Tight coupling of thermal-hydraulics, thermal-mechanics and neutronics. • Combined use of traditional RANS and porous-medium models. • Mesh for neutronics deformed according to the predicted displacement field. • Use of three unstructured meshes, adaptive time step, parallel computing. - Abstract: The FAST group at the Paul Scherrer Institut has been developing a code system for reactor analysis for many years. For transient analysis, this code system is currently based on a state-of-the-art coupled TRACE-PARCS routine. This work presents an attempt to supplement the FAST code system with a novel solver characterized by tight coupling between the different equations, parallel computing capabilities, adaptive time-stepping and more accurate treatment of some of the phenomena involved in a reactor transient. The new solver is based on OpenFOAM{sup ®}, an open-source C++ library for the solution of partial differential equations using finite-volume discretization. It couples together a multi-scale fine/coarse mesh sub-solver for thermal-hydraulics, a multi-group diffusion sub-solver for neutronics, a displacement-based sub-solver for thermal-mechanics and a finite-difference model for the temperature field in the fuel. It is targeted toward the analysis of pin-based reactors (e.g., liquid metal fast reactors or light water reactors) or homogeneous reactors (e.g., fast-spectrum molten salt reactors). This paper presents each “single-physics” sub-solver and the overall coupling strategy, using the sodium-cooled fast reactor as a test case, and essential code verification tests are described.

  17. Advances in 3D electromagnetic finite element modeling

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed

  18. Nambu-Poisson reformulation of the finite dimensional dynamical systems

    International Nuclear Information System (INIS)

    Baleanu, D.; Makhaldiani, N.

    1998-01-01

    A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures

  19. Nonlinear Conservation Laws and Finite Volume Methods

    Science.gov (United States)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  20. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  1. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    Science.gov (United States)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface

  2. MGLab3D: An interactive environment for iterative solvers for elliptic PDEs in two and three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bordner, J.; Saied, F. [Univ. of Illinois, Urbana, IL (United States)

    1996-12-31

    GLab3D is an enhancement of an interactive environment (MGLab) for experimenting with iterative solvers and multigrid algorithms. It is implemented in MATLAB. The new version has built-in 3D elliptic pde`s and several iterative methods and preconditioners that were not available in the original version. A sparse direct solver option has also been included. The multigrid solvers have also been extended to 3D. The discretization and pde domains are restricted to standard finite differences on the unit square/cube. The power of this software studies in the fact that no programming is needed to solve, for example, the convection-diffusion equation in 3D with TFQMR and a customized V-cycle preconditioner, for a variety of problem sizes and mesh Reynolds, numbers. In addition to the graphical user interface, some sample drivers are included to show how experiments can be composed using the underlying suite of problems and solvers.

  3. Boltzmann brains and the scale-factor cutoff measure of the multiverse

    International Nuclear Information System (INIS)

    De Simone, Andrea; Guth, Alan H.; Linde, Andrei; Noorbala, Mahdiyar; Salem, Michael P.; Vilenkin, Alexander

    2010-01-01

    To make predictions for an eternally inflating 'multiverse', one must adopt a procedure for regulating its divergent spacetime volume. Recently, a new test of such spacetime measures has emerged: normal observers - who evolve in pocket universes cooling from hot big bang conditions - must not be vastly outnumbered by 'Boltzmann brains' - freak observers that pop in and out of existence as a result of rare quantum fluctuations. If the Boltzmann brains prevail, then a randomly chosen observer would be overwhelmingly likely to be surrounded by an empty world, where all but vacuum energy has redshifted away, rather than the rich structure that we observe. Using the scale-factor cutoff measure, we calculate the ratio of Boltzmann brains to normal observers. We find the ratio to be finite, and give an expression for it in terms of Boltzmann brain nucleation rates and vacuum decay rates. We discuss the conditions that these rates must obey for the ratio to be acceptable, and we discuss estimates of the rates under a variety of assumptions.

  4. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  5. FDiff3: a finite-difference solver for facilitating understanding of heat conduction and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.B. [University of Hertfordshire, Hatfield (United Kingdom). Department of Aerospace, Automotive and Design Engineering; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering

    2004-12-01

    The growing requirement for energy thrift and hence the increasing emphasis on 'low-purchased-energy' designs are stimulating the need for more accurate insights into the thermal behaviours of buildings and their components. This better understanding is preferably achieved, rather than by using 'closed software' or teaching the relevant mathematics outside heat-transfer lessons, but from embedding the pertinent tutoring while dealing with heat-transfer problems using an open-source code approach. Hence a finite-difference software program (FDiff3) has been composed to show the principles of numerical analysis as well as improve the undergraduates' perception of transient conduction. The pedagogic approach behind the development, its present capabilities and applications to sample test-cases are discussed. (author)

  6. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.

  7. A note on the Lattice Boltzmann Method Beyond the Chapman Enskog Limits

    NARCIS (Netherlands)

    Sbragaglia, M.; Succi, S.

    2006-01-01

    A non-perturbative analysis of the Bhatnagar-Gross-Krook (BGK) model kinetic equation for finite values of the Knudsen number is presented. This analysis indicates why discrete kinetic versions of the BGK equation, and notably the lattice Boltzmann method, can provide semi-quantitative results also

  8. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  9. Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations

    International Nuclear Information System (INIS)

    Xu Kun; He Xiaoyi

    2003-01-01

    Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented

  10. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  11. A modified Poisson-Boltmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Veen, van der M.; Norde, W.

    2005-01-01

    The equilibrium adsorption of polyelectrolytes with multiple types of ionizable groups is described using a modified Poisson-Boltzmann equation including charge regulation of both the polymer and the interface. A one-dimensional mean-field model is used in which the electrostatic potential is

  12. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    International Nuclear Information System (INIS)

    Sousbie, Thierry; Colombi, Stéphane

    2016-01-01

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  13. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    Energy Technology Data Exchange (ETDEWEB)

    Sousbie, Thierry, E-mail: tsousbie@gmail.com [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Colombi, Stéphane, E-mail: colombi@iap.fr [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  14. A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, Wim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saller, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-12

    Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in the details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.

  15. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

    2015-10-28

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

  16. Inverse analysis of a rectangular fin using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Bamdad, Keivan; Ashorynejad, Hamid Reza

    2015-01-01

    Highlights: • Lattice Boltzmann method is used to study a transient conductive-convective fin. • LBM and Conjugate Gradient Method (CGM) are used to solve an inverse problem in fins. • LBM–ACGM estimates the unknown boundary conditions of fins accurately. • The accuracy and CPU time of LBM–ACGM are compared to IFDM–ACGM. • LBM–ACGM could be a good alternative for the conventional inverse methods. - Abstract: Inverse methods have many applications in determining unknown variables in heat transfer problems when direct measurements are impossible. As most common inverse methods are iterative and time consuming especially for complex geometries, developing more efficient methods seems necessary. In this paper, a direct transient conduction–convection heat transfer problem (fin) under several boundary conditions was solved by using lattice Boltzmann method (LBM), and then the results were successfully validated against both the finite difference method and analytical solution. Then, in the inverse problem both unknown base temperatures and heat fluxes in the rectangular fin were estimated by combining the adjoint conjugate gradient method (ACGM) and LBM. A close agreement between the exact values and estimated results confirmed the validity and accuracy of the ACGM–LBM. To compare the calculation time of ACGM–LBM, the inverse problem was solved by implicit finite difference methods as well. This comparison proved that the ACGM–LBM was an accurate and fast method to determine unknown thermal boundary conditions in transient conduction–convection heat transfer problems. The findings can efficiently determine the unknown variables in fins when a desired temperature distribution is available

  17. Linear odd Poisson bracket on Grassmann variables

    International Nuclear Information System (INIS)

    Soroka, V.A.

    1999-01-01

    A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Ben C. Yee

    2017-09-01

    Full Text Available In this paper, we present a new multilevel in space and energy diffusion (MSED method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1 a grey (one-group diffusion equation used to efficiently converge the fission source and eigenvalue, (2 a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3 a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

  19. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  20. Localization of Point Sources for Poisson Equation using State Observers

    KAUST Repository

    Majeed, Muhammad Usman

    2016-08-09

    A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  1. Localization of Point Sources for Poisson Equation using State Observers

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2016-01-01

    A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  2. The effects of pH, salt and bond stiffness on charged dendrimers

    International Nuclear Information System (INIS)

    Huissmann, Sebastian; Wynveen, Aaron; Likos, Christos N; Blaak, Ronald

    2010-01-01

    We have performed molecular dynamics simulations of charged dendrimers with various charge distributions, and including both rigid and soft bonds between the monomers. Whereas the rigid bonds result in a shell-like structure, the soft bonds lead to a larger dendrimer size and a more homogeneous monomer distribution. The measured density profiles of counter-ions and co-ions are compared with those stemming from Poisson-Boltzmann theory. The latter is in very good agreement with simulations for the soft-bond model, whereas for rigid bonds, significant discrepancies arise caused by the fact that Poisson-Boltzmann theory neglects finite-size ion effects. The addition of monovalent salt has no significant influence on the behavior of the dendrimers. (fast track communication)

  3. Numerical simulations of a family of the coupled viscous Burgers, equation using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    He, Y B; Tang, X H

    2016-01-01

    In this paper, in order to extend the lattice Boltzmann method (LBM) to deal with more nonlinear systems, a one-dimensional and five-velocity lattice Boltzmann scheme with an amending function for a family of the coupled viscous Burgers’ equation (CVBE) is proposed. With the Taylor and Chapman–Enskog expansion, a family of the CVBE is recovered correctly from the lattice Boltzmann equation through selecting the equilibrium distribution functions and amending functions properly. The method is applied to some test examples with an analytical solution. The results are compared with those obtained by the finite difference method (FDM); it is shown that the numerical solutions agree well with the analytical solutions and the errors obtained by the present method are smaller than the FDM. Furthermore, some problems without analytical solutions are numerically studied by the present method and the FDM. The results show that the numerical solutions of the LBM are in good agreement with those obtained by the FDM, which can validate the effectiveness and stability of the LBM. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  4. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  5. Lattice Boltzmann Simulations in the Slip and Transition Flow Regime with the Peano Framework

    KAUST Repository

    Neumann, Philipp; Rohrmann, Till

    2012-01-01

    We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We validate our code

  6. Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Mishra, Subhash C.; Vernekar, Rohan Ranganath

    2012-01-01

    Application of the lattice Boltzmann method (LBM) recently proposed by Asinari et al. [Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transfer B 2010; 57:126–146] is extended to the analysis of transport of collimated radiation in a planar participating medium. To deal with azimuthally symmetric radiation in planar medium, a new lattice structure for the LBM is used. The transport of the collimated component in the medium is analysed by two different, viz., flux splitting and direct approaches. For different angles of incidence of the collimated radiation, the LBM formulation is tested for the effects of the extinction coefficient, the anisotropy factor, and the boundary emissivities on heat flux and emissive power distributions. Results are compared with the benchmark results obtained using the finite volume method. Both the approaches in LBM provide accurate results. -- Highlights: ► Transport of collimated radiation in participating media is studied. ► Usage of Lattice Boltzmann method (LBM) is extended in this study. ► In LBM, flux splitting and direct approaches are proposed. ► Effects of various parameters are studied on heat flux and temperature profiles. ► In all cases, LBM provides correct results.

  7. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  8. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Guillaume, E-mail: jouvet@vaw.baug.ethz.ch [Institut für Mathematik, Freie Universität Berlin (Germany); Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (Switzerland)

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  9. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  10. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  11. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    Science.gov (United States)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  12. Walfisz-like formula from Poisson's summation formula and some applications

    International Nuclear Information System (INIS)

    Freitas, U. de; Chaba, A.N.

    1983-01-01

    Walfiscz-like formula for the number of lattice points of an arbitrary m-dimensional lattice in a hyperellipsoid with given semi-axes is derived from the Poisson's summation formula. Applications to (i) the evaluation of certain lattice sums and (ii) the calculation of the expressions for the density of states of a single non-relativistic particle as well as of a relativistic particle enclosed in a rectangular m-dimensional box of finite size and subject to different boundary conditions are given. (Author) [pt

  13. Comparison of different Maxwell solvers coupled to a PIC resolution method of Maxwell-Vlasov equations; Evaluation de differents solveurs Maxwell pour la resolution de Maxwell-Vlasov par une methode PIC

    Energy Technology Data Exchange (ETDEWEB)

    Fochesato, Ch. [CEA Bruyeres-le-Chatel, Dept. de Conception et Simulation des Armes, Service Simulation des Amorces, Lab. Logiciels de Simulation, 91 (France); Bouche, D. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, Lab. de Recherche Conventionne, Centre de Mathematiques et Leurs Applications, 91 (France)

    2007-07-01

    The numerical solution of Maxwell equations is a challenging task. Moreover, the range of applications is very wide: microwave devices, diffraction, to cite a few. As a result, a number of methods have been proposed since the sixties. However, among all these methods, none has proved to be free of drawbacks. The finite difference scheme proposed by Yee in 1966, is well suited for Maxwell equations. However, it only works on cubical mesh. As a result, the boundaries of complex objects are not properly handled by the scheme. When classical nodal finite elements are used, spurious modes appear, which spoil the results of simulations. Edge elements overcome this problem, at the price of rather complex implementation, and computationally intensive simulations. Finite volume methods, either generalizing Yee scheme to a wider class of meshes, or applying to Maxwell equations methods initially used in the field of hyperbolic systems of conservation laws, are also used. Lastly, 'Discontinuous Galerkin' methods, generalizing to arbitrary order of accuracy finite volume methods, have recently been applied to Maxwell equations. In this report, we more specifically focus on the coupling of a Maxwell solver to a PIC (Particle-in-cell) method. We analyze advantages and drawbacks of the most widely used methods: accuracy, robustness, sensitivity to numerical artefacts, efficiency, user judgment. (authors)

  14. The BRST complex of homological Poisson reduction

    Science.gov (United States)

    Müller-Lennert, Martin

    2017-02-01

    BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.

  15. The finite element analysis program MSC Marc/Mentat a first introduction

    CERN Document Server

    Öchsner, Andreas

    2016-01-01

    Based on simple examples, this book offers a short introduction to the general-purpose finite element program MSC Marc, a specialized program for non-linear problems (implicit solver) distributed by the MSC Software Corporation, which is commonly used in academia and industry. Today the documentation of all finite element programs includes a variety of step-by-step examples of differing complexity, and in addition, all software companies offer professional workshops on different topics. As such, rather than competing with these, the book focuses on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. This makes it an ideal companion book to classical introductory courses on the finite element method.

  16. A Generalized FDM for solving the Poisson's Equation on 3D Irregular Domains

    Directory of Open Access Journals (Sweden)

    J. Izadian

    2014-01-01

    Full Text Available In this paper a new method for solving the Poisson's equation with Dirichlet conditions on irregular domains is presented. For this purpose a generalized finite differences method is applied for numerical differentiation on irregular meshes. Three examples on cylindrical and spherical domains are considered. The numerical results are compared with analytical solution. These results show the performance and efficiency of the proposed method.

  17. A New Approach for the Statistical Thermodynamic Theory of the Nonextensive Systems Confined in Different Finite Traps

    Science.gov (United States)

    Tang, Hui-Yi; Wang, Jian-Hui; Ma, Yong-Li

    2014-06-01

    For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann-Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis's q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal energy. When we investigate the thermodynamics for the interacting nonextensive systems, we obtain the system-bath heat exchange and "uncompensated heat" which are in the thermodynamical level and independent on the detail of the system-bath coupling. For ideal finite systems, with different traps and boundary conditions, we calculate some thermodynamic quantities, such as the specific heat, entropy, and equation of state, etc. Particularly at low temperatures for the small systems, we predict some novel behaviors in the quantum thermodynamics, including internal entropy production, heat exchanges between the system and its surroundings and finite-size effects on the free energy.

  18. A high order multi-resolution solver for the Poisson equation with application to vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik Juul; Walther, Jens Honore

    A high order method is presented for solving the Poisson equation subject to mixed free-space and periodic boundary conditions by using fast Fourier transforms (FFT). The high order convergence is achieved by deriving mollified Green’s functions from a high order regularization function which...

  19. On poisson-stopped-sums that are mixed poisson

    OpenAIRE

    Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep

    2013-01-01

    Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed

  20. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaiser, T. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eder, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Masters, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Koniges, A. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Anderson, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.

  1. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  2. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  3. Boltzmann electron PIC simulation of the E-sail effect

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2015-12-01

    Full Text Available The solar wind electric sail (E-sail is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.

  4. Grammar-Based Multi-Frontal Solver for One Dimensional Isogeometric Analysis with Multiple Right-Hand-Sides

    KAUST Repository

    Kuźnik, Krzysztof

    2013-06-01

    This paper introduces a grammar-based model for developing a multi-thread multi-frontal parallel direct solver for one- dimensional isogeometric finite element method. The model includes the integration of B-splines for construction of the element local matrices and the multi-frontal solver algorithm. The integration and the solver algorithm are partitioned into basic indivisible tasks, namely the grammar productions, that can be executed squentially. The partial order of execution of the basic tasks is analyzed to provide the scheduling for the execution of the concurrent integration and multi-frontal solver algo- rithm. This graph grammar analysis allows for optimal concurrent execution of all tasks. The model has been implemented and tested on NVIDIA CUDA GPU, delivering logarithmic execution time for linear, quadratic, cubic and higher order B-splines. Thus, the CUDA implementation delivers the optimal performance predicted by our graph grammar analysis. We utilize the solver for multiple right hand sides related to the solution of non-stationary or inverse problems.

  5. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe [Laboratoire Informatique Signal et Image de la Côte d' Opale, 50 rue Ferdinand Buisson, 62100 Calais (France); Université du Littoral Côte d' Opale, 1 place de l' Yser, 59140, Dunkerque (France); Association INNOCOLD, MREI 1, 145 (France)

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  6. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  7. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  8. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  9. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    Science.gov (United States)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  10. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    International Nuclear Information System (INIS)

    Schaa, R; Gross, L; Du Plessis, J

    2016-01-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts. (paper)

  11. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    Science.gov (United States)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  12. Solution of the non-stationary electron Boltzmann equation for a weakly ionized collision dominated plasma

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.

    A detailed description is presented of calculating the nonstationary electron distribution function in a weakly ionized collision-dominated plasma from the Boltzmann kinetic equation respecting the effects of the time-dependent electric field, collision processes and the electron formation and loss. The finite difference approximation was used for numerical solution. Using the Crank-Nicolson method and parabolic interpolation between the grid points the Boltzmann equation was transformed to a system of linear equations which was then solved by iterations at a preset accuracy. Using the calculated distribution function values, the macroscopic plasma parameters were determined and the balance of electron density and energy checked in each time step. The mathematical procedure is illustrated using a neon plasma perturbed by a rectangular electric pulse. The time development shown of the distribution function at moments when the pulse was switched on and off demonstrates the great stability of the numerical solution. (J.U.)

  13. A one-level FETI method for the drift–diffusion-Poisson system with discontinuities at an interface

    KAUST Repository

    Baumgartner, Stefan

    2013-06-01

    A 3d feti method for the drift-diffusion-Poisson system including discontinuities at a 2d interface is developed. The motivation for this work is to provide a parallel numerical algorithm for a system of PDEs that are the basic model equations for the simulation of semiconductor devices such as transistors and sensors. Moreover, discontinuities or jumps in the potential and its normal derivative at a 2d surface are included for the simulation of nanowire sensors based on a homogenized model. Using the feti method, these jump conditions can be included with the usual numerical properties and the original Farhat-Roux feti method is extended to the drift-diffusion-Poisson equations including discontinuities. We show two numerical examples. The first example verifies the correct implementation including the discontinuities on a 2d grid divided into eight subdomains. The second example is 3d and shows the application of the algorithm to the simulation of nanowire sensors with high aspect ratios. The Poisson-Boltzmann equation and the drift-diffusion-Poisson system with jump conditions are solved on a 3d grid with real-world boundary conditions. © 2013 Elsevier Inc..

  14. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models

    OpenAIRE

    Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni

    2013-01-01

    The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual (PNP) or anomalous (PNPA) diffusional models that satisfy Poisson's equation in a finite-length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these re...

  15. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.

    Science.gov (United States)

    Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni

    2013-11-20

    The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual or anomalous diffusional models that satisfy Poisson's equation in a finite length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these relations are modified accordingly.

  16. Numerical solution of Boltzmann's equation

    International Nuclear Information System (INIS)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

  17. Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems

    International Nuclear Information System (INIS)

    Hernandez-Bermejo, Benito

    2011-01-01

    A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: → A new family of Poisson structures is globally characterized and analyzed. → Such family is globally defined for arbitrary values of the dimension and the rank. → Global construction of Casimir invariants and Darboux canonical form is provided. → Very diverse and previously known solutions of physical interest are generalized.

  18. Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)

    2011-05-09

    A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: A new family of Poisson structures is globally characterized and analyzed. Such family is globally defined for arbitrary values of the dimension and the rank. Global construction of Casimir invariants and Darboux canonical form is provided. Very diverse and previously known solutions of physical interest are generalized.

  19. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  20. Moving charged particles in lattice Boltzmann-based electrokinetics

    Science.gov (United States)

    Kuron, Michael; Rempfer, Georg; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-12-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions into the Capuani scheme has been lacking. Moving boundary conditions are needed to simulate multiple arbitrarily moving colloids. In this paper, we detail how to introduce such a particle coupling scheme, based on an analogue to the moving boundary method for the pure lattice Boltzmann solver. The key ingredients in our method are mass and charge conservation for the solute species and a partial-volume smoothing of the solute fluxes to minimize discretization artifacts. We demonstrate our algorithm's effectiveness by simulating the electrophoresis of charged spheres in an external field; for a single sphere we compare to the equivalent electro-osmotic (co-moving) problem. Our method's efficiency and ease of implementation should prove beneficial to future simulations of the dynamics in a wide range of complex nanoscopic and colloidal systems that were previously inaccessible to lattice-based continuum algorithms.

  1. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    International Nuclear Information System (INIS)

    Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

    2017-01-01

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.

  2. Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)

    International Nuclear Information System (INIS)

    Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki

    2010-01-01

    In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)

  3. Branes in Poisson sigma models

    International Nuclear Information System (INIS)

    Falceto, Fernando

    2010-01-01

    In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.

  4. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  5. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-12-07

    Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity

  6. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  7. A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.

    Science.gov (United States)

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.

  8. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  9. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  10. Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra

    OpenAIRE

    Lecoutre, César

    2014-01-01

    We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...

  11. Exploring cluster Monte Carlo updates with Boltzmann machines.

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  12. Exploring cluster Monte Carlo updates with Boltzmann machines

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  13. Modeling of Electrokinetic Processes Using the Nernst-Plank-Poisson System

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    Electrokinetic processes are known as the mobilization of species within the pore solution of porous materials under the effect of an external electric field. A finite elements model was implemented and used for the integration of the coupled Nernst-Plank-Poisson system of equations in order...

  14. Boltzmann

    International Nuclear Information System (INIS)

    Lin, X.

    1991-01-01

    This paper reports the development of an object-oriented programming methodology for particle simulations. It is established on the [m reductionist] view that many physical phenomena cana be reduced to many-body problems. By doing the reduction, many seemly unrelated physical phenomena can be simulated in a systematic way and a high-level programming system can be constructed to facilitate the programming and the solution of the simulations. In the object-oriented particle simulation methodology, a hierarchy of abstract particles is defined to represent a variety of characteristics in physical system simulations. A simulation program is constructed from particles derived from the abstract particles. The object- oriented particle simulation methodology provides a unifying modeling and simulation framework for a variety of simulation applications with the use of particle methods. It allows easy composition of simulation programs from predefined software modules and facilitates software reusability. It greatly increase the productivity of simulation program constructions. Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming system in the object-oriented particle simulation methodology. Boltzmann is implemented in C++ and the X Window System. It contains a library of data types and functions that support simulations in particle methods. Moreover, it provides a visualization window to support friendly user-computer interaction. Examples of the application of the Boltzmann programming system are presented. The effectiveness of the object-oriented particle simulation methodology is demonstrated. A user's manual is included in the appendix

  15. Degenerate odd Poisson bracket on Grassmann variables

    International Nuclear Information System (INIS)

    Soroka, V.A.

    2000-01-01

    A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra

  16. A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients

    Science.gov (United States)

    Batty, Christopher

    2017-02-01

    This paper introduces a two-dimensional cell-centred finite volume discretization of the Poisson problem on adaptive Cartesian quadtree grids which exhibits second order accuracy in both the solution and its gradients, and requires no grading condition between adjacent cells. At T-junction configurations, which occur wherever resolution differs between neighboring cells, use of the standard centred difference gradient stencil requires that ghost values be constructed by interpolation. To properly recover second order accuracy in the resulting numerical gradients, prior work addressing block-structured grids and graded trees has shown that quadratic, rather than linear, interpolation is required; the gradients otherwise exhibit only first order convergence, which limits potential applications such as fluid flow. However, previous schemes fail or lose accuracy in the presence of the more complex T-junction geometries arising in the case of general non-graded quadtrees, which place no restrictions on the resolution of neighboring cells. We therefore propose novel quadratic interpolant constructions for this case that enable second order convergence by relying on stencils oriented diagonally and applied recursively as needed. The method handles complex tree topologies and large resolution jumps between neighboring cells, even along the domain boundary, and both Dirichlet and Neumann boundary conditions are supported. Numerical experiments confirm the overall second order accuracy of the method in the L∞ norm.

  17. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  18. Implicit and fully implicit exponential finite difference methods

    Indian Academy of Sciences (India)

    Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue

  19. Inside finite elements

    CERN Document Server

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  20. Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model

    International Nuclear Information System (INIS)

    Ayik, S.

    1996-01-01

    In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations

  1. Measures with locally finite support and spectrum.

    Science.gov (United States)

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  2. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  3. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers

    KAUST Repository

    Collier, Nathan

    2012-03-01

    We study the performance of direct solvers on linear systems of equations resulting from isogeometric analysis. The problem of choice is the canonical Laplace equation in three dimensions. From this study we conclude that for a fixed number of unknowns and polynomial degree of approximation, a higher degree of continuity k drastically increases the CPU time and RAM needed to solve the problem when using a direct solver. This paper presents numerical results detailing the phenomenon as well as a theoretical analysis that explains the underlying cause. © 2011 Elsevier B.V.

  4. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers

    KAUST Repository

    Collier, Nathan; Pardo, David; Dalcí n, Lisandro D.; Paszyński, Maciej R.; Calo, Victor M.

    2012-01-01

    We study the performance of direct solvers on linear systems of equations resulting from isogeometric analysis. The problem of choice is the canonical Laplace equation in three dimensions. From this study we conclude that for a fixed number of unknowns and polynomial degree of approximation, a higher degree of continuity k drastically increases the CPU time and RAM needed to solve the problem when using a direct solver. This paper presents numerical results detailing the phenomenon as well as a theoretical analysis that explains the underlying cause. © 2011 Elsevier B.V.

  5. GPU accelerated FDTD solver and its application in MRI.

    Science.gov (United States)

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  6. Multi-GPU-based acceleration of the explicit time domain volume integral equation solver using MPI-OpenACC

    KAUST Repository

    Feki, Saber

    2013-07-01

    An explicit marching-on-in-time (MOT)-based time-domain volume integral equation (TDVIE) solver has recently been developed for characterizing transient electromagnetic wave interactions on arbitrarily shaped dielectric bodies (A. Al-Jarro et al., IEEE Trans. Antennas Propag., vol. 60, no. 11, 2012). The solver discretizes the spatio-temporal convolutions of the source fields with the background medium\\'s Green function using nodal discretization in space and linear interpolation in time. The Green tensor, which involves second order spatial and temporal derivatives, is computed using finite differences on the temporal and spatial grid. A predictor-corrector algorithm is used to maintain the stability of the MOT scheme. The simplicity of the discretization scheme permits the computation of the discretized spatio-temporal convolutions on the fly during time marching; no \\'interaction\\' matrices are pre-computed or stored resulting in a memory efficient scheme. As a result, most often the applicability of this solver to the characterization of wave interactions on electrically large structures is limited by the computation time but not the memory. © 2013 IEEE.

  7. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R [University of Alberta, Edmonton, AB (Canada); Fallone, B [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada); MagnetTx Oncology Solutions, Edmonton, AB (Canada); St Aubin, J [University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. The LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been

  8. Algébrico: Parte II - Algoritmo Paralelo

    Directory of Open Access Journals (Sweden)

    Fabio Henrique Pereira

    2007-01-01

    Full Text Available In this work, it is presented a new parallel wavelet- based algorithm for the Algebraic Multigrid Method (PWAMG. A variation of the standard parallel implementation of discrete wavelet transforms is used in the construction of a hierarchy of matrices and of intergrid transfer operators for Algebraic Multigrid. The PWAMG method has been tested as a parallel solver for the two dimensional Poisson equation, for different numbers of finite difference mesh nodes and comparisons are made with the sequential version of this method.

  9. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  10. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2014-01-01

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  11. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda

    2014-05-04

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  12. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  13. Does the Boltzmann Principle Need a Dynamical Correction?

    Science.gov (United States)

    Adib, Artur B.

    2004-11-01

    In an attempt to derive thermodynamics from classical mechanics, an approximate expression for the equilibrium temperature of a finite system has been derived (M. Bianucci, R. Mannella, B. J. West and P. Grigolini, Phys. Rev. E 51: 3002 (1995)) which differs from the one that follows from the Boltzmann principle S = kln Ω( E) via the thermodynamic relation 1/ T=∂ S / ∂ E by additional terms of "dynamical" character, which are argued to correct and generalize the Boltzmann principle for small systems (here Ω( E) is the area of the constant-energy surface). In the present work, the underlying definition of temperature in the Fokker-Planck formalism of Bianucci et al., is investigated and shown to coincide with an approximate form of the equipartition temperature. Its exact form, however, is strictly related to the "volume" entropy S = k ln Ф( E) via the thermodynamic relation above for systems of any number of degrees of freedom ( Ф( E) is the phase space volume enclosed by the constant-energy surface). This observation explains and clarifies the numerical results of Bianucci et al., and shows that a dynamical correction for either the temperature or the entropy is unnecessary, at least within the class of systems considered by those authors. Explicit analytical and numerical results for a particle coupled to a small chain ( N~10) of quartic oscillators are also provided to further illustrate these facts.

  14. Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.

    Science.gov (United States)

    Frejlich, Pedro; Mărcuț, Ioan

    2018-01-01

    Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.

  15. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.

    Science.gov (United States)

    Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray

    2015-08-15

    In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.

  16. A semi-implicit augmented IIM for Navier–Stokes equations with open, traction, or free boundary conditions

    Science.gov (United States)

    Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray

    2016-01-01

    In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702

  17. Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media

    International Nuclear Information System (INIS)

    Chaabane, Raoudha; Askri, Faouzi; Ben Nasrallah, Sassi

    2011-01-01

    In this paper, the lattice Boltzmann method (LBM) is applied to solve the energy equation of a transient conduction-radiation heat transfer problem in a two-dimensional cylindrical enclosure filled with an emitting, absorbing and scattering media. The control volume finite element method (CVFEM) is used to obtain the radiative information. To demonstrate the workability of the LBM in conjunction with the CVFEM to conduction-radiation problems in cylindrical media, the energy equation of the same problem is also solved using the finite difference method (FDM). The effects of different parameters, such as the grid size, the scattering albedo, the extinction coefficient and the conduction-radiation parameter on temperature distribution within the medium are studied. Results of the present work are compared with those available in the literature. LBM-CVFEM results are also compared with those given by the FDM-CVFEM. In all cases, good agreement has been obtained.

  18. Central moments of ion implantation distributions derived by the backward Boltzmann transport equation compared with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.

    1992-01-01

    In this paper we study solutions to the backward Boltzmann transport equation (BBTE) specialized to equations governing moments of the distribution of ions implanted into amorphous targets. A central moment integral equation set has been derived starting from the classical plane source BBTE for non-central moments. A full generator equation is provided to allow construction of equation sets of an arbitrary size, thus allowing computation of moments of arbitrary order. A BBTE solver program has been written that uses the residual correction technique proposed by Winterbon. A simple means is presented to allow direct incorporation of Biersack's two-parameter ''magic formula'' into a BBTE solver program. Results for non-central and central moment integral equation sets are compared with Monte Carlo simulations, using three different formulae for the mean free flight path between collisions. Comparisons are performed for the ions B and As, implanted into the target a-Si, over the energy range 1 keV-1 MeV. The central moment integral equation set is found to have superior convergence properties to the non-central moment equation set. For As ions implanted into a-Si, at energies below ∼ 30 keV, significant differences are observed, for third- and fourth-order moments, when using alternative versions for the mean free flight path. Third- and fourth-order moments derived using one- and two-parameter scattering mechanisms also show significant differences over the same energy range. (Author)

  19. The transverse Poisson's ratio of composites.

    Science.gov (United States)

    Foye, R. L.

    1972-01-01

    An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material.

  20. On Poisson functions

    OpenAIRE

    Terashima, Yuji

    2008-01-01

    In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures.

  1. The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)

  2. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  3. The value of continuity: Refined isogeometric analysis and fast direct solvers

    KAUST Repository

    Garcia, Daniel

    2016-08-26

    We propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce . C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method

  4. The value of continuity: Refined isogeometric analysis and fast direct solvers

    KAUST Repository

    Garcia, Daniel; Pardo, David; Dalcin, Lisandro; Paszyński, Maciej; Collier, Nathan; Calo, Victor M.

    2016-01-01

    We propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce . C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method

  5. APBSmem: a graphical interface for electrostatic calculations at the membrane.

    Directory of Open Access Journals (Sweden)

    Keith M Callenberg

    2010-09-01

    Full Text Available Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.

  6. Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Moeller, Knut; Soleimani, Manuchehr

    2015-01-01

    This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT. (paper)

  7. On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary Conditions

    KAUST Repository

    Settle, Sean O.; Douglas, Craig C.; Kim, Imbunm; Sheen, Dongwoo

    2013-01-01

    - and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make

  8. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  9. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  10. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei

    2012-05-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  11. Ludwig Boltzmann, mechanics and vitalism

    International Nuclear Information System (INIS)

    Broda, E.

    1990-01-01

    During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought, of morality, of the sense of beauty, and of

  12. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  13. The Poisson-exponential regression model under different latent activation schemes

    OpenAIRE

    Louzada, Francisco; Cancho, Vicente G; Barriga, Gladys D.C

    2012-01-01

    In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activationschemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Infer...

  14. Nonhomogeneous fractional Poisson processes

    International Nuclear Information System (INIS)

    Wang Xiaotian; Zhang Shiying; Fan Shen

    2007-01-01

    In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)

  15. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  16. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn

    2010-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  17. Ludwig Boltzmann - pioneer of atomistics and evolution

    International Nuclear Information System (INIS)

    Stiller, W.

    1986-01-01

    At first a short introduction to Ludwig Boltzmann's life (1844 - 1906) and work is given. Some theoretical results of his work (H-theorem, classical Boltzmann statistics, Boltzmann's kinetic equation) are treated in detail. His experimental work is briefly discussed. In addition Boltzmann's philosophical work is characterized. Finally, the influence of Boltzmann's ideas on our time is investigated. (author)

  18. Infinitesimal deformations of Poisson bi-vectors using the Kontsevich graph calculus

    Science.gov (United States)

    Buring, Ricardo; Kiselev, Arthemy V.; Rutten, Nina

    2018-02-01

    Let \\mathscr{P} be a Poisson structure on a finite-dimensional affine real manifold. Can \\mathscr{P} be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach - with respect to all affine Poisson manifolds - to finding a class of solutions to this deformation problem. For that reasoning, several types of graphs are needed. In this paper we outline the algorithms to generate those graphs. The graphs that encode deformations are classified by the number of internal vertices k; for k ≤ 4 we present all solutions of the deformation problem. For k ≥ 5, first reproducing the pentagon-wheel picture suggested at k = 6 by Kontsevich and Willwacher, we construct the heptagon-wheel cocycle that yields a new unique solution without 2-loops and tadpoles at k = 8.

  19. Soft network materials with isotropic negative Poisson's ratios over large strains.

    Science.gov (United States)

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  20. Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Bertrand Lods

    2015-06-01

    Full Text Available Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set Ɛ of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if Ɛ is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyze the Boltzmann operator in the geometric setting from the point of its Maxwell’s weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts, i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyvärinen divergence. This requires us to generalize our approach to Orlicz–Sobolev spaces to include derivatives.

  1. Effective thermal conductivity estimate of heterogenous media by a lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Arab, M.R.; Pateyron, B.; El Ganaoui, M.; Labbe, J.C. [Limoges Univ., Limoges (France). Science des Procedes Ceramiques et de Traitements de Surface

    2009-07-01

    Statistical lattice Boltzmann methods (LBM) are often used to simulate isothermal fluid flow for problems with complex geometry or porous structures. This study used an LBM algorithm to evaluate the effective thermal conductivity (ETC) of simple 2-D configurations. The LBM algorithm was also used to estimate the ECT of a porous structure. The Bhatnagar-Gross-Krook approximation was used to determine the discrete form of the Boltzmann equation for a single phase flow. A comparison with the finite element method (FEM) was also conducted. Results of the study demonstrated that the LBM algorithm accurately simulates the phenomena of heat and mass transfer for both the simple 2-D configurations as well as the porous media. The tool will be used to determine the influence of thermal contact resistance on heat transfer. 6 refs., 1 tab., 7 figs.

  2. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    International Nuclear Information System (INIS)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-01-01

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable

  3. Mixed Precision Solver Scalable to 16000 MPI Processes for Lattice Quantum Chromodynamics Simulations on the Oakforest-PACS System

    OpenAIRE

    Boku, Taisuke; Ishikawa, Ken-Ichi; Kuramashi, Yoshinobu; Meadows, Lawrence

    2017-01-01

    Lattice Quantum Chromodynamics (Lattice QCD) is a quantum field theory on a finite discretized space-time box so as to numerically compute the dynamics of quarks and gluons to explore the nature of subatomic world. Solving the equation of motion of quarks (quark solver) is the most compute-intensive part of the lattice QCD simulations and is one of the legacy HPC applications. We have developed a mixed-precision quark solver for a large Intel Xeon Phi (KNL) system named "Oakforest-PACS", empl...

  4. Formal equivalence of Poisson structures around Poisson submanifolds

    NARCIS (Netherlands)

    Marcut, I.T.

    2012-01-01

    Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson

  5. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  6. Simulation of the Beam-Beam Effects in e+e- Storage Rings with a Method of Reducing the Region of Mesh

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2000-08-31

    A highly accurate self-consistent particle code to simulate the beam-beam collision in e{sup +}e{sup -} storage rings has been developed. It adopts a method of solving the Poisson equation with an open boundary. The method consists of two steps: assigning the potential on a finite boundary using the Green's function, and then solving the potential inside the boundary with a fast Poisson solver. Since the solution of the Poisson's equation is unique, the authors solution is exactly the same as the one obtained by simply using the Green's function. The method allows us to select much smaller region of mesh and therefore increase the resolution of the solver. The better resolution makes more accurate the calculation of the dynamics in the core of the beams. The luminosity simulated with this method agrees quantitatively with the measurement for the PEP-II B-factory ring in the linear and nonlinear beam current regimes, demonstrating its predictive capability in detail.

  7. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  8. The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: Development and performance analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria

    2008-01-01

    In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks

  9. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  10. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered....... Electrical neutrality was continuously assured in the model by the inclusion of the Poisson-Boltzmann equation to the system of governing equations. Voltage differences were applied across the sample as boundary conditions in order to evaluate the competition between diffusion and electromigration terms...

  11. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

    International Nuclear Information System (INIS)

    Baker, A.R.

    1982-07-01

    A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

  12. Non-holonomic dynamics and Poisson geometry

    International Nuclear Information System (INIS)

    Borisov, A V; Mamaev, I S; Tsiganov, A V

    2014-01-01

    This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles

  13. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  14. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  15. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...

  16. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag

    This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...

  17. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

    Science.gov (United States)

    Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda

    2007-03-01

    There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

  18. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    Science.gov (United States)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  19. Nonhomogeneous fractional Poisson processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)

    2007-01-15

    In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)

  20. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  1. A finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M

    2008-01-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium

  2. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  3. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei

    2012-03-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  4. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  5. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    Science.gov (United States)

    Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.

  6. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    International Nuclear Information System (INIS)

    Zergani, Sara; Aziz, Z A; Viswanathan, K K

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory

  7. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    Science.gov (United States)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  8. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  9. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  10. Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio

    International Nuclear Information System (INIS)

    Kocer, C.; McKenzie, D.R.; Bilek, M.M.

    2009-01-01

    The theory of elasticity predicts a variety of phenomena associated with solids that possess a negative Poisson's ratio. The fabrication of metamaterials with a 'designed' microstructure that exhibit a Poisson's ratio approaching the thermodynamic limits of 1/2 and -1 increases the likelihood of realising these phenomena for applications. In this work, we investigate the properties of a layered composite, with alternating layers of materials with negative and positive Poisson's ratio approaching the thermodynamic limits. Using the finite element method to simulate uniaxial loading and indentation of a free standing composite, we observed an increase in the resistance to mechanical deformation above the average value of the two materials. Even though the greatest increase in stiffness is gained as the thermodynamic limits are approached, a significant amount of added stiffness can be attained, provided that the Young's modulus of the negative Poisson's ratio material is not less than that of the positive Poisson's ratio material

  11. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  12. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  13. Development of a 2-D Simplified P3 FEM Solver for Arbitrary Geometry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Joo, Han Gyu [Seoul National University, Seoul (Korea, Republic of)

    2010-10-15

    In the calculation of power distributions and multiplication factors in a nuclear reactor, the Finite Difference Method (FDM) and the nodal methods are primarily used. These methods are, however, limited to particular geometries and lack general application involving arbitrary geometries. The Finite Element Method (FEM) can be employed for arbitrary geometry application and there are numerous FEM codes to solve the neutron diffusion equation or the Sn transport equation. The diffusion based FEM codes have the drawback of inferior accuracy while the Sn based ones require a considerable computing time. This work here is to seek a compromise between these two by employing the simplified P3 (SP3) method for arbitrary geometry applications. Sufficient accuracy with affordable computing time and resources would be achieved with this choice of approximate transport solution when compared to full FEM based Pn or Sn solutions. For now only 2-D solver is considered

  14. Group foliation of finite difference equations

    Science.gov (United States)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  15. Effects of high-frequency damping on iterative convergence of implicit viscous solver

    Science.gov (United States)

    Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko

    2017-11-01

    This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.

  16. Java Based Symbolic Circuit Solver For Electrical Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Ruba Akram Amarin

    2012-11-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida (UCF, introduces a paradigm shift by replacing the traditional electrical engineering course with topic-driven modules that provide a useful tool for engineers and scientists. The TechEBook comprises the two worlds of classical circuit books and interactive operating platforms such as iPads, laptops and desktops. The TechEBook provides an interactive applets screen that holds many modules, each of which has a specific application in the self learning process. This paper describes one of the interactive techniques in the TechEBook known as Symbolic Circuit Solver (SymCirc. The SymCirc develops a versatile symbolic based linear circuit with a switches solver. The solver works by accepting a Netlist and the element that the user wants to find the voltage across or current on, as input parameters. Then it either produces the plot or the time domain expression of the output. Frequency domain plots or Symbolic Transfer Functions are also produced. The solver gets its input from a Web-based GUI circuit drawer developed at UCF. Typical simulation tools that electrical engineers encounter are numerical in nature, that is, when presented with an input circuit they iteratively solve the circuit across a set of small time steps. The result is represented as a data set of output versus time, which can be plotted for further inspection. Such results do not help users understand the ultimate nature of circuits as Linear Time Invariant systems with a finite dimensional basis in the solution space. SymCirc provides all simulation results as time domain expressions composed of the basic functions that exclusively include exponentials, sines, cosines and/or t raised to any power. This paper explains the motivation behind SymCirc, the Graphical User Interface front end and how the solver actually works. The paper also presents some examples and

  17. PARMELAB: a new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    International Nuclear Information System (INIS)

    Koltenbah, B.E.C.; Parazzoli, Claudio G.; Greegor, Robert B.; Dowell, David H.

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR and SC. For the CSR calculations, the macro-particles are further combined into macro-particle-bins that follow the central trajectory of the bend. The energy change through the time step is calculated from expressions derived from the Lienard-Wiechart formulae, and from this energy change the particle's momentum is updated. For the SC calculations, we maintain the same rest-frame-electrostatic approach of the original PARMELA; however, we employ a finite difference Poisson equation solver instead of the symmetrical ring algorithm of the original code. In this way, we relax the symmetry assumptions in the original code. This method is based upon standard numerical procedures and conserves momentum to first order. The SC computational grid is adaptive and conforms to the size of the pulse as it evolves through the calculation. We provide descriptions of these two algorithms, validation comparisons with other CSR and SC methods, and a limited comparison with

  18. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  19. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Implementation of a high performance parallel finite element micromagnetics package

    International Nuclear Information System (INIS)

    Scholz, W.; Suess, D.; Dittrich, R.; Schrefl, T.; Tsiantos, V.; Forster, H.; Fidler, J.

    2004-01-01

    A new high performance scalable parallel finite element micromagnetics package has been implemented. It includes solvers for static energy minimization, time integration of the Landau-Lifshitz-Gilbert equation, and the nudged elastic band method

  1. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  2. Topological Poisson Sigma models on Poisson-Lie groups

    International Nuclear Information System (INIS)

    Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David

    2003-01-01

    We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)

  3. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  4. Density of states, Poisson's formula of summation and Walfisz's formula

    International Nuclear Information System (INIS)

    Fucho, P.

    1980-06-01

    Using Poisson's formula for summation, we obtain an expression for density of states of d-dimensional scalar Helmoholtz's equation under various boundary conditions. Likewise, we also obtain formulas of Walfisz's type. It becomes evident that the formulas obtained by Pathria et al. in connection with ideal bosons in a finite system are exactly the same as those obtained by utilizing the formulas for density of states. (author)

  5. Analysis of IDR(s Family of Solvers for Reservoir Simulations on Different Parallel Architectures

    Directory of Open Access Journals (Sweden)

    Seignole Vincent

    2016-09-01

    Full Text Available The present contribution consists in providing a detailed analysis of several realizations of the IDR(s family of solvers, under different facets: robustness, performance and implementation on different parallel environments in regards of sequential IDR(s resolution implementation tested through several industrial geologically and structurally coherent 3D-field case reservoir models. This work is the result of continuous efforts towards time-response improvement of Storengy’s reservoir three-dimensional simulator named Multi, dedicated to gas-storage applications.

  6. Stability of nonlinear Vlasov-Poisson equilibria through spectral deformation and Fourier-Hermite expansion.

    Science.gov (United States)

    Siminos, Evangelos; Bénisti, Didier; Gremillet, Laurent

    2011-05-01

    We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, N. When the advection term in the Vlasov equation is dominant, the convergence with N of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced by Crawford and Hislop [Ann. Phys. (NY) 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase-space vortices, compare our results with numerical simulations of the Vlasov-Poisson system, and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed. © 2011 American Physical Society

  7. Poisson distribution

    NARCIS (Netherlands)

    Hallin, M.; Piegorsch, W.; El Shaarawi, A.

    2012-01-01

    The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that

  8. A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation

    International Nuclear Information System (INIS)

    Houtman, H.; Kost, C.J.

    1983-09-01

    RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ 2 =p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc

  9. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  10. Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates

    Science.gov (United States)

    Vogman, Genia

    Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space

  11. An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm

    International Nuclear Information System (INIS)

    Das, Ranjan; Mishra, Subhash C.; Ajith, M.; Uppaluri, R.

    2008-01-01

    This article deals with the simultaneous estimation of parameters in a 2-D transient conduction-radiation heat transfer problem. The homogeneous medium is assumed to be absorbing, emitting and scattering. The boundaries of the enclosure are diffuse gray. Three parameters, viz. the scattering albedo, the conduction-radiation parameter and the boundary emissivity, are simultaneously estimated by the inverse method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM) in conjunction with the genetic algorithm (GA). In the direct method, the FVM is used for computing the radiative information while the LBM is used to solve the energy equation. The temperature field obtained in the direct method is used in the inverse method for simultaneous estimation of unknown parameters using the LBM-FVM and the GA. The LBM-FVM-GA combination has been found to accurately predict the unknown parameters

  12. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    International Nuclear Information System (INIS)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-01-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter–Gummel scheme to non-Boltzmann (e.g. Fermi–Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  13. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  14. On some Aitken-like acceleration of the Schwarz method

    Science.gov (United States)

    Garbey, M.; Tromeur-Dervout, D.

    2002-12-01

    In this paper we present a family of domain decomposition based on Aitken-like acceleration of the Schwarz method seen as an iterative procedure with a linear rate of convergence. We first present the so-called Aitken-Schwarz procedure for linear differential operators. The solver can be a direct solver when applied to the Helmholtz problem with five-point finite difference scheme on regular grids. We then introduce the Steffensen-Schwarz variant which is an iterative domain decomposition solver that can be applied to linear and nonlinear problems. We show that these solvers have reasonable numerical efficiency compared to classical fast solvers for the Poisson problem or multigrids for more general linear and nonlinear elliptic problems. However, the salient feature of our method is that our algorithm has high tolerance to slow network in the context of distributed parallel computing and is attractive, generally speaking, to use with computer architecture for which performance is limited by the memory bandwidth rather than the flop performance of the CPU. This is nowadays the case for most parallel. computer using the RISC processor architecture. We will illustrate this highly desirable property of our algorithm with large-scale computing experiments.

  15. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  16. The Boltzmann project

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.

    2018-04-01

    The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649  ×  10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7  ×  10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.

  17. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  18. Poisson Autoregression

    DEFF Research Database (Denmark)

    Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag

    2009-01-01

    In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...

  19. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  20. Finite difference techniques for nonlinear hyperbolic conservation laws

    International Nuclear Information System (INIS)

    Sanders, R.

    1985-01-01

    The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references

  1. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  2. A finite element perspective on nonlinear FFT-based micromechanical simulations

    NARCIS (Netherlands)

    Zeman, J.; de Geus, T.W.J.; Vondrejc, J.; Peerlings, R.H.J.; Geers, M.G.D.

    2017-01-01

    Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the Finite Element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency

  3. Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version

    KAUST Repository

    Niemi, Antti; Babuška, Ivo M.; Pitkä ranta, Juhani; Demkowicz, Leszek F.

    2011-01-01

    elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used

  4. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    Science.gov (United States)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  5. CUDA GPU based full-Stokes finite difference modelling of glaciers

    Science.gov (United States)

    Brædstrup, C. F.; Egholm, D. L.

    2012-04-01

    Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.

  6. The electric double layer at a metal electrode in pure water

    Science.gov (United States)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  7. A node-centered local refinement algorithm for poisson's equation in complex geometries

    International Nuclear Information System (INIS)

    McCorquodale, Peter; Colella, Phillip; Grote, David P.; Vay, Jean-Luc

    2004-01-01

    This paper presents a method for solving Poisson's equation with Dirichlet boundary conditions on an irregular bounded three-dimensional region. The method uses a nodal-point discretization and adaptive mesh refinement (AMR) on Cartesian grids, and the AMR multigrid solver of Almgren. The discrete Laplacian operator at internal boundaries comes from either linear or quadratic (Shortley-Weller) extrapolation, and the two methods are compared. It is shown that either way, solution error is second order in the mesh spacing. Error in the gradient of the solution is first order with linear extrapolation, but second order with Shortley-Weller. Examples are given with comparison with the exact solution. The method is also applied to a heavy-ion fusion accelerator problem, showing the advantage of adaptivity

  8. CMB spectral distortions as solutions to the Boltzmann equations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Atsuhisa, E-mail: a.ota@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2017-01-01

    We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions to the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.

  9. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  10. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  11. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    Energy Technology Data Exchange (ETDEWEB)

    Markovik, A.

    2005-09-28

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  12. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    International Nuclear Information System (INIS)

    Markovik, A.

    2005-01-01

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  13. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the instant code

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Rabiti, Cristian; Palmiotti, Giuseppe, E-mail: yaqi.wang@inl.gov, E-mail: cristian.rabiti@inl.gov, E-mail: giuseppe.palmiotti@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2011-07-01

    This paper proposes a new set of Krylov solvers, CG and GMRes, as an alternative of the Red-Black (RB) algorithm on on solving the steady-state one-speed neutron transport equation discretized with PN in angle and hybrid FEM (Finite Element Method) in space. A pre conditioner with the low-order RB iteration is designed to improve their convergence. These Krylov solvers can reduce the cost of pre-assembling the response matrices greatly. Numerical results with the INSTANT code are presented in order to show that they can be a good supplement on solving the PN-HFEM system. (author)

  14. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the instant code

    International Nuclear Information System (INIS)

    Wang, Yaqi; Rabiti, Cristian; Palmiotti, Giuseppe

    2011-01-01

    This paper proposes a new set of Krylov solvers, CG and GMRes, as an alternative of the Red-Black (RB) algorithm on on solving the steady-state one-speed neutron transport equation discretized with PN in angle and hybrid FEM (Finite Element Method) in space. A pre conditioner with the low-order RB iteration is designed to improve their convergence. These Krylov solvers can reduce the cost of pre-assembling the response matrices greatly. Numerical results with the INSTANT code are presented in order to show that they can be a good supplement on solving the PN-HFEM system. (author)

  15. Generalized Stefan-Boltzmann Law

    Science.gov (United States)

    Montambaux, Gilles

    2018-03-01

    We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.

  16. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  17. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach

    Science.gov (United States)

    Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre

    2017-08-01

    This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.

  18. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  19. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  20. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

    KAUST Repository

    Efendiev, Y.

    2012-08-01

    In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards\\' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results. © 2012 Global-Science Press.

  1. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    Science.gov (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  2. Poisson processes

    NARCIS (Netherlands)

    Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.

    2007-01-01

    The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the

  3. Iterative solvers in forming process simulations

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Rietman, Bert; Huetink, Han

    1998-01-01

    The use of iterative solvers in implicit forming process simulations is studied. The time and memory requirements are compared with direct solvers and assessed in relation with the rest of the Newton-Raphson iteration process. It is shown that conjugate gradient{like solvers with a proper

  4. A finite element primer for beginners the basics

    CERN Document Server

    Zohdi, Tarek I

    2014-01-01

    The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th

  5. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  6. A finite element perspective on non-linear FFT-based micromechanical simulations

    NARCIS (Netherlands)

    Zeman, J.; de Geus, T.W.J.; Vondřejc, J.; Peerlings, R.H.J.; Geers, M.G.D.

    2016-01-01

    Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the Finite Element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency

  7. Nambu–Poisson gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)

    2014-06-02

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  8. Nambu–Poisson gauge theory

    International Nuclear Information System (INIS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-01-01

    We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.

  9. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  10. Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version

    KAUST Repository

    Niemi, Antti

    2011-06-03

    We perform finite element analysis of the so called Girkmann problem in structural mechanics. The problem involves an axially symmetric spherical shell stiffened with a foot ring and is approached (1) by using the axisymmetric formulation of linear elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used in the second approach. We study the convergence behaviour of the different numerical models and show that accurate stress resultants can be obtained with both models by using effective post-processing formulas. © Springer-Verlag London Limited 2011.

  11. Perbandingan Regresi Binomial Negatif dan Regresi Conway-Maxwell-Poisson dalam Mengatasi Overdispersi pada Regresi Poisson

    Directory of Open Access Journals (Sweden)

    Lusi Eka Afri

    2017-03-01

    Full Text Available Regresi Binomial Negatif dan regresi Conway-Maxwell-Poisson merupakan solusi untuk mengatasi overdispersi pada regresi Poisson. Kedua model tersebut merupakan perluasan dari model regresi Poisson. Menurut Hinde dan Demetrio (2007, terdapat beberapa kemungkinan terjadi overdispersi pada regresi Poisson yaitu keragaman hasil pengamatan keragaman individu sebagai komponen yang tidak dijelaskan oleh model, korelasi antar respon individu, terjadinya pengelompokan dalam populasi dan peubah teramati yang dihilangkan. Akibatnya dapat menyebabkan pendugaan galat baku yang terlalu rendah dan akan menghasilkan pendugaan parameter yang bias ke bawah (underestimate. Penelitian ini bertujuan untuk membandingan model Regresi Binomial Negatif dan model regresi Conway-Maxwell-Poisson (COM-Poisson dalam mengatasi overdispersi pada data distribusi Poisson berdasarkan statistik uji devians. Data yang digunakan dalam penelitian ini terdiri dari dua sumber data yaitu data simulasi dan data kasus terapan. Data simulasi yang digunakan diperoleh dengan membangkitkan data berdistribusi Poisson yang mengandung overdispersi dengan menggunakan bahasa pemrograman R berdasarkan karakteristik data berupa , peluang munculnya nilai nol (p serta ukuran sampel (n. Data dibangkitkan berguna untuk mendapatkan estimasi koefisien parameter pada regresi binomial negatif dan COM-Poisson.   Kata Kunci: overdispersi, regresi binomial negatif, regresi Conway-Maxwell-Poisson Negative binomial regression and Conway-Maxwell-Poisson regression could be used to overcome over dispersion on Poisson regression. Both models are the extension of Poisson regression model. According to Hinde and Demetrio (2007, there will be some over dispersion on Poisson regression: observed variance in individual variance cannot be described by a model, correlation among individual response, and the population group and the observed variables are eliminated. Consequently, this can lead to low standard error

  12. Soft-Deep Boltzmann Machines

    OpenAIRE

    Kiwaki, Taichi

    2015-01-01

    We present a layered Boltzmann machine (BM) that can better exploit the advantages of a distributed representation. It is widely believed that deep BMs (DBMs) have far greater representational power than its shallow counterpart, restricted Boltzmann machines (RBMs). However, this expectation on the supremacy of DBMs over RBMs has not ever been validated in a theoretical fashion. In this paper, we provide both theoretical and empirical evidences that the representational power of DBMs can be a...

  13. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  14. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    Science.gov (United States)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  15. 3D finite element simulation of optical modes in VCSELs

    OpenAIRE

    Rozova, M.; Pomplun, J.; Zschiedrich, L.; Schmidt, F.; Burger, S.

    2011-01-01

    We present a finite element method (FEM) solver for computation of optical resonance modes in VCSELs. We perform a convergence study and demonstrate that high accuracies for 3D setups can be attained on standard computers. We also demonstrate simulations of thermo-optical effects in VCSELs.

  16. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  17. Joint Training of Deep Boltzmann Machines

    OpenAIRE

    Goodfellow, Ian; Courville, Aaron; Bengio, Yoshua

    2012-01-01

    We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.

  18. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    Science.gov (United States)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  19. Standard Model Extension and Casimir effect for fermions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Department of Physics, University of Alberta, T6J 2J1, Edmonton, Alberta (Canada)

    2016-11-10

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  20. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…