WorldWideScience

Sample records for finite unification theory

  1. Finite Unification: Theory, Models and Predictions

    CERN Document Server

    Heinemeyer, S; Zoupanos, G

    2011-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...

  2. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  3. Grand unification theory and technicolor

    International Nuclear Information System (INIS)

    Rubakov, V.A.; Shaposhnikov, M.E.

    1983-01-01

    The lecture course can be considered as introduction to the problems concerning grand unification models. The course is incomplete. Such problems as CP-violations in strong interactions and the problem of gravitational interaction inclusion in the scheme of grand unification theory are not touched upon. Models of early unification, in which strong, weak and electromagnetic interactions are compared according to the ''strength'' at energies of about 10 5 -10 6 GeV, are not discussed. Models with horizontal symmetry, considering different generations of quarks and leptons from one viewpoint, are not analyzed. Cosmological applications of supersymmetric unified theories are not considered. Certain problems of standard elementary particle theory, philosophy of the great unification, general properties of the grand unification models and the main principles of the construction of models: the SU(5) model, models on the SO(10) groups, have been considered. The problem of supersymmetric unification hierarchies, supersymmetric generalization of the minimum SU(5) model, supersymmetry violation and the problem of hierarchies, phenomenology of the o.rand unification models, cosmological application and technicolour, are discussed

  4. Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories

    International Nuclear Information System (INIS)

    Tobe, Kazuhiro; Wells, James D.

    2003-01-01

    Third family Yukawa unification, as suggested by minimal SO(10) unification, is revisited in light of recent experimental measurements and theoretical progress. We characterize unification in a semi-model-independent fashion, and conclude that finite b quark mass corrections from superpartners must be non-zero, but much smaller than naively would be expected. We show that a solution that does not require cancellations of dangerously large tanβ effects in observables implies that scalar superpartner masses should be substantially heavier than the Z scale, and perhaps inaccessible to all currently approved colliders. On the other hand, gauginos must be significantly lighter than the scalars. We demonstrate that a spectrum of anomaly-mediated gaugino masses and heavy scalars works well as a theory compatible with third family Yukawa unification and dark matter observations

  5. From chaos to unification: U theory vs. M theory

    International Nuclear Information System (INIS)

    Ye, Fred Y.

    2009-01-01

    A unified physical theory called U theory, that is different from M theory, is defined and characterized. U theory, which includes spinor and twistor theory, loop quantum gravity, causal dynamical triangulations, E-infinity unification theory, and Clifford-Finslerian unifications, is based on physical tradition and experimental foundations. In contrast, M theory pays more attention to mathematical forms. While M theory is characterized by supersymmetry string theory, U theory is characterized by non-supersymmetry unified field theory.

  6. Unification beyond GUT's: Gauge-Yukawa unification

    International Nuclear Information System (INIS)

    Kubo, J.; Mondragon, M.; Zoupanos, G.

    1996-01-01

    Gauge-Yukawa Unification (GYU) is a renormalization group invariant functional relation among gauge and Yukawa couplings which holds beyond the unification point in Grand Unified Theories (GUTs). We present here various models where GYU is obtained by requiring the principles of finiteness and reduction of couplings. We examine the consequences of these requirements for the low energy parameters, especially for the top quark mass. The predictions are such that they clearly distinguish already GYU from ordinary GUTs. It is expected that it will be possible to discriminate among the various GYUs when more accurate measurements of the top quark mass are available. (author)

  7. Effective Higgs theories in supersymmetric grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)

  8. M theory: a possible unification of physics laws

    International Nuclear Information System (INIS)

    Fernandes, Alexandre da Silva; Silva, Diego Oliveira Nolasco da; Sousa, Claudio Manoel Gomes de

    2011-01-01

    Full text: Physics has two pillars which are mutually incompatible: quantum field theory and general relativity theory. Throughout its history, various unifications have been made, and in attempts to have a better understanding of the birth and formation of the Universe is also necessary to unify these pillars. This unification may require 11 dimensions, and 6 of them are compressed so that it cannot be seen with existing instruments. These dimensions are the spaces in which the strings vibrate, and each mode of vibration corresponds to a particle. The last dimension shows that the universe is a brane, it is in full motion in the multiverse and the collision of two branes can answer the biggest problem of cosmology: what was the Big Bang? Black holes can be explained using a theory that contains gravity and quantum mechanics. The theory is still being developed, some problems are being solved and the main one is the experimental problem, because it requires energy levels that are not yet achieved by current particle accelerators. This work presents M theory as a possibility of unification between the micro and macro, which maybe leading us to the theory of everything. (author)

  9. M theory: a possible unification of physics laws

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Alexandre da Silva; Silva, Diego Oliveira Nolasco da; Sousa, Claudio Manoel Gomes de [Universidade Catolica de Brasilia (UCB), DF (Brazil)

    2011-07-01

    Full text: Physics has two pillars which are mutually incompatible: quantum field theory and general relativity theory. Throughout its history, various unifications have been made, and in attempts to have a better understanding of the birth and formation of the Universe is also necessary to unify these pillars. This unification may require 11 dimensions, and 6 of them are compressed so that it cannot be seen with existing instruments. These dimensions are the spaces in which the strings vibrate, and each mode of vibration corresponds to a particle. The last dimension shows that the universe is a brane, it is in full motion in the multiverse and the collision of two branes can answer the biggest problem of cosmology: what was the Big Bang? Black holes can be explained using a theory that contains gravity and quantum mechanics. The theory is still being developed, some problems are being solved and the main one is the experimental problem, because it requires energy levels that are not yet achieved by current particle accelerators. This work presents M theory as a possibility of unification between the micro and macro, which maybe leading us to the theory of everything. (author)

  10. SU(5) finite unified theories and the mass of the top quark

    International Nuclear Information System (INIS)

    Mondragon, M.; Zoupanos, G.

    1994-01-01

    We present results of a study of phenomenologically interesting SU(5) supersymmetric GUT's, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide the spontaneously broken theory with relationships among the Yukawa and gauge couplings at the unification point. These in turn predict a heavy top quark mass (∼175-190 GeV). (orig.)

  11. Introduction to grand unification theories

    International Nuclear Information System (INIS)

    Kang, Kyungsik

    1980-01-01

    We introduce the Georgi-Glashow model based on the minimal gauge group SU(5) as a prototype grand unification theory of the electroweak and strong interactions. Simple estimation of sin 2 thetasub(W) in the symmetry limit and the renormalization corrections at the energy scale of Msub(W) are given along wich other successes of the SU(5) model

  12. Gauge coupling unification from unified theories in higher dimensions

    International Nuclear Information System (INIS)

    Hall, Lawrence J.; Nomura, Yasunori

    2002-01-01

    Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification--even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, α s exp =0.117±0.002, occurs only for a unique theory, and gives α s KK =0.118±0.004±0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, α s SGUT =0.130±0.004±Δ SGUT . There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m b /m τ relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10 17 GeV and 10 15 GeV, respectively

  13. Reduction of Couplings: Applications in Finite Theories and the MSSM

    CERN Document Server

    Mondragón, Myriam; Tracas, Nick; Zoupanos, George

    2017-01-01

    The method of reduction of couplings is applied to a Finite Unified Theory and in the MSSM.We search for renormalization group invariant relations among couplings of a renormalizable theory which holds to all orders in perturbation theory. The method leads to relations, at the unification scale, between gauge and Yukawa couplings (in the dimensionless sectors of the theory) and relations among the couplings of the trilinear terms and the Yukawa couplings, as well as a sum rule among the scalar masses and the gaugino mass (in the soft breaking sector). In the Finite Unified Theory model we predict, with remarkable agreement with the experiment, the masses of the top and bottom quarks while our predictions for the light Higgs mass and the rest supersymmetric spectrum masses are in comfortable agreement with the LHC bounds on Higgs and supersymmetric particles. In the case of the reduced MSSM the predictions are less successful but recent improvements in the code used to calculate the Higgs masses give promises ...

  14. Finite and Gauge-Yukawa unified theories: Theory and predictions

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kubo, J.; Mondragon, M.; Zoupanos, G.

    1999-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the β- functions in certain N=1 supersymmetric GUTS even to all orders. Recent developments in the soft supersymmetry breaking (SSB) sector of N=1 GUTs and FUTs lead to exact RGI relations also in this sector of the theories. Of particular interest is a RGI sum rule for the soft scalar masses holding to all orders. The characteristic features of SU(5) models that have been constructed based on the above tools are: a) the old agreement of the top quark prediction with the measured value remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV

  15. Direct mediation, duality and unification

    International Nuclear Information System (INIS)

    Abel, Steven; Khoze, Valentin V.

    2008-01-01

    It is well-known that in scenarios with direct gauge mediation of supersymmetry breaking the messenger fields significantly affect the running of Standard Model couplings and introduce Landau poles which are difficult to avoid. Among other things, this appears to remove any possibility of a meaningful unification prediction and is often viewed as a strong argument against direct mediation. We propose two ways that Seiberg duality can circumvent this problem. In the first, which we call 'deflected-unification', the SUSY-breaking hidden sector is a magnetic theory which undergoes a Seiberg duality to an electric phase. Importantly, the electric version has fewer fundamental degrees of freedom coupled to the MSSM compared to the magnetic formulation. This changes the β-functions of the MSSM gauge couplings so as to push their Landau poles above the unification scale. We show that this scenario is realised for recently suggested models of gauge mediation based on a metastable SCQD-type hidden sector directly coupled to MSSM. The second possibility for avoiding Landau poles, which we call 'dual-unification', begins with the observation that, if the mediating fields fall into complete SU(5) multiplets, then the MSSM+messengers exhibits a fake unification at unphysical values of the gauge couplings. We show that, in known examples of electric/magnetic duals, such a fake unification in the magnetic theory reflects a real unification in the electric theory. We therefore propose that the Standard Model could itself be a magnetic dual of some unknown electric theory in which the true unification takes place. This scenario maintains the unification prediction (and unification scale) even in the presence of Landau poles in the magnetic theory below the GUT scale. We further note that this dual realization of grand unification can explain why Nature appears to unify, but the proton does not decay.

  16. Unification predictions

    International Nuclear Information System (INIS)

    Ghilencea, D.; Ross, G.G.; Lanzagorta, M.

    1997-07-01

    The unification of gauge couplings suggests that there is an underlying (supersymmetric) unification of the strong, electromagnetic and weak interactions. The prediction of the unification scale may be the first quantitative indication that this unification may extend to unification with gravity. We make a precise determination of these predictions for a class of models which extend the multiplet structure of the Minimal Supersymmetric Standard Model to include the heavy states expected in many Grand Unified and/or superstring theories. We show that there is a strong cancellation between the 2-loop and threshold effects. As a result the net effect is smaller than previously thought, giving a small increase in both the unification scale and the value of the strong coupling at low energies. (author). 15 refs, 5 figs

  17. Quantum gravity unification via transfinite arithmetic and geometrical averaging

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    In E-Infinity theory, we have not only infinitely many dimensions but also infinitely many fundamental forces. However, due to the hierarchical structure of ε (∞) spacetime we have a finite expectation number for its dimensionality and likewise a finite expectation number for the corresponding interactions. Starting from the preceding fundamental principles and using the experimental findings as well as the theoretical value of the coupling constants of the electroweak and the strong forces we present an extremely simple averaging procedure for determining the quantum gravity unification coupling constant with and without super symmetry. The work draws heavily on previous results, in particular a paper, by the Slovian Prof. Marek-Crnjac [Marek-Crnjac L. On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε (∞) manifold and high energy physics. Chaos, Solitons and Fractals 2004;4:657-68

  18. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  19. Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings

    International Nuclear Information System (INIS)

    Kubo, J.

    1995-01-01

    Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC

  20. Local grand unification and string theory

    International Nuclear Information System (INIS)

    Nilles, Hans Peter; Vaudrevange, Patrick K.S.

    2009-09-01

    The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)

  1. Grand Unification as a Bridge Between String Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Jogesh C.

    2006-06-09

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  2. Grand Unification as a Bridge Between String Theory and Phenomenology

    Science.gov (United States)

    Pati, Jogesh C.

    In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  3. Grand Unification as a Bridge Between String Theory and Phenomenology

    International Nuclear Information System (INIS)

    Pati, J

    2006-01-01

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2) L x SU(2) R x SU(4) c or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism

  4. Phase transitions at finite chemical potential in grand unified theories

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1984-01-01

    We discuss the circumstances in which non-zero chemical potentials might prevent symmetry restoration in phase transitions in the early universe at grand unification or partial unification scales. The general arguments are illustrated by consideration of SO(10) and SU(5) grand unified theories. (orig.)

  5. Study of theory and phenomenology of some classes of family symmetry and unification models

    International Nuclear Information System (INIS)

    Kane, Gordon L.; King, Steve F.; Peddie, Iain N.R.; Velasco-Sevilla, Liliana

    2005-01-01

    We review and compare theoretically and phenomenologically a number of possible family symmetries, which when combined with unification, could be important in explaining quark, lepton and neutrino masses and mixings, providing new results in several cases. Theoretical possibilities include abelian or non-abelian, symmetric or non symmetric Yukawa matrices, Grand Unification or not. Our main focus is on anomaly-free U(1) family symmetry combined with SU(5) unification, although we also discuss other possibilities. We provide a detailed phenomenological fit of the fermion masses and mixings for several examples, and discuss the supersymmetric flavour issues in such theories, including a detailed analysis of lepton flavour violation. We show that it is not possible to quantitatively and decisively discriminate between these different theoretical possibilities at the present time

  6. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  7. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  8. Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1

    International Nuclear Information System (INIS)

    Samokhvalov, S.E.; Vanyashin, V.S.

    1990-12-01

    The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs

  9. Technicolor and Beyond: Unification in Theory Space

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enh......The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount...... supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle...

  10. Grand unification and gravity - selected topics

    International Nuclear Information System (INIS)

    Zee, A.

    1981-09-01

    The material given here was presented in lectures delivered at the 4th Kyoto Summer Institute on Grand Unification and Related Topics. It consists of six sections. The sections are: the family problem, fermion mass hierarchy, maximal local symmetry, operator analysis of new physics, dynamically generated gravity, and Kaluza theory and grand unification. The last section contains a (hopefully) pedagogical introduction to Kaluza theory. For pedagogical completeness, several appendices reviewing some elementary notions of differential geometry have been added

  11. On finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  12. Prospects for further unification

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1983-07-01

    We review the unification of weak and electromagnetic interactions (QAD), the prevalent color gauge theory of the strong interactions (QCD) and attempts to embed both these theories in a further Unified Gauge Theory. We discuss the related advances in cosmology and touch upon other approaches to the understanding of particles and fields. 44 references

  13. Higher-derivative Lee-Wick unification

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2009-01-01

    We consider gauge coupling unification in Lee-Wick extensions of the Standard Model that include higher-derivative quadratic terms beyond the minimally required set. We determine how the beta functions are modified when some Standard Model particles have two Lee-Wick partners. We show that gauge coupling unification can be achieved in such models without requiring the introduction of additional fields in the higher-derivative theory and we comment on possible ultraviolet completions.

  14. Proton hexality in local grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Foerste, Stefan; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics

    2010-07-15

    Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of ''Local Grand Unification'' discussed in the framework of model building in (heterotic) string theory. (orig.)

  15. Unification and geometrization of physics in the cosmological context

    International Nuclear Information System (INIS)

    Heller, M.; Watykanskie Obserwatorium Astronomiczne, Vatican

    1991-01-01

    Einstein belived that a good physical theory should posses an ''inner perfection''. Trace the inner perfection of the present gauge theories by contemplating their geometric structures (in terms of fibre bundles). The search for the ultimate symmetry of the unification of physics unavoidably leads to the unification of physics and cosmology. 4 figs., 23 refs. (author)

  16. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori

    2009-07-31

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.

  17. Psychotherapy Integration via Theoretical Unification

    Directory of Open Access Journals (Sweden)

    Warren W. Tryon

    2017-01-01

    Full Text Available Meaningful psychotherapy integration requires theoretical unification because psychotherapists can only be expected to treat patients with the same diagnoses similarly if they understand these disorders similarly and if they agree on the mechanisms by which effective treatments work. Tryon (in press has proposed a transtheoretic transdiagnostic psychotherapy based on an Applied Psychological Science (APS clinical orientation, founded on a BioPsychology Network explanatory system that provides sufficient theoretical unification to support meaningful psychotherapy integration. That proposal focused mainly on making a neuroscience argument. This article makes a different argument for theoretical unification and consequently psychotherapy integration. The strength of theories of psychotherapy, like all theory, is to focus on certain topics, goals, and methods. But this strength is also a weakness because it can blind one to alternative perspectives and thereby promote unnecessary competition among therapies. This article provides a broader perspective based on learning and memory that is consistent with the behavioral, cognitive, cognitive-behavioral, psychodynamic, pharmacologic, and Existential/Humanistic/Experiential clinical orientations. It thereby provides a basis for meaningful psychotherapy integration.

  18. Toward finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  19. Unification of gauge and gravity Chern-Simons theories in 3-D space-time

    Energy Technology Data Exchange (ETDEWEB)

    Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)

    2017-11-15

    Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)

  20. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  1. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  2. Logarithmic unification from symmetries enhanced in the sub-millimeter infrared

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John

    1999-01-01

    In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10 16 GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification

  3. Unification and supersymmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1991-01-01

    This book deals with some of the latest developments in our attempts to construct a unified theory of the fundamental interactions of nature. Among the topics covered are spontaneous symmetry breaking, grand unified theories, supersymmetry, and supergravity. The book starts with a quick review of elementary particle theory and continues with a discussion of composite quarks, leptons, Higgs bosons, and CP violation; it concludes with consideration of supersymmetric unification schemes, in which bosons and leptons are considered in some sense equivalent. The second edition is updated and corrected and contains new chapters on recent developments

  4. Einstein's dream : the space-time unification of fundamental forces

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A [International Centre for Theoretical Physics, Trieste (Italy)

    1981-06-01

    The historical developments in physics which started with Galileo in the 11th century, Newton in the 17 century, culminated in the unification of space-time by Einstein in this century are traced. The theories put forward by Einstein himself and by subsequent workers in the field after him, regarding the unification of all basic forces of nature (i.e.) the electromagnetic and the gravitational ones and the weak and strong nuclear forces are discussed. The experiments being conducted in Kolar and other places to detect a heavier photon which would be a positive proof of the validity of the unification theory, are touched upon. The possible application of this concept even in industry has been pointed out.

  5. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  6. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  7. Simple unification

    International Nuclear Information System (INIS)

    Ponce, W.A.; Zepeda, A.

    1987-08-01

    We present the results obtained from our systematic search of a simple Lie group that unifies weak and electromagnetic interactions in a single truly unified theory. We work with fractionally charged quarks, and allow for particles and antiparticles to belong to the same irreducible representation. We found that models based on SU(6), SU(7), SU(8) and SU(10) are viable candidates for simple unification. (author). 23 refs

  8. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  9. Finiteness of quantum field theories and supersymmetry

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  10. Gauge unification of fundamental forces

    International Nuclear Information System (INIS)

    Salam, A.

    1980-02-01

    After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given

  11. Macroscopic constraints on string unification

    International Nuclear Information System (INIS)

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs

  12. Clifford algebra in finite quantum field theories

    International Nuclear Information System (INIS)

    Moser, M.

    1997-12-01

    We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)

  13. Representation theory of finite monoids

    CERN Document Server

    Steinberg, Benjamin

    2016-01-01

    This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional ...

  14. Dynamic Theory: a new view of space, time, and matter

    International Nuclear Information System (INIS)

    Williams, P.E.

    1980-12-01

    The theory presented represents a different approach toward unification of the various branches of physics. The foundation of the theory rests upon generalizations of the classical laws of thermodynamics, particularly Caratheodory's abstract statement of the second law. These adopted laws are shown to produce, as special cases, current theories such as Einstein's General and Special Relativity, Maxwell's electromagnetism, classical thermodynamics, and quantum principles. In addition to this unification, the theory provides predictions that may be experimentally investigated. Some of the predictions are a limiting rate of mass conversion, reduced pressures in electromagnetically contained plasmas, increased viscous effects in shocked materials, a finite self-energy for a charged particle, and the possible creation of particles with velocities greater than the speed of light. 8 figures

  15. Supersymmetric theories and finiteness

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.

    1989-01-01

    We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)

  16. The theory of finitely generated commutative semigroups

    CERN Document Server

    Rédei, L; Stark, M; Gravett, K A H

    1966-01-01

    The Theory of Finitely Generated Commutative Semigroups describes a theory of finitely generated commutative semigroups which is founded essentially on a single """"fundamental theorem"""" and exhibits resemblance in many respects to the algebraic theory of numbers. The theory primarily involves the investigation of the F-congruences (F is the the free semimodule of the rank n, where n is a given natural number). As applications, several important special cases are given. This volume is comprised of five chapters and begins with preliminaries on finitely generated commutative semigroups before

  17. Technicolor and Beyond: Unification in Theory Space

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2010-01-01

    I will briefly review the salient features of models of dynamical electroweak symmetry breaking together with the traditional extensions needed to provide masses to the standard model fermions in absence of fundamental scalars. The idea walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The interplay between the four fermion interactions stemming from the extended technicolor interactions and the technicolor model can strongly enhance the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the large top mass. I will also review the Minimal Walking Technicolor (MWT) models. In the second part of this review I consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N = 4 SYM.

  18. Finite N=1 SUSY gauge field theories

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1986-01-01

    The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established

  19. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  20. Minimal SUSY SO(10) and Yukawa unification

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2013-01-01

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y 126 ) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(10 14 GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y 126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  1. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  2. Parquet theory of finite temperature boson systems

    International Nuclear Information System (INIS)

    He, H.W.

    1992-01-01

    In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed

  3. Universal conditions for finite renormalizable quantum field theories

    International Nuclear Information System (INIS)

    Kranner, G.

    1990-10-01

    Analyzing general renormalization constants in covariant gauge and minimal subtraction, we consider universal conditions for cancelling UV-divergences in renormalizable field theories with simple gauge groups, and give constructive methods for finding nonsupersymmetric finite models. The divergent parts of the renormalization constants for fields explicitly depend on the gauge parameter ξ. Finite theories simply need finite couplings. We show that respective FinitenessConditions imply a hierarchy, the center of which are the FCs for the gauge coupling g and the Yukawa couplings of the massless theory. To gain more information about F we analyze the Yukawa-FC in greater detail. Doing so algebraically, we find out and fix all inner symmetries. Additionally, Yuakawa-couplings must be invariant under gauge transformation. Then it becomes extremely difficult to obey a FC, yield rational numbers for F ∼ 1, and satisfy the factorization-condition, unless F = 1. The particular structure of the F = 1-system allows for a most general ansatz. We figure out the simplest case, getting precisely just couplings and particle content of a general N=1-supersymmetric theory. We list a class of roughly 4000 types of theories, containing all supersymmetric, completely finite, and many more finite theories as well. (Author, shortened by Quittner) 11 figs., 54 refs

  4. Interpretability degrees of finitely axiomatized sequential theories

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory-like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB-have suprema. This partially answers a question posed

  5. Interpretability Degrees of Finitely Axiomatized Sequential Theories

    NARCIS (Netherlands)

    Visser, Albert

    2012-01-01

    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB— have suprema. This partially answers a question

  6. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  7. Problems of CP-violation in early unification theories

    International Nuclear Information System (INIS)

    Liparteliani, A.G.; Monich, V.A.; Volkov, G.G.

    1985-01-01

    The present work studies possible mechanisms of P and CP-violation in the frames of an approach based on early unification of fundamental local symmetries, i.e., Pati-Salam four-colour symmetry, extended weak isotopic symmetry and that of quark-lepton generations. The work also studies the influence of generations mixing on the rates of rare processes in each of 3 classes of interactions

  8. Functional Pearls : Polytypic Unification

    NARCIS (Netherlands)

    Jansson, P.; Jeuring, J.T.

    1998-01-01

    Unification, or two-way pattern matching, is the process of solving an equation involving two first-order terms with variables. Unification is used in type inference in many programming languages and in the execution of logic programs. This means that unification algorithms have to be written over

  9. Grand unification: quo vadis domine

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1985-01-01

    The present theoretical and experimental situation with grand unification is summarized. The issues of proton decay and the Weinberg angle are addressed, going through the predictions of both the standard SU(5) theory and its supersymmetric extension. The SO(10) theory, which provides a minimal one family model, is then studied. The gravitational characteristics of domain walls and strings are then discussed. It is argued that there is a need to go beyond SO(10) in order to incorporate a unified picture of families. This leads to the prediction of mirror fermions, whose physics is analyzed. 31 refs

  10. Infrared finiteness in Yang--Mills theories

    International Nuclear Information System (INIS)

    Appelquist, T.; Carazzone, J.; Kluberg-Stern, H.; Roth, M.

    1976-01-01

    The infrared divergences of renormalizable theories with coupled massless fields (in particular, the Yang--Mills theory) are shown to cancel for transition probabilities corresponding to finite-energy-resolution detectors, just as in quantum electrodynamics. This result is established through lowest nontrivial order in perturbation theory for the detection of massive muons in a quantum electrodynamic theory containing massless electrons or the detection of massive quarks in a Yang--Mills theory

  11. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  12. Algebraic coding theory over finite commutative rings

    CERN Document Server

    Dougherty, Steven T

    2017-01-01

    This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.

  13. Reconciling grand unification with strings by anisotropic compactifications

    International Nuclear Information System (INIS)

    Dundee, Ben; Raby, Stuart; Wingerter, Akin

    2008-01-01

    We analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five-dimensional orbifold grand unified theory field theories. Our analysis assumes three fundamental scales: the string scale M S , a compactification scale M C , and a mass scale for some of the vectorlike exotics M EX ; the other exotics are assumed to get mass at M S . In the particular models analyzed, we show that gauge coupling unification is not possible with M EX =M C , and in fact we require M EX C ∼3x10 16 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 10 33 yr 0 e + ) 36 yr. The other 80% of the parameter space gives proton lifetimes below Super-Kamiokande bounds. The next generation of proton decay experiments should be sensitive to the remaining parameter space.

  14. Gauge unification in highly anisotropic string compactifications

    International Nuclear Information System (INIS)

    Hebecker, A.; Trapletti, M.

    2005-01-01

    It is well known that heterotic string compactifications have, in spite of their conceptual simplicity and aesthetic appeal, a serious problem with precision gauge coupling unification in the perturbative regime of string theory. Using both a duality-based and a field-theoretic definition of the boundary of the perturbative regime, we reevaluate the situation in a quantitative manner. We conclude that the simplest and most promising situations are those where some of the compactification radii are exceptionally large, corresponding to highly anisotropic orbifold models. Thus, one is led to consider constructions which are known to the effective field-theorist as higher-dimensional or orbifold grand unified theories (orbifold GUTs). In particular, if the discrete symmetry used to break the GUT group acts freely, a non-local breaking in the larger compact dimensions can be realized, leading to a precise gauge coupling unification as expected on the basis of the MSSM particle spectrum. Furthermore, a somewhat more model dependent but nevertheless very promising scenario arises if the GUT breaking is restricted to certain singular points within the manifold spanned by the larger compactification radii

  15. Dark matter, mirror world, and E6 unification

    International Nuclear Information System (INIS)

    Das, Ch. R.; Laperashvili, L. V.

    2009-01-01

    The idea that the ordinary (O) and mirror (M) worlds exist simultaneously is developed. It is shown that, in the case of a violated mirror parity (MP), the renormalization-group evolution of the coupling constants, which is represented in the O world by the dependence α i -1 (μ) (μ is an energy variable), is not identical to the evolution of the coupling constants α' i -1 (μ) in the M world. Here, the index i labels the symmetry group under consideration, while a dash labels quantities defined in the M world. It is assumed that E 6 unification predicted by superstring theory restores MP at the unification scale M SGUT ∼ 10 18 GeV, this inevitably leading to the difference in the violation of E 6 unification in the O and M worlds at lower energies: E 6 → SO(10) x U(1) Z and E' 6 → SU(6)' x SU(2)' Z . Considering only asymptotically free theories, we present the evolution of all the inverse coupling constants α i -1 (μ) in the one-loop approximation. In dealing with the M world involving MP violation, we then arrive at the model of the accelerating expansion of our Universe, where the axion ('acceleron') belongs to the SU(2)' Z group of the M world. The coupling constant g' Z , which grows indefinitely at the scale Λ' Z ∼ 10 -3 eV, is associated with this group. Within this theory, our Universe is in the false vacuum of the M world, in agreement with the phenomenologically observed cosmological constant of about (3 x 10 -3 eV) 4 .

  16. Summability calculus a comprehensive theory of fractional finite sums

    CERN Document Server

    Alabdulmohsin, Ibrahim M

    2018-01-01

    This book develops the foundations of "summability calculus", which is a comprehensive theory of fractional finite sums. It fills an important gap in the literature by unifying and extending disparate historical results. It also presents new material that has not been published before. Importantly, it shows how the study of fractional finite sums benefits from and contributes to many areas of mathematics, such as divergent series, numerical integration, approximation theory, asymptotic methods, special functions, series acceleration, Fourier analysis, the calculus of finite differences, and information theory. As such, it appeals to a wide audience of mathematicians whose interests include the study of special functions, summability theory, analytic number theory, series and sequences, approximation theory, asymptotic expansions, or numerical methods. Richly illustrated, it features chapter summaries, and includes numerous examples and exercises. The content is mostly developed from scratch using only undergr...

  17. Topics in quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kao, Y.C.

    1985-01-01

    Studies on four topics in quantum field theories at finite temperature are presented in this thesis. In Chapter 1, it is shown that the chiral anomaly has no finite temperature corrections by Fujikawa's path integral approach. Chapter 2 deals with the chiral condensate in the finite temperature Schwinger model. The cluster decomposition property is employed to find . No finite critical temperature is found and the chiral condensate vanishes only at infinite temperature. In Chapter 3, the finite temperature behavior of the fermion-number breaking (Rubakov-Callan) condensate around a 't Hooft-Polyakov monopole is studied. It is found that the Rubakov-Callan condensate is suppressed exponentially from the monopole core at high temperature. The limitation of the techniques is understanding the behavior of the condensate for all temperature is also discussed. Chapter 4 is on the topological mass terms in (2 + 1)-dimensional gauge theories. The authors finds that if the gauge bosons have no topological mass at tree level, no topological mass induced radiatively up to two-loop order in either Abelian or non-Abelian theories with massive fermions. The Pauli-Villars regularization is used for fermion loops. The one-loop contributions to the topological mass terms at finite temperature are calculated and the quantization constraints in this case are discussed

  18. Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Anandakrishnan, Archana; Raby, Stuart

    2011-01-01

    We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

  19. Gauge coupling unification in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics

    2006-11-15

    We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)

  20. Gauge unification of basic forces particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    Corresponding to the two known types of gauge theories, Yang-Mills with spin-one mediating particles and Einstein Weyl with spin-two mediating particles, it is speculated that two distinct gauge unifications of the basic forces appear to be taking place. One is the familiar Yang-Mills unification of weak and electromagnetic forces with the strong. The second is the less familiar gauge unification of gravitation with spin-two tensor-dominated aspects of strong interactions. It is proposed that there are strongly interacting spin-two strong gravitons obeying Einstein's equations, and their existence gives a clue to an understanding of the (partial) confinement of quarks, as well as of the concept of hadronic temperature, through the use of Schwarzschild de-Sitter-like partially confining solitonic solutions of the strong gravity Einstein equation

  1. Model-based object classification using unification grammars and abstract representations

    Science.gov (United States)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  2. Necessity of negativity in quantum theory

    International Nuclear Information System (INIS)

    Ferrie, Christopher; Morris, Ryan; Emerson, Joseph

    2010-01-01

    A unification of the set of quasiprobability representations using the mathematical theory of frames was recently developed for quantum systems with finite-dimensional Hilbert spaces, in which it was proven that such representations require negative probability in either the states or the effects. In this article we extend those results to Hilbert spaces of infinite dimension, for which the celebrated Wigner function is a special case. Hence, this article presents a unified framework for describing the set of possible quasiprobability representations of quantum theory, and a proof that the presence of negativity is a necessary feature of such representations.

  3. Unification and new particles at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; D’Agnolo, Raffaele Tito; Low, Matthew [School of Natural Sciences, Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Pinner, David [Princeton Center for Theoretical Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)

    2016-11-14

    Precision gauge coupling unification is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this work we enumerate new gauge sectors which are compatible with unification, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and confine quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned and minimally split supersymmetry, the confining dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.

  4. Unification and new particles at the LHC

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; D’Agnolo, Raffaele Tito; Low, Matthew; Pinner, David

    2016-01-01

    Precision gauge coupling unification is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this work we enumerate new gauge sectors which are compatible with unification, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and confine quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned and minimally split supersymmetry, the confining dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.

  5. SAT Encoding of Unification in EL

    Science.gov (United States)

    Baader, Franz; Morawska, Barbara

    Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problems in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state-of-the-art SAT solvers when implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.

  6. Introduction to unification of electromagnetic and weak interactions

    International Nuclear Information System (INIS)

    Martin, F.

    1980-01-01

    After reviewing the present status of weak interaction phenomenology we discuss the basic principles of gauge theories. Then we show how Higgs mechanism can give massive quanta of interaction. The so-called 'Weinberg-Salam' model, which unifies electromagnetic and weak interactions, is described. We conclude with a few words on unification with strong interactions and gravity [fr

  7. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.

    1986-01-01

    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  8. Supersymmetric field theories at finite temperature

    International Nuclear Information System (INIS)

    Dicus, D.A.; Tata, X.R.

    1983-01-01

    We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry

  9. Finite discrete field theory

    International Nuclear Information System (INIS)

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  10. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    Science.gov (United States)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  11. SU(5) unification revisited

    International Nuclear Information System (INIS)

    Giveon, A.; Sarid, U.; Hall, L.J.; California Univ., Berkeley, CA

    1991-01-01

    Model-independent criteria for unification in the SU(5) framework are studied. These are applied to the minimal supersymmetric standard model and to the standard model with a split 45 Higgs representation. Although the former is consistent with SU(5) unification, the superpartner masses can vary over a wide range, and may even all lie well beyond the reach of planned colliders. Adding a split 45 to the standard model can also satisfy the unification criteria, so supersymmetric SU(5) is far from unique. Furthermore, we learn that separate Higgs doublets must couple to the top and bottom quarks in order to give a correct m b /m τ prediction. (orig.)

  12. Low-scale gaugino mass unification

    International Nuclear Information System (INIS)

    Endo, M.; Yoshioka, K.

    2008-04-01

    We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification. (orig.)

  13. Low-scale gaugino mass unification

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yoshioka, K [Kyoto Univ. (Japan). Dept. of Physics

    2008-04-15

    We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification. (orig.)

  14. The GEM Theory of the Unification of Gravitation and Electro-Magnetism

    Science.gov (United States)

    Brandenburg, J. E.

    2012-01-01

    The GEM (Gravity Electro-Magnetism), theory is presented as an alloy of Sakharov and Kaluza-Klein approaches to field unification. GEM uses the concept of gravity fields as Poynting fields to postulate that the non-metric portion of the EM stress tensor becomes the metric tensor in strong fields leading to "self-censorship". Covariant formulation of the GEM theory is accomplished through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: gab = 4(FcaFcb )/(FabFab), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential f=1/2 E2/B2 =GM/r , where E, B and F are part of the vacuum Zero Point Fluctuation (ZPF) and M and r are the mass and distance from the center of a gravitating body and G is the Newton gravitation constant. It is found that a Lorentz flat-space metric is recovered in the limit of a vacuum full spectrum ZPF. The vacuum ZPF energy and vacuum quantities G, h, c, gives birth to particles quantities mp, me, e,-e in a process triggered by the appearance of the Kaluza-Klein fifth dimension, where also the EM and gravity forces split from each other in a process correlated to the splitting apart of protons and electrons. The separate appearance of the proton and electron occurs as the splitting of a light-like spacetime interval of zero-length into a finite space-like portion containing three subdimensions identified with the quarks and a time-like portion identified with the electron. The separation of mass with charge for the electron and proton pair comes about from a U(1) symmetry with a rotation in imaginary angle. A logarithmic variation of charge with mass for the proton-electron pair results and leads to the formula ln(ro/rp) = s, where s = (mp/me)1/2 , where mp and me are the electron and proton masses respectively and where ro =e2/moc2 , and where mo = (mpme)1/2 and where rp is the Planck length . This leads to the formula G=e2/mo2aexp(-2s)=6

  15. Unification of reactor elastomeric sealing based on material

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2012-01-01

    The unification of elastomeric sealing applications of Indian nuclear reactors based on a few qualified fluoroelastomer/perfluoroelastomer compounds and standardized approaches for finite element analysis (FEA) based design, manufacturing process and antifriction coatings is discussed. It is shown that the advance polymer architecture based Viton ® formulation developed for inflatable seals of 500 MWe Prototype Fast Breeder Reactor (PFBR) and its four basic variations can encompass other sealing applications of PFBR with minimum additional efforts on development and validation. Changing the blend ratio of Viton ® GBL 200S and 600S in inflatable seal formulation could extend its use to Pressurized Heavy Water Reactors (PHWRs). The higher operating temperature of Advanced Heavy Water Reactor (AHWR) seals expands the choice to perfluoroelastomers. FEA based on plane-strain/axisymmetric modeling (with Mooney–Rivlin as the basic constitutive model), seal manufacture by cold feed extrusion and injection molding as well as plasma Teflon-like coating belonging to two variations obtained from the development of inflatable seals provide the necessary standardization for unification. The gains in simplification of design, development and operation of seals along with the enhancements of safety and reliability are expected to be substantial.

  16. Towards unification of the Vorticity Confinement and Shock Capturing (TVD and ENO/WENO) methods

    Science.gov (United States)

    Sidilkover, David

    2018-04-01

    New multidimensional extensions of the TVD and finite difference ENO/WENO methods for the compressible flow equations are proposed. The novelty of the approach is in the discretization schemes that acquire by means of a single mechanism both shock-capturing and vorticity confinement capabilities. Thus, the new method can be interpreted as a unification of the two methodologies, intended initially for different purposes.

  17. Family unification in five and six dimensions

    International Nuclear Information System (INIS)

    Babu, K.S.; Barr, S.M.; Kyae, Bumseok

    2002-01-01

    In family unification models, all three families of quarks and leptons are grouped together into an irreducible representation of a simple gauge group, thus unifying the standard model gauge symmetries and a gauged family symmetry. Large orthogonal groups, and the exceptional groups E 7 and E 8 , have been much studied for family unification. The main theoretical difficulty of family unification is the existence of mirror families at the weak scale. It is shown here that family unification without mirror families can be realized in simple five-dimensional and six-dimensional orbifold models similar to those recently proposed for SU(5) and SO(10) grand unification. It is noted that a family unification group that survived to near the weak scale and whose coupling extrapolated to high scales unified with those of the standard model would be evidence, accessible in principle at low energy, of the existence of small (Planckian or GUT-scale) extra dimensions

  18. The finite section method and problems in frame theory

    DEFF Research Database (Denmark)

    Christensen, Ole; Strohmer, T.

    2005-01-01

    solves related computational problems in frame theory. In the case of a frame which is localized w.r.t. an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz......The finite section method is a convenient tool for approximation of the inverse of certain operators using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also...

  19. Electroweak unification and tree unitarity

    International Nuclear Information System (INIS)

    Horejsi, J.

    1993-01-01

    The monograph is an unconventional introduction into the theory of unification of weak and electromagnetic interactions, which is conceptually different from the exposition presented in standard textbooks. A detailed explanation is given of the way to the standard model of electroweak interactions which is based on a straightforward application of the requirement of renormalizability of the perturbation series expansion. The procedure to derive the model is interesting as it demonstrates the necessity of introducing vector bosons and Yang-Mills type interactions and at least one elementary scalar boson to obtain a renormalizable theory of weak and electromagnetic interactions. The book is divided into 5 chapters: introduction, problems encountered in a Fermi type theory, the intermediate vector boson, electrodynamics of vector bosons, tree unitarity, and electroweak interactions. Each chapter is completed with exercise problems to be solved by the reader. The text is supplemented with a number of appendices. The monograph is aimed at undergraduate and postgraduate students as well as at physicists interested in the theory of elementary particles. (Z.J.)

  20. Grand unification: status report

    International Nuclear Information System (INIS)

    Georgi, H.

    1983-01-01

    Grand unification is reviewed with regard to the flavor puzzle and the hierarchy puzzle. Progress in CP and the PQWWKDFS axion is reviewed. The neutrino mass and B-L research, the understanding and assimilation of the language of effective theories (which divide the momentum scale up into regions), with focus on the models, are surveyed. Various unified models are organized according to whether they address the hierarchy puzzle or the flavor puzzle. SU(5), SO(10), E6, and Higgs are considered simple and explicit models. Global symmetry addresses hierarchy puzzle, but the rules are unclear. In SO (18), with regard to hierarchy, perturbation theory breaks down. SO (14) fails for hierarchy because of GIM, b and t problems. Supersymmetry and technicolor with regard to flavor puzzle are questioned. The CP solution of ETC and Composite C models (addressing both flavor and hierarchy) is a minus. Composite A model has no evident virtues, and the basic idea of ETC model needs checking

  1. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  2. Gauge coupling unification in realistic free-fermionic string models

    International Nuclear Information System (INIS)

    Dienes, K.R.; Faraggi, A.E.

    1995-01-01

    We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)

  3. Astrophysical Probes of Varying Constants and Unification

    International Nuclear Information System (INIS)

    Martins, C J A P

    2016-01-01

    The observational evidence for the acceleration of the universe demonstrates that canonical theories of gravitation and particle physics are incomplete, if not incorrect. A new generation of astronomical facilities will soon carry out precision consistency tests of the standard cosmological model and search for evidence of new physics beyond it. I describe recent work of CAUP's Dark Side team on some of these tests, focusing on the stability of nature's fundamental couplings and tests of unification scenarios. (paper)

  4. Blockspin transformations for finite temperature field theories with gauge fields

    International Nuclear Information System (INIS)

    Kerres, U.

    1996-08-01

    A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)

  5. The quest of a unified theory of interactions

    International Nuclear Information System (INIS)

    Weingerg, St.; Hawking, St.; Mlodinow, L.; Lisi, G.; Weatherall, J.

    2011-01-01

    The unification of the 4 basic interactions is far from being achieved despite all the efforts made during decades. One theory states that unification is not possible unless to have the point of view of an observer outside the universe...This document is composed of 3 articles. In the first article, stakes, difficulties and the existing research axis of unification are presented. The second article is dedicated to the string theory that is the most promising according to scientists. In fact there are 5 string theories, each one explaining a limited range of phenomena. Nevertheless, string theories share common concepts called dualities, which made physicists think of a unique theory: the M theory that might lie behind the string theories. The third article presents a recent attempt of unification based on the E8 Lie group. Even if this E8 theory appears to be wrong, it will have shed light on deep geometrical relationships between particles that the real theory will have to explain. (A.C.)

  6. Towards a unification of the hierarchical reference theory and the self-consistent Ornstein-Zernike approximation.

    Science.gov (United States)

    Reiner, A; Høye, J S

    2005-12-01

    The hierarchical reference theory and the self-consistent Ornstein-Zernike approximation are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as phase coexistence and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. As a first step towards this goal, we consider the problem of combining the lowest order gamma expansion result for the incorporation of a Fourier component of the interaction with the requirement of consistency between internal and free energies, leaving aside the compressibility relation. For simplicity, we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative behavior as more elaborate models. It turns out that the analytically tractable mean spherical approximation is a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows the potential for a practical scheme and yields necessary conditions that any closure to the Ornstein-Zernike relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution. These criteria are expected to remain valid for more general discrete and continuous systems, even if consistency with the compressibility route is also enforced where possible explicit solutions will require numerical evaluations.

  7. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  8. Discrete finite nilpotent Lie analogs: New models for unified gauge field theory

    International Nuclear Information System (INIS)

    Kornacker, K.

    1978-01-01

    To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors

  9. Lattice simulations of QCD-like theories at finite baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Scior, Philipp Friedrich

    2016-07-13

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we

  10. Lattice simulations of QCD-like theories at finite baryon density

    International Nuclear Information System (INIS)

    Scior, Philipp Friedrich

    2016-01-01

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G_2-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G_2. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G_2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise of the

  11. ɛ-connectedness, finite approximations, shape theory and coarse graining in hyperspaces

    Science.gov (United States)

    Alonso-Morón, Manuel; Cuchillo-Ibanez, Eduardo; Luzón, Ana

    2008-12-01

    We use upper semifinite hyperspaces of compacta to describe ε-connectedness and to compute homology from finite approximations. We find a new connection between ε-connectedness and the so-called Shape Theory. We construct a geodesically complete R-tree, by means of ε-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite approximations of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite approximation with the Vietoris-Rips complexes of such approximations at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. This paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite approximations.

  12. Genesis of Electroweak Unification and the Higgs

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    I will give a historical account of the developments leading up to the unification of weak and electromagnetic interactions, as I saw them from my standpoint in Imperial College London. I will describe the state of physics in the 1950s, the aim of finding a unified theory of various interactions, the obstacles encountered in trying to unify the weak and electromagnetic interactions, and their eventual resolution, with a brief discussion of the later history culminating in the discovery of the Higgs boson in 2012.

  13. Unification of electromagnetic, strong and weak interaction

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-09-01

    The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs

  14. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S.J.; Kogut, J.B.; Morrison, S.E.; Sinclair, D.K.

    2001-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) 'colour' at finite chemical potential, μ for quark number, as a model for QCD at finite baryon number density. In particular we observe that for μ large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  15. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S. J.; Kogut, J. B.; Morrison, S. E.; Sinclair, D. K.

    2000-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) colour at finite chemical potential, p for quark number, as a model for QCD at finite baryon number density. In particular we observe that for p large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  16. Reduction of parameters in Finite Unified Theories and the MSSM

    Science.gov (United States)

    Heinemeyer, Sven; Mondragón, Myriam; Tracas, Nicholas; Zoupanos, George

    2018-02-01

    The method of reduction of couplings developed by W. Zimmermann, combined with supersymmetry, can lead to realistic quantum field theories, where the gauge and Yukawa sectors are related. It is the basis to find all-loop Finite Unified Theories, where the β-function vanishes to all-loops in perturbation theory. It can also be applied to the Minimal Supersymmetric Standard Model, leading to a drastic reduction in the number of parameters. Both Finite Unified Theories and the reduced MSSM lead to successful predictions for the masses of the third generation of quarks and the Higgs boson, and also predict a heavy supersymmetric spectrum, consistent with the non-observation of supersymmetry so far.

  17. Neutrino masses and the unification of the SO(10) families

    International Nuclear Information System (INIS)

    Maalampi, J.; Enqvist, K.

    1980-01-01

    We show that the unification of the SO(10) families in SO(10+m) group can offer a solution to the neutrino mass problem. For simplicity we have restricted our analysis to SO(11), which contains - aside from generation mixing -the main novel feature of the theories of this kind: fermions that couple by V+A charged weak currents. (author)

  18. Unification of field theory and maximum entropy methods for learning probability densities

    Science.gov (United States)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  19. Unification of field theory and maximum entropy methods for learning probability densities.

    Science.gov (United States)

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  20. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  1. How European unification has shaped the debate on measuring international financial integration

    OpenAIRE

    Pieterse-Bloem, Mary; Eijffinger, Sylvester

    2013-01-01

    textabstractIn this paper we analyse a chronicle of economic theory on international financial integration post-WWII to the present date. Our focus is on theories that have somehow quantify the state and speed of international financial integration. We are able to contrast and compare three distinct strands that have brought forward conditions for its measurement. It is shown that European unification provides much of the empirical testing ground for these measures of international financial ...

  2. Dependence theory via game theory

    NARCIS (Netherlands)

    Grossi, D.; Turrini, P.

    2011-01-01

    In the multi-agent systems community, dependence theory and game theory are often presented as two alternative perspectives on the analysis of social interaction. Up till now no research has been done relating these two approaches. The unification presented provides dependence theory with the sort

  3. Stochastic field theory and finite-temperature supersymmetry

    International Nuclear Information System (INIS)

    Ghosh, P.; Bandyopadhyay, P.

    1988-01-01

    The finite-temperature behavior of supersymmetry is considered from the viewpoint of stochastic field theory. To this end, it is considered that Nelson's stochastic mechanics may be generalized to the quantization of a Fermi field when the classical analog of such a field is taken to be a scalar nonlocal field where the internal space is anisotropic in nature such that when quantized this gives rise to two internal helicities corresponding to fermion and antifermion. Stochastic field theory at finite temperature is then formulated from stochastic mechanics which incorporates Brownian motion in the external space as well as in the internal space of a particle. It is shown that when the anisotropy of the internal space is suppressed so that the internal time ξ 0 vanishes and the internal space variables are integrated out one has supersymmetry at finite temperature. This result is true for T = 0, also. However, at this phase equilibrium will be destroyed. Thus for a random process van Hove's result involving quantum mechanical operators, i.e., that when supersymmetry remains unbroken at T = 0 it will also remain unbroken at Tnot =0, occurs. However, this formalism indicates that when at T = 0 broken supersymmetry results, supersymmetry may be restored at a critical temperature T/sub c/

  4. Neutrix calculus and finite quantum field theory

    International Nuclear Information System (INIS)

    Ng, Y Jack; Dam, H van

    2005-01-01

    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)

  5. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  6. A mean field theory of study of lattice gauge theory with finite temperature and with finite fermion density

    International Nuclear Information System (INIS)

    Naik, S.

    1990-01-01

    We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)

  7. Relict gravitational waves in the expanding Universe model and the grand unification scale

    International Nuclear Information System (INIS)

    Veryskin, A.V.; Rubakov, V.A.; Sazhin, M.V.

    1983-01-01

    The amplification of the vacuum fluctuations of the metric in the model of the expanding Universe was considered. The spectrum of the relict gravitational waves was chosen to be independent from the details of an evolution of the Universe after the phase transition. It is shown that the expanding Universe scenario is compatible with the experimental data on the anisotropy of the microwave background only if the vacuum energy density of the symmetric phase is much less than the Planck one. The theories of grand unification with not large values of the unification scale (one and a half order less than the Planck mass) are preferable from the point of view of cosmology

  8. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  9. Finite Yang-Mills theories and the Bjorken--Johnson--Low limit

    International Nuclear Information System (INIS)

    Ali, A.; Bernstein, J.

    1975-01-01

    We consider the Bjorken-Johnson-Low limit for the propagator in massless Yang-Mills theories. The significance of our result in terms of imposing an eigenvalue on the theory so as to render it finite is discussed

  10. Wall deffects in field theories at finite temperature

    International Nuclear Information System (INIS)

    Bazeia Filho, D.

    1985-01-01

    We discuss the effect of restauration of simmetry in field theories at finite temperature and its relation with wall deffects which appear as consequence of the instability of the constant field configuration. (M.W.O.) [pt

  11. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  12. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  13. Supersymmetry, supergravity, and unification

    CERN Document Server

    Nath, Pran

    2017-01-01

    This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.

  14. Unification of field theory and maximum entropy methods for learning probability densities

    OpenAIRE

    Kinney, Justin B.

    2014-01-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy de...

  15. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  16. Gauge coupling unification in superstring derived standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1992-11-01

    I discuss gauge coupling unification in a class of superstring standard-like models, which are derived in the free fermionic formulation. Recent calculations indicate that the superstring unification scale is at O(10 18 GeV) while the minimal supersymmetric standard model is consistent with LEP data if the unification scale is at O(10 16 )GeV. A generic feature of the superstring standard-like models is the appearance of extra color triplets (D,D), and electroweak doublets (l,l), in vector-like representations, beyond the supersymmetric standard model. I show that the gauge coupling unification at O(10 18 GeV) in the superstring standard-like models can be consistent with LEP data. I present an explicit standard-like model that can realize superstring gauge coupling unification. (author)

  17. Superstring theory

    International Nuclear Information System (INIS)

    Schwarz, J.H.

    1985-01-01

    Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions

  18. The nonsymmetric-nonabelian Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Kalinowski, M.W.

    1983-01-01

    This paper is devoted to an (n+4)-dimensional unification of Moffat's theory of gravitation and Yang-Mills field theory with nonabelian gauge group G. We found 'interference effects' between gravitational and Yang-Mills (gauge) fields which appear to be due to the skewsymmetric part of the metric of Moffat's theory and the skewsymmetric part of the metric on the group G. Our unification, called the nonsymmetric-nonabelian Kaluza-Klein theory, becomes classical Kaluza-Klein theory if the skewsymmetric parts of both metrics are zero. (author)

  19. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

    International Nuclear Information System (INIS)

    Baker, A.R.

    1982-07-01

    A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

  20. On the all-order perturbative finiteness of the deformed N=4 SYM theory

    International Nuclear Information System (INIS)

    Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.

    2006-01-01

    We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6

  1. Introduction to gauge theories and unification

    International Nuclear Information System (INIS)

    Das, A.

    1990-01-01

    This paper contains the following lectures on gauge theories: basic notations; dimensional regularization; complex scalar field theory; scalar field theory; self-interacting scalar field theory; Noether's theorem; spontaneous symmetry breaking; dirac field theories; local symmetry; quantum electrodynamics; Higgs mechanism; non-Abelian symmetries; and Weinberg-Salam-Glashow theory

  2. Abstract sets and finite ordinals an introduction to the study of set theory

    CERN Document Server

    Keene, G B

    2007-01-01

    This text unites the logical and philosophical aspects of set theory in a manner intelligible both to mathematicians without training in formal logic and to logicians without a mathematical background. It combines an elementary level of treatment with the highest possible degree of logical rigor and precision.Starting with an explanation of all the basic logical terms and related operations, the text progresses through a stage-by-stage elaboration that proves the fundamental theorems of finite sets. It focuses on the Bernays theory of finite classes and finite sets, exploring the system's basi

  3. On divergence of finite measures and their applicability in statistics and information theory

    Czech Academy of Sciences Publication Activity Database

    Vajda, Igor; Stummer, W.

    2009-01-01

    Roč. 44, č. 2 (2009), s. 169-187 ISSN 0233-1888 R&D Projects: GA MŠk(CZ) 1M0572; GA ČR(CZ) GA102/07/1131 Institutional research plan: CEZ:AV0Z10750506 Keywords : Local and global divergences of finite measures * Divergences of sigma-finite measures * Statistical censoring * Pinsker's inequality, Ornstein's distance * Differential power entropies Subject RIV: BD - Theory of Information Impact factor: 0.759, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/vajda-on divergence of finite measures and their applicability in statistics and information theory.pdf

  4. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  5. Aspects of renormalization in finite-density field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia

    2015-05-26

    We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.

  6. A finite state, finite memory minimum principle, part 2. [a discussion of game theory, signaling, stochastic processes, and control theory

    Science.gov (United States)

    Sandell, N. R., Jr.; Athans, M.

    1975-01-01

    The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.

  7. Low-energy parity restoration and unification mass scale within maximal symmetries

    Directory of Open Access Journals (Sweden)

    Ajaya K. Mohanty

    1984-01-01

    Full Text Available We investigate the hierarchy of gauge boson masses in the maximal grand unified theory by studying the renormalization group equations for the running coupling constants associated with the symmetry breaking of SU(16viaSU(12 q×SU(4 l×U(1 |B|−|L| chain. Particular attention is given to the contribution of Higgs scalars to these equations. It is found that the intermediate mass scale ML, associated with right-handed gauge bosons could be as low as 10 3 GeV only for sin 2θ w(M L as high as 0.265 with α s(M L=0.13. In this chain of symmetry breaking, we have also examined the lowest unification mass that is allowed by the low-energy data for sin 2θ w(M L and the assumed gauge hierarchy. This has been done in two cases; first for the case where SU(3 c is vectorial, second, for the case where SU(3 c is axial. In both cases the lowest unification mass scales were found to be 10 13, 10 11, 10 8 and 10 7 GeV for sin 2θ w(M L = 0.22, 0.24, 0.26,and0.265 respectively with α s(M L = 0.13. The implication of these low unification masses on baryon non-conserving processes is also discussed.

  8. SU(5) unification with TeV-scale leptoquarks

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Peter [Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS,The University of Tokyo, Kashiwa, Chiba, 277-8583 (Japan); Kusenko, Alexander [Department of Physics and Astronomy, University of California,Los Angeles, CA, 90095-1547 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS,The University of Tokyo, Kashiwa, Chiba, 277-8583 (Japan); Sumensari, Olcyr [Laboratoire de Physique Théorique, CNRS, Université Paris-Sud, Université Paris-Saclay,Orsay, 91405 (France); Instituto de Física, Universidade de São Paulo,C.P. 66.318, São Paulo, 05315-970 (Brazil); Yanagida, Tsutomu T. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS,The University of Tokyo, Kashiwa, Chiba, 277-8583 (Japan)

    2017-03-07

    It was previously noted that SU(5) unification can be achieved via the simple addition of light scalar leptoquarks from two split 10 multiplets. We explore the parameter space of this model in detail and find that unification requires at least one leptoquark to have mass below ≈16 TeV. We point out that introducing splitting of the 24 allows the unification scale to be raised beyond 10{sup 16} GeV, while a U(1){sub PQ} symmetry can be imposed to forbid dangerous proton decay mediated by the light leptoquarks. The latest bounds from LHC searches are combined and we find that a leptoquark as light as 400 GeV is still permitted. Finally, we discuss the interesting possibility that the leptoquarks required for unification could also be responsible for the 2.6σ deviation observed in the ratio R{sub K} at LHCb.

  9. From Singularity Theory to Finiteness of Walrasian Equilibria

    DEFF Research Database (Denmark)

    Castro, Sofia B.S.D.; Dakhlia, Sami F.; Gothen, Peter

    The paper establishes that for an open and dense subset of smooth exchange economies, the number of Walrasian equilibria is finite. In particular, our results extend to non-regular economies; it even holds when restricted to the subset of critical ones. The proof rests on concepts from singularity...... theory....

  10. The economic implications of Korean unification

    OpenAIRE

    Schmitz, Jonathan L.

    2002-01-01

    Approved for public release; distribution unlimited A major area of concern for Korean unification is the immense cost it will impose on South Korea. To lessen this burden, South Korea will need to initiate policy reforms that can ease the financial stress and repercussions of unification and create an integrated economic community with North Korea. At the same time, North Korea will need to create an environment that is conducive to economic integration by accepting and adopting reform me...

  11. Conductance of finite systems and scaling in localization theory

    Science.gov (United States)

    Suslov, I. M.

    2012-11-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.

  12. Conductance of finite systems and scaling in localization theory

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2012-01-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.

  13. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    2003-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  14. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    1999-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  15. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  16. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  17. Local grand unification in the heterotic landscape

    International Nuclear Information System (INIS)

    Schmidt, Jonas

    2009-06-01

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  18. Local grand unification in the heterotic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jonas

    2009-07-15

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  19. Convergence and analytic properties of manifestly finite perturbation theory

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1979-01-01

    The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation

  20. Some speculations on a causal unification of relativity, gravitation, and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Buonomano, V; Engel, A [Universidade Estadual de Campinas (Brazil). Instituto de Matematica

    1976-03-01

    Some speculations on a causal model that could provide a common conceptual foundation for relativity, gravitation, and quantum mechanics are presented. The present approach is a unification of three theories, the first being the repulsive theory of gravitational forces first proposed by Lesage who attempted to explain gravitational forces from the principle of conservation of momentum of the hypothetical particles gravitons. The second of these theories is the Brownian motion theory of quantum mechanics or stochastic mechanics, which treats the nondeterministic nature of quantum mechanics as being due to a Brownian motion of all objects. This Brownian motion being caused by the statistical variation in the graviton flux. The above two theories are unified in this article with the causal theory of special relativity. The Big Bang theory of the creation of the Universe is assumed. An experimental test is proposed.

  1. Hidden SUSY from precision gauge unification

    Energy Technology Data Exchange (ETDEWEB)

    Krippendorf, Sven; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-06-15

    We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small {mu} parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  2. Hidden SUSY from precision gauge unification

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Nilles, Hans Peter

    2013-06-01

    We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small μ parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  3. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  4. Finite-temperature behavior of mass hierarchies in supersymmetric theories

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1982-01-01

    It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)

  5. Controlling the sign problem in finite-density quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Garron, Nicolas; Langfeld, Kurt [University of Liverpool, Theoretical Physics Division, Department of Mathematical Sciences, Liverpool (United Kingdom)

    2017-07-15

    Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the ''telegraphic'' approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close - if not identical - to the full answer in the strong sign-problem regime. (orig.)

  6. Controlling the sign problem in finite-density quantum field theory

    Science.gov (United States)

    Garron, Nicolas; Langfeld, Kurt

    2017-07-01

    Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.

  7. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...

  8. Topics on field theories at finite temperature

    International Nuclear Information System (INIS)

    Eboli, O.J.P.

    1985-01-01

    The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt

  9. Finite Unified Theories and the Higgs boson

    CERN Document Server

    Heinemeyer, Sven; Zoupanos, George

    2012-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N = 1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. Based on this theoretical framework phenomenologically consistent FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group, which can be seen as special, restricted and thus very predictive versions of the MSSM. We show that from the requirement of correct prediction of quark masses and other experimental constraints a light Higgs-boson mass in the range M_h ~ 121 - 126 GeV is predicted, in striking agreement with recent experimental results from ATLAS and CMS. The model furthermore naturally predicts a relatively heavy spectrum with colored supersymmetric particles above ~ 1.5 TeV in agreement with the non-observation of those particles at the LHC.

  10. Some recent results in finitely additive white noise theory

    NARCIS (Netherlands)

    Bagchi, Arunabha; Mazumdar, Ravi

    1994-01-01

    We present a short survey of some very recent results on the finitely additive white noise theory. We discuss the Markov property of the solution of a stochastic differential equation driven directly by a white noise, study the Radon-Nikodym derivative of the measure induced by nonlinear

  11. Local Finite Density Theory, Statistical Blocking and Color Superconductivity

    OpenAIRE

    Ying, S.

    2000-01-01

    The motivation for the development of a local finite density theory is discussed. One of the problems related to an instability in the baryon number fluctuation of the chiral symmetry breaking phase of the quark system in the local theory is shown to exist. Such an instability problem is removed by taking into account the statistical blocking effects for the quark propagator, which depends on a macroscopic {\\em statistical blocking parameter} $\\epsilon$. This new frame work is then applied to...

  12. Proof of ultraviolet finiteness for a planar non-supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Ananth, Sudarshan; Kovacs, Stefano; Shimada, Hidehiko

    2007-01-01

    This paper focuses on a three-parameter deformation of N=4 Yang-Mills that breaks all the supersymmetry in the theory. We show that the resulting non-supersymmetric gauge theory is scale invariant, in the planar approximation, by proving that its Green functions are ultraviolet finite to all orders in light-cone perturbation theory

  13. Dirac gauginos, gauge mediation and unification

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-03-15

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)

  14. Dirac Gauginos, Gauge Mediation and Unification

    CERN Document Server

    Benakli, K

    2010-01-01

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings.

  15. Dirac gauginos, gauge mediation and unification

    International Nuclear Information System (INIS)

    Benakli, K.

    2010-03-01

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)

  16. China’s unification: Myth or reality?

    Directory of Open Access Journals (Sweden)

    Estrada Mario Arturo Ruiz

    2014-01-01

    Full Text Available This paper evaluates the prospect of a possible unification between People’s Republic of China (Mainland China and Republic of China (Taiwan from a multi-dimensional perspective which encompasses the political, social, economic, and technological dimensions. The underlying idea is to evaluate the possibility of a partial or total reunification between the two countries in a more comprehensive way than just assessing the economic costs and benefits. Our evaluation is based on the application of the GDRI-Model, which looks at unification and regional integration simultaneously from the political, economic, social and technological perspectives.

  17. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  18. Low energy implications of minimal superstring unification

    International Nuclear Information System (INIS)

    Khalil, S.; Vissani, F.; Masiero, A.

    1995-11-01

    We study the phenomenological implications of effective supergravities based on string vacua with spontaneously broken N =1 supersymmetry by dilation and moduli F-terms. We further require Minimal String Unification, namely that large string threshold corrections ensure the correct unification of the gauge couplings at the grand unification scale. The whole supersymmetric mass spectrum turns out to be determined in terms of only two independent parameters, the dilaton-moduli mixing angle and the gravitino mass. In particular we discuss the region of the parameter space where at least one superpartner is ''visible'' at LEPII. We find that the most likely candidates are the scalar partner of the right-handed electron and the lightest chargino, with interesting correlations between their masses and with the mass of the lightest higgs. We show how discovering SUSY particles at LEPII might rather sharply discriminate between scenarios with pure dilaton SUSY breaking and mixed dilaton-moduli breaking. (author). 10 refs, 7 figs

  19. An introduction to the mathematical theory of finite elements

    CERN Document Server

    Oden, J T

    2011-01-01

    This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations.J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and co

  20. Unification of Patrimonial Laws Governing International Trade

    DEFF Research Database (Denmark)

    Lando, Ole

    2016-01-01

    Should the laws of the world dealing with cross-border transactions be unified? Such unification presupposes an agreement on what we understand by ‘law’ and what its sources are. The drafters of uniform laws and lawyers who are preoccupied with comparative law often ask themselves: Is there, among...... the nations, a common core of legal values? If there is, this will facilitate legal unification. It will also make the international law-making easier if, in exceptional cases, a court is permitted to disregard a legal rule....

  1. Dark Matter in SuperGUT Unification Models

    International Nuclear Information System (INIS)

    Olive, Keith A

    2011-01-01

    After a brief update on the prospects for dark matter in the constrained version of the MSSM (CMSSM) and its differences with models based on minimal supergravity (mSUGRA), I will consider the effects of unifying the supersymmetry-breaking parameters at a scale above M GUT . One of the consequences of superGUT unification, is the ability to take vanishing scalar masses at the unification scale with a neutralino LSP dark matter candidate. This allows one to resurrect no-scale supergravity as a viable phenomenological model.

  2. A course in finite group representation theory

    CERN Document Server

    Webb, Peter

    2016-01-01

    This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

  3. Goldstone fermions in supersymmetric theories at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Boyanovsky, D.

    1984-01-01

    The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators

  4. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    Science.gov (United States)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  5. Gauge unification of basic forces, particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    An attempt is made to present a case for the use of both the Einstein--Weyl spin-two and the Yang--Mills spin-one gauge structures for describing strong interactions. By emphasizing both spin-one and -two aspects of this force, it is hoped that a unification of this force, on the one hand, with gravity theory and, on the other, with the electromagnetic and weak interactions can be achieved. A Puppi type of tetrahedral interralation of fundamental forces, with the strong force playing a pivotal role due to its mediation through both spin-one and -two quanta, is proposed. It is claimed that the gauge invariance of gravity theory permits the use of ambuguity-free nonpolynomial techniques and thereby the securing of relistic regularization in gravity-modified field theories with the Newtonian constant G/sub N/ providing a relistic cutoff. 37 references

  6. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  7. An Ordering Linear Unification Algorithm

    Institute of Scientific and Technical Information of China (English)

    胡运发

    1989-01-01

    In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.

  8. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  9. Gauge Coupling Unification with Partly Composite Matter

    International Nuclear Information System (INIS)

    Gherghetta, Tony

    2005-01-01

    It is shown how gauge coupling unification can occur in models with partly composite matter. The particle states which are composite only contribute small logarithmns to the running of gauge couplings, while the elementary states contribute the usual large logarithmns. This introduces a new differential running contribution to the gauge couplings from partly composite SU(5) matter multiplets. In particular, for partly supersymmetric models, the incomplete SU(5) elementary matter multiplets restore gauge coupling unification even though the usual elementary gaugino and Higgsino contributions need not be present

  10. Finite volume at two-loops in chiral perturbation theory

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.

  11. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  12. Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The total sum of dimensions of a magnum exceptional Lie symmetry groups hierarchy is 4α-bar o =(4)(137+k o )≅548. Dividing this value among the various quantum fields leads to the possibility of an eight degrees of freedom Higgs field. However analyzing the same situation using sub groups of the largest exceptional Lie group leads to the conclusion that we are likely to find three Higgs particles only at the energy scale of the standard model. Consequently five of the eight degrees of freedom are unlikely to materialize as particles at this particular energy scale. This conclusion is reinforced by an entirely different approach based on grand unification analysis which excludes any grand unification using 4HD, i.e. four Higgs doublets. This leaves us with one, two and three Higgs doublets. Noting that a super symmetric standard model with two Higgs doublets gives almost perfect grand unification and that the result agrees with our exceptional Lie symmetry groups analysis, we exclude everything else. The final result is that we expect to find at least three more Higgs particles leading to a total of 66 elementary particles while at a somewhat higher energy, the expected number of 69 particles found using E-infinity theory is obtained

  13. Unified Gauge Theories and Reduction of Couplings: from Finiteness to Fuzzy Extra Dimensions

    Directory of Open Access Journals (Sweden)

    George Zoupanos

    2008-02-01

    Full Text Available Finite Unified Theories (FUTs are N = 1 supersymmetric Grand Unified Theories, which can be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings and dimensionful (soft supersymmetry breaking terms sectors. This remarkable property, based on the reduction of couplings at the quantum level, provides a drastic reduction in the number of free parameters, which in turn leads to an accurate prediction of the top quark mass in the dimensionless sector, and predictions for the Higgs boson mass and the supersymmetric spectrum in the dimensionful sector. Here we examine the predictions of two such FUTs. Next we consider gauge theories defined in higher dimensions, where the extra dimensions form a fuzzy space (a finite matrix manifold. We reinterpret these gauge theories as four-dimensional theories with Kaluza-Klein modes. We then perform a generalized à la Forgacs-Manton dimensional reduction. We emphasize some striking features emerging such as (i the appearance of non-Abelian gauge theories in four dimensions starting from an Abelian gauge theory in higher dimensions, (ii the fact that the spontaneous symmetry breaking of the theory takes place entirely in the extra dimensions and (iii the renormalizability of the theory both in higher as well as in four dimensions. Then reversing the above approach we present a renormalizable four dimensional SU(N gauge theory with a suitable multiplet of scalar fields, which via spontaneous symmetry breaking dynamically develops extra dimensions in the form of a fuzzy sphere SN2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M4 × S2, the scalars being interpreted as gauge fields on S2. Depending on the parameters of the model the low-energy gauge group can be SU(n, or broken further to SU(n1 × SU(n2 × U(1. Therefore the second picture justifies the first one in a renormalizable framework but in addition has the potential to

  14. Finite Heisenberg groups and Seiberg dualities in quiver gauge theories

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.

    2006-01-01

    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers

  15. Lattice Yang-Mills theory at finite densities of heavy quarks

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Shin, Gwansoo

    2000-01-01

    SU(N c ) Yang-Mills theory is investigated at finite densities of N f heavy quark flavors. The calculation of the (continuum) quark determinant in the large-mass limit is performed by analytic methods and results in an effective gluonic action. This action is then subject to a lattice representation of the gluon fields and computer simulations. The approach maintains the same number of quark degrees of freedom as in the continuum formulation and a physical heavy quark limit (to be contrasted with the quenched approximation N f →0). The proper scaling towards the continuum limit is manifest. We study the partition function for given values of the chemical potential as well as the partition function which is projected onto a definite baryon number. First numerical results for an SU(2) gauge theory are presented. We briefly discuss the breaking of the color-electric string at finite densities and shed light onto the origin of the overlap problem inherent in the Glasgow approach

  16. Reduced density matrix functional theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baldsiefen, Tim

    2012-10-15

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to

  17. Reduced density matrix functional theory at finite temperature

    International Nuclear Information System (INIS)

    Baldsiefen, Tim

    2012-10-01

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to iteratively construct

  18. Finite volume gauge theory partition functions in three dimensions

    International Nuclear Information System (INIS)

    Szabo, Richard J.

    2005-01-01

    We determine the fermion mass dependence of Euclidean finite volume partition functions for three-dimensional QCD in the ε-regime directly from the effective field theory of the pseudo-Goldstone modes by using zero-dimensional non-linear σ-models. New results are given for an arbitrary number of flavours in all three cases of complex, pseudo-real and real fermions, extending some previous considerations based on random matrix theory. They are used to describe the microscopic spectral correlation functions and smallest eigenvalue distributions of the QCD 3 Dirac operator, as well as the corresponding massive spectral sum rules

  19. The low-energy effective theory of QCD at small quark masses in a finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Christoph

    2010-01-15

    At low energies the theory of quantum chromodynamics (QCD) can be described effectively in terms of the lightest particles of the theory, the pions. This approximation is valid for temperatures well below the mass difference of the pions to the next heavier particles. We study the low-energy effective theory at very small quark masses in a finite volume V. The corresponding perturbative expansion in 1/{radical}(V) is called {epsilon} expansion. At each order of this expansion a finite number of low-energy constants completely determine the effective theory. These low-energy constants are of great phenomenological importance. In the leading order of the {epsilon} expansion, called {epsilon} regime, the theory becomes zero-dimensional and is therefore described by random matrix theory (RMT). The dimensionless quantities of RMT are mapped to dimensionful quantities of the low-energy effective theory using the leading-order lowenergy constants {sigma} and F. In this way {sigma} and F can be obtained from lattice QCD simulations in the '' regime by a fit to RMT predictions. For typical volumes of state-of-the-art lattice QCD simulations, finite-volume corrections to the RMT prediction cannot be neglected. These corrections can be calculated in higher orders of the {epsilon} expansion. We calculate the finite-volume corrections to {sigma} and F at next-to-next-to-leading order in the {epsilon} expansion. We also discuss non-universal modifications of the theory due to the finite volume. These results are then applied to lattice QCD simulations, and we extract {sigma} and F from eigenvalue correlation functions of the Dirac operator. As a side result, we provide a proof of equivalence between the parametrization of the partially quenched low-energy effective theory without singlet particle and that of the super-Riemannian manifold used earlier in the literature. Furthermore, we calculate a special version of the massless sunset diagram at finite volume without

  20. Problems in unification and supergravity

    International Nuclear Information System (INIS)

    Farrar, G.; Henyey, F.

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented

  1. Ten years after the unification : East Germany and the relevance of modern theories of trade, location and growth

    NARCIS (Netherlands)

    Brakman, S.; Schramm, M.; Garretsen, Harry

    2000-01-01

    In the paper we analyse, ten years after the German unification, the relevance of modern theoretical developments on trade, location and growth for East Germany using sectoral and regional data. Given our discussion of stylized facts about industry growth, economies of scale and differences in

  2. Bifurcation theory for finitely smooth planar autonomous differential systems

    Science.gov (United States)

    Han, Maoan; Sheng, Lijuan; Zhang, Xiang

    2018-03-01

    In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.

  3. Mean-field theory of spin-glasses with finite coordination number

    Science.gov (United States)

    Kanter, I.; Sompolinsky, H.

    1987-01-01

    The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.

  4. Some applications of the representation theory of finite groups. A partial reduction methof

    NARCIS (Netherlands)

    Zanten, Arend Jan van

    1972-01-01

    In this thesis we study the representation theory of finite groups and more specifically some aspects of the theory of characters. The technique of symmetrization and/or antisymmetrization of Kronecker powers of representations, which is well-known for the general linear group is applied here to

  5. Problems in unification and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, G.; Henyey, F. (eds.)

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)

  6. Selected topics in grand unification

    International Nuclear Information System (INIS)

    Seckel, D.

    1983-01-01

    This dissertation is a collection of four pieces of research dealing with grand unification. The topics are neutron oscillation, CP violation, magnetic monopole abundance and distribution in neutron stars, and a proposal for an inflationary cosmology driven by stress-energy in domain walls

  7. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  8. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  9. Finite-time synchronization of Lorenz chaotic systems: theory and circuits

    International Nuclear Information System (INIS)

    Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel

    2013-01-01

    This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)

  10. The Economic Implications of Korean Unification

    National Research Council Canada - National Science Library

    Schmitz, Jonathan

    2002-01-01

    .... To lessen this burden, South Korea will need to initiate policy reforms that can ease the financial stress and repercussions of unification and create an integrated economic community with North Korea...

  11. Detailed balance principle and finite-difference stochastic equation in a field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation

  12. Ion currents to cylindrical Langmuir probes for finite ion temperature values: Theory

    International Nuclear Information System (INIS)

    Ballesteros, J.; Palop, J.I.F.; Colomer, V.; Hernandez, M.A.

    1995-01-01

    As it is known, the experimental ion currents to a cylindrical Langmuir probe fit quite well to the radial motion theory, developed by Allen, Boyd and Reynolds (ABR Model) and generalized by Chen for the cylindrical probe case. In this paper, we are going to develop a generalization of the ABR theory, taking into account the influence of a finite ion temperature value

  13. Higgs mass in the gauge-Higgs unification

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Takenaga, Kazunori; Yamashita, Toshifumi

    2005-01-01

    The gauge-Higgs unification theory identifies the zero mode of the extra-dimensional component of the gauge field as the usual Higgs doublet. Since this degree of freedom is the Wilson line phase, the Higgs does not have the mass term nor quartic coupling at the tree level. Through quantum corrections, the Higgs can take a vacuum expectation value, and its mass is induced. The radiatively induced mass tends to be small, although it can be lifted to O(100) GeV by introducing the O(10) numbers of bulk fields. Perturbation theory becomes unreliable when a large number of bulk fields are introduced. We reanalyze the Higgs mass based on useful expansion formulae for the effective potential and find that even a small number of bulk field can have the suitable heavy Higgs mass. We show that a small (large) number of bulk fields are enough (needed) when the SUSY breaking mass is large (small). We also study the case of introducing the soft SUSY breaking scalar masses in addition to the Scherk-Schwarz SUSY breaking and obtain the heavy Higgs mass due to the effect of the scalar mass

  14. String theory, supersymmetry, unification, and all that

    International Nuclear Information System (INIS)

    Schwarz, J.H.; Seiberg, N.

    1999-01-01

    String theory and supersymmetry are theoretical ideas that go beyond the standard model of particle physics and show promise for unifying all forces. After a brief introduction to supersymmetry, the authors discuss the prospects for its experimental discovery in the near future. They then show how the magic of supersymmetry allows us to solve certain quantum field theories exactly, thus leading to new insights about field theory dynamics related to electric-magnetic duality. The discussion of superstring theory starts with its perturbation expansion, which exhibits new features including open-quotes stringy geometry.close quotes The authors then turn to more recent nonperturbative developments. Using new dualities, all known superstring theories are unified, and their strong-coupling behavior is clarified. A central ingredient is the existence of extended objects called branes. copyright 1999 The American Physical Society

  15. Gravity-assisted exact unification in minimal supersymmetric SU(5) and its gaugino mass spectrum

    International Nuclear Information System (INIS)

    Tobe, Kazuhiro; Wells, James D.

    2004-01-01

    Minimal supersymmetric SU(5) with exact unification is naively inconsistent with proton decay constraints. However, it can be made viable by a gravity-induced non-renormalizable operator connecting the adjoint Higgs boson and adjoint vector boson representations. We compute the allowed coupling space for this theory and find natural compatibility with proton decay constraints even for relatively light superpartner masses. The modifications away from the naive SU(5) theory have an impact on the gaugino mass spectrum, which we calculate. A combination of precision linear collider and large hadron collider measurements of superpartner masses would enable interesting tests of the high-scale form of minimal supersymmetric SU(5)

  16. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  17. The quantum open system theory for quarkonium during finite temperature medium

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao

    2015-01-01

    This paper explains theoretical studies on the dynamics of heavy quarkonium in a finite temperature medium. As a first step of understanding the dynamics of heavy quarkonium in a medium, it explains firstly the definition of potential acting between heavy quarks in a finite temperature medium, and next the stochastic potential and decoherence. While the conventional definition based on thermodynamics lacks theoretical validity, theoretically reasonable definition can be obtained by the spectral decomposition of Wilson loop in the medium. When calculating the potential with this definition, the imaginary part appears, leading to the lacking of theoretical integrity when used in the potential terms of Schroedinger equation, but it is eliminated by the concept of stochastic potential. Decoherence given by thermal fluctuation to wave function is an important physical process of the dynamics of heavy quarkonium in a finite temperature medium. There is a limit of stochastic potential that cannot describe the irreversible process, and this limitation can be overcome by a more comprehensive system based on the theory of quantum open system. By dealing with the heavy quarkonium as quantum open system, phenomena such as color shielding, thermal fluctuation, and dissipation in the quark-gluon plasma, become describable in the way of quantum theory. (A.O.)

  18. The capital-asset-pricing model and arbitrage pricing theory: a unification.

    Science.gov (United States)

    Ali Khan, M; Sun, Y

    1997-04-15

    We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset's return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen-Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting.

  19. On the finite line source problem in diffusion theory

    International Nuclear Information System (INIS)

    Mikkelsen, T.; Troen, I.; Larsen, S.E.

    1981-09-01

    A simple formula for calculating dispersion from a continuous finite line source, placed at right angles to the mean wind direction, is derived on the basis of statistical theory. Comparison is made with the virtual source concept usually used and this is shown to be correct only in the limit where the virtual time lag Tsub(v) is small compared to the timescale of the turbulence tsub(l). (Auth.)

  20. LEP constraints on grand unified theories

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    1993-01-01

    Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs

  1. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    Science.gov (United States)

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  2. Accuracy of finite-difference harmonic frequencies in density functional theory.

    Science.gov (United States)

    Liu, Kuan-Yu; Liu, Jie; Herbert, John M

    2017-07-15

    Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Finite field equation for asymptotically free phi4 theory

    International Nuclear Information System (INIS)

    Brandt, R.A.; Wing-chiu, N.; Wai-Bong, Y.

    1979-01-01

    We consider the finite local field equation - (D 7 Alembertian + m 2 ) phi (x) = lim/sub xitsarrow-rightts/0[1/6gZ (xi 2 ):phi (x - xi) phi (x) phi (x + xi):- Δ (xi 2 ) phi (x) + sigma (xi 2 )(xi x partial/sub x/) 2 phi (x)], which rigorously describes gphi 4 scalar field theory, and the operator-product expansion phi (xi) phi (0) /sup approximately/ /sub xitsarrow-rightts0/F (xi 2 ) N[phi 2 ], where N[phi 2 ] denotes a normal product. For g 2 ), Δ (xi 2 ), sigma (xi 2 ), and F (xi 2 ). We perform the R transformation phi (x) → phi (x) + r on the finite field equation and obtain the operator part of the change to be proportional to lim/sub xitsarrow-rightts0/Z (xi 2 ) F (xi 2 ) N[phi 2 ] which vanishes by our knowledge of the functions Z (xi 2 ) and F (xi 2 ). We have therefore verified rigorously the partial R invariance of - vertical-bargvertical-barphi 4 theory. We discuss and solve the technical problem of finding the solution for renormalization-group equations with a matrix γ function where the lowest-order expansions of the various elements do not begin with the same powers of g

  4. Gauge-Higgs unification with brane kinetic terms

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Diaz-Cruz, J. Lorenzo

    2006-01-01

    By identifying the Higgs field as an internal component of a higher-dimensional gauge field it is possible to solve the little hierarchy problem. The construction of a realistic model that incorporates such a gauge-Higgs unification is an important problem that demands attention. In fact, several attempts in this direction have already been put forward. In this Letter we single out one such attempt, a 6D SU(3) extended electroweak theory, where it is possible to obtain a Higgs mass prediction in accord with global fits. One shortcoming of the model is its prediction for the Weinberg angle, it is too large. We slightly modify the model by including brane kinetic terms in a way motivated by the orbifold action on the 6D fields. We show that in this way it is possible to obtain the correct Weinberg angle while keeping the desired results in the Higgs sector

  5. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  6. Finite energy electroweak dyon

    Energy Technology Data Exchange (ETDEWEB)

    Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)

    2015-02-01

    The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)

  7. Principle of detailed balance and the finite-difference stochastic equation in field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation

  8. Discontinuities of Green functions in field theory at finite temperature and density

    International Nuclear Information System (INIS)

    Kobes, R.L.; Semenoff, G.W.

    1985-01-01

    We derive systematic rules for calculating the imaginary parts of Minkowski space Green functions in quantum field theory at finite temperature and density. Self-energy corrections are used as an example of the application of these rules. (orig.)

  9. The cosmological constant in theories with finite spacetime

    International Nuclear Information System (INIS)

    Kummer, Janis

    2014-08-01

    We study the role of the cosmological constant in different theories with finite spacetime. The cosmological constant appears both as an initial condition and as a constant of integration. In the context of the cosmological constant problem a new model will be presented. This modification of general relativity generates a small, non-vanishing cosmological constant, which is radiatively stable. The dynamics of the expansion of the universe in this model will be analyzed. Eventually, we try to solve the emergent problems concerning the generation of accelerated expansion using a quintessence model of dark energy.

  10. The Unification of Private International Law

    Directory of Open Access Journals (Sweden)

    Emira Kazazi

    2015-07-01

    Full Text Available Civil and the common law approaching Europe is no longer a “future project”, but more and more rather a present attempt (Kötz, 2003 – 2004. In this prism, concentrating on the European International Private Law within the space of mixed jurisdictions, it may seem surprising in light of the attempts to create a new European ius commune. But is it possible that a unification of the material law may sign the start of the end of the European conflicts of laws? Last but not the least private international law is not just a choice of law. The unification of the private law, in its definition as a concept, does not influence two of the three pillars of the private international law: respectively, that of the jurisdiction and recognition as well as implementation of foreign decisions.

  11. Heterogeneous Two-group Diffusion Theory for a Finite Cylindrical Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf; Naeslund, Goeran

    1961-06-15

    The source and sink method given by Feinberg and Galanin is extended to a finite cylindrical reactor. The two-group diffusion theory formulation is chosen primarily because of the relatively simple formulae emerging. A machine programme, calculating the criticality constant thermal utilization and the relative number of thermal absorptions in fuel rods, has been developed for the Ferranti-Mercury Computer.

  12. The superquantum theory. Candidate for the theory of everything. 2. ed.; Die Superquantum Theorie. Kandidat fuer die ''Theory of Everything''

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Shevkinaz; Gorgels, Arno

    2008-05-15

    The following topics are dealt with: The search for the universal concept of the world formula, starting of the new physics era by the superquantum theory, number distance and potential field, set theory, the possible solution of the century problem of Cantor, gravitation, derivation of the imaginary unit j{sup 2}=-1, background noise, eigenspaces, unification of the natural forces. (HSI)

  13. Gauge theories

    International Nuclear Information System (INIS)

    Jarlskog, C.

    An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)

  14. A 2D finite element implementation of the Fleck–Willis strain-gradient flow theory

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2013-01-01

    The lay-out of a numerical solution procedure for the strain gradient flow (rate-independent) theory by Fleck and Willis [A mathematical basis for strain-gradient theory – Part II: Tensorial plastic multiplier, 57:1045–1057; 2009, JMPS] has been an open issue, and its finite element implementation...

  15. Precision LEP data, supersymmetric GUTs and string unification

    International Nuclear Information System (INIS)

    Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center

    1990-01-01

    The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)

  16. The superquantum theory. Candidate for the theory of everything. 2. ed.

    International Nuclear Information System (INIS)

    Bulut, Shevkinaz; Gorgels, Arno

    2008-05-01

    The following topics are dealt with: The search for the universal concept of the world formula, starting of the new physics era by the superquantum theory, number distance and potential field, set theory, the possible solution of the century problem of Cantor, gravitation, derivation of the imaginary unit j 2 =-1, background noise, eigenspaces, unification of the natural forces. (HSI)

  17. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  18. Probes of Yukawa unification in supersymmetric SO(10) models

    Energy Technology Data Exchange (ETDEWEB)

    Westhoff, Susanne

    2009-10-23

    This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.

  19. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  20. Similarity-Based Unification: A Multi-Adjoint Approach

    Czech Academy of Sciences Publication Activity Database

    Medina, J.; Ojeda-Aciego, M.; Vojtáš, Peter

    2004-01-01

    Roč. 146, č. 1 (2004), s. 43-62 ISSN 0165-0114 Source of funding: V - iné verejné zdroje Keywords : similarity * fuzzy unification Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2004

  1. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)

  2. Gauge field theories

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1981-01-01

    The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)

  3. Finite-measuring approximation of operators of scattering theory in representation of wave packets

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Rubtsova, O.A.

    2004-01-01

    Several types of the packet quantization of the continuos spectrum in the scattering theory quantum problems are considered. Such a quantization leads to the convenient finite-measuring (i.e. matrix) approximation of the integral operators in the scattering theory and it makes it possible to reduce the solution of the singular integral equations, complying with the scattering theory, to the convenient purely algebraic equations on the analytical basis, whereby all the singularities are separated in the obvious form. The main attention is paid to the problems of the method practical realization [ru

  4. Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)

  5. A finite range pairing force for density functional theory in superfluid nuclei

    International Nuclear Information System (INIS)

    Tian, Y.; Ma, Z.Y.; Ring, P.

    2009-01-01

    The problem of pairing in the 1 S 0 channel of finite nuclei is revisited. In nuclear matter forces of separable form can be adjusted to the bare nuclear force, to any phenomenological pairing interaction such as the Gogny force or to exact solutions of the gap equation. In finite nuclei, because of translational invariance, such forces are no longer separable. Using well-known techniques of Talmi and Moshinsky we expand the matrix elements in a series of separable terms, which converges quickly preserving translational invariance and finite range. In this way the complicated problem of a cut-off at large momenta or energies inherent in other separable or zero range pairing forces is avoided. Applications in the framework of the relativistic Hartree-Bogoliubov approach show that the pairing properties are depicted on almost the same footing as by the original pairing interaction not only in nuclear matter, but also in finite nuclei. This simple separable force can be easily applied for the investigation of pairing properties in nuclei far from stability as well as for further investigations going beyond mean field theory.

  6. Gauge coupling unification and nonequilibrium thermal dark matter.

    Science.gov (United States)

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  7. Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1976-01-01

    The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius

  8. The capital-asset-pricing model and arbitrage pricing theory: A unification

    Science.gov (United States)

    Khan, M. Ali; Sun, Yeneng

    1997-01-01

    We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset’s return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen–Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting. PMID:11038614

  9. SO(10) supersymmetric grand unified theories

    Science.gov (United States)

    Dermisek, Radovan

    The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.

  10. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  11. Finite volume spectrum of 2D field theories from Hirota dynamics

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Univ. do Porto

    2008-12-01

    We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)

  12. Dark matter as the signal of grand unification

    International Nuclear Information System (INIS)

    Kadastik, Mario; Kannike, Kristjan; Raidal, Martti

    2009-01-01

    We argue that the existence of dark matter (DM) is a possible consequence of grand unification (GUT) symmetry breaking. In GUTs like SO(10), discrete Z 2 matter parity (-1) 3(B-L) survives despite broken B-L, and group theory uniquely determines that the only possible Z 2 -odd matter multiplets belong to representation 16. We construct the minimal nonsupersymmetric SO(10) model containing one scalar 16 for DM and study its predictions below M G . We find that electroweak symmetry breaking occurs radiatively due to DM couplings to the standard model Higgs boson. For thermal relic DM the mass range M DM ∼O(0.1-1) TeV is predicted by model perturbativity up to M G . For M DM ∼O(1) TeV to explain the observed cosmic ray anomalies with DM decays, there exists a lower bound on the spin-independent direct detection cross section within the reach of planned experiments.

  13. Yukawa sector of minimal SO(10) unification

    Energy Technology Data Exchange (ETDEWEB)

    Babu, K.S. [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States); Bajc, Borut [Jožef Stefan Institute,Ljubljana, 1000 (Slovenia); Saad, Shaikh [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States)

    2017-02-28

    We show that in SO(10) models, a Yukawa sector consisting of a real 10{sub H}, a real 120{sub H} and a complex 126{sub H} of Higgs fields can provide a realistic fit to all fermion masses and mixings, including the neutrino sector. Although the group theory of SO(10) demands that the 10{sub H} and 120{sub H} be real, most constructions complexify these fields and impose symmetries exterior to SO(10) to achieve predictivity. The proposed new framework with real10{sub H} and real120{sub H} relies only on SO(10) gauge symmetry, and yet has a limited number of Yukawa parameters. Our analysis shows that while there are restrictions on the observables, a good fit to the entire fermion spectrum can be realized. Unification of gauge couplings is achieved with an intermediate scale Pati-Salam gauge symmetry. Proton decay branching ratios are calculable, with the leading decay modes being p→ν̄π{sup +} and p→e{sup +}π{sup 0}.

  14. Testing the AGN Unification Model in the Infrared

    International Nuclear Information System (INIS)

    Ramos Almeida, C; Levenson, N A; Radomski, J T; Alonso-Herrero, A; Asensio Ramos, A; Rodríguez Espinosa, J M; Pérez García, A M; Packham, C; Mason, R; Díaz-Santos, T

    2012-01-01

    We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C T = 0.95±0.02) and smaller escape probabilities than those of Sy1 (C T = 0.5±0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.

  15. SO(14) unification of 3+1 families

    International Nuclear Information System (INIS)

    Karadayi, H.R.

    1982-03-01

    It is shown that the unification of 3+1 families is possible within the framework of 64 dimensional spinor representation of SO(14). Special care is given for a description without the heavy excess fermions such as conjugate and mirror or completely exotic fermions of some family unification schemes. With the aid of an intrinsic ''L-R Asymmetry'' mechanism which we proposed recently, the conventional strong and electromagnetic interactions are obtained for all four families by concentrating only on the symmetry breaking SO(14) → SU(3)sub(c) x U(1)sub(e.m.). However, the conventional weak interactions of the first three families are obtained just as in the standard SU(2)sub(L) x U(1)sub(Y) model, while those of the prescribed fourth family show certain differences. This is what we mean by 3+1 family unification. All vector particles mediating strong, electromagnetic and weak interactions which are the subjects of present phenomenological tests are specified among the vector fields of SO(14) and their mass mechanisms leading to a consistent description of this low-energy phenomenology are studied with the aid of the Higgs multiplets 14, 364, 1716 and 2002 of SO(14). Moreover, the fermion mass mechanisms are considered with the aid of these scalar multiplets and the contributions from these scalars to the vector and fermion masses are explicitly calculated. All these calculations are carried out in the new mathematical technique for the Lie algebra representations which we introduced recently. (author)

  16. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †

    Directory of Open Access Journals (Sweden)

    M. W. C. Dharma-wardana

    2016-03-01

    Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm

  17. Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories

    International Nuclear Information System (INIS)

    Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2003-01-01

    Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories

  18. On the question of establishing the equivalence of general relativity and relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Kulyabov, D.S.

    2010-01-01

    Full text: (author)In the construction of physical theories are several paradigms (according to Vladimirov Yu. S.). Depending on the number of entities are used paradigms include trialist (3 entities), dualist (2 entities) and monistic (1 entity). In trialist paradigm uses the following entities: geometry (G), particle (P) and field (F). Go to the dualist paradigms performed in the following ways: two entities take over the functions of the third, two entities merged into a single synthesis. Is also possible to limit the dualistic theory, which summarized the essence in addition assume the functions of a third. In turn, by way of grouping the entities dualistic theory can be divided into geometric (unification of geometry and field), relational (unification of geometry and particles) and field (unification of fields and particles). For the connection of the two theories should be to go to the common denominator: to trialist or monistic theories. Since the monistic theory at the moment completely unknown, may be used only trialist theory. General relativity is a typical representative of the geometric dualistic paradigm. However geometrized only gravity. Other fields non-geometrized. In turn, the relativistic theory of gravitation is a typical trialist theory. To establish a correspondence between theories should to geometrize material field in the general theory of relativity. It is proposed to implement this on the basis of a multi-dimensional Kaluza-Klein theory

  19. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  20. Theory of elementary particles. Proceedings

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1994-03-01

    These proceedings contain most of the invited talks ans short communications presented at the named symposium. These concern developments in field theory in connection with string models, grand unification, and quantum gravity. See hints under the relevant topics. (HSI)

  1. Infrared problem in gΦ4 theory at finite temperature

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-11-01

    We study the infrared problem in gΦ 4 theory in 4 dimensions at finite temperature in the context of the real-time formalism. We perform a complete 2-loop analysis of the mass-shift in this model, as a N-loop calculation for a specific class of diagrams. In the case of massless particles, we find the same problems as for hot QCD, that is, the natural infrared cutoff which emerges as a thermal mass, m 2 ∼gT 2 , is too small to act as a good cutoff and the perturbation theory breaks down beyond some order in the coupling constant g. However, we find that an explicit summation of the leading infrared divergent diagrams gives a result which is not very different from the perturbative approach

  2. Explanatory Unification by Proofs in School Mathematics

    Science.gov (United States)

    Komatsu, Kotaro; Fujita, Taro; Jones, Keith; Naoki, Sue

    2018-01-01

    Kitcher's idea of 'explanatory unification', while originally proposed in the philosophy of science, may also be relevant to mathematics education, as a way of enhancing student thinking and achieving classroom activity that is closer to authentic mathematical practice. There is, however, no mathematics education research treating explanatory…

  3. The method of finite-gap integration in classical and semi-classical string theory

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-01-01

    In view of proving the AdS/CFT correspondence one day, a deeper understanding of string theory on certain curved backgrounds such as AdS 5 x S 5 is required. In this review we make a step in this direction by focusing on RxS 3 . It was discovered in recent years that string theory on AdS 5 x S 5 admits a Lax formulation. However, the complete statement of integrability requires not only the existence of a Lax formulation but also that the resulting integrals of motion are in pairwise involution. This idea is central to the first part of this review. Exploiting this integrability we apply algebro-geometric methods to string theory on RxS 3 and obtain the general finite-gap solution. The construction is based on an invariant algebraic curve previously found in the AdS 5 x S 5 case. However, encoding the dynamics of the solution requires specification of additional marked points. By restricting the symplectic structure of the string to these algebro-geometric data we derive the action-angle variables of the system. We then perform a first-principle semiclassical quantization of string theory on RxS 3 as a toy model for strings on AdS 5 x S 5 . The result is exactly what one expects from the dual gauge theory perspective, namely the underlying algebraic curve discretizes in a natural way. We also derive a general formula for the fluctuation energies around the generic finite-gap solution. The ideas used can be generalized to AdS 5 x S 5 . (review)

  4. Families in the nonperturbative unification scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Theisen, S. (European Organization for Nuclear Research, Geneva (Switzerland)); Zoupanos, G. (Ethnikon Metsovion Polytechneion, Athens (Greece). Dept. of Physics)

    1989-10-12

    Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.).

  5. Families in the nonperturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Theisen, S.; Zoupanos, G.

    1989-01-01

    Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.)

  6. Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay

    International Nuclear Information System (INIS)

    Lee, Chang-Hun; Mohapatra, Rabindra N.

    2017-01-01

    SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p→e + π 0 may have a partial lifetime within the reach of currently planned experiments.

  7. Authenticity and Unification in Quechua Language Planning.

    Science.gov (United States)

    Hornberger, Nancy H.; King, Kendall

    1998-01-01

    Examines the potentially problematic tension between the goals of authenticity and unification in Quechua-language planning. One case study examines the orthographic debate that arose in Peru, and the second case study concerns two indigenous communities in Saraguro in the Southern Ecuadorian highlands where Spanish predominates but two Quichua…

  8. Theory of axially symmetric probes in a collisionless magnetoplasma: Aligned spheroids, finite cylinders, and disks

    International Nuclear Information System (INIS)

    Rubinstein, J.; Laframboise, J.G.

    1983-01-01

    A theory is presented for current collection by electrostatic probes in a collisionless, Maxwellian plasma containing a uniform magnetic field B, where the probes are spheroids or finite cylinders whose axis of symmetry is aligned with B, or disks perpendicular to B. The theory yields upper-bound and adiabatic-limit currents for the attracted particle species. For the repelled species, it yields upper and lower bounds. This work is an extension of existing theory for spherical probes by Rubinstein and Laframboise

  9. Grand unification in higher dimensions with split supersymmetry

    International Nuclear Information System (INIS)

    Schuster, Philip C.

    2006-01-01

    We investigate gauge coupling unification in higher dimensional GUT models with split supersymmetry. We focus on 5d and 6d orbifold GUTs, which permit a simple solution to several problems of 4D GUTs as well as control over GUT scale threshold corrections. In orbifold GUTs, calculable threshold corrections can raise or lower the prediction for α s (M Z ) in a way that depends on the location of Higgs fields. On the other hand, split supersymmetry lowers the prediction for α s (M Z ). Consequently, split supersymmetry changes the preferred location of the Higgs fields in orbifold GUTs. In the simplest models, we find that gauge coupling unification favors higgs doublets that live on the orbifold fixed points instead of in the bulk. In addition, relatively high scales of supersymmetry breaking of 10 10±2 GeV are generically favored

  10. Higgs, Top, and Bottom Mass Predictions in Finite Unified Theories

    CERN Document Server

    Heinemeyer, Sven; Zoupanos, George

    2014-01-01

    All-loop Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) based on the principle of reduction of couplings, which have a remarkable predictive power. The reduction of couplings implies the existence of renormalization group invariant relations among them, which guarantee the vanishing of the beta functions at all orders in perturbation theory in particular N = 1 GUTs. In the soft breaking sector these relations imply the existence of a sum rule among the soft scalar masses. The confrontation of the predictions of a SU(5) FUT model with the top and bottom quark masses and other low-energy experimental constraints leads to a prediction of the light Higgs-boson mass in the rangeMh ∼ 121−126 GeV, in remarkable agreement with the discovery of the Higgs boson with a mass around ∼ 125.7 GeV. Also a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV is predicted, consistent with the non-observation of those particles at the LHC.

  11. Status of the superworld from theory to experiment

    International Nuclear Information System (INIS)

    Lopez, J.L.; Nanopoulos, D.V.; Zichichi, A.

    1994-01-01

    Among the most outstanding conceptual developments in particle physics we have: the unification of all particle interactions at very-high energies (Grand Unification), the fermion-boson symmetry (Supersymmetry), the non-point-like structure of elementary particles (String theory), and the understanding that all dynamical quantities (gauge couplings, masses, Yukawa coupling) run with energy (Renormalization Group Equations). The goal is to make use of these great developments to construct a theory which embraces all fundamental forces of Nature, including gravity. In this review we address this problem and its possible implications for physics in the energy range where our experimental facilities operate. We show that what is required are not qualitative arguments but a set of detailed calculations with definite predictions. (Author)

  12. Grand unification and the double beta-decay

    International Nuclear Information System (INIS)

    Faessler, A.

    1992-01-01

    Models of the unification of the electroweak and the strong interaction predict that the neutrino is a Majorana particle and therefore essentially identical with its own antiparticle. In such grand unified models the neutrino has also a finite mass and a slight right-handed weak interaction, since the model is left-right symmetric. These models have also left handed and right-handed vector bosons to mediate the weak interactions. If these models are correct the neutrinoless double beta-decay is feasable. Thus if one finds the neutrinoless double beta-decay one knows that the standard model can not be correct in which the neutrino is a Dirac particle and therefore different from its antiparticle. Although the neutrinoless double beta-decay has not been seen it is possible to extract from the lower limits of the lifetime against the double neutrinoless beta-decay upper limits for the effective electron-neutrino mass and for the effective mixing angle of the right-handed and the left-handed vector bosons mediating the weak interaction. One also can obtain an effective upper limit for the mass ratio of the light and the heavy vector bosons. The extraction of this physical quantities from the data is made difficult due to the fact that the weak interaction must not be diagonal in the representation of the mass matrix of the six neutrinos requested by such left-right symmetric models. (author)

  13. Finite fields and applications

    CERN Document Server

    Mullen, Gary L

    2007-01-01

    This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...

  14. Finite density two color chiral perturbation theory revisited

    Science.gov (United States)

    Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo

    2018-06-01

    We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.

  15. Bit-string physics a finite and discrete approach to natural philosophy

    CERN Document Server

    Noyes, H Pierre

    2001-01-01

    We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something

  16. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  17. Towards a new paradigm for quark-lepton unification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Christopher [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,53 avenue des Martyrs, 38026 Grenoble Cedex (France)

    2017-05-03

    The quark and charged lepton mass patterns upset their naïve unification. In this paper, a new approach to solve this problem is proposed. Model-independently, we find that a successful unification can be achieved. A mechanism is identified by which the large top quark mass renders its third-generation leptonic partner very light. This state is thus identified with the electron. We then construct a toy model to implement dynamically this mechanism, using tree-level exchanges of vector leptons to relate the quark and charged lepton flavor structures. In a supersymmetric context, this same mechanism splits the squark masses, and third generation squarks end up much lighter than the others. Finally, the implementation of this mechanism in SU(5) GUT permits to avoid introducing any flavor structure beyond the two minimal Yukawa couplings, ensuring the absence of unknown mixing matrices and their potentially large impact on FCNC.

  18. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  19. Finite automata, their algebras and grammars towards a theory of formal expressions

    CERN Document Server

    Büchi, J Richard

    1989-01-01

    The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and aga...

  20. Unification types of housing during Sochi Olympics

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Babaev

    2011-05-01

    Full Text Available In the article the statement of the unification problem of housing accommodation of participants, spectators, staff, committee during the Winter Olympics in Sochi. We give a mathematical formalization of the problem, where the unknown variables are theelements of the combination of types of accommodation sorted by the level of comfortand representation.

  1. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.

    1990-01-01

    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  2. Supergravity theories

    International Nuclear Information System (INIS)

    Uehara, S.

    1985-01-01

    Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)

  3. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  4. Conformal symmetry and the Higgs effect in the Einstein-Weinberg-Salam unified theory

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Smirichinski, V.I.; Pawlowski, M.M.

    1997-11-01

    We consider the unification of the Einstein theory of gravity with a conformal invariant version of the standard model for electroweak interaction without the Higgs potential. In this theory, the evolution of the Universe and the elementary particle masses have one and the same cosmological origin. In the flat space limit, we get the σ-model version of the standard model. The cosmological consequences of such a unification are studied. The red shift formula and Hubble law are obtained under the conventional Friedmann assumption of homogeneous matter distribution. We show that the considered theory leads to a very small vacuum density of the Higgs field ρ Cosmic φ = 10 -34 ρ cr in contrast with the theory with the Higgs potential ρ Higgs φ =0 54 ρ cr . (author)

  5. Principles of the Unification of Our Agency

    Science.gov (United States)

    Roth, Klas

    2011-01-01

    Do we need principles of the unification of our agency, our mode of acting? Immanuel Kant and Christine Korsgaard argue that the reflective structure of our mind forces us to have some conception of ourselves, others and the world--including our agency--and that it is through will and reason, and in particular principles of our agency, that we…

  6. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  7. Vanishing corrections on intermediate scale and implications for unification of forces

    International Nuclear Information System (INIS)

    Parida, M.K.

    1996-02-01

    In two-step breakings of a class of grand unified theories including SO(10), we prove a theorem showing that the scale (M I ) where the Pati-Salam gauge symmetry with parity breaks down to the standard gauge group, has vanishing corrections due to all sources emerging from higher scales (μ > M I ) such as the one-loop and all higher-loop effects, the GUT-threshold, gravitational smearing, and string threshold effects. Implications of such a scale for the unification of gauge couplings with small Majorana neutrino masses are discussed. In string inspired SO(10), we show that M I ≅ 5 x 10 12 GeV, needed for neutrino masses, with the GUT scale M U ≅ M str can be realized provided certain particle states in the predicted spectrum are light. (author). 28 refs, 1 tab

  8. A finite landscape?

    International Nuclear Information System (INIS)

    Acharya, B.S.; Douglas, M.R.

    2006-06-01

    We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)

  9. Unification of General Relativity with Quantum Field Theory

    International Nuclear Information System (INIS)

    Ni Jun

    2011-01-01

    In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)

  10. Deductive Synthesis of the Unification Algorithm,

    Science.gov (United States)

    1981-06-01

    DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem

  11. Unification of Forces: The Road to Jointness?

    Science.gov (United States)

    1991-05-15

    tend to resist large change--or innovation. Because organizations value "predictability, stability, and certainty," incremental change is the...preferred mode of behavior for organizations.29 Unification of the forces would be a large, rather than an incremental , change; thus, the services would...coordinating planning and bidgeting , providing unified direction, accounting and controlling weapons and equipment acquisition, eliminating duplication of

  12. String unification and leptophobic Z` in flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. [Rice Univ., Houston, TX (United States). Bonner Nuclear Labs.

    1997-01-01

    We summarize recent developments in the prediction for {alpha}{sub s}(M{sub Z}), self-consistent string unification and the dynamical determination of mass scales, and leptophobic Z` gauge bosons in the context of stringy flipped SU(5). (orig.).

  13. String theory constructions and conformal invariance

    International Nuclear Information System (INIS)

    Govaerts, J.

    1990-01-01

    This paper reports that as is rather well known, string theories are regarded nowadays by theoretical physicists as a possible framework for the Theory of Everything, or more correctly, for a consistent unified quantum theory of all particles and all their interactions, including gravity. One of the many fascinating facets of these theories is that they could make a centuries old dream come true in a most unique way. Indeed, string theories could well provide the ultimate unification of Nature: the Universe and all that it contains being made of only one fundamental object, with dynamics so rich that it leads to this infinitely large variety of physical phenomena that we observe at all energy scales in our Universe. Moreover, the mathematical structures involved in these theories are so profound and beautiful that they bring together so far unrelated fields in pure mathematics, and have led to important developments in other fields of physics as well. All of physics and all of mathematics coming together in our understanding of the world: was that not the ultimate dream of the Ancient Greeks? But, what are string theories? In the first qualitative approach of this introduction, it may be useful to contrast these theories against the more familiar description of relativistic point-particles. When a single particle propagates freely in space-time, it describes a one- dimensional manifold: its world line. In a quantum description, we associate to this process a quantum amplitude: the Feynman propagator. It is also possible to describe interactions between such particles, by defining probability amplitudes for the splitting and joining of the corresponding world-lines (a priori, the number of particles involved in any such single interaction could be arbitrary but finite)

  14. Reduced modular symmetries of threshold corrections and gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)

    2015-04-01

    We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.

  15. A non-perturbative analysis in finite volume gauge theory

    International Nuclear Information System (INIS)

    Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook

    1988-01-01

    We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)

  16. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  17. Gauge theories

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1986-01-01

    Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)

  18. Topological geometrodynamics. III. Quantum theory

    International Nuclear Information System (INIS)

    Pitkanen, M.

    1986-01-01

    The description of 3-space as a spacelike 3-surface of the space H = M 4 x CP 2 (product of Minkowski space and two-dimensional complex projective space CP 2 ) and the idea that particles correspond to 3-surfaces of finite size in H are the basic ingredients of topological geometrodynamics, TGD, an attempt to a geometry-based unification of the fundamental interactions. The observations that the Schroedinger equation can be derived from a variational principle and that the existence of a unitary S matrix follows from the phase symmetry of this action lead to the idea that quantum TGD should be derivable from a quadratic phase symmetric variational principle in the space SH consisting of the spacelike 3-surfaces of H. In this paper a formal realization of this idea is proposed. First, the space SH is endowed with the necessary geometric structures (metric, vielbein, and spinor structures) induced from the corresponding structures of the space H. Second, the concepts of the scalar super field in SH (both fermions and bosons should be describable by the same probability amplitude) and of super d'Alambertian are defined. It is shown that the requirement of a maximal symmetry leads to a unique CP-breaking super d'Alambertian and thus to a unique theory ''predicting everything.'' Finally, a formal expression for the S matrix of the theory is derived

  19. Exploring the Use of Enterprise Content Management Systems in Unification Types of Organizations

    Directory of Open Access Journals (Sweden)

    Arshad Noreen Izza

    2014-03-01

    Full Text Available The aim of this paper is to better understand how highly standardized and integrated businesses known as unification types of organizations use Enterprise Content Management Systems (ECMS to support their business processes. Multiple case study approach was used to study the ways two unification organizations use their ECMS in their daily work practices. Arising from these case studies are insights into the differing ways in which ECMS is used to support businesses. Based on the comparisons of the two cases, this study proposed that unification organizations may use ECMS in four ways, for: (1 collaboration, (2 information sharing that supports a standardized process structure, (3 building custom workflows that support integrated and standardized processes, and (4 providing links and access to information systems. These findings may guide organizations that are highly standardized and integrated in fashion, to achieve their intended ECMS-use, to understand reasons for ECMS failures and underutilization and to exploit technologies investments.

  20. Finite Markov processes and their applications

    CERN Document Server

    Iosifescu, Marius

    2007-01-01

    A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models.The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic ch

  1. The Determining Finite Automata Process

    Directory of Open Access Journals (Sweden)

    M. S. Vinogradova

    2017-01-01

    Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.

  2. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  3. Gauge unification, non-local breaking, open strings

    International Nuclear Information System (INIS)

    Trapletti, M.

    2005-01-01

    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1

  4. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    Science.gov (United States)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  5. Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, P.

    2009-01-01

    We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.

  6. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  7. Einstein's Last Dream: The Space–Time Unification of Fundamental ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Einstein's Last Dream: The Space – Time Unification of Fundamental Forces. Abdus Salam. Reflections Volume 3 Issue 1 January 1998 pp 81-88. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Educational Systems and Rising Inequality: Eastern Germany after Unification

    Science.gov (United States)

    von Below, Susanne; Powell, Justin J. W.; Roberts, Lance W.

    2013-01-01

    Educational systems considerably influence educational opportunities and the resulting social inequalities. Contrasting institutional regulations of both structures and contents, the authors present a typology of educational system types in Germany to analyze their effects on social inequality in eastern Germany after unification. After 1990, the…

  9. Interplay between grand unification and supersymmetry in SU(5 ...

    Indian Academy of Sciences (India)

    energy MSSM. break the rank, Aulakh and his collaborators [10–12] have showed that R-parity is exact all the way down to low energies. In this case, grand unification tells us something about supersymmetry and even dark matter. In this article ...

  10. Automatic Construction of Finite Algebras

    Institute of Scientific and Technical Information of China (English)

    张健

    1995-01-01

    This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

  11. Infrared fixed point solution for the top quark mass and unification of couplings in the MSSM

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Carena, M.; Pokorski, S.; Wagner, C.E.M.

    1993-08-01

    We analyze the implications of the infrared quasi fixed point solution for the top quark mass in the Minimal Supersymmetric Standard Model. This solution could explain in a natural way the relatively large value of the top quark mass and, if confirmed experimentally, may be suggestive of the onset of nonperturbative physics at very high energy scales. In the framework of grand unification, the expected bottom quark -- tau lepton Yukawa coupling unification is very sensitive to the fixed point structure of the top quark mass. For the presently allowed values of the electroweak parameters and the bottom quark mass, the Yukawa coupling unification implies that the top quark mass must be within ten percent of its fixed point values

  12. An introduction to finite tight frames

    CERN Document Server

    Waldron, Shayne F D

    2018-01-01

    This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing. Key features and topics: * First book entirely devoted to finite frames * Extensive exercises and MATLAB examples for classroom use * Important examples, such as harmonic and Heisenberg frames, are presented in preliminary chapters, encouraging readers to explore and develop an intuitive feeling for tight frames * Later chapters delve into general theory details and recent research results * Many illustrations showing the special aspects of the geometry of finite frames * Provides an overview of the field of finite tight frames * Discusses future research directions in the field Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook ...

  13. A4 family symmetry and quark-lepton unification

    International Nuclear Information System (INIS)

    King, Stephen F.; Malinsky, Michal

    2007-01-01

    We present a model of quark and lepton masses and mixings based on A 4 family symmetry, a discrete subgroup of an SO(3) flavour symmetry, together with Pati-Salam unification. It accommodates tri-bimaximal neutrino mixing via constrained sequential dominance with a particularly simple vacuum alignment mechanism emerging through the effective D-term contributions to the scalar potential

  14. Finite flavour groups of fermions

    International Nuclear Information System (INIS)

    Grimus, Walter; Ludl, Patrick Otto

    2012-01-01

    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)

  15. Cosmic string solution in a Born-Infeld type theory of gravity

    International Nuclear Information System (INIS)

    Rocha, W.J. da; Guimaraes, M.E.X.

    2009-01-01

    Full text. Advances in the formal structure of string theory point to the emergence, and necessity, of a scalar-tensorial theory of gravity. It seems that, at least at high energy scales, the Einstein's theory is not enough to explain the gravitational phenomena. In other words, the existence of a scalar (gravitational) field acting as a mediator of the gravitational interaction together with the usual purely rank-2 tensorial field is, indeed, a natural prediction of unification models as supergravity, superstrings and M-theory. This type of modified gravitation was first introduced in a different context in the 60's in order to incorporate the Mach's principle into relativity, but nowadays it acquired different sense in cosmology and gravity theories. Although such unification theories are the most acceptable, they all exist in higher dimensional spaces. The compactification from these higher dimensions to the 4-dimensional physics is not unique and there exist many effective theories of gravity which come from the unification process. Each of them must, of course, satisfy some predictions. Here, in this paper, we will deal with one of them. The so-called NDL theory. One important assumption in General Relativity is that all field interact in the same way with gravity. This is the so called Strong Equivalence Principle (SEP). It is well known, with good accuracy, that this is true when we concern with matter to matter interaction, i.e, the Weak Equivalence Principle(WEP) is tested. But, until now, there is no direct observational confirmation of this affirmation to the gravity to gravity interaction. In an extension of the field theoretical description of General Relativity constructed by is used to propose an alternative field theory of gravity. In this theory gravitons propagate in a different spacetime. The velocity of propagation of the gravitational waves in this theory does not coincide with the General Relativity predictions. (author)

  16. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.

    2014-01-01

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures

  17. SO(10) - Grand unification and fermion masses

    International Nuclear Information System (INIS)

    Oezer, A.D.

    2005-01-01

    In this work, we study SO(10) grand unification in its full extent by using different explicit matrix representations which exhibit the structure of SO(10) in a very transparent way. Our approach consists mainly of two stages: We derive the explicit expressions of the mass-eigenvalues and mass-eigenstates of the physical gauge bosons from a mass squared-matrix that contains all the information about the mixing parameters among the gauge fields and the phases which are sources for CP violation. In the light of this analysis, we derive the explicit expressions for the interaction Lagrangians of the charged currents, the neutral currents and the charged and colored currents in SO(10). We present explicit expressions of the vector and axial-vector couplings of the two neutral currents in SO(10). We show how the baryon, lepton and baryon minus lepton number violating processes and their explicit CP violating phases are accommodated in the SO(10) theory. The Higgs potential that we use to implement in the Higgs mechanism is constructed in a most general fashion through a careful study of the Higgs fields of SO(10), where we give special emphasis on illustrating the explicit matrix representation of these Higgs fields. The potential part of the Higgs Lagrangian will give us the properties of the minimum of the vacuum, and the kinetic part will give us the mass-squared matrix of the gauge bosons via spontaneous symmetry breakdown. The same Higgs multiplets will be coupled to fermions through a democratic Yukawa matrix. Thereby, we derive explicit expressions for the fermion masses of the third family including Majorana and Dirac masses for neutrinos. We introduce a flavor-eigenbasis for neutrinos and find the mass-eigenstates and mass-eigenvalues of the neutrinos. Explicit expressions for CP violation in the neutrino sector are obtained. In the second stage of our work, we evaluate all the above mentioned quantities. In addition, we present the values of the physical

  18. Unification and fermion mass structure

    International Nuclear Information System (INIS)

    Ross, Graham G.; Serna, Mario

    2008-01-01

    Grand Unified Theories predict relationships between the GUT-scale quark and lepton masses. Using new data in the context of the MSSM, we update the values and uncertainties of the masses and mixing angles for the three generations at the GUT scale. We also update fits to hierarchical patterns in the GUT-scale Yukawa matrices. The new data shows not all the classic GUT-scale mass relationships remain in quantitative agreement at small to moderate tanβ. However, at large tanβ, these discrepancies can be eliminated by finite, tanβ-enhanced, radiative, threshold corrections if the gluino mass has the opposite sign to the wino mass

  19. Superstrings and the search for the theory of everything

    International Nuclear Information System (INIS)

    Peat, D.

    1988-01-01

    This book contains the following chapters: A Crisis in Physics; From Points to Strings; Nambu's String Theory; Grand Unification; Superstrings; Heterotic Strings: Two Dimensions in One; From Spinors to Twistors; Twistor Space; Twistor Gravity; and Into Deep Waters

  20. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  1. Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented

  2. Philosophical introduction to set theory

    CERN Document Server

    Pollard, Stephen

    2015-01-01

    The primary mechanism for ideological and theoretical unification in modern mathematics, set theory forms an essential element of any comprehensive treatment of the philosophy of mathematics. This unique approach to set theory offers a technically informed discussion that covers a variety of philosophical issues. Rather than focusing on intuitionist and constructive alternatives to the Cantorian/Zermelian tradition, the author examines the two most important aspects of the current philosophy of mathematics, mathematical structuralism and mathematical applications of plural reference and plural

  3. The string unification of gauge couplings and gauge kinetic mixings

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.

    1993-01-01

    In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)

  4. From physics to metaphysics. Physical unification and string approach; Von der Physik zur Metaphysik. Physikalische Vereinheitlichung und Stringansatz

    Energy Technology Data Exchange (ETDEWEB)

    Hedrich, R.

    2007-07-01

    In spite the string approach as attempt of a nomologically unified comprehension of all interactions inclusively the gravitation exists already over three decades the physical principles on which it is based are yet completely unclear; and not the most unimportant empirically provable quantitative prediction exists. Without empirical data, which would be incompatible with the stablished theories - quantum-field theoretical standard model anf general relativity - only the conceptual incompatibility of both together with the unification idea yields a motivation for the string approach. By this however physics threatens to exceed under consequent continuation of their hitherto successful strategies the methodological framework of empirical sciences.

  5. Family unification within SO(15)

    International Nuclear Information System (INIS)

    Enqvist, K.; Maalampi, J.

    1981-01-01

    We present a model for the unification of fermion families based on the gauge symmetry SO(15). It is a minimal SO(n) model which can accommodate the known fermions within a single irreducible representation. The model predicts four ordinary fermion families and four families of mirror fermions. The latter have V + A weak interactions, and their mass scale is predicted to be 10 2 GeV/c 2 . We argue that radiative corrections to the fermion masses can cause non-negligible mixing between ordinary and mirror fermions. The implications of these mixings for the weak interaction phenomenology and solar neutrinos are discussed. (orig.)

  6. MODEL TESTS AND 3D ELASTIC FINITE ELEMENT ANALYSIS FOR STEEL PIPE PILES WITH WINGS IN STALLED IN SOIL CEMENT COLUMN

    Science.gov (United States)

    Tamai, Toshiyuki; Teramoto, Shuntarou; Kimura, Makoto

    Steel pipe piles with wings installed in soil cement column is a composite foundation of pile consisting of soil improvement with cement and steel pipe with wings. This type of pile shows higher vertical bearing capacity when compared to steel pipe piles that are installed without soil cement. It is thought the wings contribute to higher bearing capacity of this type of piles. The wings are also thought to play the role of structural unification of pile foundations and load transfer. In this study, model test and 3D elastic finite element analysis was carried out in order to elucidate the effect of wings on the structural unification of pile foundation and the load transfer mechanism. Firstly, the model test was carried out in order to grasp the influence of pile with and without wings, the shape of wings of the pile and the unconfined compression strength of the soil cement on the structural unification of the pile foundation. The numerical analysis of the model test was then carried out on the intermediate part of the pile foundation with wings and mathematical model developed. Finally load tran sfer mechanism was checked for the entire length of the pile through this mathematical model and the load sharing ratio of the wings and stress distribution occurring in the soil cement clarified. In addition, the effect of the wing interval on the structural unification of the pile foundation and load transfer was also checked and clarified.

  7. Finite-Larmor-radius stability theory of EBT plasmas

    International Nuclear Information System (INIS)

    Berk, H.L.; Cheng, C.Z.; Rosenbluth, M.N.; Van Dam, J.W.

    1982-11-01

    An eikonal ballooning-mode formalism is developed to describe curvature-driven modes of hot electron plasmas in bumpy tori. The formalism treats frequencies comparable to the ion-cyclotron frequency, as well as arbitrary finite Larmor radius and field polarization, although the detailed analysis is restricted to E/sub parallel/ = 0. Moderate hot-electron finite-Larmor-radius effects are found to lower the background beta core limit, whereas strong finite-Lamor-radius effects produce stabilization

  8. Effective theory for heavy quark QCD at finite temperature and density with stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Mathias

    2015-07-01

    In this thesis we presented the derivation as well as the numerical and analytical treatment of an effective theory for lattice Quantum Chromodynamics (LQCD). We derived the effective theory directly from LQCD, which allows us to systematically introduce further improvements. The derivation was performed by means of an expansion around the limit of infinite quark masses and infinite gauge coupling. Using this theory we were able to derive results in the region of large densities. This region is, due to the sign problem, inaccessible to standard LQCD approaches. Although LQCD simulations at large densities have been performed recently by applying stochastic quantization, those are still limited to lattice with low numbers of timeslices and therefor can not reach the low temperature region. Furthermore, they can not be crosschecked with Monte-Carlo simulations. Since the equivalence between stochastic quantization and Monte-Carlo is unproven for the case of finite density systems, new approaches to access the cold dense region of the QCD phase diagram are desirable. The effective theory presented in this thesis provides such an approach. We introduced continuum QCD in chapter 2. In chapter 3 we presented how LQCD, i.e. QCD in a discretized space-time, can be formulated and used as a tool to explore the non-perturbative regions of the QCD phase diagram. Special emphasis was placed on simulations at finite baryon densities and the numerical problems that arise in this region. These problems are caused by the complexification of the action and are known as the sign problem. We gave a detailed presentation of the derivation of our effective theory in chapter 4. For this we performed expansions around the limit of strong coupling and static quarks, κ=β=0, introducing corrections order by order in the expansion parameters κ and β. Truncating the theory at different orders allowed us to determine the parameter region where the convergence to full LQCD is good. The gauge

  9. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)

    2014-11-15

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.

  10. Stochastic density functional theory at finite temperatures

    Science.gov (United States)

    Cytter, Yael; Rabani, Eran; Neuhauser, Daniel; Baer, Roi

    2018-03-01

    Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O (" close=")N3T3)">N T-1 and is compared with the high-temperature limit scaling O Unitary unified field theories

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1976-01-01

    This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)

  11. Phase structure of 3DZ(N) lattice gauge theories at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.

    2013-01-01

    We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models

  12. Unification of three linear models for the transient visual system

    NARCIS (Netherlands)

    Brinker, den A.C.

    1989-01-01

    Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

  13. Law behind second law of thermodynamics - unification with cosmology

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2006-01-01

    In an abstract setting of a general classical mechanical system as a model for the universe we set up a general formalism for a law behind the second law of thermodynamics, i.e. really for 'initial conditions'. We propose a unification with the other laws by requiring similar symmetry and locality properties

  14. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Science.gov (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  15. Neutrino masses and b - τ unification in the supersymmetric standard model

    International Nuclear Information System (INIS)

    Vissani, F.; Smirnov, A.Yu.

    1994-05-01

    There are several indications that the Majorana masses of the right-handed neutrino components, M R , are at the intermediate scale: M R ∼ (10 10 - 10 12 ) GeV or even lighter. The renormalization effects due to large Yukawa couplings of neutrinos from region of momenta M R G are studied in the supersymmetric standard model. It is shown that neutrino renormalization effect can increase the m b /m τ ratio up to (10/15)%. This strongly disfavors m b - m τ unification for low values of tan β s . Lower bound on M R and tan β from the b - τ unification condition were found. The implications of the results to the see-saw mechanism of the neutrino mass generation are discussed. (author). 17 refs, 4 figs

  16. DESY: Theory Workshop 1994

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    For 1994, the traditional annual DESY Theory Workshop was devoted to supersymmetry. This is a novel symmetry relating bosons (normally force-carrying particles) and fermions (which normally feel the forces). In supersymmetry, bosons could have fermion counterparts, and vice versa. Although this subject is still largely a theorist's playground, many of the particles and phenomena predicted by models of low energy supersymmetry now seem within reach of present and planned future accelerator experiments, and this was one of the main reasons for choosing a more speculative theme after more phenomenological orientations in recent DESY Theory Workshops. After the welcome by DESY Director General Bjorn Wiik, attention was immediately focused on experimental aspects. P. Steffen (DESY) presented the latest results from HERA. In the following talks, K. Honscheid (Ohio), S. Lammel (Fermilab) and S. Komamiya (CERN and Tokyo) reviewed the experimental situation at electron-proton, hadron and electron-positron colliders, respectively. They discussed the most recent limits for supersymmetric particles (still none in sight!), as well as precision experiments where deviations from the standard model might show up. The workshop was treated to a first rate introduction to the MSSM (''minimal supersymmetric standard model'') by F. Zwirner (CERN), who clearly explained the motivation for going supersymmetric and reviewed the basic structure of the MSSM, its particle content and couplings, as well as the soft breaking terms necessary to avoid immediate conflict with experiment. This was followed by a systematic discussion of the Higgs sector by H. Haber (Santa Cruz), where the first hints of new physics could appear. However, he also made clear that it may not be easy to distinguish standard and non-standard Higgs bosons. Symmetries beyond the standard model, and in particular supersymmetric grand unification were treated in detail by G. Ross (Oxford) and S

  17. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  18. THE COMPLETION OF THE CHURCH UNIFICATION FROM 1700-1701 UNDER THE BISHOP ATANASIE

    Directory of Open Access Journals (Sweden)

    Florin-Alin OROS

    2013-11-01

    Full Text Available The religious unification around year 1700, betweeen a part of the Orthodox believers from Transylvania and the Church of Rome, of Catholic religion, had represented an event that left a profound spiritual mark on the Romanian and Transylvanian population. The efforts for a Unification had started under the Orthodox bishop from Transylvania, Teofil (1692-1697, a part of the Orthodox priests being willing to accept it for a series of rights and benefits. These efforts could not be accomplished because of the sudden death of the bishop in 1697. As a result of the endeavours of the next bishop of the Romanians, Atanasie, a part of the Orthodox believers had joined the new Greek-Catholic communion around 1700-1701. There is no doubt that this historical and religious endeavour was not an easy one, Atanasie being compelled to „sail” in the muddy waters of the religious structure in Transylvania. This oscillation between the Orthodox and Catholic religions, under the strict supervision of the Imperial authorities from Wien, had triggered the completion of the religious Unification at the beginning of the 18th century and the development of the Greek-Catholic church in Transylvania.

  19. Neutrino masses and large mixings as a indirect signature of grand unified theory

    International Nuclear Information System (INIS)

    Maekawa, Nobuhiro

    2015-01-01

    Grand unified theory (GUT) unifies not only three forces (electromagnetic force, strong force and weak force) but also quarks and leptons. As an experimental support for the unification of forces, it is well-known that three gauge couplings meet at a scale (the GUT scale). However, it is not so well-known that there is an experimental support even for the unification of matters (quarks and leptons). We explain the indirect support in this document and show that the important key is what the neutrino experiments have revealed for 20 years. Concretely, for the unification of matters in SU(5) GUT, various observed hierarchies of quark and lepton masses and mixings can be understood only from one assumption that '10 dimensional fields of SU(5) induce stronger hierarchy for the Yukawa couplings than 5-bar fields'. For this explanation, the knowledges on neutrino masses and mixings are critical. In the end, we comment E 6 unification in which the above assumption in the SU(5) GUT can be induced. (author)

  1. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. (orig.)

  2. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.

    1995-01-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. ((orig.))

  3. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  4. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  5. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  6. Algebraic complexities and algebraic curves over finite fields.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1987-04-01

    We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields.

  7. Preon Model and Family Replicated E_6 Unification

    Directory of Open Access Journals (Sweden)

    Larisa V. Laperashvili

    2008-02-01

    Full Text Available Previously we suggested a new preon model of composite quark-leptons and bosons with the 'flipped' $E_6imes widetilde{E_6}$ gauge symmetry group. We assumed that preons are dyons having both hyper-electric $g$ and hyper-magnetic $ilde g$ charges, and these preons-dyons are confined by hyper-magnetic strings which are an ${f N}=1$ supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. In the present paper we show that the existence of the three types of strings with tensions $T_k=k T_0$ $(k = 1,2,3$ producing three (and only three generations of composite quark-leptons, also provides three generations of composite gauge bosons ('hyper-gluons' and, as a consequence, predicts the family replicated $[E_6]^3$ unification at the scale $sim 10^{17}$ GeV. This group of unification has the possibility of breaking to the group of symmetry: $ [SU(3_C]^3imes [SU(2_L]^3imes [U(1_Y]^3 imes [U(1_{(B-L}]^3$ which undergoes the breakdown to the Standard Model at lower energies. Some predictive advantages of the family replicated gauge groups of symmetry are briefly discussed.

  8. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    Science.gov (United States)

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  9. Alternative gravity theories

    International Nuclear Information System (INIS)

    Francaviglia, M.

    1990-01-01

    Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)

  10. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  11. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  12. Oasis in the desert: weakly broken parity in grand unified theories

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1981-07-01

    A discussion of low energy parity restoration in simple grand unified theories, such as SO(10), is presented. The consistency of phenomenological requirements and unification constraints is emphasized and various predictions of the theory are stressed, in particular: substantially lighter W and Z bosons than in the standard model and increased stability of the proton with tau/sub p/ approx. = 10 38 years

  13. A note on powers in finite fields

    Science.gov (United States)

    Aabrandt, Andreas; Lundsgaard Hansen, Vagn

    2016-08-01

    The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.

  14. Unification of Radio Galaxies and their Accretion Jet Properties

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We investigate the relation between black hole mass, bh, and jet power, jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in bh-jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio ...

  15. Unification of Radio Galaxies and their Accretion Jet Properties ...

    Indian Academy of Sciences (India)

    Abstract. We investigate the relation between black hole mass, Mbh, and jet power, Qjet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in Mbh–Qjet plane, which strongly supports the unification scheme of FR. I/BL Lac and FR II/radio quasar.

  16. Natural fermion mass hierarchy and mixings in family unification

    International Nuclear Information System (INIS)

    Dent, James B.; Feger, Robert; Kephart, Thomas W.; Nandi, S.

    2011-01-01

    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrinos with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.

  17. The unification of powerful radio-loud AGN: the multi-wavelength balance

    NARCIS (Netherlands)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda; Rocca-Volmerange, Brigitte; Drouart, Guillaume

    2016-01-01

    Powerful radio-loud AGN, by virtue of their optically-thin low-frequency radio emission, represent unique targets in orientation-based unification studies, and in searches for orientation indicators and orientation invariants. Central in these efforts is the landmark Third Cambridge Catalog of Radio

  18. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  19. Infrared fixed points and fixed lines in the top-bottom-tau sector in supersymmetric grand unification

    International Nuclear Information System (INIS)

    Schrempp, B.

    1994-10-01

    The two loop 'top-down' renormalization group flow for the top, bottom and tau Yukawa couplings, from μ=M GUT ≅O(10 16 GeV) to μ≅m t , is explored in the framework of supersymmetric grand unification; reproduction of the physical bottom and tau masses is required. Instead of following the recent trend of implementing exact Yukawa coupling unification i) a search for infrared (IR) fixed lines and fixed points in the m t pole -tan β plane is performed and ii) the extent to which these imply approximate Yukawa unification is determined. In the m t pole -tan β plane two IR fixed lines, intersecting in an IR fixed point, are located. The more attractive fixed line has a branch of almost constant top mass, m t pole ≅168≅180 GeV (close to the experimental value), for the large interval 2.5 GUT approximately. The less attractive fixed line as well as the fixed point at m t pole ≅170 GeV, tan β≅55 implement approximate top-bottom Yukawa unification at all scales μ. The renormalization group flow is attracted towards the IR fixed point by way of the more attractive IR fixed line. The fixed point and lines are distinct from the much quoted effective IR fixed point m t pole ≅O(200 GeV) sin β. (orig.)

  20. Finite-temperature field theory

    International Nuclear Information System (INIS)

    Kapusta, J.I.; Landshoff, P.V.

    1989-01-01

    Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)

  1. Kaluza-Klein theories. 21

    International Nuclear Information System (INIS)

    Maheshwari, A.

    1989-01-01

    The old Kaluza-Klein theory in five dimensions for unification of electromagnetism and gravitation is discussed and put in a modern perspective so that one can now generalize the approach to unify arbitrary (non-Abelian) gauge fields with gravitation. The internal and spacetime symmetries are unified by making the internal symmetries as spacetime symmetries of 'unobservable' dimensions. This necessitates the introduction of higher dimensions - eleven in particular to accommodate the standard theory. But one has to face up the fate of the extra dimensions. Spontaneous compactification is one solution and this is treated in detail, as also is the harmonic expansions necessary to obtain the particle spectrum of Kaluza-Klein theories. The chapter ends with a discussion of the problem of chiral fermions in these theories. (author). 16 refs

  2. On discrete geometrodynamical theories in physics

    International Nuclear Information System (INIS)

    Towe, J.P.

    1988-01-01

    In this dissertation the author considers two topological-geometrical models (based upon a single suggestive formalism) in which a geometrodynamics is both feasible and pedagogically advantageous. Specifically he considers the topology which is constituted by the real domains of the two broad classes of rotation groups: those characterized by the commutator and anti-commutator algebras. He then adopts a Riemannian geometric structure and shows that the monistically geometric interpretation of this formalism restricts displacements on the proposed manifold to integral multiples of universal constant. Secondly, he demonstrates that in the context under consideration, this constraint affects a very interesting ontological reduction: the unification of quantum mechanics with a discrete, multidimensional extension of general relativity. A particularly interesting features of this unification is that is includes and requires the choice of an SL (2,R) direct-product SU (3)-symmetric realization of the proposed, generic formalism which is a lattice of spins ℎ and ℎ/2. If the vertices of this lattice are associated with the fundamental particles, then the resulting theory predicts and precludes the same interactions as the standard supersymmetry theory. In addition to the ontological reduction which is provided, and the restriction to supersymmetry, the proposed theory may also represent a scientifically useful extension of conventional theory in that it suggests a means of understanding the apparently large energy productions of the quasars and relates Planck's constant to the size of the universe

  3. MUC (Memory, Unification, Control and beyond

    Directory of Open Access Journals (Sweden)

    Peter eHagoort

    2013-07-01

    Full Text Available A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions.

  4. Quark-lepton unification and proton decay

    International Nuclear Information System (INIS)

    Pati, J.C.; Salam, A.

    1980-05-01

    Complexions for proton decay arising within a maximal symmetry for quark-lepton unification, which leads to spontaneous rather than intrinsic violations of B, L and F are considered. Four major modes satisfying δB=-1 and δF=0, -2, -4 and -6 are noted. It is stressed that some of these modes can coexist in accord with allowed solutions for renormalization group equations for coupling constants for a class of unifying symmetries. None of these remarks is dependent on the nature of quark charges. It is noted that if quarks and leptons are made of constituent preons, the preon binding is likely to be magnetic. (author)

  5. Unification of space-time and internal symmetries through superstrings, with elementary or composite quarks

    International Nuclear Information System (INIS)

    Huebsch, T.

    1987-01-01

    Symmetry properties of a given physical system constrain greatly the theoretical models built in the attempt to describe the system. In complement, the symmetry properties of a system typically undergo dramatic changes during its evolution in time, underpinning the concept of phase transitions. Employing these two ideas we analyze models of Particle Physics at increasingly higher levels of unification, attempting to cover the wide span from the domain of experimentally accessible energies to scales where all the known interactions (including gravity) may be described as low-energy effects of the tremendous and intricate structure of Superstring theories. In particular, we study the scenario of compactification of the Heterotic Superstring theory involving Calabi-Yau manifolds and derive the basic properties of the effective point-field theory action, give a huge class of constructions and devise some techniques for future analysis. Further we study the possibility that the phase-transition from Superstrings to observed particles involves an intermediary phase where the observed particles exhibit compositeness, together with some consequences on the low-energy phenomenology. Finally we include our attempt to modify the SU(5) model, as one of the simplest Grand-unified models, to provide a solution to its difficulties. As we now show, the problems we were trying to address are so generic that some of them remain (in a disguised form) even at the present understanding of the Superstring theories, the most ample constructs of fundamental Physics so far

  6. Unification of fuel elements for research reactors

    International Nuclear Information System (INIS)

    Vatulyn, A.V.; Stetskyi, Y.A.; Dobrikova, I.V.

    1997-01-01

    To the purpose of fuel elements unification the possibility of rod fuel assembly (FA) using in the cores of research reactors have been considered in this paper. The calculation results of geometric, hydraulic and thermotechnical parameters of rod assembly are submitted. Several designs of finned square fuel element and fuel assembly are proposed on base of analysis of rod FA characteristics in compare of tube ones. The fuel elements specimens and the model assembly are manufactured. The developed designs are the basis for further optimization after neutron-physical calculations of cores. (author)

  7. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  8. Finite-temperature confinement transitions

    International Nuclear Information System (INIS)

    Svetitsky, B.

    1984-01-01

    The formalism of lattice gauge theory at finite temperature is introduced. The framework of universality predictions for critical behavior is outlined, and recent analytic work in this direction is reviewed. New Monte Carlo information for the SU(4) theory are represented, and possible results of the inclusion of fermions in the SU(3) theory are listed

  9. Focus point gauge mediation in product group unification

    International Nuclear Information System (INIS)

    Bruemmer, Felix; Ibe, Masahiro; Tokyo Univ., Kashiwa; Yanagida, Tsutomu T.

    2013-03-01

    In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.

  10. The finite-dimensional Freeman thesis.

    Science.gov (United States)

    Rudolph, Lee

    2008-06-01

    I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.

  11. The minimal GUT with inflaton and dark matter unification

    Science.gov (United States)

    Chen, Heng-Yu; Gogoladze, Ilia; Hu, Shan; Li, Tianjun; Wu, Lina

    2018-01-01

    Giving up the solutions to the fine-tuning problems, we propose the non-supersymmetric flipped SU(5)× U(1)_X model based on the minimal particle content principle, which can be constructed from the four-dimensional SO(10) models, five-dimensional orbifold SO(10) models, and local F-theory SO(10) models. To achieve gauge coupling unification, we introduce one pair of vector-like fermions, which form a complete SU(5)× U(1)_X representation. The proton lifetime is around 5× 10^{35} years, neutrino masses and mixing can be explained via the seesaw mechanism, baryon asymmetry can be generated via leptogenesis, and the vacuum stability problem can be solved as well. In particular, we propose that inflaton and dark matter particles can be unified to a real scalar field with Z_2 symmetry, which is not an axion and does not have the non-minimal coupling to gravity. Such a kind of scenarios can be applied to the generic scalar dark matter models. Also, we find that the vector-like particle corrections to the B_s^0 masses might be about 6.6%, while their corrections to the K^0 and B_d^0 masses are negligible.

  12. The minimal GUT with inflaton and dark matter unification

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Heng-Yu; Gogoladze, Ilia [University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE (United States); Hu, Shan [Hubei University, Department of Physics, Faculty of Physics and Electronic Sciences, Wuhan (China); Li, Tianjun [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wu, Lina [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    Giving up the solutions to the fine-tuning problems, we propose the non-supersymmetric flipped SU(5) x U(1){sub X} model based on the minimal particle content principle, which can be constructed from the four-dimensional SO(10) models, five-dimensional orbifold SO(10) models, and local F-theory SO(10) models. To achieve gauge coupling unification, we introduce one pair of vector-like fermions, which form a complete SU(5) x U(1){sub X} representation. The proton lifetime is around 5 x 10{sup 35} years, neutrino masses and mixing can be explained via the seesaw mechanism, baryon asymmetry can be generated via leptogenesis, and the vacuum stability problem can be solved as well. In particular, we propose that inflaton and dark matter particles can be unified to a real scalar field with Z{sub 2} symmetry, which is not an axion and does not have the non-minimal coupling to gravity. Such a kind of scenarios can be applied to the generic scalar dark matter models. Also, we find that the vector-like particle corrections to the B{sub s}{sup 0} masses might be about 6.6%, while their corrections to the K{sup 0} and B{sub d}{sup 0} masses are negligible. (orig.)

  13. Quantum effects from a purely geometrical relativity theory

    International Nuclear Information System (INIS)

    Ellis, Homer G

    2005-01-01

    A purely geometrical relativity theory results from a construction that produces from three-dimensional space a happy unification of Kaluza's five-dimensional theory and Weyl's conformal theory. The theory can provide geometrical explanations for the following observed phenomena, among others: (a) visibility lifetimes of elementary particles of lengths inversely proportional to their rest masses; (b) the equality of charge magnitude among all charged particles interacting at an event; (c) the propensity of electrons in atoms to be seen in discretely spaced orbits; and (d) 'quantum jumps' between those orbits. This suggests the possibility that the theory can provide a deterministic underpinning of quantum mechanics like that provided to thermodynamics by the molecular theory of gases

  14. Do Unification Models Explain the X-ray Properties of Radio Sources?

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Kuraszkiewicz, J.; Haas, M.; Barthel, P.; Willner, S. P.; Leipski, C.; Worrall, D.; Birkinshaw, M.; Antonucci, R. R.; Ashby, M.; Chini, R.; Fazio, G. G.; Lawrence, C. R.; Ogle, P. M.; Schulz, B.

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 Unification models and lead to estimates of the covering

  15. Defining Effectiveness Using Finite Sets A Study on Computability

    DEFF Research Database (Denmark)

    Macedo, Hugo Daniel dos Santos; Haeusler, Edward H.; Garcia, Alex

    2016-01-01

    finite sets and uses category theory as its mathematical foundations. The model relies on the fact that every function between finite sets is computable, and that the finite composition of such functions is also computable. Our approach is an alternative to the traditional model-theoretical based works...... which rely on (ZFC) set theory as a mathematical foundation, and our approach is also novel when compared to the already existing works using category theory to approach computability results. Moreover, we show how to encode Turing machine computations in the model, thus concluding the model expresses...

  16. E6 unification model building. III. Clebsch-Gordan coefficients in E6 tensor products of the 27 with higher dimensional representations

    International Nuclear Information System (INIS)

    Anderson, Gregory W.; Blazek, Tomas

    2005-01-01

    E 6 is an attractive group for unification model building. However, the complexity of a rank 6 group makes it nontrivial to write down the structure of higher dimensional operators in an E 6 theory in terms of the states labeled by quantum numbers of the standard model gauge group. In this paper, we show the results of our computation of the Clebsch-Gordan coefficients for the products of the 27 with irreducible representations of higher dimensionality: 78, 351, 351 ' , 351, and 351 ' . Application of these results to E 6 model building involving higher dimensional operators is straightforward

  17. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    Science.gov (United States)

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. Copyright © 2010 Elsevier España S.L. All rights reserved.

  18. Bibliography for finite elements. [2200 references

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, J R [comp.

    1975-01-01

    This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.

  19. On a testable unification of electromagnetics, general relativity, and quantum mechanics

    International Nuclear Information System (INIS)

    Bearden, T.E.; Rosenthal, W.

    1991-01-01

    Unrecognized for what it was, in 1903-1904 E.T. Whittaker (W) published a fundamental, engineerable theory of electogravitation (EG) in two profound papers. The first (W-1903) demonstrated a hidden bidirectional EM wave structure in the scalar potential of vacuum, and showed how to produce a standing scalar EM potential wave -- the same wave discovered experimentally four years earlier by Nikola Tesla. W-1903 is a hidden variable theory that shows how to determinsitically curve the local and/or distant spacetime using EM. W-1904 shows that all force field EM can be replaced by interferometry of two scalar potentials, anticipating the Aharonov-Bohm effect by 55 years and extending it to the engineerable macroscopic world. W-1903 shows how to turn EM into G-potential, curve local and/or distant spacetime, and directly engineer the virtual particle flux of vacuum. W-1904 shows how to turn G-potential and curvature of spacetime back into force-field EM, even at a distance. The papers implement Sahkarov's 1968 statement that gravitation is not a fundamental field of nature, gut a conglomerate of other fields. Separately applied to electromagnetic (EM), quantum mechanics (QM), and general relativity (GR), an extended superset of each results. The three supersets are Whittaker-unified, so that a testable, engineerable, unified field theory is generated. EM, QM, and GR each contained a fundamental error that blocked unification, and these three errors are explain. The Schroedinger potential can also be structured and altered, indicating the direct engineering of physical quantum change. Recently Ignatovich has pointed out this hidden bidirectional EM wave structure in the Schroedinger potential, without referencing Whittaker's 1903 discovery of the basic effect

  20. Finite density lattice gauge theories with positive fermion determinants

    International Nuclear Information System (INIS)

    Sinclair, D.K.; Kogut, J.B.; Toublan, D.

    2004-01-01

    We perform simulations of (3-colour) QCD with 2 quark flavours at a finite chemical potential μ I for isospin (I 3 ), and of 2-colour QCD at a finite chemical potential μ for quark number. At zero temperature, QCD at finite μ I has a mean-field phase transition at μ I = m π to a superfluid state with a charged pion condensate which spontaneously breaks I 3 . We study the finite temperature transition as a function of μ I . For μ I π , where this is closely related to the transition at finite μ, this appears to be a crossover independent of quark mass, with no sign of the proposed critical endpoint. For μ I > m π this becomes a true phase transition where the pion condensate evaporates. For μ I just above m π the transition seems to be second order, while for larger μ I it appears to become first order. At zero temperature, 2-colour QCD also possesses a superfluid state with a diquark condensate. We study its spectrum of Goldstone and pseudo-Goldstone bosons associated with chiral and quark-number symmetry breaking. (author)

  1. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    International Nuclear Information System (INIS)

    1981-01-01

    Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base

  2. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base. (GHT)

  3. Focus point gauge mediation in product group unification

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibe, Masahiro [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Tokyo Univ., Kashiwa (Japan). ICRR; Yanagida, Tsutomu T. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-03-15

    In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.

  4. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del.

    1995-01-01

    A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs

  5. Signatures of lower-scale gauge coupling unification in the standard model due to extended Higgs sector

    International Nuclear Information System (INIS)

    Chizhov, M. V.; Bednyakov, V. A.

    2016-01-01

    The gauge coupling unification can be achieved at a unification scale around 5×10"1"3 GeV if the Standard Model scalar sector is extended with extra Higgs-like doublets. The relevant new scalar degrees of freedom in the form of chiral Z* and W* vector bosons might “be visible” already at about 700 GeV. Their eventual preferred coupling to the heavy quarks explains the non observation of these bosons in the first LHC run and provides promising expectation for the second LHC run.

  6. Principles of general relativity theory in terms of the present day physics

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1986-01-01

    A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development

  7. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  8. Finiteness preserving mass terms in N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.; Zaimi, M.

    1983-01-01

    It is shown using light cone gauge techniques that N = 4 super Yang-Mills theory is ultraviolet finite in the presence of a wide range of explicit symmetry breaking mass terms for (a) scalars and fermions (b) scalars alone. These mass terms satisfy sum rules that are part of the more general sum rule: μsub(s=0,) sub(1/2) (-1)sup(2S+1)(2s + 1)msub(S) 2 = 0, in which the mass of vector bosons is set to zero for reasons of gauge invariance. The resulting lagrangians offer the exciting possibility of realising explicit hierarchical descent of N = 4 super Yang-Mills through N = 2 and N = 1 supersymmetries. Tree level spontaneous symmetry breaking from the resulting scalar potentials are briefly discussed. (orig.)

  9. Aspects of the flipped unification of strong, weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.

    1988-12-19

    We explore phenomenological aspects of a recently proposed flipped SU(5) x U(1) supersymmetric GUT which incorporates an economical and natural mechanism for splitting Higgs doublets and triplets, and can be derived from string theory. Using experimental values of sin/sup 2/theta/sub W/ and the strong QCD coupling, we estimate the grand unification scale M/sub G/, where the strong and weak coupling strengths are equal, and the superunification scale M/sub SU/, where all couplings are equal. We find typical values of M/sub G/ approx. = 10/sup 15/ to 10/sup 17/ GeV, with M/sub SU/ somewhat higher and close to the value suggested by string models. We discuss different mechanisms for baryon decay, finding that the dominant one is gauge-boson exchange giving rise to p -> e/sup +/ /sup 0/, anti /sup +/ and n -> e/sup +/ /sup -/, anti /sup 0/ with partial lifetimes approx. = 10/sup 35+-2/ y. We show that a large GUT symmetry-breaking scale M/sub G/ is naturally generated by radiative corrections to the effective potential if a small amount approx. = m/sub W/ of soft supersymmetry breaking is generated dynamically at a large scale. We analyze the low-energy effective theory obtained using the renormalization group equations, demonstrating that electroweak symmetry breaking is obtained if m/sub t/ approx. = 60 to 90 GeV. We analyze the spectrum of sparticles, with particular attention to neutralinos.

  10. An Adynamical, Graphical Approach to Quantum Gravity and Unification

    Science.gov (United States)

    Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy

    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum

  11. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  12. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan; Rössler, Thomas [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden)

    2015-11-16

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  13. The vacuum of the minimal nonsupersymmetric SO(10) unification

    International Nuclear Information System (INIS)

    Bertolini, Stefano; Di Luzio, Luca; Malinsky, Michal

    2010-01-01

    We study a class of nonsupersymmetric SO(10) grand-unified scenarios where the first stage of the symmetry breaking is driven by the vacuum expectation values of the 45-dimensional adjoint representation. Three-decade-old results claim that such a Higgs setting may lead exclusively to the flipped SU(5) x U(1) intermediate stage. We show that this conclusion is actually an artifact of the tree-level potential. The study of the accidental global symmetries emerging in various limits of the scalar potential offers a simple understanding of the tree-level result and a rationale for the drastic impact of quantum corrections. We scrutinize in detail the simplest and paradigmatic case of the 45 H +16 H Higgs sector triggering the breaking of SO(10) to the standard electroweak model. We show that the minimization of the one-loop effective potential allows for intermediate SU(4) C x SU(2) L x U(1) R and SU(3) c x SU(2) L x SU(2) R x U(1) B-L symmetric stages as well. These are the options favored by gauge unification. Our results, that apply whenever the SO(10) breaking is triggered by H >, open the path for hunting the simplest realistic scenario of nonsupersymmetric SO(10) grand unification.

  14. Some aspects of thermal inflation: The finite temperature potential and topological defects

    International Nuclear Information System (INIS)

    Barreiro, T.; Copeland, E.J.; Lyth, D.H.; Prokopec, T.

    1996-01-01

    Currently favored extensions of the standard model typically contain open-quote open-quote flaton fields close-quote close-quote defined as fields with large vacuum expectation values (VEV close-quote s) and almost flat potentials. If a flaton field is trapped at the origin in the early Universe, one expects open-quote open-quote thermal inflation close-quote close-quote to take place before it rolls away to the true vacuum, because the finite-temperature correction to the potential will hold it at the origin until the temperature falls below 1 TeV or so. In the first part of the paper, that expectation is confirmed by an estimate of the finite-temperature corrections and of the tunneling rate to the true vacuum, paying careful attention to the validity of the approximations that are used. The second part of the paper considers topological defects which may be produced at the end of an era of thermal inflation. If the flaton fields associated with the era are grand unified theory (GUT) Higgs fields, then its end corresponds to the GUT phase transition. In that case monopoles (as well as GUT Higgs particles) will have to be diluted by a second era of thermal inflation. Such an era will not affect the cosmology of GUT strings, for which the crucial parameter is the string mass per unit length. Because of the flat Higgs potential, the GUT symmetry-breaking scale required for the strings to be a candidate for the origin of large scale structure and the CMB anisotropy is about three times bigger than usual, but given the uncertainties it is still compatible with the one required by the unification of the standard model gauge couplings. The cosmology of textures and of global monopoles is unaffected by the flatness of the potential. copyright 1996 The American Physical Society

  15. Generalization of trinification to theories with 3N SU(3) gauge groups

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2005-01-01

    We consider a natural generalization of trinification to theories with 3N SU(3) gauge groups. These theories have a simple moose representation and a gauge boson spectrum that can be interpreted via the deconstruction of a 5D theory with unified symmetry broken on a boundary. Although the matter and Higgs sectors of the theory have no simple extra-dimensional analog, gauge unification retains features characteristic of the 5D theory. We determine possible assignments of the matter and Higgs fields to unified multiplets and present theories that are viable alternatives to minimal trinified GUTs

  16. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  17. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  18. CHAIRMEN'S PREFACE AND EDITORS' NOTE: Unification of Fundamental Interactions

    Science.gov (United States)

    Brink, Lars; Nilsson, Jan S.; Salomonson, Per; Skagerstam, Bo-Sture

    1987-01-01

    Chairmen's PrefaceIn 1984 we obtained a grant from the Nobel Foundation to organize a Nobel Symposium on "Unification of the Fundamental Interactions". In our proposal which we submitted in the fall of 1983 we stated that we wanted to cover the various attempts to unification such as GUT'S, supergravity, Kaluza-Klein theories and superstrings. What has happened in particle physics since then is already history. With the realization that certain superstring theories could be anomaly free, it became clear that these models could encompass earlier attempts to unification as well as solving the fundamental problem of quantum gravity. The excitement that some of us had felt for some time now spread through most of the particle physics community and this excitement certainly was evident during the Symposium. With the international advisory committee we originally chose a list of around 30 invitees which could best represent the various subjects listed above. When it came to the final planning of the programme essentially all talks dealt with superstrings! We were very fortunate that almost all of the invitees managed to come to the Symposium. From the western world only three were unable to participate, André Neveu, Steven Weinberg and Bruno Zumino. We certainly missed them during the meeting. We were particularly happy that Stephen Hawking managed to take part actively. Our real problem was to get participants from the Soviet Union. Out of eight invitations only one came through. We were very happy to have Renata Kallosh, who really did her utmost to enlighten us about not only her own work but also about recent progress in the USSR, However, we were very sorry that in spite of all our letters, telegrammes and endless attempts to get telephone calls through and despite the good relations between the Swedish and Soviet Academies of Sciences we had to miss Ludwig Faddeev, Valodja Gribov, Andrej Linde, Victor Ogievetsky, Sasha Polyakov, Misha Shifman and Arkadij

  19. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  20. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  1. A New Approach for the Statistical Thermodynamic Theory of the Nonextensive Systems Confined in Different Finite Traps

    Science.gov (United States)

    Tang, Hui-Yi; Wang, Jian-Hui; Ma, Yong-Li

    2014-06-01

    For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann-Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis's q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal energy. When we investigate the thermodynamics for the interacting nonextensive systems, we obtain the system-bath heat exchange and "uncompensated heat" which are in the thermodynamical level and independent on the detail of the system-bath coupling. For ideal finite systems, with different traps and boundary conditions, we calculate some thermodynamic quantities, such as the specific heat, entropy, and equation of state, etc. Particularly at low temperatures for the small systems, we predict some novel behaviors in the quantum thermodynamics, including internal entropy production, heat exchanges between the system and its surroundings and finite-size effects on the free energy.

  2. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  3. Finite element method - theory and applications

    International Nuclear Information System (INIS)

    Baset, S.

    1992-01-01

    This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs

  4. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  5. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  6. Unification

    International Nuclear Information System (INIS)

    Iliopoulos, J.

    1983-01-01

    This chapter describes the weak and electromagnetic interactions by a gauge theory based on the group U(1)xSU(2). Discusses SO(10), E 6 , beyond gauge theories, Grassmann algebras, graded superalgebras, Majorana and Weyl spinors; particle representations; all possible supersymmetries of the S-matrix; representations in terms of fields; a simple field theory model; supersymmetry and gauge invariance; the breaking of supersymmetry; the supersymmetric extension of the standard model; and supersymmetry and grand-unified theories. Finds that the rate of approach to the symmetric, which is logarithmic for dimensionless couplings, is too slow to account for the high accuracy with which symmetries are observed in nature. Shows that scalar Q.E.D. in perturbation theory is not an I.R. attractor when one attempts to approach it via a class of theories with negative metric

  7. Renormalization group and finite size effects in scalar lattice field theories

    International Nuclear Information System (INIS)

    Bernreuther, W.; Goeckeler, M.

    1988-01-01

    Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)

  8. A first course in finite elements

    CERN Document Server

    Fish, Jacob

    2007-01-01

    Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations.  Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts

  9. Low-luminosity Blazars in Wise: A Mid-infrared View of Unification

    Science.gov (United States)

    Plotkin, Richard M.; Anderson, S. F.; Brandt, W. N.; Markoff, S.; Shemmer, O.; Wu, J.

    2012-01-01

    We use the preliminary data release from the Wide-Field Infrared Survey Explorer (WISE) to perform the first statistical study on the mid-infrared (IR) properties of a large number ( 102) of BL Lac objects -- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions (SEDs), and the shape of their SEDs in the IR correlates well with SED peak frequency. In other BL Lac objects, the jet is not strong enough to completely dilute the rest of the AGN, and we do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. While at odds with simple unification, the missing torus is consistent with recent suggestions that BL Lac objects are fed by radiatively inefficient accretion flows. We discuss implications on the ``nature vs. nurture" debate for FR I and FR II galaxies, and also on the standard orientation-based AGN unification model.

  10. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    International Nuclear Information System (INIS)

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  11. Study guide for applied finite mathematics

    CERN Document Server

    Macri, Nicholas A

    1982-01-01

    Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate

  12. Dark Matter after LHC Run I: Clues to Unification

    Directory of Open Access Journals (Sweden)

    Olive Keith A.

    2017-01-01

    Full Text Available After the results of Run I, can we still ‘guarantee’ the discovery of supersymmetry at the LHC? It is shown that viable dark matter models in CMSSM-like models tend to lie in strips (co-annihilation, funnel, focus point. The role of grand unification in constructing supersymmetric models is discussed and it is argued that non-supersymmetric GUTs such as SO(10 may provide solutions to many of the standard problems addressed by supersymmetry.

  13. Exchange-Rate Unification with Black Market Leakages; Russia 1992

    OpenAIRE

    Linda S. Goldberg

    1993-01-01

    In 1992 Russia unified the multiple exchange rates that had applied to international transactions. This paper describes the multiple exchange rate system that existed in Russia prior to mid-1992 and undertakes a theoretical exploration of the effects of the exchange rate unification that took place in July 1992. The model developed here allows for leakages between official and black markets and permits flexibility of the exchange rates in both official and parallel currency markets. Within th...

  14. Yukawa unification in moduli-dominant SUSY breaking

    International Nuclear Information System (INIS)

    Khalil, S.; Tatsuo Kobayashi

    1997-07-01

    We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs

  15. A General Framework for Portfolio Theory—Part I: Theory and Various Models

    Directory of Open Access Journals (Sweden)

    Stanislaus Maier-Paape

    2018-05-01

    Full Text Available Utility and risk are two often competing measurements on the investment success. We show that efficient trade-off between these two measurements for investment portfolios happens, in general, on a convex curve in the two-dimensional space of utility and risk. This is a rather general pattern. The modern portfolio theory of Markowitz (1959 and the capital market pricing model Sharpe (1964, are special cases of our general framework when the risk measure is taken to be the standard deviation and the utility function is the identity mapping. Using our general framework, we also recover and extend the results in Rockafellar et al. (2006, which were already an extension of the capital market pricing model to allow for the use of more general deviation measures. This generalized capital asset pricing model also applies to e.g., when an approximation of the maximum drawdown is considered as a risk measure. Furthermore, the consideration of a general utility function allows for going beyond the “additive” performance measure to a “multiplicative” one of cumulative returns by using the log utility. As a result, the growth optimal portfolio theory Lintner (1965 and the leverage space portfolio theory Vince (2009 can also be understood and enhanced under our general framework. Thus, this general framework allows a unification of several important existing portfolio theories and goes far beyond. For simplicity of presentation, we phrase all for a finite underlying probability space and a one period market model, but generalizations to more complex structures are straightforward.

  16. Why do probabilistic finite element analysis ?

    CERN Document Server

    Thacker, Ben H

    2008-01-01

    The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.

  17. The bounds of reason game theory and the unification of the behavioral sciences

    CERN Document Server

    Gintis, Herbert

    2014-01-01

    Game theory is central to understanding human behavior and relevant to all of the behavioral sciences-from biology and economics, to anthropology and political science. However, as The Bounds of Reason demonstrates, game theory alone cannot fully explain human behavior and should instead complement other key concepts championed by the behavioral disciplines. Herbert Gintis shows that just as game theory without broader social theory is merely technical bravado, so social theory without game theory is a handicapped enterprise. This edition has been thoroughly revised and updated. Reinvigorati

  18. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  19. Unification of Frequency direction Pilot-symbol Aided Channel Estimation (PACE) for OFDM

    DEFF Research Database (Denmark)

    Rom, Christian; Manchón, Carles Navarro; Deneire, Luc

    2007-01-01

    their specificities, namely the presence of virtual subcarriers and non-sample-spaced channels. To ease this choice, we propose a unified presentation of estimators encompassing most of the algorithms that can be found in literature, which only differ by the assumptions made on the channel. This unification leads...

  20. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination.

    Science.gov (United States)

    Frankham, R

    2012-03-01

    Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.

  1. Light grand unified theory triplets and Yukawa splitting

    International Nuclear Information System (INIS)

    Rakshit, Subhendu; Shadmi, Yael; Raz, Guy; Roy, Sourov

    2004-01-01

    Triplet-mediated proton decay in grand unified theories (GUTs) is usually suppressed by arranging a large triplet mass. Here we explore instead a mechanism for suppressing the couplings of the triplets to the first and second generations compared to the Yukawa couplings, so that the triplets can be light. This mechanism is based on a 'triplet symmetry' in the context of product-group GUTs. We study two possibilities. The first possibility, which requires the top Yukawa coupling to arise from a nonrenormalizable operator at the GUT scale, is that all triplet couplings to matter are negligible, so that the triplets can be at the weak scale, giving new evidence for grand unification. The second possibility is that some triplet couplings, and in particular Ttb and Tt-barl-bar, are equal to the corresponding Yukawa couplings. This would give a distinct signature of grand unification if the triplets were sufficiently light. However, we derive a model-independent bound on the triplet mass in this case, which is at least 10 6 GeV. Finally, we construct an explicit viable GUT model based on Yukawa splitting, with the triplets at 10 14 GeV, as required for coupling unification to work. This model requires no additional thresholds below the GUT scale

  2. Noncommutative gauge theories on ℝ{sub λ}{sup 3}: perturbatively finite models

    Energy Technology Data Exchange (ETDEWEB)

    Géré, Antoine [Dipartimento di Matematica, Università di Genova,Via Dodecaneso, 35, I-16146 Genova (Italy); Jurić, Tajron [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Wallet, Jean-Christophe [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, University Paris-Saclay,Bât. 210, 91405 Orsay (France)

    2015-12-09

    We show that natural noncommutative gauge theory models on ℝ{sub λ}{sup 3} can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of ℝ{sub λ}{sup 3} and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.

  3. Preservation theorems on finite structures

    International Nuclear Information System (INIS)

    Hebert, M.

    1994-09-01

    This paper concerns classical Preservation results applied to finite structures. We consider binary relations for which a strong form of preservation theorem (called strong interpolation) exists in the usual case. This includes most classical cases: embeddings, extensions, homomorphisms into and onto, sandwiches, etc. We establish necessary and sufficient syntactic conditions for the preservation theorems for sentences and for theories to hold in the restricted context of finite structures. We deduce that for all relations above, the restricted theorem for theories hold provided the language is finite. For the sentences the restricted version fails in most cases; in fact the ''homomorphism into'' case seems to be the only possible one, but the efforts to show that have failed. We hope our results may help to solve this frustrating problem; in the meantime, they are used to put a lower bound on the level of complexity of potential counterexamples. (author). 8 refs

  4. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory

    OpenAIRE

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-01-01

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and...

  5. The unification of physics: the quest for a theory of everything.

    Science.gov (United States)

    Paulson, Steve; Gleiser, Marcelo; Freese, Katherine; Tegmark, Max

    2015-12-01

    The holy grail of physics has been to merge each of its fundamental branches into a unified "theory of everything" that would explain the functioning and existence of the universe. The last step toward this goal is to reconcile general relativity with the principles of quantum mechanics, a quest that has thus far eluded physicists. Will physics ever be able to develop an all-encompassing theory, or should we simply acknowledge that science will always have inherent limitations as to what can be known? Should new theories be validated solely on the basis of calculations that can never be empirically tested? Can we ever truly grasp the implications of modern physics when the basic laws of nature do not always operate according to our standard paradigms? These and other questions are discussed in this paper. © 2015 New York Academy of Sciences.

  6. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Pati, J C [Department of Physics, University of Maryland, College Park (United States) and Stanford Linear Accelerator Center, Menlo Park (United States)

    2002-09-15

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference {delta}m{sup 2}({nu}{sub {mu}} - {nu}{sub {tau}}) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V{sub cb} and the largeness of {theta}{sub {nu}{sub {mu}{nu}}{sub {tau}}}{sup osc}, and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10{sup 34} years, with {nu}-barK{sup +} being the dominant decay mode, and quite possibly {mu}{sup p}+K{sup 0} and e

  7. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    International Nuclear Information System (INIS)

    Pati, J.C.

    2002-01-01

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference Δm 2 (ν μ - ν τ ) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V cb and the largeness of θ ν μ ν τ osc , and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10 34 years, with ν-barK + being the dominant decay mode, and quite possibly μ p +K 0 and e + π 0 being prominent. This in turn strongly suggests that an improvement in the current

  8. The Halo Occupation Distribution of obscured quasars: revisiting the unification model

    Science.gov (United States)

    Mitra, Kaustav; Chatterjee, Suchetana; DiPompeo, Michael A.; Myers, Adam D.; Zheng, Zheng

    2018-06-01

    We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of z ˜ 1 using a five parameter Halo Occupation Distribution (HOD) parametrization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parametrization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGNs) at z ˜ 1. The current work shows that a single HOD parametrization can be used to model the population of different kinds of AGN in dark matter haloes suggesting the universality of the relationship between AGN and their host dark matter haloes. Our results show that the median halo mass of central quasar hosts increases from optically selected (4.1^{+0.3}_{-0.4} × 10^{12} h^{-1} M_{⊙}) and infra-red (IR) bright unobscured populations (6.3^{+6.2}_{-2.3} × 10^{12} h^{-1} M_{⊙}) to obscured quasars (10.0^{+2.6}_{-3.7} × 10^{12} h^{-1} M_{⊙}), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavour a simple `orientation only' theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR-bright obscured phase to the optically bright unobscured phase.

  9. Super-renormalizable or finite Lee–Wick quantum gravity

    Directory of Open Access Journals (Sweden)

    Leonardo Modesto

    2016-08-01

    Full Text Available We propose a class of multidimensional higher derivative theories of gravity without extra real degrees of freedom besides the graviton field. The propagator shows up the usual real graviton pole in k2=0 and extra complex conjugates poles that do not contribute to the absorptive part of the physical scattering amplitudes. Indeed, they may consistently be excluded from the asymptotic observable states of the theory making use of the Lee–Wick and Cutkosky, Landshoff, Olive and Polkinghorne prescription for the construction of a unitary S-matrix. Therefore, the spectrum consists of the graviton and short lived elementary unstable particles that we named “anti-gravitons” because of their repulsive contribution to the gravitational potential at short distance. However, another interpretation of the complex conjugate pairs is proposed based on the Calmet's suggestion, i.e. they could be understood as black hole precursors long established in the classical theory. Since the theory is CPT invariant, the conjugate complex of the micro black hole precursor can be interpreted as a white hole precursor consistently with the 't Hooft complementarity principle. It is proved that the quantum theory is super-renormalizable in even dimension, i.e. only a finite number of divergent diagrams survive, and finite in odd dimension. Furthermore, turning on a local potential of the Riemann tensor we can make the theory finite in any dimension. The singularity-free Newtonian gravitational potential is explicitly computed for a range of higher derivative theories. Finally, we propose a new super-renormalizable or finite Lee–Wick standard model of particle physics.

  10. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  11. Generalized finite elements

    International Nuclear Information System (INIS)

    Wachspress, E.

    2009-01-01

    Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)

  12. Implications of results from the CERN e+e- collider LEP for SO(10) grand unification with two intermediate stages

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Keith, E.; Pal, P.B.

    1993-01-01

    We consider the breaking of the grand unification group SO(10) to the standard model gauge group through several chains containing two intermediate stages. Using the values of the gauge coupling constants at a scale M Z derived from recent data from the CERN e + e- collider LEP, we determine the range of their intermediate and unification scales. In particular, we identify those chains that permit new gauge structure at relatively low energy (∼1 TeV)

  13. Prospects for mass unification at low energy scales

    International Nuclear Information System (INIS)

    Volkas, R.R.

    1995-01-01

    A simple Pati-Salam SU(4) model with a low symmetry breaking scale of about 1000 TeV is presented. The analysis concentrates on calculating radiative corrections to tree level mass relations for third generation fermions. The tree-level relation m b /m τ = 1 predicted by such models can receive large radiative corrections up to about 50% due to threshold effects at the mass unification scale. These corrections are thus of about the same importance as those that give rise to renormalisation group running. The high figure of 50% can be achieved because l-loop graphs involving the physical charged Higgs boson give corrections to m τ -m b that are proportional to the large top quark mass. These corrections can either increase or decrease m b /m τ depending on the value of an unknown parameter. They can also be made to vanish through a fine-tuning. A related model of tree-level t-b-τ unification which uses the identification of SU(2) R with custodial SU(2) is then discussed. A curious relation m b ∼ √2m τ is found to be satisfied at tree-level in this model. The overall conclusion of this work is that the tree-level relation m b =m τ at low scales such as 1000 TeV or somewhat higher can produce a successful value for m b /m τ after corrections, but one must be mindful that radiative corrections beyond those incorporated through the renormalisation group can be very important. 14 refs., 7 figs

  14. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    International Nuclear Information System (INIS)

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-01

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature

  15. Finite energy shifts in SU(n) supersymmetric Yang-Mills theory on T3xR at weak coupling

    International Nuclear Information System (INIS)

    Ohlsson, Fredrik

    2010-01-01

    We consider a perturbative treatment, in the regime of weak gauge coupling, of supersymmetric Yang-Mills theory in a space-time of the form T 3 xR with SU(n)/Z n gauge group and a nontrivial gauge bundle. More specifically, we consider the theories obtained as power series expansions around a certain class of normalizable vacua of the classical theory, corresponding to isolated points in the moduli space of flat connections, and the perturbative corrections to the free energy eigenstates and eigenvalues in the weakly interacting theory. The perturbation theory construction of the interacting Hilbert space is complicated by the divergence of the norm of the interacting states. Consequently, the free and interacting Hilbert spaces furnish unitarily inequivalent representations of the algebra of creation and annihilation operators of the quantum theory. We discuss a consistent redefinition of the Hilbert space norm to obtain the interacting Hilbert space and the properties of the interacting representation. In particular, we consider the lowest nonvanishing corrections to the free energy spectrum and discuss the crucial importance of supersymmetry for these corrections to be finite.

  16. Reinventing Consumption Traditions through the Process of Unification of a Country: Understanding “Good Bye Lenin!”

    Directory of Open Access Journals (Sweden)

    Ece Ceren Engür

    2016-02-01

    Full Text Available This paper focuses on the change of consumption traditions in terms of re-unification of a country. The discussion bases on the movie, “Good Bye Lenin!”(2003 and chases the transformations on consumption trends in order to understand how the re-unification of East and West Germany influences the practices of everyday life after a four decade long segregation. The movie displays the 1990’s Germany during the times when the Berlin Wall falls and frames a family portrait which is dominated by an idealist and traditional mother character in the last days of her life.

  17. K-theory and representation theory

    International Nuclear Information System (INIS)

    Kuku, A.O.

    2003-01-01

    This contribution includes K-theory of orders, group-rings and modules over EI categories, equivariant higher algebraic K-theory for finite, profinite and compact Lie group actions together with their relative generalisations and applications

  18. Lie groups and grand unified theories

    International Nuclear Information System (INIS)

    Gubitoso, M.D.

    1987-01-01

    This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt

  19. 76 FR 15209 - 150th Anniversary of the Unification of Italy, 2011

    Science.gov (United States)

    2011-03-21

    ... fighting for the preservation of our own Union, Giuseppe Garibaldi's campaign for the unification of Italy... millions of American women and men of Italian descent who strengthen and enrich our Nation. Italy and the... thousand eleven, and of the Independence of the United States of America the two hundred and thirty-fifth...

  20. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  1. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  2. Aspects of extra dimensional supersymmetric unified theories

    International Nuclear Information System (INIS)

    Fichet, S.

    2011-09-01

    The purpose of this work is to investigate Grand Unified Theories (GUTs) and to make the link with passed and upcoming experiments. The structure of this thesis is as follows. In the first chapter, we will briefly review the sequence of arguments leading to the Higgs mechanism, then to the different concepts underlying physics beyond the Standard Model, and to the paradigm of extra dimensional supersymmetric grand unified theories. At each level of the argumentation, we will mention the different solutions available. The second chapter introduces more formally supersymmetry and extra dimensions, focusing in particular on the aspects of symmetry breaking. Then, in the third chapter, we present in details the two frameworks of extra dimensional theories in which we worked, called supersymmetric gauge-Higgs unification (GHU) and holographic grand unification (HGU) as well as the developments and modifications we brought to them. The fourth chapter is devoted to the low energy viability of the GHU framework, as well as its phenomenological implications. The fifth chapter presents a more generic study of the property of GUT-scale degenerate Higgs mass matrix, common to both frameworks. Finally, the sixth chapter is devoted to the viability and phenomenological implications of the HGU framework, with special emphasis on lepton flavour violation. This quantitative study takes properly into account effects of matrix anarchy, as well as exact flavour observables. The results obtained should generalize, at least qualitatively, to any other model with similar localization and supersymmetry breaking features

  3. Book Review of - The lightness of being: mass, ether, and unification of the forces

    International Nuclear Information System (INIS)

    Kronfeld, Andreas S.

    2009-01-01

    How can an electron be both a wave and a particle? At the same time? Because it is a quantum field. That key insight seems to be underappreciated, given the awe and mysticism that permeate most nontechnical discussions of modern physics. Perhaps the root of the problem is that most popularizations of quantum mechanics and of particle physics shy away from quantized fields, the natural language for microscopic phenomena. In 'The Lightness of Being: Mass, Ether, and the Unification of Forces', Frank Wilczek confronts quantum field theory head on, demystifying not only wave-particle duality but also the origin of mass for hadrons (that is, everyday matter). Wilczek is the Herman Feshbach Professor of Physics at MIT and a co-recipient of the 2004 Nobel Prize in Physics. His research has spanned almost all aspects of theoretical particle physics, with significant forays into condensed-matter physics and dense nuclear matter (condensed quark matter, one might say). Recurring themes are the richness of quantum chromodynamics (QCD) and the alluring ideas of unification. His breadth and depth make him a sought after speaker for colloquia and public lectures. Wilczek also contributes an occasional Reference Frame column to 'Physics Today'. The material in 'The Lightness of Being' reflects the scope of the author's research. The book consists of three parts: the quantum fields of QCD (the ether that makes mass), gravitation (the ether that feels mass), and unification. Part 1, which traces notions of mass from Isaac Newton's time through theoretical and computational results of the past 40 years, is the most substantial and original; it is rich, modern, and rooted in observed phenomena. Part 2 continues in the same vein as it connects gravity, also an observed phenomenon, to QCD. Part 3 is more conventional, for a popularization of particle physics, in its focus on speculative ideas that (still) await direct experimental tests. Readers of 'Physics Today' will know that

  4. On characters of finite groups

    CERN Document Server

    Broué, Michel

    2017-01-01

    This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).

  5. Finite and profinite quantum systems

    CERN Document Server

    Vourdas, Apostolos

    2017-01-01

    This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...

  6. Unification venoplasty to cope with recipient portal vein anomaly during living donor liver transplantation.

    Science.gov (United States)

    Kang, S-H; Hwang, S; Jung, D-H; Ahn, C-S; Moon, D-B; Ha, T-Y; Song, G-W; Kim, K-H; Park, G-C; Namgoong, J-M; Park, Y-H; Park, H-W; Jung, B-H; Lee, S-G

    2013-10-01

    To cope with recipient portal vein (PV) anomalies, such as early branching of the right posterior section (RPS), during living donor liver transplantation (LDLT) surgery, we performed a simulation study to standardize the surgical technique for unification portal venoplasty. This study included an observational analysis of conventional methods utilizing RPS PV, simulation-based design of a new surgical technique, and clinical application of this new technique. In a case encountering RPS PV, a mild anastomotic PV stenosis was persistent over 6 months postsurgery, indicating the need for technical refinement. After computational simulation analysis, we found that simple suturing of the PV branch patch automatically resulted in a funnel-shaped elongation. A prospective recipient study (n = 30) indicated that usual PV reconstruction via the PV bifurcation method is feasible in the absence of unusual donor or recipient PV anomaly. Retrospective living donor PV anatomy analysis (n = 20) revealed that 20-mm-long limbs of the first-order PV branches are necessary to make a 10- to l5-mm-long funneled PV stump. This technique of unification venoplasty for an anomalous recipient PV was applied to an adult patient undergoing LDLT with a right liver graft, for which it was shown to be technically feasible and effective. A simplified unification venoplasty technique was developed to cope with a recipient PV anomaly in adult LDLT. Copyright © 2013. Published by Elsevier Inc.

  7. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  8. Finite entanglement entropy and spectral dimension in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia

    2017-12-15

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  9. Finite entanglement entropy and spectral dimension in quantum gravity

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  10. Finite entanglement entropy and spectral dimension in quantum gravity

    International Nuclear Information System (INIS)

    Arzano, Michele; Calcagni, Gianluca

    2017-01-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  11. The nonsymmetric Kaluza-Klein (Jordan-Thiry) theory in the electromagnetic case

    International Nuclear Information System (INIS)

    Kalinowski, M.W.

    1992-01-01

    We present the nonsymmetric Kaluza-Klein and Jordan-Thiry theories as interesting propositions of physics in higher dimensions. We consider the five-dimensional (electromagnetic) case. The work is devoted to a five-dimensional unification of the NGT (nonsymmetric theory of gravitation), electromagnetism, and scalar forces in a Jordan-Thiry manner. We find open-quotes interference effectsclose quotes between gravitational and electromagnetic fields which appear to be due to the skew-symmetric part of the metric. Our unification, called the nonsymmetric Jordan-Thiry theory, becomes the classical Jordan-Thiry theory if the skew-symmetric part of the metric is zero. It becomes the classical Kaluza-Klein theory if the scalar field ρ=1 (Kaluza's Ansatz). We also deal with material sources in the nonsymmetric Kaluza-Klein theory for the electromagnetic case. We consider phenomenological sources with a nonzero fermion current, a nonzero electric current, and a nonzero spin density tensor. From the Palatini variational principle we find equations for the gravitational and electromagnetic fields. We also consider the geodetic equations in the theory and the equation of motion for charged test particles. We consider some numerical predictions of the nonsymmetric Kaluza-Klein theory with nonzero (and with zero) material sources. We prove that they do not contradict any experimental data for the solar system and on the surface of a neutron star. We deal also with spin sources in the nonsymmetric Kaluza-Klein theory. We find an exact, static, spherically symmetric solution in the nonsymmetric Kaluza-Klein theory in the electromagnetic case. This solution has the remarkable property of describing open-quotes mass without massclose quotes and open-quotes charge without charge.close quotes We examine its properties and a physical interpretation. 91 refs., 7 figs

  12. General theory for thermal pulses of finite amplitude in nuclear shell-burnings

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y

    1978-09-01

    Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.

  13. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde, Emilio; Odintsov, Sergei D. [Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Campus UAB, Carrer de Can Magrans, s/n, Cerdanyola del Vallès, Barcelona, 08193 Spain (Spain); Pozdeeva, Ekaterina O.; Vernov, Sergey Yu., E-mail: elizalde@ieec.uab.es, E-mail: odintsov@ieec.uab.es, E-mail: pozdeeva@www-hep.sinp.msu.ru, E-mail: svernov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 (Russian Federation)

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflation scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.

  14. Finite element analysis of a finite-strain plasticity problem

    International Nuclear Information System (INIS)

    Crose, J.G.; Fong, H.H.

    1984-01-01

    A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)

  15. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  16. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  17. INTRODUCTION A L'UNIFICATION DES INTERACTIONS ELECTROMAGNETIQUES ET FAIBLES

    OpenAIRE

    Martin , F.

    1980-01-01

    Après avoir décrit l'état actuel de la phénoménologie des interactions faibles on discute les principes de base des théories de jauge. On montre ensuite comment le mécanisme de Higgs permet d'obtenir des quanta d'interaction massifs. Le modèle dit de "Weinberg-Salam" permettant d'unifier les interactions électromagnétiques et faibles est présenté. On termine par quelques mots sur l'unification avec les interactions fortes et la gravitation.

  18. Blocks of finite groups and their invariants

    CERN Document Server

    Sambale, Benjamin

    2014-01-01

    Providing a nearly complete selection of up-to-date methods and results on block invariants with respect to their defect groups, this book covers the classical theory pioneered by Brauer, the modern theory of fusion systems introduced by Puig, the geometry of numbers developed by Minkowski, the classification of finite simple groups, and various computer assisted methods. In a powerful combination, these tools are applied to solve many special cases of famous open conjectures in the representation theory of finite groups. Most of the material is drawn from peer-reviewed journal articles, but there are also new previously unpublished results. In order to make the text self-contained, detailed proofs are given whenever possible. Several tables add to the text's usefulness as a reference. The book is aimed at experts in group theory or representation theory who may wish to make use of the presented ideas in their research.

  19. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  20. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2002-01-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  1. Prospects for mass unification at low energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Volkas, R.R.

    1995-12-31

    A simple Pati-Salam SU(4) model with a low symmetry breaking scale of about 1000 TeV is presented. The analysis concentrates on calculating radiative corrections to tree level mass relations for third generation fermions. The tree-level relation m{sub b}/m{sub {tau}} = 1 predicted by such models can receive large radiative corrections up to about 50% due to threshold effects at the mass unification scale. These corrections are thus of about the same importance as those that give rise to renormalisation group running. The high figure of 50% can be achieved because l-loop graphs involving the physical charged Higgs boson give corrections to m{sub {tau}} -m{sub b} that are proportional to the large top quark mass. These corrections can either increase or decrease m{sub b}/m{sub {tau}} depending on the value of an unknown parameter. They can also be made to vanish through a fine-tuning. A related model of tree-level t-b-{tau} unification which uses the identification of SU(2){sub R} with custodial SU(2) is then discussed. A curious relation m{sub b}{approx} {radical}2m{sub {tau}} is found to be satisfied at tree-level in this model. The overall conclusion of this work is that the tree-level relation m{sub b}=m{sub {tau}} at low scales such as 1000 TeV or somewhat higher can produce a successful value for m{sub b}/m{sub {tau}} after corrections, but one must be mindful that radiative corrections beyond those incorporated through the renormalisation group can be very important. 14 refs., 7 figs.

  2. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    Science.gov (United States)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  3. Unification of SUSY breaking and GUT breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Omura, Yuji [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-02-18

    We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.

  4. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  5. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  6. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  7. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    Science.gov (United States)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  8. Theory of weak interactions and related topics. Progress report, January 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Marshak, R.E.

    1985-08-01

    Progress is reported in these areas: B-L vs V-A gauge groups; work on neutron oscillations; preon models of quarks and leptons; partial unification theory (PUT); extensions of standard electroweak group; composite weak bosons; quasi-solitons in electroweak gauge groups; and weak CP nonconservation. 18 refs

  9. Modelling and finite-time stability analysis of psoriasis pathogenesis

    Science.gov (United States)

    Oza, Harshal B.; Pandey, Rakesh; Roper, Daniel; Al-Nuaimi, Yusur; Spurgeon, Sarah K.; Goodfellow, Marc

    2017-08-01

    A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite-time stability and stabilisation have been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite-time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite-time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite-time convergence motivates the development of a modified version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite-time actuators.

  10. Induced Yukawa coupling and finite mass

    International Nuclear Information System (INIS)

    Fujimoto, Y.

    1981-06-01

    We propose that the Yukawa couplings in the unified theories could be of induced nature. The idea is implemented in the gauge theory with either weak or horizontal Susub(L)(2) x SUsub(R)(2) symmetry. A related subject of finite fermion mass is also discussed. (author)

  11. Some consequences of embedding heavy color in grand unified theories

    International Nuclear Information System (INIS)

    Elias, V.

    1980-01-01

    I show that ''standard'' embedding constraints cannot accommodate an empirically motivated value for the heavy-color (HC) momentum scale Λ/sub HC/ if the heavy-color group is SU(N>3). The heavy-color group can be SU(3), provided such constraints are relaxed in order to allow fermions to contribute differentially to SU(3)/sub HC/ and SU(3)/sub QCD/ β-functions (QCD=quantum chromodynamics). Theories successfully embedding G/sub HC/>SU(3) along with the known interactions are shown to require vastly reduced unification mass scales. As an example, empirically acceptable values for Λ/sub HC/, sin 2 theta/sub W/, and α/sub s/(m/sub W/) as well as a unification mass scale within an order of magnitude of Λ/sub HC/ are accommodated within very large models based on [SU(2n)] 4 unifying symmetry

  12. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  13. The subgroup structure of grand unified theories with application to the fermion mass matrix in 0(10)

    International Nuclear Information System (INIS)

    Feldman, G.; Fulton, T.

    1982-01-01

    A technique, using the orthonormal basis for roots and weights of compact Lie groups, introduced by Van der Waerden and developed by Dynkin (Am. Math. Soc. Transl.; 17: (1950) and Sec 2,6:111 (1957)) provides a convenient framework for discussing mass relations in grand unification theories. The structure constants Nsub(αβ) for SU(R + 1), O(2R + 1), Sp(2R), O(2R) and G(2) are obtained in an appendix, using an approach arising from this basis. The method for obtaining generators of non-regular subalgebras, in terms of generators of the original algebras, is discussed in terms of the basis. It is necessary to know this structure in order to trace the history of particles, originally in some grand unification group, through the various chains of decompositions into subgroups. As an illustration, the methods are applied to finding the minimal, non-trivial, mass relations for fermions in the O(10) grand unification scheme. (author)

  14. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems

    International Nuclear Information System (INIS)

    Derstine, K.L.

    1984-04-01

    The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1

  15. Effective Field Theories and the Role of Consistency in Theory Choice

    CERN Document Server

    Wells, James D

    2012-01-01

    Promoting a theory with a finite number of terms into an effective field theory with an infinite number of terms worsens simplicity, predictability, falsifiability, and other attributes often favored in theory choice. However, the importance of these attributes pales in comparison with consistency, both observational and mathematical consistency, which propels the effective theory to be superior to its simpler truncated version of finite terms, whether that theory be renormalizable (e.g., Standard Model of particle physics) or nonrenormalizable (e.g., gravity). Some implications for the Large Hadron Collider and beyond are discussed, including comments on how directly acknowledging the preeminence of consistency can affect future theory work.

  16. A note on finite-scale Navier–Stokes theory: The case of constant viscosity, strictly adiabatic flow

    International Nuclear Information System (INIS)

    Jordan, P.M.; Keiffer, R.S.

    2015-01-01

    We investigate the “piston problem” for the case of a viscous, but non-thermally conducting, gas with constant transport coefficients under the recently introduced generalization of the Navier–Stokes (NS) equations known as the finite-scale Navier–Stokes (FSNS) equations. Along with determining and analyzing the integral curves of the resulting kink-type traveling wave solutions (TWS)s, the present study also reveals the importance of the bulk viscosity vis-a-vis this special case of FSNS theory and highlights the impact that averaging has on the structure of the shock profile

  17. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    Larsen, Aa.

    1987-01-01

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  18. Validation of the 3D finite element transport theory code EVENT for shielding applications

    International Nuclear Information System (INIS)

    Warner, Paul; Oliveira, R.E. de

    2000-01-01

    This paper is concerned with the validation of the 3D deterministic neutral-particle transport theory code EVENT for shielding applications. The code is based on the finite element-spherical harmonics (FE-P N ) method which has been extensively developed over the last decade. A general multi-group, anisotropic scattering formalism enables the code to address realistic steady state and time dependent, multi-dimensional coupled neutron/gamma radiation transport problems involving high scattering and deep penetration alike. The powerful geometrical flexibility and competitive computational effort makes the code an attractive tool for shielding applications. In recognition of this, EVENT is currently in the process of being adopted by the UK nuclear industry. The theory behind EVENT is described and its numerical implementation is outlined. Numerical results obtained by the code are compared with predictions of the Monte Carlo code MCBEND and also with the results from benchmark shielding experiments. In particular, results are presented for the ASPIS experimental configuration for both neutron and gamma ray calculations using the BUGLE 96 nuclear data library. (author)

  19. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  20. Vectorlike particles, Z′ and Yukawa unification in F-theory inspired E6

    Directory of Open Access Journals (Sweden)

    Athanasios Karozas

    2018-03-01

    Full Text Available We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z′ gauge boson associated with a U(1 symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t−b−τ Yukawa couplings unify.

  1. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.

  2. Finite nucleus Dirac mean field theory and random phase approximation using finite B splines

    International Nuclear Information System (INIS)

    McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)

    1989-01-01

    We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results

  3. Building a Larger Tent for Public Health: Implications of the SOPHE-AAHE Unification

    Science.gov (United States)

    Goodman, Robert Mark

    2013-01-01

    The unification of the American Association for Health Education (AAHE) and the Society for Public Health Education (SOPHE) generates a long-desired synergy, a ramping up of our leadership influence in promoting health. It also serves as an ongoing opportunity to reflect on how we synergize the distinct philosophic, scientific, and practical…

  4. Open-Economy Macroeconomics, Developments in Theory and Policy

    OpenAIRE

    Maurice Obstfeld

    1999-01-01

    This paper surveys recent research in open-economy macroeconomics, using questions raised by European economic and monetary unification to guide the topics discussed. A striking empirical regularity is the tendency for changes in the nominal exchange rate regime systematically to affect the variability of nominal and real exchange rates alike. This regularity (which disappears in high-inflation conditions) can be explained by sticky-price theories or by models of asset-market liquidity effect...

  5. Finite field equation of Yang--Mills theory

    International Nuclear Information System (INIS)

    Brandt, R.A.; Wing-Chiu, N.; Yeung, W.

    1980-01-01

    We consider the finite local field equation -][1+1/α (1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 N[A/sup c/νA/sup a/μA/sub ν//sup c/] +xxx+(1-s) 2 M 2 A/sup a/μ, introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) approx.ΣM/sup c/abνμlambda/sub c/'a'b'ν'μ'lambda' (xi) N[A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/'](x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) at separated points. Our result is -][1+(1/α)(1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 lim/sub xiarrow-right0/] (lnxi)/sup -0.28/2b/[A/sup c/ν (x+xi) A/sup a/μ(x) A/sub ν//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ν/A/sup b//sub ν/(x)+xxx] +xxx]+(1-s) 2 M 2 A/sup a/μ, where β (g) =-bg 3 , and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation

  6. Finite temperature approach to confinement

    International Nuclear Information System (INIS)

    Gave, E.; Jengo, R.; Omero, C.

    1980-06-01

    The finite temperature treatment of gauge theories, formulated in terms of a gauge invariant variable as in a Polyakov method, is used as a device for obtaining an effective theory where the confinement test takes the form of a correlation function. The formalism is discussed for the abelian CPsup(n-1) model in various dimensionalities and for the pure Yang-Mills theory in the limit of zero temperature. In the latter case a class of vortex like configurations of the effective theory which induce confinement correspond in particular to the instanton solutions. (author)

  7. Finite-time synchronization of a class of autonomous chaotic systems

    Indian Academy of Sciences (India)

    Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...

  8. Possible higher order phase transition in large-N gauge theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical

  9. Unification, small and large

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Harald

    1993-04-15

    Full text: Fruitful exchanges between particle physics, astrophysics and cosmology have become a common feature in the last decade. In January, Coral Gables near Miami was the stage for a 'Unified Symmetry in the Small and the Large' meeting. Coral Gables is a famous physics venue. In January 1964, the year that the quark model of hadrons emerged, Behram Kursunoglu initiated a series of particle physics meetings that continued for 20 years and formed a regular focus for this development. The final such meeting was in 1983, coinciding with both the 80th birthday of field theory pioneer Paul Dirac, who worked in Florida towards the end of his career, and the discovery of the W bosons at CERN. The resurrected Coral Gables meeting began with historical accounts of the emergence of Big Bang cosmology, by Robert Ralph and Herman Alpher, while Andrei Linde proposed our expanding universe as a small part of a stationary system, infinite both in space and in time. The observational status of Big Bang cosmology was reviewed by Bruce Partridge, John Mather and Martin Harwit, emphasizing the cosmic background radiation, where temperature is now measured by the COBE satellite detectors to 2.726 ± 0.01 OK. The tiny fluctuations observed by COBE pose problems for standard cold dark matter models. Edward ('Rocky') Kolb reported on new studies on the electroweak phase transition, based on an analogy with the physics of liquid crystals. Richard Holman discussed the fate of global symmetries at energies near the Planck (grand unification) energy, and Paul Steinhardt talked about tensorial and scalar metric fluctuations in the light of the COBE results. Anthony Tyson gave an impressive description of dark matter studies using gravitational lensing, now emerging as a unique tool for indirectly observing intervening dark matter. A neutrino mass of 10 electronvolts could account for observed dark matter distributions, but fails to provide the necessary seeds for galaxy formation. A

  10. Unification, small and large

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    1993-01-01

    Full text: Fruitful exchanges between particle physics, astrophysics and cosmology have become a common feature in the last decade. In January, Coral Gables near Miami was the stage for a 'Unified Symmetry in the Small and the Large' meeting. Coral Gables is a famous physics venue. In January 1964, the year that the quark model of hadrons emerged, Behram Kursunoglu initiated a series of particle physics meetings that continued for 20 years and formed a regular focus for this development. The final such meeting was in 1983, coinciding with both the 80th birthday of field theory pioneer Paul Dirac, who worked in Florida towards the end of his career, and the discovery of the W bosons at CERN. The resurrected Coral Gables meeting began with historical accounts of the emergence of Big Bang cosmology, by Robert Ralph and Herman Alpher, while Andrei Linde proposed our expanding universe as a small part of a stationary system, infinite both in space and in time. The observational status of Big Bang cosmology was reviewed by Bruce Partridge, John Mather and Martin Harwit, emphasizing the cosmic background radiation, where temperature is now measured by the COBE satellite detectors to 2.726 ± 0.01 OK. The tiny fluctuations observed by COBE pose problems for standard cold dark matter models. Edward ('Rocky') Kolb reported on new studies on the electroweak phase transition, based on an analogy with the physics of liquid crystals. Richard Holman discussed the fate of global symmetries at energies near the Planck (grand unification) energy, and Paul Steinhardt talked about tensorial and scalar metric fluctuations in the light of the COBE results. Anthony Tyson gave an impressive description of dark matter studies using gravitational lensing, now emerging as a unique tool for indirectly observing intervening dark matter. A neutrino mass of 10 electronvolts could account for observed dark matter distributions, but fails to provide the necessary seeds for

  11. Gauge coupling running in minimal SU(3) x SU(2) x U(1) superstring unification

    CERN Document Server

    Ibáñez, L E; Ross, Graham G

    1991-01-01

    We study the evolution of the gauge coupling constants in string unification schemes in which the light spectrum below the compactification scale is exactly that of the minimal supersymmetric standard model. In the absence of string threshold corrections the predicted values $\\sin^2\\theta _W=0.218$ and $\\alpha _s=0.20$ are in gross conflict with experiment, but these corrections are generically important. One can express the string threshold corrections to $\\sin^2\\theta _W$ and $\\alpha_s$ in terms of certain $modular$ $weights$ of quark, lepton and Higgs superfields as well as the $moduli$ of the string model. We find that in order to get agreement with the experimental measurements within the context of this $minimal$ scheme, certain constraints on the $modular$ $weights$ of the quark, lepton and Higgs superfields should be obeyed. Our analysis indicates that this $minimal$ $string$ $unification$

  12. Finite element circuit theory of the numerical code EDDYMULT for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1986-07-01

    The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)

  13. PT Symmetry and QCD: Finite Temperature and Density

    Directory of Open Access Journals (Sweden)

    Michael C. Ogilvie

    2009-04-01

    Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.

  14. Korean Unification and the Future of the U.S.-ROK Alliance

    Science.gov (United States)

    2016-02-01

    including the Korean People’s Army, which, by ROK estimates, numbers 1.2 million in the active force and some 7.7 million in the reserve , or...management. A broader alli- ance agenda would also place a premium on establishing an interagency or whole-of-government dialogue, fusing together...annualized gross domestic product (GDP). See Christine Kim, “Korean Unification May Cost South 7 Percent of GDP: Ministry,” Reuters, January 1, 2013

  15. Reformulating XQuery queries using GLAV mapping and complex unification

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2016-01-01

    Full Text Available This paper describes an algorithm for reformulation of XQuery queries. The mediation is based on an essential component called mediator. Its main role is to reformulate a user query, written in terms of global schema, into queries written in terms of source schemas. Our algorithm is based on the principle of logical equivalence, simple and complex unification, to obtain a better reformulation. It takes XQuery query, global schema (written in XMLSchema, and mappings GLAV as input parameters and provides resultant query written in terms of source schemas. The results of implementation show the proper functioning of the algorithm.

  16. Topics in gauge theories and unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1986-01-01

    The proposed research includes work on (1) jets in minimum bias, (2) quantum Hall effect and applications of quantum electrodynamics to microelectronics and (3) renormalization group analysis of unified gauge theories. In addition, rates were computed for vector boson decay modes of the nucleon in N=1 supergravity models, and is doing further work on supersymmetric signals at SLC and LEP, and on superstring phenomenology

  17. The Finite Heisenberg-Weyl Groups in Radar and Communications

    Directory of Open Access Journals (Sweden)

    Calderbank AR

    2006-01-01

    Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

  18. Hierarchy of symmetry-breaking scales in SO(10) grand unification and particle masses

    International Nuclear Information System (INIS)

    Asatryan, G.M.; Ioannisyan, A.N.

    1987-01-01

    An SO(10) grand unification model is proposed in which the introduction of an additional discrete symmetry solves the problem of the quark mass spectrum arising in SO(10) breaking schemes with intermediate SU(4) x SU(2)/sub L/ x SU(2)/sub R/ or SU(3)/sub C/ x U(1)/sub B//sub -//sub L/ x SU(2)/sub L/ x SU(2)/sub R/ symmetry. When the breaking of this discrete symmetry is taken into account the condition that there exist only a single light Higgs boson leads to a relation between the b- and t-quark masses which makes it possible to fix the ratio of the grand unification scale M/sub X/ and the quark--lepton symmetry-breaking scale M/sub C/. The specific values of M/sub X/ and M/sub C/ and also the scale of the SU(2)/sub R/ symmetry breaking M/sub R/ depend on the experimental value of the Weinberg angle and are in agreement with the experimental data on proton decay

  19. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...... coefficients, in particular the bulk viscosity, in the vicinity of a second order phase transition point....

  20. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Oliveira, M.W. de.

    1986-01-01

    The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt