Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection
Directory of Open Access Journals (Sweden)
T. La-inchua
2017-01-01
Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.
Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval
Directory of Open Access Journals (Sweden)
Shuping He
2011-01-01
Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.
A new variable interval schedule with constant hazard rate and finite time range.
Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco
2018-05-27
We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.
International Nuclear Information System (INIS)
Yagasaki, Kazuyuki
2007-01-01
In experiments for single and coupled pendula, we demonstrate the effectiveness of a new control method based on dynamical systems theory for stabilizing unstable aperiodic trajectories defined on infinite- or finite-time intervals. The basic idea of the method is similar to that of the OGY method, which is a well-known, chaos control method. Extended concepts of the stable and unstable manifolds of hyperbolic trajectories are used here
Variational collocation on finite intervals
International Nuclear Information System (INIS)
Amore, Paolo; Cervantes, Mayra; Fernandez, Francisco M
2007-01-01
In this paper, we study a set of functions, defined on an interval of finite width, which are orthogonal and which reduce to the sinc functions when the appropriate limit is taken. We show that these functions can be used within a variational approach to obtain accurate results for a variety of problems. We have applied them to the interpolation of functions on finite domains and to the solution of the Schroedinger equation, and we have compared the performance of the present approach with others
International Nuclear Information System (INIS)
Ikehata, Masaru; Kawashita, Mishio
2010-01-01
The enclosure method was originally introduced for inverse problems concerning non-destructive evaluation governed by elliptic equations. It was developed as one of the useful approaches in inverse problems and applied for various equations. In this paper, an application of the enclosure method to an inverse initial boundary value problem for a parabolic equation with a discontinuous coefficient is given. A simple method to extract the depth of unknown inclusions in a heat conductive body from a single set of the temperature and heat flux on the boundary observed over a finite time interval is introduced. Other related results with infinitely many data are also reported. One of them gives the minimum radius of the open ball centred at a given point that contains the inclusions. The formula for the minimum radius is newly discovered
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
A summary of maintenance policies for a finite interval
International Nuclear Information System (INIS)
Nakagawa, T.; Mizutani, S.
2009-01-01
It would be an important problem to consider practically some maintenance policies for a finite time span, because the working times of most units are finite in actual fields. This paper converts the usual maintenance models to finite maintenance models. It is more difficult to study theoretically optimal policies for a finite time span than those for an infinite time span. Three usual models of periodic replacement with minimal repair, block replacement and simple replacement are transformed to finite replacement models. Further, optimal periodic and sequential policies for an imperfect preventive maintenance and an inspection model for a finite time span are considered. Optimal policies for each model are analytically derived and are numerically computed
Finite-time braiding exponents
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
Integral equations with difference kernels on finite intervals
Sakhnovich, Lev A
2015-01-01
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...
Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems
DEFF Research Database (Denmark)
Georgiadis, Stylianos; Limnios, Nikolaos
2016-01-01
In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...
Intact interval timing in circadian CLOCK mutants.
Cordes, Sara; Gallistel, C R
2008-08-28
While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.
Perceptions of Time and Long Time Intervals
Energy Technology Data Exchange (ETDEWEB)
Drottz-Sjoeberg, Britt-Marie [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Psychology
2006-09-15
There are certainly many perspectives presented in the literature on time and time perception. This contribution has focused on perceptions of the time frames related to risk and danger of radiation from a planned Swedish repository for spent nuclear fuel. Respondents from two municipalities judged SSI's reviews of the entrepreneur's plans and work of high importance, and more important the closer to our time the estimate was given. Similarly were the consequences of potential leakage from a repository perceived as more serious the closer it would be to our time. Judgements of risks related to the storage of spent nuclear fuel were moderately large on the used measurement scales. Experts are experts because they have more knowledge, and in this context they underlined e.g. the importance of reviews of the radiation situation of time periods up to 100,000 years. It was of interest to note that 55% of the respondents from the municipalities did not believe that the future repository would leak radioactivity. They were much more pessimistic with respect to world politics, i.e. a new world war. However, with respect to the seriousness of the consequences given a leakage from the repository, the public group consistently gave high risk estimates, often significantly higher than those of the expert group. The underestimations of time estimates, as seen in the tasks of pinpointing historic events, provide examples of the difficulty of making estimations involving long times. Similar results showed that thinking of 'the future' most often involved about 30 years. On average, people reported memories of about 2.5 generations back in time, and emotional relationships stretching approximately 2.5 generations into the future; 94% of the responses, with respect to how many future generations one had an emotional relationship, were given in the range of 1-5 generations. Similarly, Svenson and Nilsson found the opinion that the current generations
Perceptions of Time and Long Time Intervals
International Nuclear Information System (INIS)
Drottz-Sjoeberg, Britt-Marie
2006-01-01
There are certainly many perspectives presented in the literature on time and time perception. This contribution has focused on perceptions of the time frames related to risk and danger of radiation from a planned Swedish repository for spent nuclear fuel. Respondents from two municipalities judged SSI's reviews of the entrepreneur's plans and work of high importance, and more important the closer to our time the estimate was given. Similarly were the consequences of potential leakage from a repository perceived as more serious the closer it would be to our time. Judgements of risks related to the storage of spent nuclear fuel were moderately large on the used measurement scales. Experts are experts because they have more knowledge, and in this context they underlined e.g. the importance of reviews of the radiation situation of time periods up to 100,000 years. It was of interest to note that 55% of the respondents from the municipalities did not believe that the future repository would leak radioactivity. They were much more pessimistic with respect to world politics, i.e. a new world war. However, with respect to the seriousness of the consequences given a leakage from the repository, the public group consistently gave high risk estimates, often significantly higher than those of the expert group. The underestimations of time estimates, as seen in the tasks of pinpointing historic events, provide examples of the difficulty of making estimations involving long times. Similar results showed that thinking of 'the future' most often involved about 30 years. On average, people reported memories of about 2.5 generations back in time, and emotional relationships stretching approximately 2.5 generations into the future; 94% of the responses, with respect to how many future generations one had an emotional relationship, were given in the range of 1-5 generations. Similarly, Svenson and Nilsson found the opinion that the current generations' general responsibility for
Learned Interval Time Facilitates Associate Memory Retrieval
van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter
2017-01-01
The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…
Reviewing interval cancers: Time well spent?
International Nuclear Information System (INIS)
Gower-Thomas, Kate; Fielder, Hilary M.P.; Branston, Lucy; Greening, Sarah; Beer, Helen; Rogers, Cerilan
2002-01-01
OBJECTIVES: To categorize interval cancers, and thus identify false-negatives, following prevalent and incident screens in the Welsh breast screening programme. SETTING: Breast Test Wales (BTW) Llandudno, Cardiff and Swansea breast screening units. METHODS: Five hundred and sixty interval breast cancers identified following negative mammographic screening between 1989 and 1997 were reviewed by eight screening radiologists. The blind review was achieved by mixing the screening films of women who subsequently developed an interval cancer with screen negative films of women who did not develop cancer, in a ratio of 4:1. Another radiologist used patients' symptomatic films to record a reference against which the reviewers' reports of the screening films were compared. Interval cancers were categorized as 'true', 'occult', 'false-negative' or 'unclassified' interval cancers or interval cancers with minimal signs, based on the National Health Service breast screening programme (NHSBSP) guidelines. RESULTS: Of the classifiable interval films, 32% were false-negatives, 55% were true intervals and 12% occult. The proportion of false-negatives following incident screens was half that following prevalent screens (P = 0.004). Forty percent of the seed films were recalled by the panel. CONCLUSIONS: Low false-negative interval cancer rates following incident screens (18%) versus prevalent screens (36%) suggest that lower cancer detection rates at incident screens may have resulted from fewer cancers than expected being present, rather than from a failure to detect tumours. The panel method for categorizing interval cancers has significant flaws as the results vary markedly with different protocol and is no more accurate than other, quicker and more timely methods. Gower-Thomas, K. et al. (2002)
Complexity of a kind of interval continuous self-map of finite type
International Nuclear Information System (INIS)
Wang Lidong; Chu Zhenyan; Liao Gongfu
2011-01-01
Highlights: → We find the Hausdorff dimension for an interval continuous self-map f of finite type is s element of (0,1) on a non-wandering set. → f| Ω(f) has positive topological entropy. → f| Ω(f) is chaotic such as Devaney chaos, Kato chaos, two point distributional chaos and so on. - Abstract: An interval map is called finitely typal, if the restriction of the map to non-wandering set is topologically conjugate with a subshift of finite type. In this paper, we prove that there exists an interval continuous self-map of finite type such that the Hausdorff dimension is an arbitrary number in the interval (0, 1), discuss various chaotic properties of the map and the relations between chaotic set and the set of recurrent points.
Complexity of a kind of interval continuous self-map of finite type
Energy Technology Data Exchange (ETDEWEB)
Wang Lidong, E-mail: wld@dlnu.edu.cn [Institute of Mathematics, Dalian Nationalities University, Dalian 116600 (China); Institute of Mathematics, Jilin Normal University, Siping 136000 (China); Chu Zhenyan, E-mail: chuzhenyan8@163.com [Institute of Mathematics, Dalian Nationalities University, Dalian 116600 (China) and Institute of Mathematics, Jilin University, Changchun 130023 (China); Liao Gongfu, E-mail: liaogf@email.jlu.edu.cn [Institute of Mathematics, Jilin University, Changchun 130023 (China)
2011-10-15
Highlights: > We find the Hausdorff dimension for an interval continuous self-map f of finite type is s element of (0,1) on a non-wandering set. > f|{sub {Omega}(f)} has positive topological entropy. > f|{sub {Omega}(f)} is chaotic such as Devaney chaos, Kato chaos, two point distributional chaos and so on. - Abstract: An interval map is called finitely typal, if the restriction of the map to non-wandering set is topologically conjugate with a subshift of finite type. In this paper, we prove that there exists an interval continuous self-map of finite type such that the Hausdorff dimension is an arbitrary number in the interval (0, 1), discuss various chaotic properties of the map and the relations between chaotic set and the set of recurrent points.
Timing intervals using population synchrony and spike timing dependent plasticity
Directory of Open Access Journals (Sweden)
Wei Xu
2016-12-01
Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.
Dujardin, G. M.
2009-08-12
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.
Early diastolic time intervals during hypertensive pregnancy.
Spinelli, L; Ferro, G; Nappi, C; Farace, M J; Talarico, G; Cinquegrana, G; Condorelli, M
1987-10-01
Early diastolic time intervals have been assessed by means of the echopolycardiographic method in 17 pregnant women who developed hypertension during pregnancy (HP) and in 14 normal pregnant women (N). Systolic time intervals (STI), stroke volume (SV), ejection fraction (EF), and mean velocity of myocardial fiber shortening (VCF) were also evaluated. Recordings were performed in the left lateral decubitus (LLD) and then in the supine decubitus (SD). In LLD, isovolumic relaxation period (IRP) was prolonged in the hypertensive pregnant women compared with normal pregnant women (HP 51 +/- 12.5 ms, N 32.4 +/- 15 ms p less than 0.05), whereas time of the mitral valve maximum opening (DE) was not different in the groups. There was no difference in SV, EF, and mean VCF, whereas STI showed only a significant (p less than 0.05) lengthening of pre-ejection period (PEP) in HP. When the subjects shifted from the left lateral to the supine decubitus position, left ventricular ejection time index (LVETi) and SV decreased significantly (p less than 0.05) in both normotensive hypertensive pregnant women. IRP and PEP lengthened significantly (p less than 0.05) only in normals, whereas they were unchanged in HP. DE time did not vary in either group. In conclusion, hypertension superimposed on pregnancy induces lengthening of IRP, as well as of PEP, and minimizes the effects of the postural changes in preload on the above-mentioned time intervals.
Dujardin, G. M.
2009-01-01
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate
Traces of times past : Representations of temporal intervals in memory
Taatgen, Niels; van Rijn, Hedderik
2011-01-01
Theories of time perception typically assume that some sort of memory represents time intervals. This memory component is typically underdeveloped in theories of time perception. Following earlier work that suggested that representations of different time intervals contaminate each other (Grondin,
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
First Passage Time Intervals of Gaussian Processes
Perez, Hector; Kawabata, Tsutomu; Mimaki, Tadashi
1987-08-01
The first passage time problem of a stationary Guassian process is theretically and experimentally studied. Renewal functions are derived for a time-dependent boundary and numerically calculated for a Gaussian process having a seventh-order Butterworth spectrum. The results show a multipeak property not only for the constant boundary but also for a linearly increasing boundary. The first passage time distribution densities were experimentally determined for a constant boundary. The renewal functions were shown to be a fairly good approximation to the distribution density over a limited range.
Daniels, Carter W; Sanabria, Federico
2017-03-01
The distribution of latencies and interresponse times (IRTs) of rats was compared between two fixed-interval (FI) schedules of food reinforcement (FI 30 s and FI 90 s), and between two levels of food deprivation. Computational modeling revealed that latencies and IRTs were well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies is sensitive to the periodicity of reinforcement, and prefeeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Prefeeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, latency and IRT models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI schedules fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance. These processes may be obscured, however, when performance in timing tasks is analyzed in terms of mean response rates.
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
4/2010, č. 3 (2010), s. 236-250 ISSN 1802-4696 R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310 Institutional research plan: CEZ:AV0Z10750506 Keywords : rescaled range analysis * detrended fluctuation analysis * Hurst exponent * long-range dependence Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-rescaled range analysis and detrended fluctuation analysis finite sample properties and confidence intervals.pdf
Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles
International Nuclear Information System (INIS)
Witte, N.S.; Forrester, P.J.
1999-01-01
The probabilities for gaps in the eigenvalue spectrum of the finite dimension N x N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general N case, specific explicit solutions for N = 1 and N = 2, asymptotic expansions, scaling at the edge of the Hermite spectrum as N →∞ and the Jacobi to Hermite limit both of which make correspondence to other cases reported here or known previously. (authors)
Finite-time barriers to reaction front propagation
Locke, Rory; Mahoney, John; Mitchell, Kevin
2015-11-01
Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
Directory of Open Access Journals (Sweden)
Jordi Marcé-Nogué
2017-10-01
Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
Interval timing in genetically modified mice: a simple paradigm
Balci, F.; Papachristos, E. B.; Gallistel, C. R.; Brunner, D.; Gibson, J.; Shumyatsky, G. P.
2007-01-01
We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout ...
International Nuclear Information System (INIS)
Csenki, A.
1995-01-01
The interval reliability for a repairable system which alternates between working and repair periods is defined as the probability of the system being functional throughout a given time interval. In this paper, a set of integral equations is derived for this dependability measure, under the assumption that the system is modelled by an irreducible finite semi-Markov process. The result is applied to the semi-Markov model of a two-unit system with sequential preventive maintenance. The method used for the numerical solution of the resulting system of integral equations is a two-point trapezoidal rule. The system of implementation is the matrix computation package MATLAB on the Apple Macintosh SE/30. The numerical results are discussed and compared with those from simulation
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
Finite-time singularity signature of hyperinflation
Sornette, D.; Takayasu, H.; Zhou, W.-X.
2003-07-01
We present a novel analysis extending the recent work of Mizuno et al. (Physica A 308 (2002) 411) on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan's model of inflation based on the mechanism of “inflationary expectation” of positive feedbacks between realized growth rate and people's expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time tc. Mizuno et al.'s double-exponential function can be seen as a discrete time-step approximation of our more general non-linear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan's model, which makes natural the appearance of a critical time tc, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reliable agreement between theory and data for Germany, Hungary, Peru and Bolivia. For Brazil, Israel and Nicaragua, the super-exponential growth seems to be already contaminated significantly by the existence of a cross-over to a stationary regime.
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Time interval approach to the pulsed neutron logging method
International Nuclear Information System (INIS)
Zhao Jingwu; Su Weining
1994-01-01
The time interval of neighbouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source. In the rock space, the neutron flux is given by the neutron diffusion equation and is composed of an infinite terms. Each term s composed of two die-away curves. The delay action is discussed and used to measure the time interval with only one detector in the experiment. Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique
Foundation for a Time Interval Access Control Model
National Research Council Canada - National Science Library
Afinidad, Francis B; Levin, Timothy E; Irvine, Cynthia E; Nguyen, Thuy D
2005-01-01
A new model for representing temporal access control policies is introduced. In this model, temporal authorizations are represented by time attributes associated with both subjects and objects, and a time interval access graph...
Finite-time thermodynamics and simulated annealing
International Nuclear Information System (INIS)
Andresen, B.
1989-01-01
When the general, global optimization technique simulated annealing was introduced by Kirkpatrick et al. (1983), this mathematical algorithm was based on an analogy to the statistical mechanical behavior of real physical systems like spin glasses, hence the name. In the intervening span of years the method has proven exceptionally useful for a great variety of extremely complicated problems, notably NP-problems like the travelling salesman, DNA sequencing, and graph partitioning. Only a few highly optimized heuristic algorithms (e.g. Lin, Kernighan 1973) have outperformed simulated annealing on their respective problems (Johnson et al. 1989). Simulated annealing in its current form relies only on the static quantity 'energy' to describe the system, whereas questions of rate, as in the temperature path (annealing schedule, see below), are left to intuition. We extent the connection to physical systems and take over further components from thermodynamics like ensemble, heat capacity, and relaxation time. Finally we refer to finite-time thermodynamics (Andresen, Salomon, Berry 1984) for a dynamical estimate of the optimal temperature path. (orig.)
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Unpacking a time interval lengthens its perceived temporal distance
Directory of Open Access Journals (Sweden)
Yang eLiu
2014-11-01
Full Text Available In quantity estimation, people often perceive that the whole is less than the sum of its parts. The current study investigated such an unpacking effect in temporal distance judgment. Our results showed that participants in the unpacked condition judged a given time interval longer than those in the packed condition, even the time interval was kept constant between the two conditions. Furthermore, this unpacking effect persists regardless of the unpacking ways we employed. Results suggest that unpacking a time interval may be a good strategy for lengthening its perceived temporal distance.
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
International Nuclear Information System (INIS)
Todinov, M.T.
2004-01-01
A new reliability measure is proposed and equations are derived which determine the probability of existence of a specified set of minimum gaps between random variables following a homogeneous Poisson process in a finite interval. Using the derived equations, a method is proposed for specifying the upper bound of the random variables' number density which guarantees that the probability of clustering of two or more random variables in a finite interval remains below a maximum acceptable level. It is demonstrated that even for moderate number densities the probability of clustering is substantial and should not be neglected in reliability calculations. In the important special case where the random variables are failure times, models have been proposed for determining the upper bound of the hazard rate which guarantees a set of minimum failure-free operating intervals before the random failures, with a specified probability. A model has also been proposed for determining the upper bound of the hazard rate which guarantees a minimum availability target. Using the models proposed, a new strategy, models and reliability tools have been developed for setting quantitative reliability requirements which consist of determining the intersection of the hazard rate envelopes (hazard rate upper bounds) which deliver a minimum failure-free operating period before random failures, a risk of premature failure below a maximum acceptable level and a minimum required availability. It is demonstrated that setting reliability requirements solely based on an availability target does not necessarily mean a low risk of premature failure. Even at a high availability level, the probability of premature failure can be substantial. For industries characterised by a high cost of failure, the reliability requirements should involve a hazard rate envelope limiting the risk of failure below a maximum acceptable level
Finite difference time domain analysis of a chiro plasma
International Nuclear Information System (INIS)
Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs
Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Xiao Min
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Time interval measurement between two emissions: Ar + Au
International Nuclear Information System (INIS)
Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Durand, D.; Genoux-Lubain, A.; Hamdani, T.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Louvel, M.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.
1998-01-01
The Ar + Au system was studied at two bombarding energies, 30 and 60 A.MeV. The comparison of the distributions of fragment emission angles in central collisions was carried out by means of a simulation allowing the emission time interval variation. It was found that this interval depends on the bombarding energy (i.e. deposed excitation energy).For 30 A.MeV this interval is 500 fm/c (0.33 · 10 -23 s), while for 60 A.MeV it is so short that the multifragmentation concept can be used
Finite-time analysis of global projective synchronization on coloured ...
Indian Academy of Sciences (India)
A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...
Hybrid integrated circuit for charge-to-time interval conversion
Energy Technology Data Exchange (ETDEWEB)
Basiladze, S.G.; Dotsenko, Yu.Yu.; Man' yakov, P.K.; Fedorchenko, S.N. (Joint Inst. for Nuclear Research, Dubna (USSR))
The hybrid integrated circuit for charge-to time interval conversion with nanosecond input fast response is described. The circuit can be used in energy measuring channels, time-to-digital converters and in the modified variant in amplitude-to-digital converters. The converter described consists of a buffer amplifier, a linear transmission circuit, a direct current source and a unit of time interval separation. The buffer amplifier represents a current follower providing low input and high output resistances by the current feedback. It is concluded that the described converter excelled the QT100B circuit analogous to it in a number of parameters especially, in thermostability.
Modelling and finite-time stability analysis of psoriasis pathogenesis
Oza, Harshal B.; Pandey, Rakesh; Roper, Daniel; Al-Nuaimi, Yusur; Spurgeon, Sarah K.; Goodfellow, Marc
2017-08-01
A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite-time stability and stabilisation have been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite-time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite-time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite-time convergence motivates the development of a modified version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite-time actuators.
A model of interval timing by neural integration.
Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip
2011-06-22
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.
Effect of a data buffer on the recorded distribution of time intervals for random events
Energy Technology Data Exchange (ETDEWEB)
Barton, J C [Polytechnic of North London (UK)
1976-03-15
The use of a data buffer enables the distribution of the time intervals between events to be studied for times less than the recording system dead-time but the usual negative exponential distribution for random events has to be modified. The theory for this effect is developed for an n-stage buffer followed by an asynchronous recorder. Results are evaluated for the values of n from 1 to 5. In the language of queueing theory the system studied is of type M/D/1/n+1, i.e. with constant service time and a finite number of places.
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
Specifying real-time systems with interval logic
Rushby, John
1988-01-01
Pure temporal logic makes no reference to time. An interval temporal logic and an extension to that logic which includes real time constraints are described. The application of this logic by giving a specification for the well-known lift (elevator) example is demonstrated. It is shown how interval logic can be extended to include a notion of process. How the specification language and verification environment of EHDM could be enhanced to support this logic is described. A specification of the alternating bit protocol in this extended version of the specification language of EHDM is given.
Interval timing in genetically modified mice: a simple paradigm.
Balci, F; Papachristos, E B; Gallistel, C R; Brunner, D; Gibson, J; Shumyatsky, G P
2008-04-01
We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using d-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently.
Cardiac Time Intervals by Tissue Doppler Imaging M-Mode
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Mogelvang, Rasmus; de Knegt, Martina Chantal
2016-01-01
PURPOSE: To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining...
Frequency interval balanced truncation of discrete-time bilinear systems
DEFF Research Database (Denmark)
Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza
2016-01-01
This paper presents the development of a new model reduction method for discrete-time bilinear systems based on the balanced truncation framework. In many model reduction applications, it is advantageous to analyze the characteristics of the system with emphasis on particular frequency intervals...... are the solution to a pair of new generalized Lyapunov equations. The conditions for solvability of these new generalized Lyapunov equations are derived and a numerical solution method for solving these generalized Lyapunov equations is presented. Numerical examples which illustrate the usage of the new...... generalized frequency interval controllability and observability gramians as part of the balanced truncation framework are provided to demonstrate the performance of the proposed method....
Department of Defense Precise Time and Time Interval program improvement plan
Bowser, J. R.
1981-01-01
The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.
Time interval measurement between to emission: a systematics
International Nuclear Information System (INIS)
Bizard, G.; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Mahi, M.; Meslin, C.; Steckmeyer, J.C.; Tamain, B.; Wieloch, A.
1998-01-01
A systematic study of the evolution of intervals of fragment emission times as a function of the energy deposited in the compound system was performed. Several measurements, Ne at 60 MeV/u, Ar at 30 and 60 MeV/u and two measurements for Kr at 60 MeV/u (central and semi-peripheral collisions) are presented. In all the experiments the target was Au and the mass of the compounds system was around A = 200. The excitation energies per nucleon reached in the case of these heavy systems cover the range of 3 to 5.5 MeV/u. The method used to determine the emission time intervals is based on the correlation functions associated to the relative angle distributions. The gaps between the data and simulations allow to evaluate the emission times. A rapid decrease of these time intervals was observed when the excitation energy increased. This variation starts at 500 fm/c which corresponds to a sequential emission. This relatively long time which indicates a weak interaction between fragments, corresponds practically to the measurement threshold. The shortest intervals (about 50 fm/c) are associated to a spontaneous multifragmentation and were observed in the case of central collisions at Ar+Au and Kr+Au at 60 MeV/u. Two interpretations are possible. The multifragmentation process might be viewed as a sequential process of very short time-separation or else, one can separate two zones heaving in mind that the multifragmentation is predominant from 4,5 MeV/u excitation energy upwards. This question is still open and its study is under way at LPC. An answer could come from the study of the rupture process of an excited nucleus, notably by the determination of its life-time
Fault detection for discrete-time LPV systems using interval observers
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-10-01
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.
Optimal time interval for induction of immunologic adaptive response
International Nuclear Information System (INIS)
Ju Guizhi; Song Chunhua; Liu Shuzheng
1994-01-01
The optimal time interval between prior dose (D1) and challenge dose (D2) for the induction of immunologic adaptive response was investigated. Kunming mice were exposed to 75 mGy X-rays at a dose rate of 12.5 mGy/min. 3, 6, 12, 24 or 60 h after the prior irradiation the mice were challenged with a dose of 1.5 Gy at a dose rate of 0.33 Gy/min. 18h after D2, the mice were sacrificed for examination of immunological parameters. The results showed that with an interval of 6 h between D1 and D2, the adaptive response of the reaction of splenocytes to LPS was induced, and with an interval of 12 h the adaptive responses of spontaneous incorporation of 3 H-TdR into thymocytes and the reaction of splenocytes to Con A and LPS were induced with 75 mGy prior irradiation. The data suggested that the optimal time intervals between D1 and D2 for the induction of immunologic adaptive response were 6 h and 12 h with a D1 of 75 mGy and a D2 of 1.5 Gy. The mechanism of immunologic adaptation following low dose radiation is discussed
Voelkle, Manuel C; Oud, Johan H L
2013-02-01
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.
Time-variant random interval natural frequency analysis of structures
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Thermodynamics in finite time: A chemically driven engine
International Nuclear Information System (INIS)
Ondrechen, M.J.; Berry, R.S.; Andresen, B.
1980-01-01
The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate
On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout
Directory of Open Access Journals (Sweden)
Yingqi Zhang
2012-01-01
Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
Time-to-code converter with selection of time intervals on duration
International Nuclear Information System (INIS)
Atanasov, I.Kh.; Rusanov, I.R.; )
2001-01-01
Identification of elementary particles on the basis of time-of-flight represents the important approach of the preliminary selection procedure. Paper describes a time-to-code converter with preliminary selection of the measured time intervals as to duration. It consists of a time-to-amplitude converter, an analog-to-digital converter, a unit of selection of time intervals as to duration, a unit of total reset and CAMAC command decoder. The time-to-code converter enables to measure time intervals with 100 ns accuracy within 0-100 ns range. Output code capacity is of 10. Selection time constitutes 50 ns [ru
Design of time interval generator based on hybrid counting method
Energy Technology Data Exchange (ETDEWEB)
Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2016-10-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Design of time interval generator based on hybrid counting method
International Nuclear Information System (INIS)
Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge
2016-01-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Time interval measurement between two emissions: Kr + Au
International Nuclear Information System (INIS)
Aboufirassi, M; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Mahi, M.; Steckmeyer, J.C.; Tamain, B.
1998-01-01
To indicate the method allowing the determination of the emission intervals, the results obtained with the Kr + Au system at 43 and 60 A.MeV are presented. The experiments were performed with the NAUTILUS exclusive detectors. Central collisions were selected by means of a relative velocity criterion to reject the events containing a forward emitted fragment. For the two bombardment energies the data analysis shows that the formation of a compound of mass around A = 200. By comparing the fragment dynamical variables with simulations one can conclude about the simultaneity of the compound deexcitation processes. It was found that a 5 MeV/A is able to reproduce the characteristics of the detected fragments. Also, it was found that to reproduce the dynamical characteristics of the fragments issued from central collisions it was not necessary to superimpose a radial collective energy upon the Coulomb and thermal motion. The distribution of the relative angles between detected fragments is used here as a chronometer. For simultaneous ruptures the small relative angles are forbidden by the Coulomb repulsion, while for sequential processes this interdiction is the more lifted the longer the interval between the two emissions is. For the system discussed here the comparison between simulation and data has been carried out for the extreme cases, i.e. for a vanishing and infinite time interval between the two emissions, respectively. More sophisticated simulations to describe angular distributions between the emitted fragments were also developed
Discriminator/time interval meter system evaluation report
International Nuclear Information System (INIS)
Condreva, K.J.
1976-01-01
The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given
Discriminator/time interval meter system evaluation report
Energy Technology Data Exchange (ETDEWEB)
Condreva, K. J.
1976-04-12
The purpose of this report is to discuss the evaluation of a modular prototype Discriminator/Time Interval Meter data acquisition unit as a useful tool in a digital diagnostics system. The characteristics, operation and calibration of each of the hardware components are discussed in some detail. A discussion of the system calibration, operation, and data ingestion and reduction is also given. System test results to date are given and discussed. Finally, recommendations and conclusions concerning the capabilities of the Discriminator/T.I.M. system based on test and calibration results to date are given.
Probing interval timing with scalp-recorded electroencephalography (EEG).
Ng, Kwun Kei; Penney, Trevor B
2014-01-01
Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.
New precession expressions, valid for long time intervals
Vondrák, J.; Capitaine, N.; Wallace, P.
2011-10-01
Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the
Optimization of Allowed Outage Time and Surveillance Test Intervals
Energy Technology Data Exchange (ETDEWEB)
Al-Dheeb, Mujahed; Kang, Sunkoo; Kim, Jonghyun [KEPCO international nuclear graduate school, Ulsan (Korea, Republic of)
2015-10-15
The primary purpose of surveillance testing is to assure that the components of standby safety systems will be operable when they are needed in an accident. By testing these components, failures can be detected that may have occurred since the last test or the time when the equipment was last known to be operational. The probability a system or system component performs a specified function or mission under given conditions at a prescribed time is called availability (A). Unavailability (U) as a risk measure is just the complementary probability to A(t). The increase of U means the risk is increased as well. D and T have an important impact on components, or systems, unavailability. The extension of D impacts the maintenance duration distributions for at-power operations, making them longer. This, in turn, increases the unavailability due to maintenance in the systems analysis. As for T, overly-frequent surveillances can result in high system unavailability. This is because the system may be taken out of service often due to the surveillance itself and due to the repair of test-caused failures of the component. The test-caused failures include those incurred by wear and tear of the component due to the surveillances. On the other hand, as the surveillance interval increases, the component's unavailability will grow because of increased occurrences of time-dependent random failures. In that situation, the component cannot be relied upon, and accordingly the system unavailability will increase. Thus, there should be an optimal component surveillance interval in terms of the corresponding system availability. This paper aims at finding the optimal T and D which result in minimum unavailability which in turn reduces the risk. Applying the methodology in section 2 to find the values of optimal T and D for two components, i.e., safety injection pump (SIP) and turbine driven aux feedwater pump (TDAFP). Section 4 is addressing interaction between D and T. In general
Optimization of Allowed Outage Time and Surveillance Test Intervals
International Nuclear Information System (INIS)
Al-Dheeb, Mujahed; Kang, Sunkoo; Kim, Jonghyun
2015-01-01
The primary purpose of surveillance testing is to assure that the components of standby safety systems will be operable when they are needed in an accident. By testing these components, failures can be detected that may have occurred since the last test or the time when the equipment was last known to be operational. The probability a system or system component performs a specified function or mission under given conditions at a prescribed time is called availability (A). Unavailability (U) as a risk measure is just the complementary probability to A(t). The increase of U means the risk is increased as well. D and T have an important impact on components, or systems, unavailability. The extension of D impacts the maintenance duration distributions for at-power operations, making them longer. This, in turn, increases the unavailability due to maintenance in the systems analysis. As for T, overly-frequent surveillances can result in high system unavailability. This is because the system may be taken out of service often due to the surveillance itself and due to the repair of test-caused failures of the component. The test-caused failures include those incurred by wear and tear of the component due to the surveillances. On the other hand, as the surveillance interval increases, the component's unavailability will grow because of increased occurrences of time-dependent random failures. In that situation, the component cannot be relied upon, and accordingly the system unavailability will increase. Thus, there should be an optimal component surveillance interval in terms of the corresponding system availability. This paper aims at finding the optimal T and D which result in minimum unavailability which in turn reduces the risk. Applying the methodology in section 2 to find the values of optimal T and D for two components, i.e., safety injection pump (SIP) and turbine driven aux feedwater pump (TDAFP). Section 4 is addressing interaction between D and T. In general
Finite life time effects in the coherent exciton transfer
International Nuclear Information System (INIS)
Barvik, I.; Herman, P.
1992-04-01
The paper addresses a specific problem in the exciton transfer in molecular aggregates, namely the influence of the finite life time effects, on the memory functions entering the Generalized Master Equation (GME) which connect different sites of the system. 7 refs, 2 figs
Finite difference time domain modelling of particle accelerators
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1989-03-01
Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs
Sojourn times in finite-capacity processor-sharing queues
Borst, S.C.; Boxma, O.J.; Hegde, N.
2005-01-01
Motivated by the need to develop simple parsimonious models for evaluating the performance of wireless data systems, we consider finite-capacity processor-sharing systems. For such systems, we analyze the sojourn time distribution, which presents a useful measure for the transfer delay of documents
Finite-time analysis of global projective synchronization on coloured ...
Indian Academy of Sciences (India)
The earliest research of modern network theory could be traced back to the ..... ference between the two examples is that while the first example studies ... method – a finite-time control technique – was applied to achieve synchronization of the.
Geometry of finite deformations and time-incremental analysis
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2016-01-01
Roč. 81, May (2016), s. 230-244 ISSN 0020-7462 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * time-incremental analysis * Lagrangian system * evolution equation of Lie type Subject RIV: BE - Theoretical Physics Impact factor: 2.074, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020746216000330
Generalised time functions and finiteness of the Lorentzian distance
Rennie, Adam; Whale, Ben E.
2014-01-01
We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised time functions with gradient uniformly bounded away from light cones. To derive this result we introduce new techniques to construct and manipulate achronal sets. As a consequence of these techniques we obtain a functional description of the Lorentzian distance extending the work of Franco and Moretti.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns
Duarte, Fabiola; Lemus, Luis
2017-01-01
The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406
A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature
International Nuclear Information System (INIS)
Majima, H.; Suzuki, A.
2006-01-01
We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators
Finite Time Blowup in a Realistic Food-Chain Model
Parshad, Rana; Ait Abderrahmane, Hamid; Upadhyay, Ranjit Kumar; Kumari, Nitu
2013-01-01
We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.
Finite-Time Synchronizing Control for Chaotic Neural Networks
Directory of Open Access Journals (Sweden)
Chao Zhang
2014-01-01
Full Text Available This paper addresses the finite-time synchronizing problem for a class of chaotic neural networks. In a real communication network, parameters of the master system may be time-varying and the system may be perturbed by external disturbances. A simple high-gain observer is designed to track all the nonlinearities, unknown system functions, and disturbances. Then, a dynamic active compensatory controller is proposed and by using the singular perturbation theory, the control method can guarantee the finite-time stability of the error system between the master system and the slave system. Finally, two illustrative examples are provided to show the effectiveness and applicability of the proposed scheme.
Finite Time Blowup in a Realistic Food-Chain Model
Parshad, Rana
2013-05-19
We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.
A comparison between brachial and echocardiographic systolic time intervals.
Directory of Open Access Journals (Sweden)
Ho-Ming Su
Full Text Available Systolic time interval (STI is an established noninvasive technique for the assessment of cardiac function. Brachial STIs can be automatically determined by an ankle-brachial index (ABI-form device. The aims of this study are to evaluate whether the STIs measured from ABI-form device can represent those measured from echocardiography and to compare the diagnostic values of brachial and echocardiographic STIs in the prediction of left ventricular ejection fraction (LVEF <50%. A total of 849 patients were included in the study. Brachial pre-ejection period (bPEP and brachial ejection time (bET were measured using an ABI-form device and pre-ejection period (PEP and ejection time (ET were measured from echocardiography. Agreement was assessed by correlation coefficient and Bland-Altman plot. Brachial STIs had a significant correlation with echocardiographic STIs (r = 0.644, P<0.001 for bPEP and PEP; r = 0.850, P<0.001 for bET and ET; r = 0.708, P<0.001 for bPEP/bET and PEP/ET. The disagreement between brachial and echocardiographic STIs (brachial STIs minus echocardiographic STIs was 28.55 ms for bPEP and PEP, -4.15 ms for bET and ET and -0.11 for bPEP/bET and PEP/ET. The areas under the curve for bPEP/bET and PEP/ET in the prediction of LVEF <50% were 0.771 and 0.765, respectively. Brachial STIs were good alternatives to STIs obtained from echocardiography and also helpful in prediction of LVEF <50%. Brachial STIs automatically obtained from an ABI-form device may be helpful for evaluation of left ventricular systolic dysfunction.
Fung, Tak; Keenan, Kevin
2014-01-01
The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Directory of Open Access Journals (Sweden)
Tak Fung
Full Text Available The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%, a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L., occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems
Directory of Open Access Journals (Sweden)
Leipo Liu
2018-01-01
Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique
Energy Technology Data Exchange (ETDEWEB)
Wallerbos, E.J.M.; Hoogenboom, J.E
1998-09-01
The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.
Finite time thermodynamics of power and refrigeration cycles
Kaushik, Shubhash C; Kumar, Pramod
2017-01-01
This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...
A finite element method for SSI time history calculation
International Nuclear Information System (INIS)
Ni, X.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described
Finite-Time Approach to Microeconomic and Information Exchange Processes
Directory of Open Access Journals (Sweden)
Serghey A. Amelkin
2009-07-01
Full Text Available Finite-time approach allows one to optimize regimes of processes in macrosystems when duration of the processes is restricted. Driving force of the processes is difference of intensive variables: temperatures in thermodynamics, values in economics, etc. In microeconomic systems two counterflow fluxes appear due to the only driving force. They are goods and money fluxes. Another possible case is two fluxes with the same direction. The processes of information exchange can be described by this formalism.
A finite element method for SSI time history calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described
Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.
Liu, Xiwei; Chen, Tianping
2018-01-01
In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems
Directory of Open Access Journals (Sweden)
Xiaoxing Chen
2017-01-01
Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.
Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations
Directory of Open Access Journals (Sweden)
Huihong Zhao
2012-01-01
Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.
Finite-correlation-time effects in the kinematic dynamo problem
International Nuclear Information System (INIS)
Schekochihin, Alexander A.; Kulsrud, Russell M.
2001-01-01
Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus
2014-01-01
In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.
Time Interval to Initiation of Contraceptive Methods Following ...
African Journals Online (AJOL)
2018-01-30
Jan 30, 2018 ... interval between a woman's last childbirth and the initiation of contraception. Materials and ..... DF=Degree of freedom; χ2=Chi‑square test ..... practice of modern contraception among single women in a rural and urban ...
Time Interval to Initiation of Contraceptive Methods Following ...
African Journals Online (AJOL)
Objectives: The objectives of the study were to determine factors affecting the interval between a woman's last childbirth and the initiation of contraception. Materials and Methods: This was a retrospective study. Family planning clinic records of the Barau Dikko Teaching Hospital Kaduna from January 2000 to March 2014 ...
International Nuclear Information System (INIS)
Garnadi, A.D.
1997-01-01
In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study
Valuing modular nuclear power plants in finite time decision horizon
International Nuclear Information System (INIS)
Jain, Shashi; Roelofs, Ferry; Oosterlee, Cornelis W.
2013-01-01
Small and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, enhanced safety, and easy integration with small sized grids. Large reactors on the other hand have been an attractive option due to the economy of scale. In this paper we focus on the economic impact of flexibility due to modular construction of SMRs. We demonstrate, using real option analysis, the value of sequential modular SMRs. Numerical results under different considerations of decision time, uncertainty in electricity prices, and constraints on the construction of units, are reported for a single large unit and for modular SMRs. - Highlights: ► Real option value of modular construction in finite time decision horizon. ► Stochastic grid method is used to value the real option. ► Decisions in finite time can differ significantly from infinite decision time. ► Decisions depend on length of decision horizon and price volatilities
Smorenberg, A.; Lust, E.J.; Beishuizen, A.; Meijer, J.H.; Verdaasdonk, R.M.; Groeneveld, A.B.J.
2013-01-01
OBJECTIVES: Haemodynamic parameters for predicting fluid responsiveness in intensive care patients are invasive, technically challenging or not universally applicable. We compared the initial systolic time interval (ISTI), a non-invasive measure of the time interval between the electrical and
Finite difference time domain modeling of spiral antennas
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Neutron slowing-down time in finite water systems
International Nuclear Information System (INIS)
Hirschberg, S.
1981-11-01
The influence of the size of a moderator system on the neutron slowing-down time has been investigated. The experimental part of the study was performed on six cubes of water with side lengths from 8 to 30 cm. Neutrons generated in pulses of about 1 ns width were slowed down from 14 MeV to 1.457 eV. The detection method used was based on registration of gamma radiation from the main capture resonance of indium. The most probable slowing-down times were found to be 778 +- 23 ns and 898 +- 25 ns for the smallest and for the largest cubes, respectively. The corresponding mean slowing-down times were 1205 +- 42 ns and 1311 +- 42 ns. In a separate measurement series the space dependence of the slowing-down time close to the source was studied. These experiments were supplemented by a theoretical calculation which gave an indication of the space dependence of the slowingdown time in finite systems. The experimental results were compared to the slowing-down times obtained from various theoretical approaches and from Monte Carlo calculations. All the methods show a decrease of the slowing-down time with decreasing size of the moderator. This effect was least pronounced in the experimental results, which can be explained by the fact the measurements are spatially dependent. The agreement between the Monte Carlo results and those obtained using the diffusion approximation or the age-diffusion theory is surprisingly good, especially for large systems. The P1 approximation, on the other hand, leads to an overestimation of the effect of the finite size on the slowing-down time. (author)
Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Zhongke Shi
2009-01-01
Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.
Directory of Open Access Journals (Sweden)
Catalin V. Buhusi
2018-06-01
Full Text Available Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.
Timing of multiple overlapping intervals : How many clocks do we have?
van Rijn, Hedderik; Taatgen, Niels A.
2008-01-01
Humans perceive and reproduce short intervals of time (e.g. 1-60 s) relatively accurately, and are capable of timing multiple overlapping intervals if these intervals are presented in different modalities [e.g., Rousseau, L., & Rousseau, RL (1996). Stop-reaction time and the internal clock.
The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting
International Nuclear Information System (INIS)
Sydnor, R.L.
1990-05-01
Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MIL STAR, LORAN, and synchronous communication satellites
Perfectly matched layer for the time domain finite element method
International Nuclear Information System (INIS)
Rylander, Thomas; Jin Jianming
2004-01-01
A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS
Directory of Open Access Journals (Sweden)
Fei Chen
2013-01-01
Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.
Finite-Time Adaptive Synchronization of a New Hyperchaotic System with Uncertain Parameters
Directory of Open Access Journals (Sweden)
Ma Yongguang
2014-01-01
Full Text Available This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.
Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da
2018-04-01
This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.
THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS
Energy Technology Data Exchange (ETDEWEB)
Toala, Jesus A. [Currently at Instituto de Astrofisica de Andalucia, CSIC, E-1808, Granada (Spain); Vazquez-Semadeni, Enrique; Gomez, Gilberto C. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico)
2012-01-10
Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time ({tau}{sub ff}) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density {rho} can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to {radical}A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly {radical}A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.
THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS
International Nuclear Information System (INIS)
Toalá, Jesús A.; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.
2012-01-01
Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time (τ ff ) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density ρ can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to √A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where L is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly √A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.
Infinite-time and finite-time synchronization of coupled harmonic oscillators
International Nuclear Information System (INIS)
Cheng, S; Ji, J C; Zhou, J
2011-01-01
This paper studies the infinite-time and finite-time synchronization of coupled harmonic oscillators with distributed protocol in the scenarios with and without a leader. In the absence of a leader, the convergence conditions and the final trajectories that each harmonic oscillator follows are developed. In the presence of a leader, it is shown that all harmonic oscillators can achieve the trajectory of the leader in finite time. Numerical simulations of six coupled harmonic oscillators are given to show the effects of the interaction function parameter, algebraic connectivity and initial conditions on the convergence time.
Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments
DEFF Research Database (Denmark)
Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd
2011-01-01
In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...
Finite-time synchronization of a class of autonomous chaotic systems
Indian Academy of Sciences (India)
Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...
Finite-element time evolution operator for the anharmonic oscillator
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss
Directory of Open Access Journals (Sweden)
Yingqi Zhang
2012-01-01
Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Ratio-based lengths of intervals to improve fuzzy time series forecasting.
Huarng, Kunhuang; Yu, Tiffany Hui-Kuang
2006-04-01
The objective of this study is to explore ways of determining the useful lengths of intervals in fuzzy time series. It is suggested that ratios, instead of equal lengths of intervals, can more properly represent the intervals among observations. Ratio-based lengths of intervals are, therefore, proposed to improve fuzzy time series forecasting. Algebraic growth data, such as enrollments and the stock index, and exponential growth data, such as inventory demand, are chosen as the forecasting targets, before forecasting based on the various lengths of intervals is performed. Furthermore, sensitivity analyses are also carried out for various percentiles. The ratio-based lengths of intervals are found to outperform the effective lengths of intervals, as well as the arbitrary ones in regard to the different statistical measures. The empirical analysis suggests that the ratio-based lengths of intervals can also be used to improve fuzzy time series forecasting.
Acoustic, finite-difference, time-domain technique development
International Nuclear Information System (INIS)
Kunz, K.
1994-01-01
A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling
Accessing photon number via an atomic time interval
International Nuclear Information System (INIS)
Camparo, J.C.; Coffer, J.G.
2002-01-01
We show that Rabi resonances can be used to assess field strength in terms of time at the atomic level. Rabi resonances are enhancements in the amplitude of atomic population oscillations when the Rabi frequency, Ω, 'matches' a field-modulation frequency, ω m . We demonstrate that Ω=2κω m and find that κ=1.03±0.05. Since Ω is defined by field strength (i.e., photon number) through atomic constants, and ω m may be referenced to an atomic clock, our work shows that Rabi resonances provide a connection between time and photon number
Choi, Jin-Sil; Zhu, Yazhen; Li, Hongsheng; Peyda, Parham; Nguyen, Thuy Tien; Shen, Mo Yuan; Yang, Yang Michael; Zhu, Jingyi; Liu, Mei; Lee, Mandy M; Sun, Shih-Sheng; Yang, Yang; Yu, Hsiao-Hua; Chen, Kai; Chuang, Gary S; Tseng, Hsian-Rong
2017-01-24
Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.
Identification of optimal inspection interval via delay-time concept
Directory of Open Access Journals (Sweden)
Glauco Ricardo Simões Gomes
2016-06-01
Full Text Available This paper presents an application of mathematical modeling aimed at managing maintenance based on the delay-time concept. The study scenario was the manufacturing sector of an industrial unit, which operates 24 hours a day in a continuous flow of production. The main idea was to use the concepts of this approach to determine the optimal time of preventive action by the maintenance department in order to ensure the greatest availability of equipment and facilities at appropriate maintenance costs. After a brief introduction of the subject, the article presents topics that illustrate the importance of mathematical modeling in maintenance management and the delay-time concept. It also describes the characteristics of the company where the study was conducted, as well as the data related to the production process and maintenance actions. Finally, the results obtained after applying the delay-time concept are presented and discussed, as well as the limitations of the article and the proposals for future research.
Working time intervals and total work time on nursing positions in Poland
Directory of Open Access Journals (Sweden)
Danuta Kunecka
2015-06-01
Full Text Available Background: For the last few years a topic of overwork on nursing posts has given rise to strong discussions. The author has set herself a goal of answering the question if it is a result of real overwork of this particular profession or rather commonly assumed frustration of this professional group. The aim of this paper is to conduct the analysis of working time on chosen nursing positions in relation to measures of time being used as intervals in the course of conducting standard professional activities during one working day. Material and Methods: Research material consisted of documentation of work time on chosen nursing workplaces, compiled between 2007–2012 within the framework of a nursing course at the Pomeranian Medical University in Szczecin. As a method of measurement a photograph of a working day has been used. Measurements were performed in institutions located in 6 voivodeships in Poland. Results: Results suggest that only 6.5% of total of surveyed representatives of nurse profession spends proper amount of time (meaning: a time set by the applicable standards on work intervals during a working day. Conclusions: The scale of the phenomenon indicates excessive workload for nursing positions, which along with a longer period of time, longer working hours may cause decrease in efficiency of work and cause a drop in quality of provided services. Med Pr 2015;66,(2:165–172
Conception intervals and the substitution of fertility over time.
Olsen, R J; Farkas, G
1985-04-01
This paper applies the waiting-time regression methods of Olsen and Wolpin (1983) to an analysis of fertility. A utility maximizing model is set up and used to provide some guidance for an empirical analysis. The data are from an experimental guaranteed job program, the Youth Incentive Entitlement Pilot Project, aimed at young women 16 to 20 years old, from poverty-level families, and not yet high school graduates. The waiting-time regression method of estimation permits the youth in question to be used as her own control revealing how eligibility for the jobs program changes the durations of periods between live-birth conceptions. 3890 women surveyed had 1 birth, 429 had 2, 112 had 3, 26 had 4, and 7 had 5. Without this person specific control described here, the most important factors affecting fertility are number of siblings (negative effect), labor market attachment by parents, especially the father, and the presence of the natural father. With the person specific control, the results predicted from economic theory do emerge: even adolescent and young women consider the economic consequences of fertility reflected in effects of fertility when wages are high in favor of fertility with lower wages. Post program effects (taking place after youths lose eligibility for the program) are a rather rapid making up for foregone fertility, reducing likelihood of net reductions of total fertility.
Topological transitions at finite temperatures: A real-time numerical approach
International Nuclear Information System (INIS)
Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.
1989-01-01
We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)
Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed
2018-02-01
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.
Implicit time-dependent finite different algorithm for quench simulation
International Nuclear Information System (INIS)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)
A game theoretic approach to a finite-time disturbance attenuation problem
Rhee, Ihnseok; Speyer, Jason L.
1991-01-01
A disturbance attenuation problem over a finite-time interval is considered by a game theoretic approach where the control, restricted to a function of the measurement history, plays against adversaries composed of the process and measurement disturbances, and the initial state. A zero-sum game, formulated as a quadratic cost criterion subject to linear time-varying dynamics and measurements, is solved by a calculus of variation technique. By first maximizing the quadratic cost criterion with respect to the process disturbance and initial state, a full information game between the control and the measurement residual subject to the estimator dynamics results. The resulting solution produces an n-dimensional compensator which expresses the controller as a linear combination of the measurement history. A disturbance attenuation problem is solved based on the results of the game problem. For time-invariant systems it is shown that under certain conditions the time-varying controller becomes time-invariant on the infinite-time interval. The resulting controller satisfies an H(infinity) norm bound.
Cosmological solutions and finite time singularities in Finslerian geometry
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Non-linear shape functions over time in the space-time finite element method
Directory of Open Access Journals (Sweden)
Kacprzyk Zbigniew
2017-01-01
Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.
International Nuclear Information System (INIS)
Xu Chang-Jin; Li Pei-Luan; Pang Yi-Cheng
2017-01-01
This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. (paper)
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Finite-time stability of neutral-type neural networks with random time-varying delays
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
International Nuclear Information System (INIS)
Kostamovaara, J.; Myllylae, R.
1985-01-01
The construction and the performance of a time-to-amplitude converter equipped with constant fraction discriminators is described. The TAC consists of digital and analog parts which are constructed on two printed circuit boards, both of which are located in a single width NIM module. The dead time of the TAC for a start pulse which is not followed by a stop pulse within the time range of the device (proportional100 ns) is only proportional100 ns, which enables one to avoid counting rate saturation even with a high random input signal rate. The differential and integral nonlinearities of the TAC are better than +-1.5% and 0.05%, respectively. The resolution for input timing pulses of constant shape is 20 ps (fwhm), and less than 10 ps (fwhm) with a modification in the digital part. The walk error of the constant fraction timing discriminators is presented and various parameters affecting it are discussed. The effect of the various disturbances in linearity caused by the fast ECL logic and their minimization are also discussed. The time-to-amplitude converter has been used in positron lifetime studies and for laser range finding. (orig.)
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and di...
Directory of Open Access Journals (Sweden)
Baoyan Zhu
2015-01-01
Full Text Available Delay-dependent finite-time H∞ controller design problems are investigated for a kind of nonlinear descriptor system via a T-S fuzzy model in this paper. The solvable conditions of finite-time H∞ controller are given to guarantee that the loop-closed system is impulse-free and finite-time bounded and holds the H∞ performance to a prescribed disturbance attenuation level γ. The method given is the ability to eliminate the impulsive behavior caused by descriptor systems in a finite-time interval, which confirms the existence and uniqueness of solutions in the interval. By constructing a nonsingular matrix, we overcome the difficulty that results in an infeasible linear matrix inequality (LMI. Using the FEASP solver and GEVP solver of the LMI toolbox, we perform simulations to validate the proposed methods for a nonlinear descriptor system via the T-S fuzzy model, which shows the application of the T-S fuzzy method in studying the finite-time control problem of a nonlinear system. Meanwhile the method was also applied to the biological economy system to eliminate impulsive behavior at the bifurcation value, stabilize the loop-closed system in a finite-time interval, and achieve a H∞ performance level.
Interval-Censored Time-to-Event Data Methods and Applications
Chen, Ding-Geng
2012-01-01
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interva
Finite time convergent learning law for continuous neural networks.
Chairez, Isaac
2014-02-01
This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pérez, Oswaldo; Merchant, Hugo
2018-04-03
Extensive research has described two key features of interval timing. The bias property is associated with accuracy and implies that time is overestimated for short intervals and underestimated for long intervals. The scalar property is linked to precision and states that the variability of interval estimates increases as a function of interval duration. The neural mechanisms behind these properties are not well understood. Here we implemented a recurrent neural network that mimics a cortical ensemble and includes cells that show paired-pulse facilitation and slow inhibitory synaptic currents. The network produces interval selective responses and reproduces both bias and scalar properties when a Bayesian decoder reads its activity. Notably, the interval-selectivity, timing accuracy, and precision of the network showed complex changes as a function of the decay time constants of the modeled synaptic properties and the level of background activity of the cells. These findings suggest that physiological values of the time constants for paired-pulse facilitation and GABAb, as well as the internal state of the network, determine the bias and scalar properties of interval timing. Significant Statement Timing is a fundamental element of complex behavior, including music and language. Temporal processing in a wide variety of contexts shows two primary features: time estimates exhibit a shift towards the mean (the bias property) and are more variable for longer intervals (the scalar property). We implemented a recurrent neural network that includes long-lasting synaptic currents, which can not only produce interval selective responses but also follow the bias and scalar properties. Interestingly, only physiological values of the time constants for paired-pulse facilitation and GABAb, as well as intermediate background activity within the network can reproduce the two key features of interval timing. Copyright © 2018 the authors.
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps
Directory of Open Access Journals (Sweden)
Minsong Zhang
2014-01-01
Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.
A note on Burgers' equation with time delay: Instability via finite-time blow-up
International Nuclear Information System (INIS)
Jordan, P.M.
2008-01-01
Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time
van Horssen, Wim T.; Wang, Yandong; Cao, Guohua
2018-06-01
In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.
Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication
Directory of Open Access Journals (Sweden)
Shouquan Pang
2016-01-01
Full Text Available Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.
Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydroturbine Governing System
Fengjiao Wu; Junling Ding; Zhengzhong Wang
2016-01-01
The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the d...
More consistent, yet less sensitive : Interval timing in autism spectrum disorders
Falter, Christine M.; Noreika, Valdas; Wearden, John H.; Bailey, Anthony J.
2012-01-01
Even though phenomenological observations and anecdotal reports suggest atypical time processing in individuals with an autism spectrum disorder (ASD), very few psychophysical studies have investigated interval timing, and the obtained results are contradictory. The present study aimed to clarify
Correspondence between imaginary-time and real-time finite-temperature field theory
International Nuclear Information System (INIS)
Kobes, R.
1990-01-01
It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed
Alternating-time temporal logic with finite-memory strategies
DEFF Research Database (Denmark)
Vester, Steen
2013-01-01
on finite-memory strategies. One where the memory size allowed is bounded and one where the memory size is unbounded (but must be finite). This is motivated by the high complexity of model-checking with perfect recall semantics and the severe limitations of memoryless strategies. We show that both types...... of semantics introduced are different from perfect recall and memoryless semantics and next focus on the decidability and complexity of model-checking in both complete and incomplete information games for ATL/ATL*. In particular, we show that the complexity of model-checking with bounded-memory semantics...... is Delta_2p-complete for ATL and PSPACE-complete for ATL* in incomplete information games just as in the memoryless case. We also present a proof that ATL and ATL* model-checking is undecidable for n >= 3 players with finite-memory semantics in incomplete information games....
[Estimation of the atrioventricular time interval by pulse Doppler in the normal fetal heart].
Hamela-Olkowska, Anita; Dangel, Joanna
2009-08-01
To assess normative values of the fetal atrioventricular (AV) time interval by pulse-wave Doppler methods on 5-chamber view. Fetal echocardiography exams were performed using Acuson Sequoia 512 in 140 singleton fetuses at 18 to 40 weeks of gestation with sinus rhythm and normal cardiac and extracardiac anatomy. Pulsed Doppler derived AV intervals were measured from left ventricular inflow/outflow view using transabdominal convex 3.5-6 MHz probe. The values of AV time interval ranged from 100 to 150 ms (mean 123 +/- 11.2). The AV interval was negatively correlated with the heart rhythm (page of gestation (p=0.007). However, in the same subgroup of the fetal heart rate there was no relation between AV intervals and gestational age. Therefore, the AV intervals showed only the heart rate dependence. The 95th percentiles of AV intervals according to FHR ranged from 135 to 148 ms. 1. The AV interval duration was negatively correlated with the heart rhythm. 2. Measurement of AV time interval is easy to perform and has a good reproducibility. It may be used for the fetal heart block screening in anti-Ro and anti-La positive pregnancies. 3. Normative values established in the study may help obstetricians in assessing fetal abnormalities of the AV conduction.
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.
Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics
Energy Technology Data Exchange (ETDEWEB)
Durmayaz, A. [Istanbul Technical University (Turkey). Department of Mechanical Engineering; Sogut, O.S. [Istanbul Technical University, Maslak (Turkey). Department of Naval Architecture and Ocean Engineering; Sahin, B. [Yildiz Technical University, Besiktas, Istanbul (Turkey). Department of Naval Architecture; Yavuz, H. [Istanbul Technical University, Maslak (Turkey). Institute of Energy
2004-07-01
The irreversibilities originating from finite-time and finite-size constraints are important in the real thermal system optimization. Since classical thermodynamic analysis based on thermodynamic equilibrium do not consider these constraints directly, it is necessary to consider the energy transfer between the system and its surroundings in the rate form. Finite-time thermodynamics provides a fundamental starting point for the optimization of real thermal systems including the fundamental concepts of heat transfer and fluid mechanics to classical thermodynamics. In this study, optimization studies of thermal systems, that consider various objective functions, based on finite-time thermodynamics and thermoeconomics are reviewed. (author)
Finite moments approach to the time-dependent neutron transport equation
International Nuclear Information System (INIS)
Kim, Sang Hyun
1994-02-01
Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the
A new criterion for global robust stability of interval neural networks with discrete time delays
International Nuclear Information System (INIS)
Li Chuandong; Chen Jinyu; Huang Tingwen
2007-01-01
This paper further studies global robust stability of a class of interval neural networks with discrete time delays. By introducing an equivalent transformation of interval matrices, a new criterion on global robust stability is established. In comparison with the results reported in the literature, the proposed approach leads to results with less restrictive conditions. Numerical examples are also worked through to illustrate our results
Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
Manlika Rajchakit
2012-01-01
Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don’t include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results. PMID:28931066
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Directory of Open Access Journals (Sweden)
Chuan Chen
Full Text Available Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs with both discrete delay and distributed delay (mixed delays. By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Across-province standardization and comparative analysis of time-to-care intervals for cancer
Directory of Open Access Journals (Sweden)
Nugent Zoann
2007-10-01
Full Text Available Abstract Background A set of consistent, standardized definitions of intervals and populations on which to report across provinces is needed to inform the Provincial/Territorial Deputy Ministries of Health on progress of the Ten-Year Plan to Strengthen Health Care. The objectives of this project were to: 1 identify a set of criteria and variables needed to create comparable measures of important time-to-cancer-care intervals that could be applied across provinces and 2 use the measures to compare time-to-care across participating provinces for lung and colorectal cancer patients diagnosed in 2004. Methods A broad-based group of stakeholders from each of the three participating cancer agencies was assembled to identify criteria for time-to-care intervals to standardize, evaluate possible intervals and their corresponding start and end time points, and finalize the selection of intervals to pursue. Inclusion/exclusion criteria were identified for the patient population and the selected time points to reduce potential selection bias. The provincial 2004 colorectal and lung cancer data were used to illustrate across-province comparisons for the selected time-to-care intervals. Results Criteria identified as critical for time-to-care intervals and corresponding start and end points were: 1 relevant to patients, 2 relevant to clinical care, 3 unequivocally defined, and 4 currently captured consistently across cancer agencies. Time from diagnosis to first radiation or chemotherapy treatment and the smaller components, time from diagnosis to first consult with an oncologist and time from first consult to first radiation or chemotherapy treatment, were the only intervals that met all four criteria. Timeliness of care for the intervals evaluated was similar between the provinces for lung cancer patients but significant differences were found for colorectal cancer patients. Conclusion We identified criteria important for selecting time-to-care intervals
Monitoring molecular interactions using photon arrival-time interval distribution analysis
Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA
2009-10-06
A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.
Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval
DEFF Research Database (Denmark)
Jakobsen, Nina Munkholt; Sørensen, Michael
Parametric estimation for diffusion processes is considered for high frequency observations over a fixed time interval. The processes solve stochastic differential equations with an unknown parameter in the diffusion coefficient. We find easily verified conditions on approximate martingale...
Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems
Directory of Open Access Journals (Sweden)
Songlin Wo
2014-01-01
Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Xiaohui Mo
2017-01-01
Full Text Available In this paper, finite-time stabilization problem for a class of nonlinear differential-algebraic systems (NDASs subject to external disturbance is investigated via a composite control manner. A composite finite-time controller (CFTC is proposed with a three-stage design procedure. Firstly, based on the adding a power integrator technique, a finite-time control (FTC law is explicitly designed for the nominal NDAS by only using differential variables. Then, by using homogeneous system theory, a continuous finite-time disturbance observer (CFTDO is constructed to estimate the disturbance generated by an exogenous system. Finally, a composite controller which consists of a feedforward compensation part based on CFTDO and the obtained FTC law is proposed. Rigorous analysis demonstrates that not only the proposed composite controller can stabilize the NDAS in finite time, but also the proposed control scheme exhibits nominal performance recovery property. Simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates
Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di
2018-06-01
This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.
Baeten; Bruggeman; Paepen; Carchon
2000-03-01
The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.
Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM
Zhao, Jinggen; He, Chengjian
2017-01-01
This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...
Kamran, Haroon; Salciccioli, Louis; Pushilin, Sergei; Kumar, Paraag; Carter, John; Kuo, John; Novotney, Carol; Lazar, Jason M
2011-01-01
Nonhuman primates are used frequently in cardiovascular research. Cardiac time intervals derived by phonocardiography have long been used to assess left ventricular function. Electronic stethoscopes are simple low-cost systems that display heart sound signals. We assessed the use of an electronic stethoscope to measure cardiac time intervals in 48 healthy bonnet macaques (age, 8 ± 5 y) based on recorded heart sounds. Technically adequate recordings were obtained from all animals and required 1.5 ± 1.3 min. The following cardiac time intervals were determined by simultaneously recording acoustic and single-lead electrocardiographic data: electromechanical activation time (QS1), electromechanical systole (QS2), the time interval between the first and second heart sounds (S1S2), and the time interval between the second and first sounds (S2S1). QS2 was correlated with heart rate, mean arterial pressure, diastolic blood pressure, and left ventricular ejection time determined by using echocardiography. S1S2 correlated with heart rate, mean arterial pressure, diastolic blood pressure, left ventricular ejection time, and age. S2S1 correlated with heart rate, mean arterial pressure, diastolic blood pressure, systolic blood pressure, and left ventricular ejection time. QS1 did not correlate with any anthropometric or echocardiographic parameter. The relation S1S2/S2S1 correlated with systolic blood pressure. On multivariate analyses, heart rate was the only independent predictor of QS2, S1S2, and S2S1. In conclusion, determination of cardiac time intervals is feasible and reproducible by using an electrical stethoscope in nonhuman primates. Heart rate is a major determinant of QS2, S1S2, and S2S1 but not QS1; regression equations for reference values for cardiac time intervals in bonnet macaques are provided. PMID:21439218
International Nuclear Information System (INIS)
Paulino, Arnold C.; Thakkar, Bharat; Henderson, William G.
1997-01-01
Purpose: To determine whether the time interval to development of second tumor is a prognostic factor for overall survival in children with metachronous bilateral Wilms' tumor and to give a recommendation regarding screening of the contralateral kidney in patients with Wilms' tumor. Materials and Management: A literature search using MEDLINE was performed of manuscripts in the English language from 1950-1996 and identified 108 children with metachronous bilateral Wilms' tumor. Children were classified according to time interval to development of a contralateral Wilms' tumor ( 78 mos (2), 78 - < 84 mos (1), 84 - < 90 mos (0), 90 - < 96 mos (1), ≥ 96 mos (0). Analysis of overall survival in patients with a time interval of < 18 months and ≥ 18 months showed a 10 year survival of 39.6% and 55.2%, respectively (p = 0.024, log-rank test). Conclusions: Children with metachronous bilateral Wilms' tumor who develop a contralateral tumor at a time interval of ≥ 18 months from the initial Wilms' tumor had a better overall survival than children with a time interval of < 18 months. Screening by abdominal ultrasound of the contralateral kidney for more than 5 years after initial diagnosis of Wilms' tumor may not be necessary since 102/106 (96.2%) of children had a time interval to second tumor of < 60 months
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R.; Mitchell, Kevin A.
2015-08-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."
International Nuclear Information System (INIS)
Wang Shumin; Duyn, Jeff H
2008-01-01
A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Directory of Open Access Journals (Sweden)
Xuzhong Wu
2015-01-01
Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.
Cardiac time intervals by tissue Doppler imaging M-mode echocardiography
DEFF Research Database (Denmark)
Biering-Sørensen, Tor
2016-01-01
for myocardial myocytes to achieve an LV pressure equal to that of aorta increases, resulting in a prolongation of the isovolumic contraction time (IVCT). Furthermore, the ability of myocardial myocytes to maintain the LV pressure decreases, resulting in reduction in the ejection time (ET). As LV diastolic...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...
Relation between Euclidean and real time calculations of Green functions at finite temperature
International Nuclear Information System (INIS)
Bochkarev, A.
1993-01-01
We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin
Belke, Terry W; Christie-Fougere, Melissa M
2006-11-01
Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.
Xu, Chang-Jin; Li, Pei-Luan; Pang, Yi-Cheng
2017-02-01
This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos.~61673008, 11261010, 11101126, Project of High-Level Innovative Talents of Guizhou Province ([2016]5651), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025 and J[2015]2026), 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011) and Natural Science Foundation of the Education Department of Guizhou Province (KY[2015]482)
Directory of Open Access Journals (Sweden)
Bin Wang
2016-01-01
Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.
Partial Finite-Time Synchronization of Switched Stochastic Chua's Circuits via Sliding-Mode Control
Directory of Open Access Journals (Sweden)
Zhang-Lin Wan
2011-01-01
Full Text Available This paper considers the problem of partial finite-time synchronization between switched stochastic Chua's circuits accompanied by a time-driven switching law. Based on the Ito formula and Lyapunov stability theory, a sliding-mode controller is developed to guarantee the synchronization of switched stochastic master-slave Chua's circuits and for the mean of error states to obtain the partial finite-time stability. Numerical simulations demonstrate the effectiveness of the proposed methods.
Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John
2007-01-01
A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval estimation and bisection and impact of secondary…
Count-to-count time interval distribution analysis in a fast reactor
International Nuclear Information System (INIS)
Perez-Navarro Gomez, A.
1973-01-01
The most important kinetic parameters have been measured at the zero power fast reactor CORAL-I by means of the reactor noise analysis in the time domain, using measurements of the count-to-count time intervals. (Author) 69 refs
Tonic and Phasic Dopamine Fluctuations as Reflected in Beta-power Predict Interval Timing Behavior
Kononowicz, Tadeusz; van Rijn, Hedderik
It has been repeatedly shown that dopamine impacts interval timing in humans and animals (for a review, see Coull, Cheng, & Meck, 2012). Particularly, administration of dopamine agonists or antagonists speeds-up or slows down internal passage of time, respectively (Meck, 1996). This co-variations in
Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John
A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval
Nonparametric estimation in an "illness-death" model when all transition times are interval censored
DEFF Research Database (Denmark)
Frydman, Halina; Gerds, Thomas; Grøn, Randi
2013-01-01
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times ...
Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Møgelvang, Rasmus; Schnohr, Peter
2016-01-01
function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P
Directory of Open Access Journals (Sweden)
Sukanya Somprom
2016-07-01
Full Text Available The research focuses on an insurance model controlled by proportional reinsurance in the finite-time surplus process with a unit-equalized time interval. We prove the existence of the maximal retention level for independent and identically distributed claim processes under α-regulation, i.e., a model where the insurance company has to manage the probability of insolvency to be at most α. In addition, we illustrate the maximal retention level for exponential claims by applying the bisection technique.
Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay
International Nuclear Information System (INIS)
Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia
2009-01-01
This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.
Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.
Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming
2008-11-06
The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.
A comparison of systolic time intervals measured by impedance cardiography and carotid pulse tracing
DEFF Research Database (Denmark)
Mehlsen, J; Bonde, J; Rehling, Michael
1990-01-01
The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug-induced chan......The purpose of this study was to compare the systolic time intervals (STI) obtained by impedance cardiography and by the conventional carotid technique. This comparison was done with respect to: 1) correlations between variables obtained by the two methods, 2) ability to reflect drug...
Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation
Pan, Huihui; Jing, Xingjian; Sun, Weichao
2017-05-01
This paper focuses on the finite-time tracking control with external disturbance for active suspension systems. In order to compensate unknown disturbance efficiently, a disturbance compensator with finite-time convergence property is studied. By analyzing the discontinuous phenomenon of classical disturbance compensation techniques, this study presents a simple approach to construct a continuous compensator satisfying the finite-time disturbance rejection performance. According to the finite-time separation principle, the design procedures of the nominal controller for the suspension system without disturbance and the disturbance compensator can be implemented in a completely independent manner. Therefore, the overall control law for the closed-loop system is continuous, which offers some distinct advantages over the existing discontinuous ones. From the perspective of practical implementation, the continuous controller can avoid effectively the unexpected chattering in active suspension control. Comparative experimental results are presented and discussed to illustrate the advantage and effectiveness of the proposed control strategy.
Gao, Fangzheng; Yuan, Ye; Wu, Yuqiang
2016-09-01
This paper studies the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems in feedforward-like form subject to inputs saturation. Under the weaker homogeneous condition on systems growth, a saturated finite-time control scheme is developed by exploiting the adding a power integrator method, the homogeneous domination approach and the nested saturation technique. Together with a novel switching control strategy, the designed saturated controller guarantees that the states of closed-loop system are regulated to zero in a finite time without violation of the constraint. As an application of the proposed theoretical results, the problem of saturated finite-time control for vertical wheel on rotating table is solved. Simulation results are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Liu, Meilin; Bagci, Hakan
2011-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results
Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots
Directory of Open Access Journals (Sweden)
Caihong Zhang
2014-01-01
Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.
Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydroturbine Governing System
Directory of Open Access Journals (Sweden)
Fengjiao Wu
2016-01-01
Full Text Available The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the designed controller has good robustness which could resist external random disturbances. Numerical simulations are employed to verify the effectiveness and superiority of the designed finite-time sliding mode control scheme. The approach proposed in this paper is simple and also provides a reference for relevant hydropower systems.
Distributed finite-time containment control for double-integrator multiagent systems.
Wang, Xiangyu; Li, Shihua; Shi, Peng
2014-09-01
In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.
Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.
Chen, Qiang; Ren, Xuemei; Na, Jing
2015-09-01
In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Finiteness principle and the concept of space-time
International Nuclear Information System (INIS)
Tati, T.
1984-01-01
It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt
Yuasa, Kenichi; Yotsumoto, Yuko
2015-01-01
When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.
Hwang-Gu, Shoou-Lian; Gau, Susan Shur-Fen
2015-01-01
The literature has suggested timing processing as a potential endophenotype for attention deficit/hyperactivity disorder (ADHD); however, whether the subjective internal clock speed presented by verbal estimation and limited attention capacity presented by time reproduction could be endophenotypes for ADHD is still unknown. We assessed 223 youths with DSM-IV ADHD (age range: 10-17 years), 105 unaffected siblings, and 84 typically developing (TD) youths using psychiatric interviews, intelligence tests, verbal estimation and time reproduction tasks (single task and simple and difficult dual tasks) at 5-second, 12-second, and 17-second intervals. We found that youths with ADHD tended to overestimate time in verbal estimation more than their unaffected siblings and TD youths, implying that fast subjective internal clock speed might be a characteristic of ADHD, rather than an endophenotype for ADHD. Youths with ADHD and their unaffected siblings were less precise in time reproduction dual tasks than TD youths. The magnitude of estimated errors in time reproduction was greater in youths with ADHD and their unaffected siblings than in TD youths, with an increased time interval at the 17-second interval and with increased task demands on both simple and difficult dual tasks versus the single task. Increased impaired time reproduction in dual tasks with increased intervals and task demands were shown in youths with ADHD and their unaffected siblings, suggesting that time reproduction deficits explained by limited attention capacity might be a useful endophenotype of ADHD. PMID:25992899
Finite-time consensus for leader-following multi-agent systems over switching network topologies
International Nuclear Information System (INIS)
Sun Feng-Lan; Zhu Wei
2013-01-01
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader-following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results
Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.
Ohmae, Shogo; Kunimatsu, Jun; Tanaka, Masaki
2017-03-29
Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades. We found a sizeable preparatory neuronal activity before self-timed saccades across delay intervals, while the time course of activity correlated with the trial-by-trial variation of saccade latency in different ways depending on the length of the delay intervals. For the shorter delay intervals, the ramping up of neuronal firing rate started just after the visual cue and the rate of rise of neuronal activity correlated with saccade timing. In contrast, for the longest delay (2400 ms), the preparatory activity started late during the delay period, and its onset time correlated with self-timed saccade latency. Because electrical microstimulation applied to the recording sites during saccade preparation advanced self-timed but not reactive saccades, regardless of their directions, the signals in the cerebellum may have a causal role in self-timing. We suggest that the cerebellum may regulate timing in both sub-second and supra-second ranges, although its relative contribution might be greater for sub-second than for supra-second time intervals. SIGNIFICANCE STATEMENT How we decide the timing of self-initiated movement is a fundamental question. According to the prevailing hypothesis, the cerebellum plays a role in monitoring sub-second timing, whereas the basal ganglia are important for supra-second timing. To verify this, we explored neuronal signals in the monkey cerebellum while animals reported the passage of time in the range 400-2400 ms by making eye movements. Contrary to our expectations, we
How the universe got its spots diary of a finite time in a finite space
Levin, Janna
2002-01-01
Is the universe infinite, or is it just really big? Does nature abhor infinity? In startling and beautiful prose, Janna Levin's diary of unsent letters to her mother describes what we know about the shape and extent of the universe, about its beginning and its end. She grants the uninitiated access to the astounding findings of contemporary theoretical physics and makes tangible the contours of space and time--those very real curves along which apples fall and planets orbit. Levin guides the reader through the observations and thought-experiments that have enabled physicists to begin charting the universe. She introduces the cosmic archaeology that makes sense of the pattern of hot spots left over from the big bang, a pursuit on the verge of discovering the shape of space itself. And she explains the topology and the geometry of the universe now coming into focus--a strange map of space full of black holes, chaotic flows, time warps, and invisible strings. Levin advances the controversial idea that this map ...
Directory of Open Access Journals (Sweden)
Luigi Acerbi
Full Text Available Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior and of the error (the loss function. The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Electric power demand forecasting using interval time series. A comparison between VAR and iMLP
International Nuclear Information System (INIS)
Garcia-Ascanio, Carolina; Mate, Carlos
2010-01-01
Electric power demand forecasts play an essential role in the electric industry, as they provide the basis for making decisions in power system planning and operation. A great variety of mathematical methods have been used for demand forecasting. The development and improvement of appropriate mathematical tools will lead to more accurate demand forecasting techniques. In order to forecast the monthly electric power demand per hour in Spain for 2 years, this paper presents a comparison between a new forecasting approach considering vector autoregressive (VAR) forecasting models applied to interval time series (ITS) and the iMLP, the multi-layer perceptron model adapted to interval data. In the proposed comparison, for the VAR approach two models are fitted per every hour, one composed of the centre (mid-point) and radius (half-range), and another one of the lower and upper bounds according to the interval representation assumed by the ITS in the learning set. In the case of the iMLP, only the model composed of the centre and radius is fitted. The other interval representation composed of the lower and upper bounds is obtained from the linear combination of the two. This novel approach, obtaining two bivariate models each hour, makes possible to establish, for different periods in the day, which interval representation is more accurate. Furthermore, the comparison between two different techniques adapted to interval time series allows us to determine the efficiency of these models in forecasting electric power demand. It is important to note that the iMLP technique has been selected for the comparison, as it has shown its accuracy in forecasting daily electricity price intervals. This work shows the ITS forecasting methods as a potential tool that will lead to a reduction in risk when making power system planning and operational decisions. (author)
Optimizing Time Intervals of Meteorological Data Used with Atmospheric Dose Modeling at SRS
International Nuclear Information System (INIS)
Simpkins, A.A.
1999-01-01
Measured tritium oxide concentrations in air have been compared with calculated values using routine release Gaussian plume models for different time intervals of meteorological data. These comparisons determined an optimum time interval of meteorological data used with atmospheric dose models at the Savannah River Site (SRS). Meteorological data of varying time intervals (1-yr to 10-yr) were used for the comparison. Insignificant differences are seen in using a one-year database as opposed to a five-year database. Use of a ten-year database results in slightly more conservative results. For meteorological databases of length one to five years the mean ratio of predicted to measured tritium oxide concentrations is approximately 1.25 whereas for the ten-year meteorological database the ration is closer to 1.35. Currently at the Savannah River Site a meteorological database of five years duration is used for all dose models. This study suggests no substantially improved accuracy using meteorological files of shorter or longer time intervals
Automatic, time-interval traffic counts for recreation area management planning
D. L. Erickson; C. J. Liu; H. K. Cordell
1980-01-01
Automatic, time-interval recorders were used to count directional vehicular traffic on a multiple entry/exit road network in the Red River Gorge Geological Area, Daniel Boone National Forest. Hourly counts of entering and exiting traffic differed according to recorder location, but an aggregated distribution showed a delayed peak in exiting traffic thought to be...
Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...
International Nuclear Information System (INIS)
Cheng, Tianjin; Pandey, Mahesh D.; Weide, J.A.M. van der
2012-01-01
The stochastic gamma process has been widely used to model uncertain degradation in engineering systems and structures. The optimization of the condition-based maintenance (CBM) policy is typically based on the minimization of the asymptotic cost rate. In the financial planning of a maintenance program, however, a more accurate prediction interval for the cost is needed for prudent decision making. The prediction interval cannot be estimated unless the probability distribution of cost is known. In this context, the asymptotic cost rate has a limited utility. This paper presents the derivation of the probability distribution of maintenance cost, when the system degradation is modelled as a stochastic gamma process. A renewal equation is formulated to derive the characteristic function, then the discrete Fourier transform of the characteristic function leads to the complete probability distribution of cost in a finite time setting. The proposed approach is useful for a precise estimation of prediction limits and optimization of the maintenance cost.
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
Kheifets, Aaron; Freestone, David; Gallistel, C R
2017-07-01
In three experiments with mice ( Mus musculus ) and rats (Rattus norvigicus), we used a switch paradigm to measure quantitative properties of the interval-timing mechanism. We found that: 1) Rodents adjusted the precision of their timed switches in response to changes in the interval between the short and long feed latencies (the temporal goalposts). 2) The variability in the timing of the switch response was reduced or unchanged in the face of large trial-to-trial random variability in the short and long feed latencies. 3) The adjustment in the distribution of switch latencies in response to changes in the relative frequency of short and long trials was sensitive to the asymmetry in the Kullback-Leibler divergence. The three results suggest that durations are represented with adjustable precision, that they are timed by multiple timers, and that there is a trial-by-trial (episodic) record of feed latencies in memory. © 2017 Society for the Experimental Analysis of Behavior.
Finite correlation time effects in kinematic dynamo problem
International Nuclear Information System (INIS)
Schekochihin, A.A.; Kulsrud, R.M.
2000-01-01
One-point statistics of the magnetic fluctuations in kinematic regime with large Prandtl number and non delta-correlated in time advecting velocity field are studied. A perturbation expansion in the ratio of the velocity correlation time to the dynamo growth time is constructed in the spirit of the Kliatskin-Tatarskii functional method and carried out to first order. The convergence properties are improved compared to the commonly used van Kampen-Terwiel method. The zeroth-order growth rate of the magnetic energy is estimated to be reduced (in three dimensions) by approximately 40%. This reduction is quite close to existing numerical results
Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors
National Research Council Canada - National Science Library
Adams, Samuel; Payne, Jason; Boppana, Rajendra
2007-01-01
.... This paper shows how GPUs can be used to greatly speedup FDTD simulations. The main objective is to leverage GPU processing power for FDTD update calculations and complete computationally expensive simulations in reasonable time...
Dead-time corrections on long-interval measurements of short-lived activities
International Nuclear Information System (INIS)
Irfan, M.
1977-01-01
A method has been proposed to make correction for counting losses due to dead time where the counting interval is comparable to or larger than the half-life of the activity under investigation. Counts due to background and any long-lived activity present in the source have been taken into consideration. The method is, under certain circumstances, capable of providing a valuable check on the accuracy of the dead time of the counting system. (Auth.)
Estimation of sojourn time in chronic disease screening without data on interval cases.
Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W
2000-03-01
Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
Energy Technology Data Exchange (ETDEWEB)
Garnadi, A D [Department of Matematics, Bogor Institute of Agriculture, Bogor (Indonesia)
1997-07-01
In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study.
Embodiment and the origin of interval timing: kinematic and electromyographic data.
Addyman, Caspar; Rocha, Sinead; Fautrelle, Lilian; French, Robert M; Thomas, Elizabeth; Mareschal, Denis
2017-03-01
Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with seven cycles and response period. In one condition, cycles were slow (every 4 s); in another, they were fast (every 2 s). In the slow condition, we found evidence of time-locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all three ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior.
International Nuclear Information System (INIS)
Gómez de León, F C; Meroño Pérez, P A
2010-01-01
The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement
International Nuclear Information System (INIS)
Meijer, Jan H; Boesveldt, Sanne; Elbertse, Eskeline; Berendse, H W
2008-01-01
The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous nervous control of cardiac activity. PEP, however, is difficult to measure in practice. Therefore, a novel parameter, the initial systolic time interval (ISTI), is introduced to provide a more practical measure. The use of ISTI instead of PEP was evaluated in three groups: young healthy subjects, patients with Parkinson's disease, and a group of elderly, healthy subjects of comparable age. PEP and ISTI were studied under two conditions: at rest and after an exercise stimulus. Under both conditions, PEP and ISTI behaved largely similarly in the three groups and were significantly correlated. It is concluded that ISTI can be used as a substitute for PEP and, therefore, to evaluate autonomic neuropathy both in clinical and extramural settings. Measurement of ISTI can also be used to non-invasively monitor the electromechanical cardiac time interval, and the associated autonomic activity, under physiological circumstances
Evaluating Protocol Lifecycle Time Intervals in HIV/AIDS Clinical Trials
Schouten, Jeffrey T.; Dixon, Dennis; Varghese, Suresh; Cope, Marie T.; Marci, Joe; Kagan, Jonathan M.
2014-01-01
Background Identifying efficacious interventions for the prevention and treatment of human diseases depends on the efficient development and implementation of controlled clinical trials. Essential to reducing the time and burden of completing the clinical trial lifecycle is determining which aspects take the longest, delay other stages, and may lead to better resource utilization without diminishing scientific quality, safety, or the protection of human subjects. Purpose In this study we modeled time-to-event data to explore relationships between clinical trial protocol development and implementation times, as well as identify potential correlates of prolonged development and implementation. Methods We obtained time interval and participant accrual data from 111 interventional clinical trials initiated between 2006 and 2011 by NIH’s HIV/AIDS Clinical Trials Networks. We determined the time (in days) required to complete defined phases of clinical trial protocol development and implementation. Kaplan-Meier estimates were used to assess the rates at which protocols reached specified terminal events, stratified by study purpose (therapeutic, prevention) and phase group (pilot/phase I, phase II, and phase III/ IV). We also examined several potential correlates to prolonged development and implementation intervals. Results Even though phase grouping did not determine development or implementation times of either therapeutic or prevention studies, overall we observed wide variation in protocol development times. Moreover, we detected a trend toward phase III/IV therapeutic protocols exhibiting longer developmental (median 2 ½ years) and implementation times (>3years). We also found that protocols exceeding the median number of days for completing the development interval had significantly longer implementation. Limitations The use of a relatively small set of protocols may have limited our ability to detect differences across phase groupings. Some timing effects
Beat-to-beat systolic time-interval measurement from heart sounds and ECG
International Nuclear Information System (INIS)
Paiva, R P; Carvalho, P; Couceiro, R; Henriques, J; Antunes, M; Quintal, I; Muehlsteff, J
2012-01-01
Systolic time intervals are highly correlated to fundamental cardiac functions. Several studies have shown that these measurements have significant diagnostic and prognostic value in heart failure condition and are adequate for long-term patient follow-up and disease management. In this paper, we investigate the feasibility of using heart sound (HS) to accurately measure the opening and closing moments of the aortic heart valve. These moments are crucial to define the main systolic timings of the heart cycle, i.e. pre-ejection period (PEP) and left ventricular ejection time (LVET). We introduce an algorithm for automatic extraction of PEP and LVET using HS and electrocardiogram. PEP is estimated with a Bayesian approach using the signal's instantaneous amplitude and patient-specific time intervals between atrio-ventricular valve closure and aortic valve opening. As for LVET, since the aortic valve closure corresponds to the start of the S2 HS component, we base LVET estimation on the detection of the S2 onset. A comparative assessment of the main systolic time intervals is performed using synchronous signal acquisitions of the current gold standard in cardiac time-interval measurement, i.e. echocardiography, and HS. The algorithms were evaluated on a healthy population, as well as on a group of subjects with different cardiovascular diseases (CVD). In the healthy group, from a set of 942 heartbeats, the proposed algorithm achieved 7.66 ± 5.92 ms absolute PEP estimation error. For LVET, the absolute estimation error was 11.39 ± 8.98 ms. For the CVD population, 404 beats were used, leading to 11.86 ± 8.30 and 17.51 ± 17.21 ms absolute PEP and LVET errors, respectively. The results achieved in this study suggest that HS can be used to accurately estimate LVET and PEP. (paper)
Changes in crash risk following re-timing of traffic signal change intervals.
Retting, Richard A; Chapline, Janella F; Williams, Allan F
2002-03-01
More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.
On using moving windows in finite element time domain simulation for long accelerator structures
International Nuclear Information System (INIS)
Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok
2010-01-01
A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.
International Nuclear Information System (INIS)
Barrera, M. C.; Recondo, J. A.; Aperribay, M.; Gervas, C.; Fernandez, E.; Alustiza, J. M.
2003-01-01
To evaluate the efficiency of magnetic resonance (MR) in the diagnosis of knee lesions and how the results are influenced by the time interval between MR and arthroscopy. 248 knees studied by MR were retrospectively analyzed, as well as those which also underwent arthroscopy. Arthroscopy was considered to be the gold standard, MR diagnostic capacity was evaluated for both meniscal and cruciate ligament lesions. Sensitivity, specificity and Kappa index were calculated for the set of all knees included in the study (248), for those in which the time between MR and arthroscopy was less than or equal to three months (134) and for those in which the time between both procedures was less than or equal to one month. Sensitivity, specificity and Kappa index of the MR had global values of 96.5%, 70% and 71%, respectively. When the interval between MR and arthroscopy was less than or equal to three months, sensitivity, specificity and Kappa index were 95.5%, 75% and 72%, respectively. When it was less than or equal to one month, sensitivity was 100%, specificity was 87.5% and Kappa index was 91%. MR is an excellent tool for the diagnosis of knee lesions. Higher MR values of sensitivity, specificity and Kappa index are obtained when the time interval between both procedures is kept to a minimum. (Author) 11 refs
29TH Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting
National Research Council Canada - National Science Library
1998-01-01
...) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, and computer networks.
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
Finite-time stabilisation of a class of switched nonlinear systems with state constraints
Huang, Shipei; Xiang, Zhengrong
2018-06-01
This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.
Guaranteed Cost Finite-Time Control of Fractional-Order Positive Switched Systems
Directory of Open Access Journals (Sweden)
Leipo Liu
2017-01-01
Full Text Available The problem of guaranteed cost finite-time control of fractional-order positive switched systems (FOPSS is considered in this paper. Firstly, a new cost function is defined. Then, by constructing linear copositive Lyapunov functions and using the average dwell time (ADT approach, a state feedback controller and a static output feedback controller are constructed, respectively, and sufficient conditions are derived to guarantee that the corresponding closed-loop systems are guaranteed cost finite-time stable (GCFTS. Such conditions can be easily solved by linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed method.
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Dimensional Stability of Two Polyvinyl Siloxane Impression Materials in Different Time Intervals
Directory of Open Access Journals (Sweden)
Aalaei Sh
2015-12-01
Full Text Available Statement of the Problem: Dental prosthesis is usually made indirectly; there- fore dimensional stability of the impression material is very important. Every few years, new impression materials with different manufacturers’ claims regarding their better properties are introduced to the dental markets which require more research to evaluate their true dimensional changes. Objectives: The aim of this study was to evaluate dimensional stability of additional silicone impression material (Panasil® and Affinis® in different time intervals. Materials and Methods: In this experimental study, using two additional silicones (Panasil® and Affinis®, we made sixty impressions of standard die in similar conditions of 23 °C and 59% relative humidity by a special tray. The die included three horizontal and two vertical lines that were parallel. The vertical line crossed the horizontal ones at a point that served as reference for measurement. All impressions were poured with high strength dental stone. The dimensions were measured by stereo-microscope by two examiners in three interval storage times (1, 24 and 168 hours.The data were statistically analyzed using t-test and ANOVA. Results: All of the stone casts were larger than the standard die. Dimensional changes of Panasil and Affinis were 0.07%, 0.24%, 0.27% and 0.02%, 0.07%, 0.16% after 1, 24 and 168 hours, respectively. Dimensional change for two impression materials wasn’t significant in the interval time, expect for Panasil after one week (p = 0.004. Conclusions: According to the limitations of this study, Affinis impressions were dimensionally more stable than Panasil ones, but it was not significant. Dimensional change of Panasil impression showed a statistically significant difference after one week. Dimensional changes of both impression materials were based on ADA standard limitation in all time intervals (< 0.5%; therefore, dimensional stability of this impression was accepted at least
Myszkowska-Ryciak, J.; Keller, J.S.; Bujko, J.; Stankiewicz-Ciupa, J.; Koopmanschap, R.E.; Schreurs, V.V.A.M.
2015-01-01
Postprandial oxidative losses of egg white-bound [1-^{13}C]-leucine were studied as ^{13}C recovery in the breath of rats in relation to different time intervals between two meals. Male Wistar rats (n = 48; 68.3 ±5.9 g) divided into 4 groups (n = 12) were fed two meals a day (9:00
Procedure prediction from symbolic Electronic Health Records via time intervals analytics.
Moskovitch, Robert; Polubriaginof, Fernanda; Weiss, Aviram; Ryan, Patrick; Tatonetti, Nicholas
2017-11-01
Prediction of medical events, such as clinical procedures, is essential for preventing disease, understanding disease mechanism, and increasing patient quality of care. Although longitudinal clinical data from Electronic Health Records provides opportunities to develop predictive models, the use of these data faces significant challenges. Primarily, while the data are longitudinal and represent thousands of conceptual events having duration, they are also sparse, complicating the application of traditional analysis approaches. Furthermore, the framework presented here takes advantage of the events duration and gaps. International standards for electronic healthcare data represent data elements, such as procedures, conditions, and drug exposures, using eras, or time intervals. Such eras contain both an event and a duration and enable the application of time intervals mining - a relatively new subfield of data mining. In this study, we present Maitreya, a framework for time intervals analytics in longitudinal clinical data. Maitreya discovers frequent time intervals related patterns (TIRPs), which we use as prognostic markers for modelling clinical events. We introduce three novel TIRP metrics that are normalized versions of the horizontal-support, that represents the number of TIRP instances per patient. We evaluate Maitreya on 28 frequent and clinically important procedures, using the three novel TIRP representation metrics in comparison to no temporal representation and previous TIRPs metrics. We also evaluate the epsilon value that makes Allen's relations more flexible with several settings of 30, 60, 90 and 180days in comparison to the default zero. For twenty-two of these procedures, the use of temporal patterns as predictors was superior to non-temporal features, and the use of the vertically normalized horizontal support metric to represent TIRPs as features was most effective. The use of the epsilon value with thirty days was slightly better than the zero
Fang, Jing; Yan, Weihong; Jiang, Guo-Xin; Li, Wei; Cheng, Qi
2011-02-01
To observe the time interval between stroke onset and hospital arrival (time-to-hospital) in acute ischemic stroke patients and analyze its putatively associated factors. During the period from November 1, 2006 to August 31, 2008, patients with acute ischemic stroke admitted consecutively to the Department of Neurology, Ninth Hospital, Shanghai, were enrolled in the study. Information of the patients was registered including the time-to-hospital, demographic data, history of stroke, season at attack, neurological symptom at onset, etc. Characteristics of the patients were analyzed and logistic regression analyses were conducted to identify factors associated with the time-to-hospital. There were 536 patients in the study, 290 (54.1%) males and 246 (45.9%) females. The median time-to-hospital was 8h (ranged from 0.1 to 300 h) for all patients. Within 3h after the onset of stroke, 162 patients (30.2%) arrived at our hospital; and within 6h, 278 patients (51.9%). Patients with a history of stroke, unconsciousness at onset, or a high NIHSS score at admission had significantly less time-to-hospital. The time interval between stroke onset and hospital arrival was importance of seeking immediate medical help after stroke onset of patients and their relatives could significantly influence their actions. Copyright © 2010 Elsevier B.V. All rights reserved.
Semiparametric regression analysis of failure time data with dependent interval censoring.
Chen, Chyong-Mei; Shen, Pao-Sheng
2017-09-20
Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals
Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.
2018-02-01
Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.
Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei
2018-05-10
The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
H∞ state estimation of generalised neural networks with interval time-varying delays
Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He
2016-12-01
This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.
Model for the respiratory modulation of the heart beat-to-beat time interval series
Capurro, Alberto; Diambra, Luis; Malta, C. P.
2005-09-01
In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.
Finite-time synchronization of Lorenz chaotic systems: theory and circuits
International Nuclear Information System (INIS)
Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel
2013-01-01
This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics
Gedney, Stephen
2011-01-01
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method
International Nuclear Information System (INIS)
Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.
1981-01-01
A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model
Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
International Nuclear Information System (INIS)
Du-Qu, Wei; Bo, Zhang
2009-01-01
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)
Finite-time output feedback stabilization of high-order uncertain nonlinear systems
Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei
2018-06-01
This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.
A network of spiking neurons that can represent interval timing: mean field analysis.
Gavornik, Jeffrey P; Shouval, Harel Z
2011-04-01
Despite the vital importance of our ability to accurately process and encode temporal information, the underlying neural mechanisms are largely unknown. We have previously described a theoretical framework that explains how temporal representations, similar to those reported in the visual cortex, can form in locally recurrent cortical networks as a function of reward modulated synaptic plasticity. This framework allows networks of both linear and spiking neurons to learn the temporal interval between a stimulus and paired reward signal presented during training. Here we use a mean field approach to analyze the dynamics of non-linear stochastic spiking neurons in a network trained to encode specific time intervals. This analysis explains how recurrent excitatory feedback allows a network structure to encode temporal representations.
Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin
2017-10-01
This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-01-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...
Directory of Open Access Journals (Sweden)
Neeraj Kumar
2016-05-01
Full Text Available In the present study, the Economic Order Quantity (EOQ model of two-warehouse deals with non-instantaneous deteriorating items, the demand rate considered as stock dependent and model affected by inflation under the pattern of time value of money over a finite planning horizon. Shortages are allowed and partially backordered depending on the waiting time for the next replenishment. The main objective of this work is to minimize the total inventory cost and finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented.
Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model
Directory of Open Access Journals (Sweden)
Fernando Angulo-Brown
2011-01-01
Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.
Energy Technology Data Exchange (ETDEWEB)
Sugrue, D.D.; Dickie, S.; Newman, H.; Myers, M.J.; Lavender, J.P.; McKenna, W.J. (Royal Postgraduate Medical School, London (UK))
1984-10-01
A comparison has been made of the equilibrium radionuclide and contrast angiographic estimates of normalized peak rates of ejection (PER) and filling (PFR) and their time intervals in twenty-one patients with cardiac disorders. Contrast angiographic and radionuclide measurements of left ventricular ejection fraction (LVEF), PER and PFR correlated well but time intervals correlated poorly. Mean values for radionuclide LVEF, PER and PFR were significantly lower and radionuclide time intervals were significantly longer compared to contrast angiography measurements.
Effects of varied doses of psilocybin on time interval reproduction in human subjects.
Wackermann, Jirí; Wittmann, Marc; Hasler, Felix; Vollenweider, Franz X
2008-04-11
Action of a hallucinogenic substance, psilocybin, on internal time representation was investigated in two double-blind, placebo-controlled studies: Experiment 1 with 12 subjects and graded doses, and Experiment 2 with 9 subjects and a very low dose. The task consisted in repeated reproductions of time intervals in the range from 1.5 to 5s. The effects were assessed by parameter kappa of the 'dual klepsydra' model of internal time representation, fitted to individual response data and intra-individually normalized with respect to initial values. The estimates kappa were in the same order of magnitude as in earlier studies. In both experiments, kappa was significantly increased by psilocybin at 90 min from the drug intake, indicating a higher loss rate of the internal duration representation. These findings are tentatively linked to qualitative alterations of subjective time in altered states of consciousness.
Assessing cardiac preload by the Initial Systolic Time Interval obtained from impedance cardiography
Directory of Open Access Journals (Sweden)
Jan H Meijer
2010-01-01
Full Text Available The Initial Systolic Time Interval (ISTI, obtained from the electrocardiogram (ECG and impedance cardiogram (ICG, is considered to be a measure for the time delay between the electrical and mechanical activity of the heart and reflects an early active period of the cardiac cycle. The clinical relevance of this time interval is subject of study. This paper presents preliminary results of a pilot study investigating the use of ISTI in evaluating and predicting the circulatory response to fluid administration in patients after coronary artery bypass graft surgery, by comparing ISTI with cardiac output (CO responsiveness. Also the use of the pulse transit time (PTT, earlier recommended for this purpose, is investigated. The results show an inverse relationship between ISTI and CO at all moments of fluid administration and also an inverse relationship between the changes ΔISTI and ΔCO before and after full fluid administration. No relationships between PTT and CO or ΔPTT and ΔCO were found. It is concluded that ISTI is dependent upon preload, and that ISTI has the potential to be used as a clinical parameter assessing preload.
Directory of Open Access Journals (Sweden)
Rathinasamy Sakthivel
2018-01-01
Full Text Available The problem of robust nonfragile synchronization is investigated in this paper for a class of complex dynamical networks subject to semi-Markov jumping outer coupling, time-varying coupling delay, randomly occurring gain variation, and stochastic noise over a desired finite-time interval. In particular, the network topology is assumed to follow a semi-Markov process such that it may switch from one to another at different instants. In this paper, the random gain variation is represented by a stochastic variable that is assumed to satisfy the Bernoulli distribution with white sequences. Based on these hypotheses and the Lyapunov-Krasovskii stability theory, a new finite-time stochastic synchronization criterion is established for the considered network in terms of linear matrix inequalities. Moreover, the control design parameters that guarantee the required criterion are computed by solving a set of linear matrix inequality constraints. An illustrative example is finally given to show the effectiveness and advantages of the developed analytical results.
The delayed reproduction of long time intervals defined by innocuous thermal sensation.
Khoshnejad, Mina; Martinu, Kristina; Grondin, Simon; Rainville, Pierre
2016-04-01
The presence of discrete events during an interval to be estimated generally causes a dilation of perceived duration (event-filling effect). Here, we investigated this phenomenon in the thermal modality using multi-seconds (19 s) innocuous cool stimuli that were either constant (continuous interval) or fluctuating to create three discrete sensory events (segmented interval). Moreover, we introduced a delay following stimulus offset, before the reproduction phase, to allow for a direct comparison with our recent study showing an underestimation of duration in a delayed reproduction task of heat pain sensations (Khoshnejad et al. in Pain 155:581-590, 2014. doi: 10.1016/j.pain.2013.12.015 ). The event-filling effect was tested by comparing the delayed reproduction of the segmented and the continuous stimuli in experimental conditions asking participants to (1) reproduce the dynamics of the sensation (i.e., changes in sensory intensity over time) or (2) reproduce only the interval duration (i.e., sensation onset-to-offset). A perceptual (control) condition required participants to report changes in sensation concurrently with the stimulus. Results of the dynamic task confirmed the underestimation of duration in the delayed reproduction task, but this effect was only found with the continuous and not with the segmented stimulus. This implies that the dilation of duration produced by segmentation might compensate for the underestimation of duration in this delayed reproduction task. However, this temporal dilation effect was only observed when participants were required to attend and reproduce the dynamics of sensation. These results suggest that the event-filling effect can be observed in the thermal sensory modality and that attention directed toward changes in sensory intensity might contribute to this effect.
Surapaneni, Sushama; S, Rajkumar; Reddy A, Vijaya Bhaskar
2013-05-01
To find out the significance of the Perforation-Operation Interval (POI) with respect to an early prognosis, in patients with peritonitis which is caused by peptic ulcer perforation. Case series. Place and Duration of the Study: Department of General Surgery, Konaseema Institute of Medical Sciences and RF Amalapuram, Andhra Pradesh, India from 2008-2011. This study included 150 patients with generalized peritonitis, who were diagnosed to have Perforated Peptic Ulcers (PPUs). The diagnosis of the PPUs was established on the basis of the history , the clinical examination and the radiological findings. The perforation-operation interval was calculated from the time of onset of the symptoms like severe abdominal pain or vomiting till the time the patient was operated. Out of the 150 patients 134 were males and 16 were females, with a male : female ratio of 9:1. Their ages ranged between 25-70 years. Out of the 150 patients, 65 patients (43.3%) presented within 24 hours of the onset of severe abdominal pain (Group A), 27 patients (18%) presented between 24-48 hours of the onset of severe abdominal pain (Group B) and 58 patients (38.6%) presented after 48 hours. There was no mortality in Group A and the morbidity was more in Group B and Group C. There were 15 deaths in Group C. The problem of peptic ulcer perforation with its complication, can be decreased by decreasing the perforation -operation time interval, which as per our study, appeared to be the single most important mortality and morbidity indicator in peptic ulcer perforation.
Hughes, Daniel; Nair, Sunil; Harvey, John N
2017-12-01
Objectives To determine the necessary screening interval for retinopathy in diabetic patients with no retinopathy based on time to laser therapy and to assess long-term visual outcome following screening. Methods In a population-based community screening programme in North Wales, 2917 patients were followed until death or for approximately 12 years. At screening, 2493 had no retinopathy; 424 had mostly minor degrees of non-proliferative retinopathy. Data on timing of first laser therapy and visual outcome following screening were obtained from local hospitals and ophthalmology units. Results Survival analysis showed that very few of the no retinopathy at screening group required laser therapy in the early years compared with the non-proliferative retinopathy group ( p retinopathy at screening group required laser therapy, and at three years 0.2% (cumulative), lower rates of treatment than have been suggested by analyses of sight-threatening retinopathy determined photographically. At follow-up (mean 7.8 ± 4.6 years), mild to moderate visual impairment in one or both eyes due to diabetic retinopathy was more common in those with retinopathy at screening (26% vs. 5%, p diabetes occurred in only 1 in 1000. Conclusions Optimum screening intervals should be determined from time to active treatment. Based on requirement for laser therapy, the screening interval for diabetic patients with no retinopathy can be extended to two to three years. Patients who attend for retinal screening and treatment who have no or non-proliferative retinopathy now have a very low risk of eventual blindness from diabetes.
Takahashi, Masashi; Kohsaka, Shun; Miyata, Hiroaki; Yoshikawa, Tsutomu; Takagi, Atsutoshi; Harada, Kazumasa; Miyamoto, Takamichi; Sakai, Tetsuo; Nagao, Ken; Sato, Naoki; Takayama, Morimasa
2011-09-01
Acute heart failure (AHF) is one of the most frequently encountered cardiovascular conditions that can seriously affect the patient's prognosis. However, the importance of early triage and treatment initiation in the setting of AHF has not been recognized. The Tokyo Cardiac Care Unit Network Database prospectively collected information of emergency admissions to acute cardiac care facilities in 2005-2007 from 67 participating hospitals in the Tokyo metropolitan area. We analyzed records of 1,218 AHF patients transported to medical centers via emergency medical services (EMS). AHF was defined as rapid onset or change in the signs and symptoms of heart failure, resulting in the need for urgent therapy. Patients with acute coronary syndrome were excluded from this analysis. Logistic regression analysis was performed to calculate the risk-adjusted in-hospital mortality. A majority of the patients were elderly (76.1 ± 11.5 years old) and male (54.1%). The overall in-hospital mortality rate was 6.0%. The median time interval between symptom onset and EMS arrival (response time) was 64 minutes (interquartile range [IQR] 26-205 minutes), and that between EMS arrival and ER arrival (transportation time) was 27 minutes (IQR 9-78 minutes). The risk-adjusted mortality increased with transportation time, but did not correlate with the response time. Those who took >45 minutes to arrive at the medical centers were at a higher risk for in-hospital mortality (odds ratio 2.24, 95% confidence interval 1.17-4.31; P = .015). Transportation time correlated with risk-adjusted mortality, and steps should be taken to reduce the EMS transfer time to improve the outcome in AHF patients. Copyright © 2011 Elsevier Inc. All rights reserved.
A study on assessment methodology of surveillance test interval and allowed outage time
International Nuclear Information System (INIS)
Che, Moo Seong; Cheong, Chang Hyeon; Lee, Byeong Cheol
1996-07-01
The objectives of this study is the development of methodology by which assessing the optimizes Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korea nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches is performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method
A study on assessment methodology of surveillance test interval and allowed outage time
Energy Technology Data Exchange (ETDEWEB)
Che, Moo Seong; Cheong, Chang Hyeon; Lee, Byeong Cheol [Seoul Nationl Univ., Seoul (Korea, Republic of)] (and others)
1996-07-15
The objectives of this study is the development of methodology by which assessing the optimizes Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korea nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches is performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method.
Directory of Open Access Journals (Sweden)
O. M. Kwon
2012-01-01
Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Liu, Meilin
2011-07-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.
Verus: A Tool for Quantitative Analysis of Finite-State Real-Time Systems.
1996-08-12
Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle real - time systems . Models with...up to 10(exp 30) states can often be verified in minutes. In this paper, we present a new tool to analyze real - time systems , based on this technique...We have designed a language, called Verus, for the description of real - time systems . Such a description is compiled into a state-transition graph and
Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K
2015-08-01
To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.
Ning, Boda; Jin, Jiong; Zheng, Jinchuan; Man, Zhihong
2018-06-01
This paper is concerned with finite-time and fixed-time consensus of multi-agent systems in a leader-following framework. Different from conventional leader-following tracking approaches where inherent dynamics satisfying the Lipschitz continuous condition is required, a more generalised case is investigated: discontinuous inherent dynamics. By nonsmooth techniques, a nonlinear protocol is first proposed to achieve the finite-time leader-following consensus. Then, based on fixed-time stability strategies, the fixed-time leader-following consensus problem is solved. An upper bound of settling time is obtained by using a new protocol, and such a bound is independent of initial states, thereby providing additional options for designers in practical scenarios where initial conditions are unavailable. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
The finite-difference time-domain method for electromagnetics with Matlab simulations
Elsherbeni, Atef Z
2016-01-01
This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.
Real-time volumetric deformable models for surgery simulation using finite elements and condensation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten; Cotin, S.
1996-01-01
This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...
Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived
Generalized results on the role of new-time transformations in finite-dimensional Poisson systems
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)
2010-01-25
The problem of characterizing all new-time transformations preserving the Poisson structure of a finite-dimensional Poisson system is completely solved in a constructive way. As a corollary, this leads to a broad generalization of previously known results. Examples are given.
Time-integration methods for finite element discretisations of the second-order Maxwell equation
Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic
Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
Miyazaki, Yutaka; Tsuchiya, Takao
2012-07-01
The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.
Directory of Open Access Journals (Sweden)
Qingwu Gao
2012-01-01
Full Text Available We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in a generalized compound renewal risk model, where the interarrival times of successive accidents and all the claim sizes caused by an accident are two sequences of random variables following a wide dependence structure. This wide dependence structure allows random variables to be either negatively dependent or positively dependent.
International Nuclear Information System (INIS)
Zhang, Yanjiao; Yang, Ying
2013-01-01
This Letter investigates the finite-time consensus problems of second-order multi-agent systems in the presence of one and multiple leaders under a directed graph. Specifically, we propose two bounded control laws, which are independent of velocity information, to deal with the finite-time consensus tracking problem with one leader and the finite-time containment control problem with multiple leaders, respectively. With the aid of homogeneous theory, some sufficient conditions are established for the achievement of the finite-time tracking control problem of second-order multi-agent systems. Numerical examples are finally provided to illustrate the theoretical results.
Detection of abnormal item based on time intervals for recommender systems.
Gao, Min; Yuan, Quan; Ling, Bin; Xiong, Qingyu
2014-01-01
With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from "shilling" attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ(2)). We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
Directory of Open Access Journals (Sweden)
Min Gao
2014-01-01
Full Text Available With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from “shilling” attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ2. We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.
Ćwik, Michał; Józefczyk, Jerzy
2018-01-01
An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.
Directory of Open Access Journals (Sweden)
Guadalupe de la Lanza Espino
2012-07-01
Full Text Available The diverse management of river water in Mexico has been unequal due to the different anthropological activities, and it is associated with inter-annual changes in the climate and runoff patterns, leading to a loss of the ecosystem integrity. However, nowadays there are different methods to assess the water volume that is necessary to conserve the environment, among which are hydrological methods, such as those applied here, that are based on information on water volumes recorded over decades, which are not always available in the country. For this reason, this study compares runoff records for different time ranges: minimum of 10 years, medium of 20 years, and more than 50 years, to quantify the environmental flow. These time intervals provided similar results, which mean that not only for the Acaponeta river, but possibly for others lotic systems as well, a 10-year interval may be used satisfactorily. In this river, the runoff water that must be kept for environmental purposes is: for 10 years 70.1%, for 20 years 78.1% and for >50 years 68.8%, with an average of 72.3% of the total water volume or of the average annual runoff.
The effect of loading time on flexible pavement dynamic response: a finite element analysis
Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley
2007-12-01
Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
DEFF Research Database (Denmark)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin
2017-01-01
method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....
Assessment of time interval between tramadol intake and seizure and second drug-induced attack
Directory of Open Access Journals (Sweden)
Bahareh Abbasi
2015-11-01
Full Text Available Background: Tramadol is a synthetic drug which is prescribed in moderate and severe pain. Tramadol overdose can induce severe complications such as consciousness impairment and convulsions. This study was done to determine the convulsions incidence after tramadol use until one week after hospital discharge. Methods: This prospective study was done in tramadol overdose patients without uncontrolled epilepsy and head injury history. All cases admitted in Loghman and Rasol Akram Hospitals, Tehran, Iran from 1, April 2011 to 1, April 2012 were included and observed for at least 12 hours. Time interval between tramadol intake and first seizure were record. Then, patients with second drug-induced seizure were recognized and log time between the first and second seizure was analyzed. The patients were transferred to the intensive care unit (ICU if clinical worsening status observed. One week after hospital discharge, telephone follow-up was conducted. Results: A total of 150 patients with a history of tramadol induced seizures (141 men, 9 women, age: 23.23±5.94 years were enrolled in this study. Convulsion was seen in 104 patients (69.3%. In 8 out of 104 patients (7.6% two or more convulsion was seen. Time interval between tramadol use and the onset of the first and second seizure were 0.93±0.17 and 2.5±0.75 hours, respectively. Tramadol induced seizures are more likely to occur in males and patients with a history of drug abuse. Finally, one hundred forty nine patients (99.3% were discharged with good condition and the only one patient died from tramadol overdose. Conclusion: The results of the study showed tramadol induced seizure most frequently occurred within the first 4 hours of tramadol intake. The chance of experiencing a second seizure exists in the susceptible population. Thus, 4 hours after drug intake is the best time for patients to be hospital discharged.
Adaptive Changes After 2 Weeks of 10-s Sprint Interval Training With Various Recovery Times
Directory of Open Access Journals (Sweden)
Robert A. Olek
2018-04-01
Full Text Available Purpose: The aim of this study was to compare the effect of applying two different rest recovery times in a 10-s sprint interval training session on aerobic and anaerobic capacities as well as skeletal muscle enzyme activities.Methods: Fourteen physically active but not highly trained male subjects (mean maximal oxygen uptake 50.5 ± 1.0 mlO2·kg−1·min−1 participated in the study. The training protocol involved a series of 10-s sprints separated by either 1-min (SIT10:1 or 4-min (SIT10:4 of recovery. The number of sprints progressed from four to six over six sessions separated by 1–2 days rest. Pre and post intervention anthropometric measurements, assessment of aerobic, anaerobic capacity and muscle biopsy were performed. In the muscle samples maximal activities of citrate synthase (CS, 3-hydroxyacylCoA dehydrogenase (HADH, carnitine palmitoyl-transferase (CPT, malate dehydrogenase (MDH, and its mitochondrial form (mMDH, as well as lactate dehydrogenase (LDH were determined. Analysis of variance was performed to determine changes between conditions.Results: Maximal oxygen uptake improved significantly in both training groups, by 13.6% in SIT10:1 and 11.9% in SIT10:4, with no difference between groups. Wingate anaerobic test results indicated main effect of time for total work, peak power output and mean power output, which increased significantly and similarly in both groups. Significant differences between training groups were observed for end power output, which increased by 10.8% in SIT10:1, but remained unchanged in SIT10:4. Both training protocols induced similar increase in CS activity (main effect of time p < 0.05, but no other enzymes.Conclusion: Sprint interval training protocols induce metabolic adaptation over a short period of time, and the reduced recovery between bouts may attenuate fatigue during maximal exercise.
Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media
International Nuclear Information System (INIS)
El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.
2005-01-01
The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled
Covariant description of kinetic freeze-out through a finite time-like layer
International Nuclear Information System (INIS)
Molnar, E; Csernai, L P; Magas, V K; Lazar, Zs I; NyIri, A; Tamosiunas, K
2007-01-01
The freeze-out (FO) problem is addressed for a covariant FO probability and a finite FO layer with a time-like normal vector continuing the line of studies introduced in Molnar et al (2006 Phys. Rev. C 74 024907). The resulting post-FO momentum distribution functions are presented and discussed. We show that in general the post-FO distributions are non-thermal and asymmetric distributions even for time-like FO situations
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
Energy Technology Data Exchange (ETDEWEB)
Ali, Mazhar
2009-07-13
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
International Nuclear Information System (INIS)
Ali, Mazhar
2009-01-01
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke
2018-02-01
In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Songlin Wo
2018-01-01
Full Text Available Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs. When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.
Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes
Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi
2014-07-01
While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2003-01-01
A state-space representation of the transfer function-noise (TFN) model allows the choice of a modeling (input) interval that is smaller than the measuring interval of the output variable. Since in geohydrological applications the interval of the available input series (precipitation excess) is
Finite-time H∞ control for linear continuous system with norm-bounded disturbance
Meng, Qingyi; Shen, Yanjun
2009-04-01
In this paper, the definition of finite-time H∞ control is presented. The system under consideration is subject to time-varying norm-bounded exogenous disturbance. The main aim of this paper is focused on the design a state feedback controller which ensures that the closed-loop system is finite-time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. A sufficient condition is presented for the solvability of this problem, which can be reduced to a feasibility problem involving linear matrix inequalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.
Infinite coherence time of edge spins in finite-length chains
Maceira, Ivo A.; Mila, Frédéric
2018-02-01
Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.
Xu, Xiaole; Chen, Shengyong
2014-01-01
This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367
CMOS direct time interval measurement of long-lived luminescence lifetimes.
Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V
2011-01-01
We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
International Nuclear Information System (INIS)
Xu Shengyuan; Lam, James; Ho, Daniel W.C.
2005-01-01
This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method
Clark, Carol Lynn; Berman, Aaron D; McHugh, Ann; Roe, Edward Jedd; Boura, Judith; Swor, Robert A
2012-01-01
To assess the relationship of emergency medical services (EMS) intervals and internal hospital intervals to the rapid reperfusion of patients with ST-segment elevation myocardial infarction (STEMI). We performed a secondary analysis of a prospectively collected database of STEMI patients transported to a large academic community hospital between January 1, 2004, and December 31, 2009. EMS and hospital data intervals included EMS scene time, transport time, hospital arrival to myocardial infarction (MI) team activation (D2Page), page to catheterization laboratory arrival (P2Lab), and catheterization laboratory arrival to reperfusion (L2B). We used two outcomes: EMS scene arrival to reperfusion (S2B) ≤90 minutes and hospital arrival to reperfusion (D2B) ≤90 minutes. Means and proportions are reported. Pearson chi-square and multivariate regression were used for analysis. During the study period, we included 313 EMS-transported STEMI patients with 298 (95.2%) MI team activations. Of these STEMI patients, 295 (94.2%) were taken to the cardiac catheterization laboratory and 244 (78.0%) underwent percutaneous coronary intervention (PCI). For the patients who underwent PCI, 127 (52.5%) had prehospital EMS activation, 202 (82.8%) had D2B ≤90 minutes, and 72 (39%) had S2B ≤90 minutes. In a multivariate analysis, hospital processes EMS activation (OR 7.1, 95% CI 2.7, 18.4], Page to Lab [6.7, 95% CI 2.3, 19.2] and Lab arrival to Reperfusion [18.5, 95% CI 6.1, 55.6]) were the most important predictors of Scene to Balloon ≤ 90 minutes. EMS scene and transport intervals also had a modest association with rapid reperfusion (OR 0.85, 95% CI 0.78, 0.93 and OR 0.89, 95% CI 0.83, 0.95, respectively). In a secondary analysis, Hospital processes (Door to Page [OR 44.8, 95% CI 8.6, 234.4], Page 2 Lab [OR 5.4, 95% CI 1.9, 15.3], and Lab arrival to Reperfusion [OR 14.6 95% CI 2.5, 84.3]), but not EMS scene and transport intervals were the most important predictors D2B ≤90
International Nuclear Information System (INIS)
Yu, Chang Sik; Kim, Tae Won; Kim, Jong Hoon; Choi, Won Sik; Kim, Hee Cheol; Chang, Heung Moon; Ryu, Min Hee; Jang, Se Jin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Choi, Eun Kyung; Kim, Jin Cheon
2007-01-01
Purpose: Capecitabine and its metabolites reach peak plasma concentrations 1 to 2 hours after a single oral administration, and concentrations rapidly decrease thereafter. We performed a retrospective analysis to find the optimal time interval between capecitabine administration and radiotherapy for rectal cancer. Methods and Materials: The time interval between capecitabine intake and radiotherapy was measured in patients who were treated with preoperative radiotherapy and concurrent capecitabine for rectal cancer. Patients were classified into the following groups. Group A1 included patients who took capecitabine 1 hour before radiotherapy, and Group B1 included all other patients. Group B1 was then subdivided into Group A2 (patients who took capecitabine 2 hours before radiotherapy) and Group B2. Group B2 was further divided into Group A3 and Group B3 with the same method. Total mesorectal excision was performed 6 weeks after completion of chemoradiation and the pathologic response was evaluated. Results: A total of 200 patients were enrolled in this study. Pathologic examination showed that Group A1 had higher rates of complete regression of primary tumors in the rectum (23.5% vs. 9.6%, p = 0.01), good response (44.7% vs. 25.2%, p = 0.006), and lower T stages (p = 0.021) compared with Group B1; however, Groups A2 and A3 did not show any improvement compared with Groups B2 and B3. Multivariate analysis showed that increases in primary tumors in the rectum and good response were only significant when capecitabine was administered 1 hour before radiotherapy. Conclusion: In preoperative chemoradiotherapy for rectal cancer, the pathologic response could be improved by administering capecitabine 1 hour before radiotherapy
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang
2017-06-01
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files
Directory of Open Access Journals (Sweden)
Anthony Chan
2008-01-01
Full Text Available A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events. These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file and roughly proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage. The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.
Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N
2018-02-01
Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.
Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai
2015-11-01
This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time
Wang, Yu
1995-08-01
The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.
Adaptive Finite-Time Control for a Flexible Hypersonic Vehicle with Actuator Fault
Directory of Open Access Journals (Sweden)
Jie Wang
2013-01-01
Full Text Available The problem of robust fault-tolerant tracking control is investigated. Simulation on the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control strategy is effective in rejecting uncertainties even in the presence of actuator faults.
Initial Systolic Time Interval (ISTI) as a Predictor of Intradialytic Hypotension (IDH)
International Nuclear Information System (INIS)
Biesheuvel, J D; Verdaasdonk, R M; Meijer, JH; Vervloet, M G
2013-01-01
In haemodialysis treatment the clearance and volume control by the kidneys of a patient are partially replaced by intermittent haemodialysis. Because this artificial process is performed on a limited time scale, unphysiological imbalances in the fluid compartments of the body occur, that can lead to intradialytic hypotensions (IDH). An IDH endangers the efficacy of the haemodialysis session and is associated with dismal clinical endpoints, including mortality. A diagnostic method that predicts the occurrence of these drops in blood pressure could facilitate timely measures for the prevention of IDH. The present study investigates whether the Initial Systolic Time Interval (ISTI) can provide such a diagnostic method. The ISTI is defined as the time difference between the R-peak in the electrocardiogram (ECG) and the C-wave in the impedance cardiogram (ICG) and is considered to be a non-invasive assessment of the time delay between the electrical and mechanical activity of the heart. This time delay has previously been found to depend on autonomic nervous function as well as preload of the heart. Therefore, it can be expected that ISTI may predict an imminent IDH caused by a low circulating blood volume. This ongoing observational clinical study investigates the relationship between changes in ISTI and subsequent drops in blood pressure during haemodialysis. A registration of a complicated dialysis showed a significant correlation between a drop in blood pressure, a decrease in relative blood volume and a substantial increase in ISTI. An uncomplicated dialysis, in which also a considerable amount of fluid was removed, showed no correlations. Both, blood pressure and ISTI remained stable. In conclusion, the preliminary results of the present study show a substantial response of ISTI to haemodynamic instability, indicating an application in optimization and individualisation of the dialysis process.
Van, Mien; Ge, Shuzhi Sam; Ren, Hongliang
2016-04-28
In this paper, a novel finite time fault tolerant control (FTC) is proposed for uncertain robot manipulators with actuator faults. First, a finite time passive FTC (PFTC) based on a robust nonsingular fast terminal sliding mode control (NFTSMC) is investigated. Be analyzed for addressing the disadvantages of the PFTC, an AFTC are then investigated by combining NFTSMC with a simple fault diagnosis scheme. In this scheme, an online fault estimation algorithm based on time delay estimation (TDE) is proposed to approximate actuator faults. The estimated fault information is used to detect, isolate, and accommodate the effect of the faults in the system. Then, a robust AFTC law is established by combining the obtained fault information and a robust NFTSMC. Finally, a high-order sliding mode (HOSM) control based on super-twisting algorithm is employed to eliminate the chattering. In comparison to the PFTC and other state-of-the-art approaches, the proposed AFTC scheme possess several advantages such as high precision, strong robustness, no singularity, less chattering, and fast finite-time convergence due to the combined NFTSMC and HOSM control, and requires no prior knowledge of the fault due to TDE-based fault estimation. Finally, simulation results are obtained to verify the effectiveness of the proposed strategy.
International Nuclear Information System (INIS)
Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro
2004-01-01
A delayed coincidence method, time-interval analysis (TIA), has been applied to successive α-α decay events on the millisecond time-scale. Such decay events are part of the 220 Rn→ 216 Po (T 1/2 145 ms) (Th-series) and 219 Rn→ 215 Po (T 1/2 1.78 ms) (Ac-series). By using TIA in addition to measurement of 226 Ra (U-series) from α-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject β-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N 2 gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the 221 Fr→ 217 At (T 1/2 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the 225 Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples. (orig.)
Brain response during the M170 time interval is sensitive to socially relevant information.
Arviv, Oshrit; Goldstein, Abraham; Weeting, Janine C; Becker, Eni S; Lange, Wolf-Gero; Gilboa-Schechtman, Eva
2015-11-01
Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation.
Directory of Open Access Journals (Sweden)
Jeffrey A Blair
Full Text Available At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI. The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.
Finite element approximation for time-dependent diffusion with measure-valued source
Czech Academy of Sciences Publication Activity Database
Seidman, T.; Gobbert, M.; Trott, D.; Kružík, Martin
2012-01-01
Roč. 122, č. 4 (2012), s. 709-723 ISSN 0029-599X R&D Projects: GA AV ČR IAA100750802 Institutional support: RVO:67985556 Keywords : measure-valued source * diffusion equation Subject RIV: BA - General Mathematics Impact factor: 1.329, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-finite element approximation for time - dependent diffusion with measure-valued source.pdf
International Nuclear Information System (INIS)
Jiang, R.
2009-01-01
It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.
Learning Strategies to Deal with Market Disruptions and Turbulences in a Finite Time Horizon
DEFF Research Database (Denmark)
Santiago, Leonardo; Couto, Julia; Joglekar, Nitin
The ability to continuously innovate is a key asset to maintain a competitive advantage. However, very often, market turbulences or disruptions force firms to shift gears in their new product development strategies. This work considers the question of how firms should react to such disruptions when...... pursuing a finite time initiative. In particular, we focus on the role of pivoting strategies and cognitive maps to manage efforts to explore and exploit....
Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R
2009-01-01
This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T. N.; Prasad, A.; Shrimali, M. D.
2015-01-01
The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A con...
A finite element method for a time dependence soil-structure interactions calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-06-01
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.
International Nuclear Information System (INIS)
Denecke, B.; Jonge, S. de
1998-01-01
An electronic device to measure interval time density distributions of subsequent pulses in nuclear detectors and their electronics is described. The device has a pair-pulse resolution of 10 ns and 25 ns for 3 subsequent input signals. The conversion range is 4096 channels and the lowest channel width is 10 ns. Counter dead times, single and in series were studied and compared with the statistical model. True count rates were obtained from an exponential fit through the interval-time distribution
Directory of Open Access Journals (Sweden)
Sharma Arjun
2011-01-01
Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.
A Finite State Machine Approach to Algorithmic Lateral Inhibition for Real-Time Motion Detection †
Directory of Open Access Journals (Sweden)
María T. López
2018-05-01
Full Text Available Many researchers have explored the relationship between recurrent neural networks and finite state machines. Finite state machines constitute the best-characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The neurally-inspired lateral inhibition method, and its application to motion detection tasks, have been successfully implemented in recent years. In this paper, control knowledge of the algorithmic lateral inhibition (ALI method is described and applied by means of finite state machines, in which the state space is constituted from the set of distinguishable cases of accumulated charge in a local memory. The article describes an ALI implementation for a motion detection task. For the implementation, we have chosen to use one of the members of the 16-nm Kintex UltraScale+ family of Xilinx FPGAs. FPGAs provide the necessary accuracy, resolution, and precision to run neural algorithms alongside current sensor technologies. The results offered in this paper demonstrate that this implementation provides accurate object tracking performance on several datasets, obtaining a high F-score value (0.86 for the most complex sequence used. Moreover, it outperforms implementations of a complete ALI algorithm and a simplified version of the ALI algorithm—named “accumulative computation”—which was run about ten years ago, now reaching real-time processing times that were simply not achievable at that time for ALI.
Solving the Schroedinger equation using the finite difference time domain method
International Nuclear Information System (INIS)
Sudiarta, I Wayan; Geldart, D J Wallace
2007-01-01
In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems
Hobolth, Asger; Stone, Eric A
2009-09-01
Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.
Rapid determination of long-lived artificial alpha radionuclides using time interval analysis
International Nuclear Information System (INIS)
Uezu, Yasuhiro; Koarashi, Jun; Sanada, Yukihisa; Hashimoto, Tetsuo
2003-01-01
It is important to monitor long lived alpha radionuclides as plutonium ( 238 Pu, 239+240 Pu) in the field of working area and environment of nuclear fuel cycle facilities, because it is well known that potential risks of cancer-causing from alpha radiation is higher than gamma radiations. Thus, these monitoring are required high sensitivity, high resolution and rapid determination in order to measure a very low-level concentration of plutonium isotopes. In such high sensitive monitoring, natural radionuclides, including radon ( 222 Rn or 220 Rn) and their progenies, should be eliminated as low as possible. In this situation, a sophisticated discrimination method between Pu and progenies of 222 Rn or 220 Rn using time interval analysis (TIA), which was able to subtract short-lived radionuclides using the time interval distributions calculation of successive alpha and beta decay events within millisecond or microsecond orders, was designed and developed. In this system, alpha rays from 214 Po, 216 Po and 212 Po are extractable. TIA measuring system composes of Silicon Surface Barrier Detector (SSD), an amplifier, an Analog to Digital Converter (ADC), a Multi-Channel Analyzer (MCA), a high-resolution timer (TIMER), a multi-parameter collector and a personal computer. In ADC, incidental alpha and beta pulses are sent to the MCA and the TIMER simultaneously. Pulses from them are synthesized by the multi-parameter collector. After measurement, natural radionuclides are subtracted. Airborne particles were collected on membrane filter for 60 minutes at 100 L/min. Small Pu particles were added on the surface of it. Alpha and beta rays were measured and natural radionuclides were subtracted within 5 times of 145 msec. by TIA. As a result of it, the hidden Pu in natural background could be recognized clearly. The lower limit of determination of 239 Pu is calculated as 6x10 -9 Bq/cm 3 . This level is satisfied with the derived air concentration (DAC) of 239 Pu (8x10 -9 Bq/cm 3
Using the Initial Systolic Time Interval to assess cardiac autonomic function in Parkinson’s disease
Directory of Open Access Journals (Sweden)
Jan H. Meijer
2011-12-01
Full Text Available The Initial Systolic Time Interval (ISTI has been defined as the time difference between the peak electrical and peak mechanical activity of the heart. ISTI is obtained from the electro-cardiogram and the impedance cardiogram. The response of ISTI while breathing at rest and to a deep breathing stimulus was studied in a group of patients suffering from Parkinson's disease (PD and a group of healthy control subjects. ISTI showed substantial variability during these manoeuvres. The tests showed that the variability of RR and ISTI was substantially different between PD patients and controls. It is hypothesized that in PD patients the sympathetic system compensates for the loss of regulatory control function of the blood-pressure by the parasympathetic system. It is concluded that ISTI is a practical, additional and independent parameter that can be used to assist other tests in evaluating autonomic control of the heart in PD patients.doi:10.5617/jeb.216 J Electr Bioimp, vol. 2, pp. 98-101, 2011
Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.
Woźniak, Marcin; Połap, Dawid
2017-09-01
Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.
Costa, Cátia; Durão, David; Belo, Adriana; Domingues, Kevin; Santos, Beatriz; Leal, Margarida
2016-11-01
Percutaneous coronary intervention (PCI) is currently considered the gold-standard treatment of acute coronary syndromes with ST-segment elevation (STEMI). However, this is not the reality of many European centers, where thrombolysis is performed as primary therapy. To determine, in a STEMI population that performed successful fibrinolytic treatment, if the performance of coronary angiography after the first 24h was associated with more hospital complications, including higher mortality, compared with its performance in the recommended time. Retrospective study, including 1065 patients with STEMI, who performed successful thrombolysis. The population was divided in three groups: A, patients who didn't undergo coronary angiography after successful thrombolysis (n=278; 26.1%); B, patients who underwent coronary angiography in the first 24h after successful thrombolysis (n=127; 11.9%); and C, patients who underwent angiography after the first 24h (n=660; 62.0%). Groups were compared regarding their characteristics and in-hospital complications. Groups B and C had more male patients and had younger patients than group A. Group A presented higher Killip classes at admission, more severe left ventricle dysfunction and a higher number of complications during hospitalization. Logistic regression revealed that: 1) the non-performance of coronary angiography after thrombolysis was an independent predictor of in-hospital mortality; and 2) the performance of angiography after the recommended time wasn't associated with higher mortality. Coronary angiography after thrombolysis constitutes an important strategy, whose non-performance carries worse prognosis. The time interval currently recommended of 24h seems clinically acceptable; however, its realization outside the recommended time doesn't seem to lead to higher mortality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Optimization of solar-powered Stirling heat engine with finite-time thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2011-01-15
A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Mogelvang, Rasmus; Jensen, Jan Skov
2015-01-01
: In a large prospective community-based study, cardiac function was evaluated in 1915 participants by both conventional echocardiography and TDI. The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT) and ejection time (ET), were obtained by TDI M...
de Vries, A.; Donkervoort, S. C.; van Geloven, A. A. W.; Pierik, E. G. J. M.
2005-01-01
Background: Preceding endoscopic retrograde cholangiography (ERC) in patients with choledochocystolithiasis impedes laparoscopic cholecystectomy (LC) and increases risk of conversion. We studied the influence of time interval between ERC and LC on the course of LC. Methods: All patients treated for
DEFF Research Database (Denmark)
Biering-Sørensen, Tor; Jensen, Jan Skov; Andersen, Henrik Ullits
2016-01-01
Cardiac time intervals (CTI) are prognostic above and beyond conventional echocardiographic measures. The explanation may be that CTI contain information about both systolic and diastolic measures; this is, however, unknown. The relationship between the CTI and systolic and diastolic function...
International Nuclear Information System (INIS)
Li Hongjie; Yue Dong
2010-01-01
The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
International Nuclear Information System (INIS)
Haldy, P.-A.; Chikouche, M.
1975-01-01
The distribution is considered of time intervals between a count in one neutron detector and the consequent event registered in a second one. A 'four interval' probability generating function was derived by means of which the expression for the distribution of the time intervals, lasting from triggering detection in the first detector to subsequent count in the second, one could be obtained. The experimental work was conducted in the zero thermal power reactor Crocus, using a neutron source provided by spontaneous fission, a BF 3 counter for the first detector and an He 3 detector for the second instrument. (U.K.)
Directory of Open Access Journals (Sweden)
Julie eBoulanger Bertolus
2014-05-01
Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2011-01-01
The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....
Finite difference time domain modeling of light matter interaction in light-propelled microtools
DEFF Research Database (Denmark)
Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas
2013-01-01
save time as it helps optimize the structures prior to fabrication and experiments. In addition to field distributions, optical forces can also be obtained using the Maxwell stress tensor formulation. By calculating the forces on bent waveguides subjected to tailored static light distributions, we...... may trigger highly localized non linear processes in the surface of a cell. Since these functionalities are strongly dependent on design, it is important to use models that can handle complexities and take in little simplifying assumptions about the system. Hence, we use the finite difference time...
A study on assessment methodology of surveillance test interval and Allowed Outage Time
International Nuclear Information System (INIS)
Che, Moo Seong; Cheong, Chang Hyeon; Ryu, Yeong Woo; Cho, Jae Seon; Heo, Chang Wook; Kim, Do Hyeong; Kim, Joo Yeol; Kim, Yun Ik; Yang, Hei Chang
1997-07-01
Objectives of this study is the development of methodology by which assesses the optimization of Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korean nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches are performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method. In the second year of this study, the sensitivity analyses about the failure factors of the components are performed in the bases of the assessment methodologies of the first study, the interaction modeling of the STI and AOT is quantified. And the reliability assessment methodology about the diesel generator is reviewed and applied to the PSA code
A study on assessment methodology of surveillance test interval and Allowed Outage Time
Energy Technology Data Exchange (ETDEWEB)
Che, Moo Seong; Cheong, Chang Hyeon; Ryu, Yeong Woo; Cho, Jae Seon; Heo, Chang Wook; Kim, Do Hyeong; Kim, Joo Yeol; Kim, Yun Ik; Yang, Hei Chang [Seoul National Univ., Seoul (Korea, Republic of)
1997-07-15
Objectives of this study is the development of methodology by which assesses the optimization of Surveillance Test Interval(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korean nuclear power plants safety. In the first year of this study, the survey about the assessment methodologies, modeling and results performed by domestic and international researches are performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method. In the second year of this study, the sensitivity analyses about the failure factors of the components are performed in the bases of the assessment methodologies of the first study, the interaction modeling of the STI and AOT is quantified. And the reliability assessment methodology about the diesel generator is reviewed and applied to the PSA code.
Heat Generation on Implant Surface During Abutment Preparation at Different Elapsed Time Intervals.
Al-Keraidis, Abdullah; Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Al-Tahawi, Hamdi; Hsu, Ming-Lun; Lynch, Edward; Özcan, Mutlu
2017-10-01
The purpose of this study was to evaluate heat generation at the implant surface caused by abutment preparation using a diamond bur in a high-speed dental turbine in vitro at 2 different water-coolant temperatures. Thirty-two titanium-alloy abutments were connected to a titanium-alloy implant embedded in an acrylic resin placed within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each). Group 1: the temperature was maintained at 20 ± 1°C; and group 2: the temperature was maintained at 32 ± 1°C. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute. The temperature of the heat generated from abutment preparation was recorded and measured at 3 distinct time intervals. Water-coolant temperature (20°C vs 32°C) had a statistically significant effect on the implant's temperature change during preparation of the abutment (P water-coolant temperature of 20 ± 1°C during preparation of the implant abutment decreased the temperature recorded at the implant surface to 34.46°C, whereas the coolant temperature of 32 ± 1°C increased the implant surface temperature to 40.94°C.
International Nuclear Information System (INIS)
Liu, Guoliang; Zhang, Feng; Hao, Lizhen
2012-01-01
We previously introduced a time record model for use in studying the duration of sand–dust storms. In the model, X is the normalized wind speed and Xr is the normalized wind speed threshold for the sand–dust storm. X is represented by a random signal with a normal Gaussian distribution. The storms occur when X ≥ Xr. From this model, the time interval distribution of N = Aexp(−bt) can be deduced, wherein N is the number of time intervals with length greater than t, A and b are constants, and b is related to Xr. In this study, sand–dust storm data recorded in spring at the Yanchi meteorological station in China were analysed to verify whether the time interval distribution of the sand–dust storms agrees with the above time interval distribution. We found that the distribution of the time interval between successive sand–dust storms in April agrees well with the above exponential equation. However, the interval distribution for the sand–dust storm data for the entire spring period displayed a better fit to the Weibull equation and depended on the variation of the sand–dust storm threshold wind speed. (paper)
Real-time finite-temperature correlators from AdS/CFT
International Nuclear Information System (INIS)
Barnes, Edwin; Vaman, Diana; Wu Chaolun; Arnold, Peter
2010-01-01
In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N=4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green's correlator. We then note that this particular prescription amounts to adapting the finite-temperature analog of Veltman's circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger identities, the largest time equation, and the zero-temperature limit. When specializing to a particular retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity, since the retarded n-point functions are obtained by analytic continuation from the imaginary-time Green's function, and based on causality considerations.
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the inﬂuence of drive on response is cumulative: coupling signals are integrated over a time interval . A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs at higher ...
The effect of finite response–time in coupled dynamical systems
Indian Academy of Sciences (India)
Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs ...
Diffusion and superdiffusion of a particle in a random potential with finite correlation time
International Nuclear Information System (INIS)
Lebedev, N.; Maass, P.; Feng, S.
1995-01-01
We study theoretically the long time asymptotic of a quantum particle moving in a random time-dependent potential with finite correlation time, in d=1. By applying a new unitary numerical scheme we first show the minor importance of quantum interference and then derive an effective Langevin-type equation for the corresponding clasical problem in the limit of weak potential. We find that on intermediate time scales E kin (t)∼t 2/5 , while the true long time asymptotic is determined by a new friction term, which gives rise to a stationary power law velocity distribution, multifractality of the velocity moments, and a slowing down of the superdiffusive behavior
Ehrlich, Edwin; Tischer, Anja; Maxeiner, H
2009-04-01
To expand the passive safety of automobiles protecting traffic participants technological innovations were done in the last decades. Objective of our retrospective analysis was to examine if these technical modifications led to a clearly changed pattern of injuries of pedestrians whose death was caused by the accidents. Another reduction concerns the exclusion of injured car passengers--only pedestrians walking or standing at the moment of collision were included. We selected time intervals 1975-1985 and 1991-2004 (=years of construction of the involved passenger cars). The cars were classified depending on their frontal construction in types as presented by Schindler et al. [Schindler V, Kühn M, Weber S, Siegler H, Heinrich T. Verletzungsmechanismen und Wirkabschätzungen der Fahrzegfrontgestaltung bei Pkw-Fussgänger-Kollisionen. Abschlussbericht im Auftrag der Deutschen Versicherungswirtschaft e.V. TU-Berlin Fachgebiet Kraftfahrzeuge (GDV) 2004:36-40]. In both periods more than 90% of all cars were from the usual types small/medium/large class. Hundred and thirty-four autopsy records of such cases from Department of Forensic Medicine (Charité Berlin) data were analysed. The data included technical information of the accidents and vehicles and the external and internal injuries of the victims. The comparison of the two periods showed a decrease of serious head injuries and femoral fractures but an increase of chest-, abdominal and pelvic injuries. This situation could be explained by an increased occurrence of soft-face-constructions and changed front design of modern passenger cars, resulting in a favourable effects concerning head impact to the car during accident. Otherwise the same kinetic energy was transferred to the (complete) victim - but because of a displacement of main focus of impact the pattern of injuries modified (went distally).
International Nuclear Information System (INIS)
Hashimoto, T.; Sanada, Y.; Uezu, Y.
2003-01-01
A delayed coincidence method, called a time interval analysis (TIA) method, has been successfully applied to selective determination of the correlated α-α decay events in millisecond order life-time. A main decay process applicable to TIA-treatment is 220 Rn → 216 Po(T 1/2 :145ms) → {Th-series}. The TIA is fundamentally based on the difference of time interval distribution between non-correlated decay events and other events such as background or random events when they were compiled the time interval data within a fixed time (for example, a tenth of concerned half lives). The sensitivity of the TIA-analysis due to correlated α-α decay events could be subsequently improved in respect of background elimination using the pulse shape discrimination technique (PSD with PERALS counter) to reject β/γ-pulses, purging of nitrogen gas into extra scintillator, and applying solvent extraction of Ra. (author)
International Nuclear Information System (INIS)
Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.
1994-01-01
Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)
Directory of Open Access Journals (Sweden)
Huaiqin Wu
2012-01-01
Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.
Scattering analysis of periodic structures using finite-difference time-domain
ElMahgoub, Khaled; Elsherbeni, Atef Z
2012-01-01
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor
International Nuclear Information System (INIS)
Kudo, Kazue; Nakamura, Katsuhiro
2009-01-01
We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.
Finite-size effects and switching times for Moran process with mutation.
DeVille, Lee; Galiardi, Meghan
2017-04-01
We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.
Finite difference time domain solution of electromagnetic scattering on the hypercube
International Nuclear Information System (INIS)
Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.
1988-01-01
Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers
Directory of Open Access Journals (Sweden)
Jinfeng Wang
2014-01-01
Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.
Design of LPV-Based Sliding Mode Controller with Finite Time Convergence for a Morphing Aircraft
Directory of Open Access Journals (Sweden)
Nuan Wen
2017-01-01
Full Text Available This paper proposes a finite time convergence sliding mode control (FSMC strategy based on linear parameter-varying (LPV methodology for the stability control of a morphing aircraft subject to parameter uncertainties and external disturbances. Based on the Kane method, a longitudinal dynamic model of the morphing aircraft is built. Furthermore, the linearized LPV model of the aircraft in the wing transition process is obtained, whose scheduling parameters are wing sweep angle and wingspan. The FSMC scheme is developed into LPV systems by applying the previous results for linear time-invariant (LTI systems. The sufficient condition in form of linear matrix inequality (LMI constraints is derived for the existence of a reduced-order sliding mode, in which the dynamics can be ensured to keep robust stability and L2 gain performance. The tensor-product (TP model transformation approach can be directly applied to solve infinite LMIs belonging to the polynomial parameter-dependent LPV system. Then, by the parameter-dependent Lyapunov function stability analysis, the synthesized FSMC is proved to drive the LPV system trajectories toward the predefined switching surface with a finite time arrival. Comparative simulation results in the nonlinear model demonstrate the robustness and effectiveness of this approach.
Directory of Open Access Journals (Sweden)
Eric B Emmons
2016-04-01
Full Text Available Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording local field potentials in medial frontal cortex or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1-4 Hz and theta activity (4-8 Hz primarily in rodent medial frontal cortex. We observed delta activity across temporal intervals in medial frontal cortex and dorsomedial striatum. Rewarded responses were associated with increased delta activity in medial frontal cortex. Activity in theta bands in medial frontal cortex and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.
Gao, Longfei; Ketcheson, David I.; Keyes, David E.
2017-01-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application
Wang, Yujuan; Song, Yongduan; Ren, Wei
2017-07-06
This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.
Grube, D
1996-01-01
Working memory has been proposed to contribute to the processing of time, rhythm and music; the question which component of working memory is involved is under discussion. The present study tests the hypothesis that the phonological loop component (Baddeley, 1986) is involved in the processing of auditorily presented time intervals of a few seconds' duration. Typical effects well known with short-term retention of verbal material could be replicated with short-term retention of temporal intervals: The immediate reproduction of time intervals was impaired under conditions of background music and articulatory suppression. Neither the accuracy nor the speed of responses in a (non-phonological) mental rotation task were diminished under these conditions. Processing of auditorily presented time intervals seems to be constrained by the capacity of the phonological loop: The immediate serial recall of sequences of time intervals was shown to be related to the immediate serial recall of words (memory span). The results confirm the notion that working memory resources, and especially the phonological loop component, underlie the processing of auditorily presented temporal information with a duration of a few seconds.
Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials
Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele
2018-04-01
We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.
Finite-difference time-domain simulation of thermal noise in open cavities
International Nuclear Information System (INIS)
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi
2008-01-01
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes
Real time evolution at finite temperatures with operator space matrix product states
International Nuclear Information System (INIS)
Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine
2014-01-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)
Real time evolution at finite temperatures with operator space matrix product states
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Toward transient finite element simulation of thermal deformation of machine tools in real-time
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Directory of Open Access Journals (Sweden)
Bigdeli Maryam
2010-07-01
Full Text Available Abstract Background Road traffic injuries (RTIs are a major public health problem, requiring concerted efforts both for their prevention and a reduction of their consequences. Timely arrival of the Emergency Medical Service (EMS at the crash scene followed by speedy victim transportation by trained personnel may reduce the RTIs' consequences. The first 60 minutes after injury occurrence - referred to as the "golden hour"- are vital for the saving of lives. The present study was designed to estimate the average of various time intervals occurring during the pre-hospital care process and to examine the differences between these time intervals as regards RTIs on urban and interurban roads. Method A retrospective cross-sectional study was designed and various time intervals in relation to pre-hospital care of RTIs identified in the ambulance dispatch centre in Urmia, Iran from 20 March 2005 to 20 March 2007. All cases which resulted in ambulance dispatches were reviewed and those that had complete data on time intervals were analyzed. Results In total, the cases of 2027 RTI victims were analysed. Of these, 61.5 % of the subjects were injured in city areas. The mean response time for city locations was 5.0 minutes, compared with 10.6 minutes for interurban road locations. The mean on-scene time on the interurban roads was longer than on city roads (9.2 vs. 6.1 minutes, p Conclusion The response, transport and total time intervals among EMS responding to RTI incidents were longer for interurban roads, compared to the city areas. More research should take place on needs-to and access-for EMS on city and interurban roads. The notification interval seems to be a hidden part of the post-crash events and indirectly affects the "golden hour" for victim management and it needs to be measured through the establishment of the surveillance systems.
Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar
2010-08-01
The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations
Finite-time quantum-to-classical transition for a Schroedinger-cat state
International Nuclear Information System (INIS)
Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina
2011-01-01
The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.
Estimating interevent time distributions from finite observation periods in communication networks
Kivelä, Mikko; Porter, Mason A.
2015-11-01
A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-05-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.
The forgotten effect of the finite measurement time on various noise analysis techniques
Energy Technology Data Exchange (ETDEWEB)
Wallerbos, E.J.M.; Hoogenboom, J.E
1998-06-01
The conventional noise analysis expressions for functions like the auto- and cross-correlation function, the variance to mean ratio, and the Rossi-{alpha} formula, diverge when the reactor is critical. This problem arises because one pole of the zero-power reactor transfer function is zero. However, in a finite measurement time, a zero frequency cannot be measured and the divergence will not be found experimentally. New expressions for the expectation values of the experimental quantities of various pulse counting techniques are derived which also take into account the dead time of the detector. These expressions do not suffer from divergence at critical. A Feynman-{alpha} experiment is simulated in two, neutronically different systems. The use of the conventional equations for the analysis of the experiments is seen to lead to a bias in the inferred reactivity value.
Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach
International Nuclear Information System (INIS)
Elie, R.
2008-01-01
We consider the optimal consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below a fixed fraction of its running maximum. We assume that the risky asset is driven by the constant coefficients Black and Scholes model and we consider a general class of utility functions. On an infinite time horizon, Elie and Touzi (Preprint, [2006]) provided the value function as well as the optimal consumption and investment strategy in explicit form. In a more realistic setting, we consider here an agent optimizing its consumption-investment strategy on a finite time horizon. The value function interprets as the unique discontinuous viscosity solution of its corresponding Hamilton-Jacobi-Bellman equation. This leads to a numerical approximation of the value function and allows for a comparison with the explicit solution in infinite horizon
Transient analysis of printed lines using finite-difference time-domain method
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times
International Nuclear Information System (INIS)
Bytsenko, A.A.; Vanzo, L.; Zerbini, S.
1992-01-01
In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed
International Nuclear Information System (INIS)
Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.
2012-01-01
Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.
Fast time- and frequency-domain finite-element methods for electromagnetic analysis
Lee, Woochan
Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution
International Nuclear Information System (INIS)
Chen, Chunlin; Yuan, Fuh-Gwo
2010-01-01
This paper aims to identify impact sources on plate-like structures based on the synthetic time-reversal (T-R) concept using an array of sensors. The impact source characteristics, namely, impact location and impact loading time history, are reconstructed using the invariance of time-reversal concept, reciprocal theory, and signal processing algorithms. Numerical verification for two finite isotropic plates under low and high velocity impacts is performed to demonstrate the versatility of the synthetic T-R method for impact source identification. The results show that the impact location and time history of the impact force with various shapes and frequency bands can be readily obtained with only four sensors distributed around the impact location. The effects of time duration and the inaccuracy in the estimated impact location on the accuracy of the time history of the impact force using the T-R method are investigated. Since the T-R technique retraces all the multi-paths of reflected waves from the geometrical boundaries back to the impact location, it is well suited for quantifying the impact characteristics for complex structures. In addition, this method is robust against noise and it is suggested that a small number of sensors is sufficient to quantify the impact source characteristics through simple computation; thus it holds promise for the development of passive structural health monitoring (SHM) systems for impact monitoring in near real-time
International Nuclear Information System (INIS)
Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki
2006-01-01
A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)
Sun, Jianguo; Feng, Yanqin; Zhao, Hui
2015-01-01
Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
Stability of orbits in nonlinear mechanics for finite but very long times
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.D.
1990-07-01
In various applications of nonlinear mechanics, especially in accelerator design, it would be useful to set bounds on the motion for finite but very long times. Such bounds can be sought with the help of a canonical transformation to new action-angle variables (J, Ψ), such that action J is nearly constant while the angle Ψ advances almost linearly with the time. By examining the change in J during a time T 0 from many initial conditions in the open domain Ω of phase space, one can estimate the change in J during a much larger time T, on any orbit starting in a smaller open domain Ω 0 contained-in Ω. A numerical realization of this idea is described. The canonical transformations, equivalent to close approximations to invariant tori, are constructed by an effective new method in which surfaces are fitted to orbit data. In a first application to a model sextupole lattice in a region of strong nonlinearity, we predict stability of betatron motion in two degrees of freedom for a time comparable to the storage time in a proton storage ring (10 8 turns). 10 refs., 6 figs., 1 tab
Stability of orbits in nonlinear mechanics for finite but very long times
Energy Technology Data Exchange (ETDEWEB)
Warnock, R.L.; Ruth, R.D.
1990-07-01
In various applications of nonlinear mechanics, especially in accelerator design, it would be useful to set bounds on the motion for finite but very long times. Such bounds can be sought with the help of a canonical transformation to new action-angle variables (J, {Psi}), such that action J is nearly constant while the angle {Psi} advances almost linearly with the time. By examining the change in J during a time T{sub 0} from many initial conditions in the open domain {Omega} of phase space, one can estimate the change in J during a much larger time T, on any orbit starting in a smaller open domain {Omega}{sub 0} {contained in} {Omega}. A numerical realization of this idea is described. The canonical transformations, equivalent to close approximations to invariant tori, are constructed by an effective new method in which surfaces are fitted to orbit data. In a first application to a model sextupole lattice in a region of strong nonlinearity, we predict stability of betatron motion in two degrees of freedom for a time comparable to the storage time in a proton storage ring (10{sup 8} turns). 10 refs., 6 figs., 1 tab.
Time interval between successive trading in foreign currency market: from microscopic to macroscopic
Sato, Aki-Hiro
2004-12-01
Recently, it has been shown that inter-transaction interval (ITI) distribution of foreign currency rates has a fat tail. In order to understand the statistical property of the ITI dealer model with N interactive agents is proposed. From numerical simulations it is confirmed that the ITI distribution of the dealer model has a power law tail. The random multiplicative process (RMP) can be approximately derived from the ITI of the dealer model. Consequently, we conclude that the power law tail of the ITI distribution of the dealer model is a result of the RMP.
Interval stability for complex systems
Klinshov, Vladimir V.; Kirillov, Sergey; Kurths, Jürgen; Nekorkin, Vladimir I.
2018-04-01
Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.
Wang, Peijie; Zhao, Hui; Sun, Jianguo
2016-12-01
Interval-censored failure time data occur in many fields such as demography, economics, medical research, and reliability and many inference procedures on them have been developed (Sun, 2006; Chen, Sun, and Peace, 2012). However, most of the existing approaches assume that the mechanism that yields interval censoring is independent of the failure time of interest and it is clear that this may not be true in practice (Zhang et al., 2007; Ma, Hu, and Sun, 2015). In this article, we consider regression analysis of case K interval-censored failure time data when the censoring mechanism may be related to the failure time of interest. For the problem, an estimated sieve maximum-likelihood approach is proposed for the data arising from the proportional hazards frailty model and for estimation, a two-step procedure is presented. In the addition, the asymptotic properties of the proposed estimators of regression parameters are established and an extensive simulation study suggests that the method works well. Finally, we apply the method to a set of real interval-censored data that motivated this study. © 2016, The International Biometric Society.
33 CFR 150.503 - What are the time interval requirements for maintenance on survival craft falls?
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the time interval requirements for maintenance on survival craft falls? 150.503 Section 150.503 Navigation and Navigable Waters... maintenance on survival craft falls? (a) Each fall used in a launching device for survival craft or rescue...
Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion
Energy Technology Data Exchange (ETDEWEB)
Wei, Qingda, E-mail: weiqd@hqu.edu.cn [Huaqiao University, School of Economics and Finance (China); Chen, Xian, E-mail: chenxian@amss.ac.cn [Peking University, School of Mathematical Sciences (China)
2016-10-15
In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.
Optimised ExpTime Tableaux for ℋℐ over Finite Residuated Lattices
Directory of Open Access Journals (Sweden)
Jian Huang
2014-01-01
Full Text Available This study proposes to adopt a novel tableau reasoning algorithm for the description logic ℋℐ with semantics based on a finite residuated De Morgan lattice. The syntax, semantics, and logical properties of this logic are given, and a sound, complete, and terminating tableaux algorithm for deciding fuzzy ABox consistency and concept satisfiability problem with respect to TBox is presented. Moreover, based on extended and/or completion-forest with a series of sound optimization technique for checking satisfiability with respect to a TBox in the logic, a new optimized ExpTime (complexity-optimal tableau decision procedure is presented here. The experimental evaluation indicates that the optimization techniques we considered result in improved efficiency significantly.
FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE
Directory of Open Access Journals (Sweden)
Yanlin Ge
2010-01-01
Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.
Shocks and finite-time singularities in Hele-Shaw flow
Energy Technology Data Exchange (ETDEWEB)
Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO
2008-01-01
Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z.
2014-01-01
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility
Directory of Open Access Journals (Sweden)
V. Sedenka
2013-04-01
Full Text Available The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field – Synthetic Environment (HIRF SE able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms.
Modelling time course gene expression data with finite mixtures of linear additive models.
Grün, Bettina; Scharl, Theresa; Leisch, Friedrich
2012-01-15
A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)
2012-05-15
A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.
Simulation of acoustic streaming by means of the finite-difference time-domain method
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2012-01-01
Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...
Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion
International Nuclear Information System (INIS)
Wei, Qingda; Chen, Xian
2016-01-01
In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation and obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.
Space-Time Convolutional Codes over Finite Fields and Rings for Systems with Large Diversity Order
Directory of Open Access Journals (Sweden)
B. F. Uchôa-Filho
2008-06-01
Full Text Available We propose a convolutional encoder over the finite ring of integers modulo pk,Ã¢Â„Â¤pk, where p is a prime number and k is any positive integer, to generate a space-time convolutional code (STCC. Under this structure, we prove three properties related to the generator matrix of the convolutional code that can be used to simplify the code search procedure for STCCs over Ã¢Â„Â¤pk. Some STCCs of large diversity order (Ã¢Â‰Â¥4 designed under the trace criterion for n=2,3, and 4 transmit antennas are presented for various PSK signal constellations.
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.
2014-05-30
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Directory of Open Access Journals (Sweden)
Hossain Rad
2016-03-01
Full Text Available During recent years, much attention has been paid to the analysis of fire effect on steel structures because of fire importance and its effect on the stability of steel structures. Considering steel sensitivity to heat and high costs of steel frames retrofitting with the help of thermal covers, accurate behavior analysis of metal frames in elevated temperatures is required in order to reduce undesirable effects of temperature increase. To do so and taking into account the high costs of lab tests and their limitations in investigation of numerous parameters during any test, finite element method is used as a powerful and valuable tool in modeling of steel frames under thermal conditions. In this study, the fire effect on steel beams is studied considering the softening of connection and decrease of materials strength. Then, structure durability in fire will be analyzed in the ANSYS software. The analyzed frame is a single span three dimensional one and different conditions including connection type, longitudinal expansion effect, thermal loading and the kind of fire will be analyzed and compared. The obtained computer results will be compared with other researches results.
Bigdeli, Maryam; Khorasani-Zavareh, Davoud; Mohammadi, Reza
2010-07-09
Road traffic injuries (RTIs) are a major public health problem, requiring concerted efforts both for their prevention and a reduction of their consequences. Timely arrival of the Emergency Medical Service (EMS) at the crash scene followed by speedy victim transportation by trained personnel may reduce the RTIs' consequences. The first 60 minutes after injury occurrence--referred to as the "golden hour"--are vital for the saving of lives. The present study was designed to estimate the average of various time intervals occurring during the pre-hospital care process and to examine the differences between these time intervals as regards RTIs on urban and interurban roads. A retrospective cross-sectional study was designed and various time intervals in relation to pre-hospital care of RTIs identified in the ambulance dispatch centre in Urmia, Iran from 20 March 2005 to 20 March 2007. All cases which resulted in ambulance dispatches were reviewed and those that had complete data on time intervals were analyzed. In total, the cases of 2027 RTI victims were analysed. Of these, 61.5% of the subjects were injured in city areas. The mean response time for city locations was 5.0 minutes, compared with 10.6 minutes for interurban road locations. The mean on-scene time on the interurban roads was longer than on city roads (9.2 vs. 6.1 minutes, p transport times from the scene to the hospital were also significantly longer for interurban incidents (17.1 vs. 6.3 minutes, p transport and total time intervals among EMS responding to RTI incidents were longer for interurban roads, compared to the city areas. More research should take place on needs-to and access-for EMS on city and interurban roads. The notification interval seems to be a hidden part of the post-crash events and indirectly affects the "golden hour" for victim management and it needs to be measured through the establishment of the surveillance systems.
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.
Sharifi, Maryam; Ghassemi, Amirreza; Bayani, Shahin
2015-01-01
Success of orthodontic miniscrews in providing stable anchorage is dependent on their stability. The purpose of this study was to assess the effect of insertion method and postinsertion time interval on the removal torque of miniscrews as an indicator of their stability. Seventy-two miniscrews (Jeil Medical) were inserted into the femoral bones of three male German Shepherd dogs and assigned to nine groups of eight miniscrews. Three insertion methods, including hand-driven, motor-driven with 5.0-Ncm insertion torque, and motor-driven with 20.0-Ncm insertion torque, were tested. Three time intervals of 0, 2, and 6 weeks between miniscrew insertion and removal were tested as well. Removal torque values were measured in newton centimeters by a removal torque tester (IMADA). Data were analyzed by one-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test at a .05 level of significance. A miniscrew survival rate of 93% was observed in this study. The highest mean value of removal torque among the three postinsertion intervals (2.4 ± 0.59 Ncm) was obtained immediately after miniscrew insertion with a statistically significant difference from the other two time intervals (P torque values were obtained immediately after insertion.
Directory of Open Access Journals (Sweden)
Deepak Agrawal
2015-01-01
Full Text Available Background. The optimal time interval between the last ingestion of bowel prep and sedation for colonoscopy remains controversial, despite guidelines that sedation can be administered 2 hours after consumption of clear liquids. Objective. To determine current practice patterns among anesthesiologists and gastroenterologists regarding the optimal time interval for sedation after last ingestion of bowel prep and to understand the rationale underlying their beliefs. Design. Questionnaire survey of anesthesiologists and gastroenterologists in the USA. The questions were focused on the preferred time interval of endoscopy after a polyethylene glycol based preparation in routine cases and select conditions. Results. Responses were received from 109 anesthesiologists and 112 gastroenterologists. 96% of anesthesiologists recommended waiting longer than 2 hours until sedation, in contrast to only 26% of gastroenterologists. The main reason for waiting >2 hours was that PEG was not considered a clear liquid. Most anesthesiologists, but not gastroenterologists, waited longer in patients with history of diabetes or reflux. Conclusions. Anesthesiologists and gastroenterologists do not agree on the optimal interval for sedation after last drink of bowel prep. Most anesthesiologists prefer to wait longer than the recommended 2 hours for clear liquids. The data suggest a need for clearer guidelines on this issue.
Cantürk, İsmail; Karabiber, Fethullah; Çelik, Safa; Şahin, M Feyzi; Yağmur, Fatih; Kara, Sadık
2016-02-01
In forensic medicine, estimation of the time of death (ToD) is one of the most important and challenging medico-legal problems. Despite the partial accomplishments in ToD estimations to date, the error margin of ToD estimation is still too large. In this study, electrical conductivity changes were experimentally investigated in the postmortem interval in human cases. Electrical conductivity measurements give some promising clues about the postmortem interval. A living human has a natural electrical conductivity; in the postmortem interval, intracellular fluids gradually leak out of cells. These leaked fluids combine with extra-cellular fluids in tissues and since both fluids are electrolytic, intracellular fluids help increase conductivity. Thus, the level of electrical conductivity is expected to increase with increased time after death. In this study, electrical conductivity tests were applied for six hours. The electrical conductivity of the cases exponentially increased during the tested time period, indicating a positive relationship between electrical conductivity and the postmortem interval. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Bizard, G.; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Mahi, M.; Meslin, C.; Steckmeyer, J.C.; Tamain, B.; Wieloch, A. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); LPC (Caen) - CRN (Strasbourg) Collaboration
1998-04-01
A systematic study of the evolution of intervals of fragment emission times as a function of the energy deposited in the compound system was performed. Several measurements, Ne at 60 MeV/u, Ar at 30 and 60 MeV/u and two measurements for Kr at 60 MeV/u (central and semi-peripheral collisions) are presented. In all the experiments the target was Au and the mass of the compounds system was around A = 200. The excitation energies per nucleon reached in the case of these heavy systems cover the range of 3 to 5.5 MeV/u. The method used to determine the emission time intervals is based on the correlation functions associated to the relative angle distributions. The gaps between the data and simulations allow to evaluate the emission times. A rapid decrease of these time intervals was observed when the excitation energy increased. This variation starts at 500 fm/c which corresponds to a sequential emission. This relatively long time which indicates a weak interaction between fragments, corresponds practically to the measurement threshold. The shortest intervals (about 50 fm/c) are associated to a spontaneous multifragmentation and were observed in the case of central collisions at Ar+Au and Kr+Au at 60 MeV/u. Two interpretations are possible. The multifragmentation process might be viewed as a sequential process of very short time-separation or else, one can separate two zones heaving in mind that the multifragmentation is predominant from 4,5 MeV/u excitation energy upwards. This question is still open and its study is under way at LPC. An answer could come from the study of the rupture process of an excited nucleus, notably by the determination of its life-time
Directory of Open Access Journals (Sweden)
Takako eMitsudo
2014-09-01
Full Text Available Brain activity related to time estimation processes in humans was analyzed using a perceptual phenomenon called auditory temporal assimilation. In a typical stimulus condition, two neighboring time intervals (T1 and T2 in this order are perceived as equal even when the physical lengths of these time intervals are considerably different. Our previous event-related potential (ERP study demonstrated that a slow negative component (SNCt appears in the right-frontal brain area (around the F8 electrode after T2, which is associated with judgment of the equality/inequality of T1 and T2. In the present study, we conducted two ERP experiments to further confirm the robustness of the SNCt. The stimulus patterns consisted of two neighboring time intervals marked by three successive tone bursts. Thirteen participants only listened to the patterns in the first session, and judged the equality/inequality of T1 and T2 in the next session. Behavioral data showed typical temporal assimilation. The ERP data revealed that three components (N1; contingent negative variation, CNV; and SNCt emerged related to the temporal judgment. The N1 appeared in the central area, and its peak latencies corresponded to the physical timing of each marker onset. The CNV component appeared in the frontal area during T2 presentation, and its amplitude increased as a function of T1. The SNCt appeared in the right-frontal area after the presentation of T1 and T2, and its magnitude was larger for the temporal patterns causing perceptual inequality. The SNCt was also correlated with the perceptual equality/inequality of the same stimulus pattern, and continued up to about 400 ms after the end of T2. These results suggest that the SNCt can be a signature of equality/inequality judgment, which derives from the comparison of the two neighboring time intervals.
1991-12-05
Between Two Western European Time Laboratories and VNIIFTRI ............. 341 P Daly, University of Leeds, N.B. Koshelyaevsky, VNIIFTRI , and W Lewandowski...equipped with GPS time receivers and contributing to TAI. The last GPS antenna position determined by the BIPM is installed near Moscow in the VNIIFTRI : it...Leeds and VNIIFTRI ", accepted in Proc. 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 1991. 15. W. Lewandowski and
Matorras, R; Mendoza, R; Expósito, A; Rodriguez-Escudero, F J
2004-09-01
To ascertain the influence of the duration of the 'interval loading-discharging embryos' (ILDE) on the results of embryo transfer. The population under study consisted of 450 consecutive fresh embryo transfers. ILDE was measured in all transfers. Pregnancy and implantation rates were analyzed. Conceptional cycles had a lower (mean +/- SD) ILDE than non conceptional cycles (53.5 +/- 43.6 s vs 63.7 +/- 49.3). When only easy transfers--defined as those not requiring cervical tenaculum--were considered, similar differences were observed. The following pregnancy rates were obtained according ILDE duration: 38.9% (ILDE ILDE 31-60), 31.6% (ILDE 61-120) and 19.1% (ILDE > 120) (P ILDE duration is a prognostic factor of pregnancy rate and of implantation rate in IVF. The longer the ILDE duration, the lower the pregnancy and implantation rates. The decrease in pregnancy and implantation rates is gradual until an ILDE of 120 s, and decreases sharply afterwards. It is recommended to speed up the embryo transfer process, wherever possible. ILDE > 120 s carries a poor prognosis and should, when possible, be avoided.
Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi
2018-05-01
This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.
International Nuclear Information System (INIS)
Xue Guang-Yue; Ren Xue-Mei; Xia Yuan-Qing
2013-01-01
This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. (general)
Lu, Qiang; Han, Qing-Long; Zhang, Botao; Liu, Dongliang; Liu, Shirong
2017-12-01
This paper deals with the problem of environmental monitoring by developing an event-triggered finite-time control scheme for mobile sensor networks. The proposed control scheme can be executed by each sensor node independently and consists of two parts: one part is a finite-time consensus algorithm while the other part is an event-triggered rule. The consensus algorithm is employed to enable the positions and velocities of sensor nodes to quickly track the position and velocity of a virtual leader in finite time. The event-triggered rule is used to reduce the updating frequency of controllers in order to save the computational resources of sensor nodes. Some stability conditions are derived for mobile sensor networks with the proposed control scheme under both a fixed communication topology and a switching communication topology. Finally, simulation results illustrate the effectiveness of the proposed control scheme for the problem of environmental monitoring.
De Basabe, Joná s D.; Sen, Mrinal K.
2010-01-01
popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM
Second RPA dynamics at finite temperature: time-evolutions of dynamical operators
International Nuclear Information System (INIS)
Jang, S.
1989-01-01
Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation
A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems
Directory of Open Access Journals (Sweden)
Antônio Marcos Gonçalves de Lima
Full Text Available AbstractMany authors have shown that the effective design of viscoelastic systems can be conveniently carried out by using modern mathematical models to represent the frequency- and temperature-dependent behavior of viscoelastic materials. However, in the quest for design procedures of real-word engineering structures, the large number of exact evaluations of the dynamic responses during iterative procedures, combined with the typically high dimensions of large finite element models, makes the numerical analysis very costly, sometimes unfeasible. It is especially true when the viscoelastic materials are used to reduce vibrations of nonlinear systems. As a matter of fact, which the resolution of the resulting nonlinear equations of motion with frequency- and temperature-dependent viscoelastic damping forces is an interesting, but hard-to-solve problem. Those difficulties motivate the present study, in which a time-domain condensation strategy of viscoelastic systems is addressed, where the viscoelastic behavior is modeled by using a four parameter fractional derivative model. After the discussion of various theoretical aspects, the exact and reduced time responses are calculated for a three-layer sandwich plate by considering nonlinear boundary conditions.
International Nuclear Information System (INIS)
Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2014-01-01
We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine flow computationally using a mapping method with operator splitting. We specifically consider three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and homochirality, and competitive autocatalytic reactions with recycling. In competitive autocatalytic reactions, species B and C both undergo an autocatalytic reaction with species A such that A+B→2B and A+C→2C. Small amounts of initially spatially localized B and C and a large amount of spatially homogeneous A are advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that local finite-time Lyapunov exponents (FTLEs) can accurately predict the final average concentrations of B and C after the reaction completes. The species that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If B and C start in regions with similar FTLEs, their average concentrations at the end of the reaction will also be similar. When a recycling reaction is added, the system evolves towards a single species state, with the FTLE often being useful in predicting which species fills the entire domain and which is depleted. The FTLE approach is also demonstrated for competitive autocatalytic reactions in journal bearing flow, an experimentally realizable flow that generates chaotic dynamics
A time-domain finite element boundary integral approach for elastic wave scattering
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Directory of Open Access Journals (Sweden)
Chen-Ling Huang
Full Text Available The early identification of subjects at high risk for diabetes is essential, thus, random rather than fasting plasma glucose is more useful. We aim to evaluate the time interval between pre-diabetes to diabetes with anti-diabetic drugs by using HbA1C as a diagnostic tool, and predicting it using a mathematic model.We used the Taipei Medical University Affiliated Hospital Patient Profile Database (AHPPD from January-2007 to June-2011. The patients who progressed and were prescribed anti-diabetic drugs were selected from AHPPD. The mathematical model used to predict the time interval of HbA1C value ranged from 5.7% to 6.5% for diabetes progression.We predicted an average overall time interval for all participants in between 5.7% to 6.5% during a total of 907 days (standard error, 103 days. For each group found among 5.7% to 6.5% we determined 1169.3 days for the low risk group (i.e. 3.2 years, 1080.5 days (i.e. 2.96 years for the increased risk group and 729.4 days (i.e. 1.99 years for the diabetes group. This indicates the patients will take an average of 2.49 years to reach 6.5%.This prediction model is very useful to help prioritize the diagnosis at an early stage for targeting individuals with risk of diabetes. Using patients' HbA1C before anti-diabetes drugs are used we predicted the time interval from pre-diabetes progression to diabetes is 2.49 years without any influence of age and gender. Additional studies are needed to support this model for a long term prediction.
Park, Ju H.; Kwon, O. M.
In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.
N'Guyen, Yohan; Duval, Xavier; Revest, Matthieu; Saada, Matthieu; Erpelding, Marie-Line; Selton-Suty, Christine; Bouchiat, Coralie; Delahaye, François; Chirouze, Catherine; Alla, François; Strady, Christophe; Hoen, Bruno
2017-03-01
To analyze the characteristics and outcome of infective endocarditis (IE) according to the time interval between IE first symptoms and diagnosis. Among the IE cases of a French population-based epidemiological survey, patients having early-diagnosed IE (diagnosis of IE within 1 month of first symptoms) were compared with those having late-diagnosed IE (diagnosis of IE more than 1 month after first symptoms). Among the 486 definite-IE, 124 (25%) had late-diagnosed IE whereas others had early-diagnosed IE. Early-diagnosed IE were independently associated with female gender (OR = 1.8; 95% CI [1.0-3.0]), prosthetic valve (OR= 2.6; 95% CI [1.4-5.0]) and staphylococci as causative pathogen (OR = 3.7; 95% CI [2.2-6.2]). Cardiac surgery theoretical indication rates were not different between early and late-diagnosed IE (56.3% vs 58.9%), whereas valve surgery performance was lower in early-diagnosed IE (41% vs 53%; p = .03). In-hospital mortality rates were higher in early-diagnosed IE than in late-diagnosed IE (25.1% vs 16.1%; p endocarditis, which time interval between first symptoms and diagnosis was less than one month, were mainly due to Staphylococcus aureus in France. Staphylococcus aureus infective endocarditis were associated with septic shock, transient ischemic attack or stroke and higher mortality rates than infective endocarditis due to other bacteria or infective endocarditis, which time interval between first symptoms and diagnosis was more than one month. Infective endocarditis, which time interval between first symptoms and diagnosis was more than one month, were accounting for one quarter of all infective endocarditis in our study and were associated with vertebral osteomyelitis and a higher rate of cardiac surgery performed for hemodynamic indication than other infective endocarditis.
The Estimation of Short Time Intervals as a Function of Age and Metronome Pacing.
Kline, Donald W.; And Others
1980-01-01
The time judgments of the older participants were significantly and systematically determined by a metronome rate. Results are consistent with the notion of increased field-dependence among older persons and suggest that their greater social conformity and their inability to ignore irrelevant stimuli might also be explicable. (Author)
Jennings, J.R.; van der Molen, M.W.; Somsen, R.J.M.; Ridderinkhof, K.R.
1991-01-01
Cardiac cycle time effects refer to the relative lengthening or shortening of a single cardiac cycle as a function of when in the cycle brief sensorimotor events occur. These effects may provide short-latency measures of cardiac sensitivity to Psychological events. Conventional representations have,
Directory of Open Access Journals (Sweden)
Geue Daniel
2004-04-01
Full Text Available Abstract Background Magnetocardiography enables the precise determination of fetal cardiac time intervals (CTI as early as the second trimester of pregnancy. It has been shown that fetal CTI change in course of gestation. The aim of this work was to investigate the dependency of fetal CTI on gestational age, gender and postnatal biometric data in a substantial sample of subjects during normal pregnancy. Methods A total of 230 fetal magnetocardiograms were obtained in 47 healthy fetuses between the 15th and 42nd week of gestation. In each recording, after subtraction of the maternal cardiac artifact and the identification of fetal beats, fetal PQRST courses were signal averaged. On the basis of therein detected wave onsets and ends, the following CTI were determined: P wave, PR interval, PQ interval, QRS complex, ST segment, T wave, QT and QTc interval. Using regression analysis, the dependency of the CTI were examined with respect to gestational age, gender and postnatal biometric data. Results Atrioventricular conduction and ventricular depolarization times could be determined dependably whereas the T wave was often difficult to detect. Linear and nonlinear regression analysis established strong dependency on age for the P wave and QRS complex (r2 = 0.67, p r2 = 0.66, p r2 = 0.21, p r2 = 0.13, p st week onward (p Conclusion We conclude that 1 from approximately the 18th week to term, fetal CTI which quantify depolarization times can be reliably determined using magnetocardiography, 2 the P wave and QRS complex duration show a high dependency on age which to a large part reflects fetal growth and 3 fetal gender plays a role in QRS complex duration in the third trimester. Fetal development is thus in part reflected in the CTI and may be useful in the identification of intrauterine growth retardation.
Use of the finite-difference time-domain method in electromagnetic dosimetry
International Nuclear Information System (INIS)
Sullivan, D.M.
1987-01-01
Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane
Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality
Saldi, Naci; Yüksel, Serdar
2018-01-01
In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Finite difference solution of the time dependent neutron group diffusion equations
International Nuclear Information System (INIS)
Hendricks, J.S.; Henry, A.F.
1975-08-01
In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods
Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations.
Directory of Open Access Journals (Sweden)
UnJin Lee
Full Text Available There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente
2017-05-01
Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.
Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles
Directory of Open Access Journals (Sweden)
Yanlin Ge
2016-04-01
Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.
Foam on troubled water: Capillary induced finite-time arrest of sloshing waves
Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François
2016-09-01
Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.
A cascadic monotonic time-discretized algorithm for finite-level quantum control computation
Ditz, P.; Borzi`, A.
2008-03-01
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes. Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals. Program summaryProgram title: CNMS Catalogue identifier: ADEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 770 No. of bytes in distributed program, including test data, etc.: 7098 Distribution format: tar.gz Programming language: MATLAB 6 Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAM Operating system: Microsoft Windows XP Word size: 32 Classification: 4.9 Nature of problem: Quantum control Solution method: Iterative Running time: 60-600 sec
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through
Ou, Meiying; Sun, Haibin; Gu, Shengwei; Zhang, Yangyi
2017-11-01
This paper investigates the distributed finite-time trajectory tracking control for a group of nonholonomic mobile robots with time-varying unknown parameters and external disturbances. At first, the tracking error system is derived for each mobile robot with the aid of a global invertible transformation, which consists of two subsystems, one is a first-order subsystem and another is a second-order subsystem. Then, the two subsystems are studied respectively, and finite-time disturbance observers are proposed for each robot to estimate the external disturbances. Meanwhile, distributed finite-time tracking controllers are developed for each mobile robot such that all states of each robot can reach the desired value in finite time, where the desired reference value is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers, and the followers are assumed to have only local interaction. The effectiveness of the theoretical results is finally illustrated by numerical simulations.
Maximizing the Mean Exit Time of a Brownian Motion from an Interval
Directory of Open Access Journals (Sweden)
Mario Lefebvre
2011-01-01
Full Text Available Let X(t be a controlled one-dimensional standard Brownian motion starting from x∈(−d,d. The problem of optimally controlling X(t until |X(t|=d for the first time is solved explicitly in a particular case. The maximal value that the instantaneous reward given for survival in (−d,d can take is determined.
Scotton, William J; Nixon, I J; Pezier, T F; Cobb, R; Joshi, A; Urbano, T Guerrero; Oakley, R; Jeannon, J P; Simo, R S
2014-08-01
Salvage laryngectomy (SL) is associated with high levels of morbidity. Rates of pharyngocutaneous fistulae (PCF) are as high as 35 % in some series. Patients at highest risk of such complications may be candidates for altered surgical management in terms of additional tissue transfer, or delayed tracheoesophageal puncture. This study investigates the relationship between the time from primary radiotherapy (RT) to salvage surgery and the development of PCF. 26 consecutive patients who underwent SL between 2000 and 2010 were identified from our institutional database. Demographic, staging, treatment and complication data were collected. Subgroup analysis was performed using the Student's t test or Mann-Whitney U test for continuous variables and either Chi-squared test or Fisher's Exact test for categorical variables. 26 patients underwent SL between October 2003 and July 2010. Of these, 15 (58 %) developed a PCF. On analysis of the time between pre-operative RT and surgery, a significant difference was seen, with a mean time of 19.5 months in those who developed a PCF versus 47.0 months in those who did not (p = 0.02). Patient characteristics, treatment, and pathology results were comparable between the two groups. There was no significant difference in distribution of the other covariates between the PCF and non-PCF groups. We reported a high rate of PCF and identified an association between PCF and a short time from primary treatment to salvage surgery. Identifying factors associated with higher rates of post-operative morbidity allows surgeons to adapt surgical planning in an attempt to minimize rates of PCF.
International Nuclear Information System (INIS)
Singh, Harleen; Singh, Sarabjeet
2014-01-01
The discrimination of mixed radiation field is of prime importance due to its application in neutron detection which leads to radiation safety, nuclear material detection etc. The liquid scintillators are one of the most important radiation detectors because the relative decay rate of neutron pulse is slower as compared to gamma radiation in these detectors. There are techniques like zero crossing and charge comparison which are very popular and implemented using analogue electronics. In the recent years due to availability of fast ADC and FPGA, digital methods for discrimination of mixed field radiations have been investigated. Some of the digital time domain techniques developed are pulse gradient analysis (PGA), simplified digital charge collection method (SDCC), digital zero crossing method. The performance of these methods depends on the appropriate selection of gate time for which the pulse is processed. In this paper, the SDCC method is investigated for a neutron-gamma mixed field. The main focus of the study is to get the knowledge of optimum gate time which is very important in neutron gamma discrimination analysis in a mixed radiation field. The comparison with charge collection (CC) method is also investigated
Bayoglu Tekin, Y; Ceyhan, S T; Kilic, S; Korkmaz, C
2015-05-01
The aim of this study was to identify the optimal time interval for in-vitro fertilisation that would increase treatment success after failure of the first attempt. This retrospective study evaluated 454 consecutive cycles of 227 infertile women who had two consecutive attempts within a 6-month period at an IVF centre. Data were collected on duration of stimulation, consumption of gonadotropin, numbers of retrieved oocytes, mature oocytes, fertilised eggs, good quality embryos on day 3/5 following oocyte retrieval and clinical and ongoing pregnancy. There were significant increases in clinical pregnancy rates at 2-, 3- and 4-month intervals. The maximum increase was after two menstrual cycles (p = 0.001). The highest rate of ongoing pregnancy was in women that had the second attempt after the next menstrual cycle following failure of IVF (27.2%). After IVF failure, initiating the next attempt within 2-4 months increases the clinical pregnancy rates.
Directory of Open Access Journals (Sweden)
Jess Hartcher-O'Brien
Full Text Available Often multisensory information is integrated in a statistically optimal fashion where each sensory source is weighted according to its precision. This integration scheme isstatistically optimal because it theoretically results in unbiased perceptual estimates with the highest precisionpossible.There is a current lack of consensus about how the nervous system processes multiple sensory cues to elapsed time.In order to shed light upon this, we adopt a computational approach to pinpoint the integration strategy underlying duration estimationof audio/visual stimuli. One of the assumptions of our computational approach is that the multisensory signals redundantly specify the same stimulus property. Our results clearly show that despite claims to the contrary, perceived duration is the result of an optimal weighting process, similar to that adopted for estimates of space. That is, participants weight the audio and visual information to arrive at the most precise, single duration estimate possible. The work also disentangles how different integration strategies - i.e. consideringthe time of onset/offset ofsignals - might alter the final estimate. As such we provide the first concrete evidence of an optimal integration strategy in human duration estimates.
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
International Nuclear Information System (INIS)
Paulino, Arnold C.; Ahmed, Irfan M.; Mai, Wei Y.; Teh, Bin S.
2009-01-01
Purpose: To identify pretreatment characteristics and radiotherapy parameters which may influence time interval to development of radiation-associated meningioma (RAM). Methods and Materials: A Medline/PUBMED search of articles dealing with RAM yielded 66 studies between 1981 and 2006. Factors analyzed included patient age and gender, type of initial tumor treated, radiotherapy (RT) dose and volume, and time interval from RT to development of RAM. Results: A total of 143 patients with a median age at RT of 12 years form the basis of this report. The most common initial tumors or conditions treated with RT were medulloblastoma (n = 27), pituitary adenoma (n = 20), acute lymphoblastic leukemia (n = 20), low-grade astrocytoma (n = 19), and tinea capitis (n = 14). In the 116 patients whose RT fields were known, 55 (47.4%) had a portion of the brain treated, whereas 32 (27.6%) and 29 (25.0%) had craniospinal and whole-brain fields. The median time from RT to develop a RAM or latent time (LT) was 19 years (range, 1-63 years). Male gender (p = 0.001), initial diagnosis of leukemia (p = 0.001), and use of whole brain or craniospinal field (p ≤ 0.0001) were associated with a shorter LT, whereas patients who received lower doses of RT had a longer LT (p < 0.0001). Conclusions: The latent time to develop a RAM was related to gender, initial tumor type, radiotherapy volume, and radiotherapy dose.
Gillen, Jenna B; Gibala, Martin J
2014-03-01
Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. "All out" HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that "lack of time" remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.
Energy Technology Data Exchange (ETDEWEB)
Gross, R; Stephen Harris, S
2009-02-18
The Savannah River Site operates a Relief Valve Repair Shop certified by the National Board of Pressure Vessel Inspectors to NB-23, The National Board Inspection Code. Local maintenance forces perform inspection, testing, and repair of approximately 1200 spring-operated relief valves (SORV) each year as the valves are cycled in from the field. The Site now has over 7000 certified test records in the Computerized Maintenance Management System (CMMS); a summary of that data is presented in this paper. In previous papers, several statistical techniques were used to investigate failure on demand and failure rates including a quantal response method for predicting the failure probability as a function of time in service. The non-conservative failure mode for SORV is commonly termed 'stuck shut'; industry defined as the valve opening at greater than or equal to 1.5 times the cold set pressure. Actual time to failure is typically not known, only that failure occurred some time since the last proof test (censored data). This paper attempts to validate the assumptions underlying the statistical lifetime prediction results using Monte Carlo simulation. It employs an aging model for lift pressure as a function of set pressure, valve manufacturer, and a time-related aging effect. This paper attempts to answer two questions: (1) what is the predicted failure rate over the chosen maintenance/ inspection interval; and do we understand aging sufficient enough to estimate risk when basing proof test intervals on proof test results?
Integral equation approach to time-dependent kinematic dynamos in finite domains
International Nuclear Information System (INIS)
Xu Mingtian; Stefani, Frank; Gerbeth, Gunter
2004-01-01
The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains
Zhao, Yan; Belov, Pavel A.; Hao, Yang
2006-06-01
In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.
Planning GPS Measurements of a Linear Object for a Specified Time Interval
Directory of Open Access Journals (Sweden)
Specht Cezary
2017-12-01
Full Text Available The previous measurement campaigns planning used in geodesy is conducted exclusively for individual points. For the natural process aimed at the adoption of the introduction of the planning (prediction of constellation state in navigation, which is characterized by the movement, one should adopt measurement campaigns planning for linear objects. In contrast to the existing planning solutions, focused on point presentation of the state of the constellation of navigation system, the author of this article rearranges the proposal of determination of geometrical factors, and their summation. In the presented simulation, one has specified the route of passing at certain times and it was assumed that the receiver will move with variable motion. One has defined the geometric ratios (PDOP, which allow to distinguish the results corresponding to the adopted criteria for the measurement of linear object to be conducted with the best possible accuracy.
A study on assessment methodology of surveillance test interval and allowed outage time
Energy Technology Data Exchange (ETDEWEB)
Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Huh, Chang Wook; Kim, Do Hyoung; Kim, Ju Youl; Kim, Yoon Ik; Yang, Hui Chang; Park, Kang Min [Seoul National Univ., Seoul (Korea, Republic of)
1998-03-15
The objectives of this study is the development of methodology by which assesses the optimization of Surveillance Test Internal(STI) and Allowed Outage Time(AOT) using PSA method that can supplement the current deterministic methods and the improvement of Korean nuclear power plant safety. In this study, the survey about the assessment methodologies, modelings and results performed by domestic and international researches are performed as the basic step before developing the assessment methodology of this study. The assessment methodology that supplement the revealed problems in many other studies is presented and the application of new methodology into the example system assures the feasibility of this method. The sensitivity analyses about the failure factors of the components are performed in the bases of the and AOT is quantified. And the reliability assessment methodology about the diesel generator is reviewed and applied to the PSA code. The qualitative assessment for the STI/AOR of RPS/ESFAS assured safety the most important system in the nuclear power plant are performed.
Control of the extraction, transport and quality of coal in sections in actual time intervals
Energy Technology Data Exchange (ETDEWEB)
Prochazka, P; Sladek, J
1981-01-01
This paper describes the design of a system for the automatic, semiautomatic and manual control of the extraction, transport and quality of the coal in two sections of the Severo-Cheshsk brown coal basin using computers. The coal in these sections is transported along a joint transport main line which consists of three conveyor lines to two grinding works and from there to 3 thermoelectric power plants. Based on information about the coal quality in the mining sections of individual excavators, about their productivity and about the throughput of the conveyor lines, the computer determines in a quite short time the maximally possible throughput of the conveyor lines for ensuring the required coal quality. Programs are written in the ALGOL language. The information in the SM-3 computer from the excavators will be transmitted using a Tesla Radom wireless communications apparatus through a JPR-12 computer. A terminal will be mounted on each excavator which will report to the computer the number of ledges subject to mining, the type of coal in them, the distance of the excavator from the coal loading point and the size of required and actual productivity of the excavator.
Directory of Open Access Journals (Sweden)
Faosan Mapa
2014-01-01
Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Wireless Mesh Network (WMN adalah suatu konektivitas jaringan yang self-organized, self-configured dan multi-hop. Tujuan dari WMN adalah menawarkan pengguna suatu bentuk jaringan nirkabel yang dapat dengan mudah berkomunikasi dengan jaringan konvensional dengan kecepatan tinggi dan dengan cakupan yang lebih luas serta biaya awal yang minimal. Diperlukan suatu desain protokol routing yang efisien untuk WMN yang secara adaptif dapat mendukung mesh routers dan mesh clients. Dalam tulisan ini, diusulkan untuk mengoptimalkan protokol OLSR, yang merupakan protokol routing proaktif. Digunakan heuristik yang meningkatkan protokol OLSR melalui adaptive refreshing time interval dan memperbaiki metode MPR selecting algorithm. Suatu analisa dalam meningkatkan protokol OLSR melalui adaptive refreshing time interval dan memperbaiki algoritma pemilihan MPR menunjukkan kinerja yang signifikan dalam hal throughput jika dibandingkan dengan protokol OLSR yang asli. Akan tetapi, terdapat kenaikan dalam hal delay. Pada simulasi yang dilakukan dapat disimpulkan bahwa OLSR dapat dioptimalkan dengan memodifikasi pemilihan node MPR berdasarkan cost effective dan penyesuaian waktu interval refreshing hello message sesuai dengan keadaan
TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves
2014-01-01
Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206
A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain
Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.
2018-05-01
The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Aboufirassi, M; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Mahi, M.; Steckmeyer, J.C.; Tamain, B. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); LPC (Caen) - CRN (Strasbourg) - GANIL Collaboration
1998-04-01
To indicate the method allowing the determination of the emission intervals, the results obtained with the Kr + Au system at 43 and 60 A.MeV are presented. The experiments were performed with the NAUTILUS exclusive detectors. Central collisions were selected by means of a relative velocity criterion to reject the events containing a forward emitted fragment. For the two bombardment energies the data analysis shows that the formation of a compound of mass around A = 200. By comparing the fragment dynamical variables with simulations one can conclude about the simultaneity of the compound deexcitation processes. It was found that a 5 MeV/A is able to reproduce the characteristics of the detected fragments. Also, it was found that to reproduce the dynamical characteristics of the fragments issued from central collisions it was not necessary to superimpose a radial collective energy upon the Coulomb and thermal motion. The distribution of the relative angles between detected fragments is used here as a chronometer. For simultaneous ruptures the small relative angles are forbidden by the Coulomb repulsion, while for sequential processes this interdiction is the more lifted the longer the interval between the two emissions is. For the system discussed here the comparison between simulation and data has been carried out for the extreme cases, i.e. for a vanishing and infinite time interval between the two emissions, respectively. More sophisticated simulations to describe angular distributions between the emitted fragments were also developed 2 refs.
Identifying finite-time coherent sets from limited quantities of Lagrangian data
Energy Technology Data Exchange (ETDEWEB)
Williams, Matthew O. [Program in Applied and Computational Mathematics, Princeton University, New Jersey 08544 (United States); Rypina, Irina I. [Department of Physical Oceanography, Woods Hole Oceanographic Institute, Massachusetts 02543 (United States); Rowley, Clarence W. [Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544 (United States)
2015-08-15
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.
Identifying finite-time coherent sets from limited quantities of Lagrangian data
International Nuclear Information System (INIS)
Williams, Matthew O.; Rypina, Irina I.; Rowley, Clarence W.
2015-01-01
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea
Identifying finite-time coherent sets from limited quantities of Lagrangian data.
Williams, Matthew O; Rypina, Irina I; Rowley, Clarence W
2015-08-01
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or "mesh-free" methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.
Comparison of SAR calculation algorithms for the finite-difference time-domain method
International Nuclear Information System (INIS)
Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami
2010-01-01
Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)
Tomsin, K; Mesens, T; Molenberghs, G; Peeters, L; Gyselaers, W
2012-12-01
To evaluate the time interval between maternal electrocardiogram (ECG) and venous Doppler waves at different stages of uncomplicated pregnancy (UP) and in preeclampsia (PE). Cross-sectional pilot study in 40 uncomplicated singleton pregnancies, categorized in four groups of ten according to gestational age: 10 - 14 weeks (UP1), 18 - 23 weeks (UP2), 28 - 33 weeks (UP3) and ≥ 37 weeks (UP4) of gestation. A fifth group of ten women with PE was also included. A Doppler flow examination at the level of renal interlobar veins (RIV) and hepatic veins (HV) was performed according to a standard protocol, in association with a maternal ECG. The time interval between the ECG P-wave and the corresponding A-deflection of the venous Doppler waves was measured (PA), and expressed relative to the duration of the cardiac cycle (RR), and labeled PA/RR. In hepatic veins, the PA/RR is longer in UP 4 than in UP 1 (0.48 ± 0.15 versus 0.29 ± 0.09, p ≤ 0.001). When all UP groups were compared, the PA/RR increased gradually with gestational age. In PE, the HV PA/RR is shorter than in UP 3 (0.25 ± 0.09 versus 0.42 ± 0.14, p advanced gestational stages are consistent with known features of maternal cardiovascular adaptation. Shorter values in preeclampsia are consistent with maternal cardiovascular maladaptation mechanisms. Our pilot study invites more research of the relevance of the time interval between maternal ECG and venous Doppler waves as a new parameter for studying the gestational cardiovascular (patho)physiology of the maternal venous compartment by duplex sonography. © Georg Thieme Verlag KG Stuttgart · New York.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Jorgensen, A; Christensen, S J; Jensen, A E K
2018-01-01
BACKGROUND: Electroconvulsive therapy (ECT) continues to be the most efficacious treatment for severe depression and other life-threatening acute psychiatric conditions. Treatment efficacy is dependent upon the induced seizure quality, which may be influenced by a range of treatment related factors....... Recently, the time interval from anesthesia to the electrical stimulation (ASTI) has been suggested to be an important determinant of seizure quality. METHODS: We measured ASTI in 73 ECT sessions given to 22 individual patients, and analyzed its influence on five seizure quality parameters (EEG seizure...
Directory of Open Access Journals (Sweden)
Keita eMitani
2016-06-01
Full Text Available The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument. Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session across the sub- and suprasecond ranges (Experiment 1 and within the sub- (Experiment 2 and suprasecond (Experiment 3 ranges, and in a constant context (i.e., a single target interval presented in a session in the sub- and suprasecond ranges (Experiment 4. We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated disappeared with subsecond
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
International Nuclear Information System (INIS)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Energy Technology Data Exchange (ETDEWEB)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Directory of Open Access Journals (Sweden)
Jean-Louis eHoneine
2014-10-01
Full Text Available Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a subtract or integrate sensory inputs, (b move from allocentric to egocentric reference or vice versa, and (c adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training
Honeine, Jean-Louis; Schieppati, Marco
2014-01-01
Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2012-02-01
Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
Bonito, Andrea; Guermond, Jean-Luc
2011-01-01
We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.
Lagorce, Xavier; Benosman, Ryad
2015-11-01
There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors.
International Nuclear Information System (INIS)
Lu, Chien-Yu
2011-01-01
This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method
Czech Academy of Sciences Publication Activity Database
Dallal, N. L.; Yin, B.; Nekovářová, Tereza; Stuchlík, Aleš; Meck, W. H.
2015-01-01
Roč. 3, 3-4 (2015), s. 269-305 ISSN 2213-445X R&D Projects: GA MŠk(CZ) LH14053 Institutional support: RVO:67985823 Keywords : peak-interval procedure * interval timing * radial-arm maze * magnitude representation * dorsolateral striatum * self-initiated movement * hippocampus * cerebellum * time perception * allocentric navigation Subject RIV: FH - Neurology
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models
Ravi, Aruna
Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical
International Nuclear Information System (INIS)
Ness, H; Dash, L K
2012-01-01
We study the dynamical equation of the time-ordered Green’s function at finite temperature. We show that the time-ordered Green’s function obeys a conventional Dyson equation only at equilibrium and in the limit of zero temperature. In all other cases, i.e. finite temperature at equilibrium or non-equilibrium, the time-ordered Green’s function obeys instead a modified Dyson equation. The derivation of this result is obtained from the general formalism of the non-equilibrium Green’s functions on the Keldysh time-loop contour. At equilibrium, our result is fully consistent with the Matsubara temperature Green’s function formalism and also justifies rigorously the correction terms introduced in an ad hoc way with Hedin and Lundqvist. Our results show that one should use the appropriate dynamical equation for the time-ordered Green’s function when working beyond the equilibrium zero-temperature limit.
Directory of Open Access Journals (Sweden)
Sokolowski Ineta
2011-10-01
Full Text Available Abstract Background Delay in diagnosis of cancer may worsen prognosis. The aim of this study is to explore patient-, general practitioner (GP- and system-related delay in the interval from first cancer symptom to diagnosis and treatment, and to analyse the extent to which delays differ by cancer type. Methods Population-based cohort study conducted in 2004-05 in the County of Aarhus, Denmark (640,000 inhabitants. Data were collected from administrative registries and questionnaires completed by GPs on 2,212 cancer patients newly diagnosed during a 1-year period. Median delay (in days with interquartile interval (IQI was the main outcome measure. Results Median total delay was 98 days (IQI 57-168. Most of the total delay stemmed from patient (median 21 days (7-56 and system delay (median 55 days (32-93. Median GP delay was 0 (0-2 days. Total delay was shortest among patients with ovarian (median 60 days (45-112 and breast cancer (median 65 days (39-106 and longest among patients with prostate (median 130 days (89-254 and bladder cancer (median 134 days (93-181. Conclusion System delay accounted for a substantial part of the total delay experienced by cancer patients. This points to a need for shortening clinical pathways if possible. A long patient delay calls for research into patient awareness of cancer. For all delay components, special focus should be given to the 4th quartile of patients with the longest time intervals and we need research into the quality of the diagnostic work-up process. We found large variations in delay for different types of cancer. Improvements should therefore target both the population at large and the specific needs associated with individual cancer types and their symptoms.
International Nuclear Information System (INIS)
Bamba, Kazuharu; Odintsov, Sergei D.; Sebastiani, Lorenzo; Zerbini, Sergio
2010-01-01
We study all four types of finite-time future singularities emerging in the late-time accelerating (effective quintessence/phantom) era from F(R,G)-gravity, where R and G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. As an explicit example of F(R,G)-gravity, we also investigate modified Gauss-Bonnet gravity, so-called F(G)-gravity. In particular, we reconstruct the F(G)-gravity and F(R,G)-gravity models where accelerating cosmologies realizing the finite-time future singularities emerge. Furthermore, we discuss a possible way to cure the finite-time future singularities in F(G)-gravity and F(R,G)-gravity by taking into account higher-order curvature corrections. The example of non-singular realistic modified Gauss-Bonnet gravity is presented. It turns out that adding such non-singular modified gravity to singular Dark Energy makes the combined theory a non-singular one as well. (orig.)
Liu, Qingshan; Dang, Chuangyin; Cao, Jinde
2010-07-01
In this paper, based on a one-neuron recurrent neural network, a novel k-winners-take-all ( k -WTA) network is proposed. Finite time convergence of the proposed neural network is proved using the Lyapunov method. The k-WTA operation is first converted equivalently into a linear programming problem. Then, a one-neuron recurrent neural network is proposed to get the kth or (k+1)th largest inputs of the k-WTA problem. Furthermore, a k-WTA network is designed based on the proposed neural network to perform the k-WTA operation. Compared with the existing k-WTA networks, the proposed network has simple structure and finite time convergence. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed k-WTA network.
International Nuclear Information System (INIS)
Guo Sheng-Peng; Li Dong-Xu; Meng Yun-He; Fan Cai-Zhi
2014-01-01
On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
A study of finite mixture model: Bayesian approach on financial time series data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Directory of Open Access Journals (Sweden)
Y Damchi
2013-12-01
Full Text Available Appropriate operation of protection system is one of the effective factors to have a desirable reliability in power systems, which vitally needs routine test of protection system. Precise determination of optimum routine test time interval (ORTTI plays a vital role in predicting the maintenance costs of protection system. In the most previous studies, ORTTI has been determined while remote back-up protection system was considered fully reliable. This assumption is not exactly correct since remote back-up protection system may operate incorrectly or fail to operate, the same as the primary protection system. Therefore, in order to determine the ORTTI, an extended Markov model is proposed in this paper considering failure probability for remote back-up protection system. In the proposed Markov model of the protection systems, monitoring facility is taken into account. Moreover, it is assumed that the primary and back-up protection systems are maintained simultaneously. Results show that the effect of remote back-up protection system failures on the reliability indices and optimum routine test intervals of protection system is considerable.
Park, Myeongjin; Lee, Seung-Hoon; Kwon, Oh-Min; Seuret, Alexandre
2017-09-06
This paper investigates synchronization in complex dynamical networks (CDNs) with interval time-varying delays. The CDNs are representative of systems composed of a large number of interconnected dynamical units, and for the purpose of the mathematical analysis, the leading work is to model them as graphs whose nodes represent the dynamical units. At this time, we take note of the importance of each node in networks. One way, in this paper, is that the closeness-centrality mentioned in the field of social science is grafted onto the CDNs. By constructing a suitable Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient and closeness-centrality-based conditions for synchronization stability of the networks are established in terms of linear matrix inequalities. Ultimately, the use of the closeness-centrality can be weighted with regard to not only the interconnection relation among the nodes, which was utilized in the existing works but also more information about nodes. Here, the centrality will be added as the concerned information. Moreover, to avoid the computational burden causing the nonconvex term including the square of the time-varying delay, how to deal with it is applied by estimating it to the convex term including time-varying delay. Finally, two illustrative examples are given to show the advantage of the closeness-centrality in point of the robustness on time-delay.
Directory of Open Access Journals (Sweden)
Maryam Marofi
2016-01-01
Full Text Available Background: Premature neonates′ feeding is of great importance due to its effective role in their growth. These neonates should reach an independent oral nutrition stage before being discharged from the Neonatal Intensive care Unit. Therefore, the researcher decided to conduct a study on the effect of palady and cup feeding on premature neonates′ weight gain and their reaching full oral feeding time interval. Materials and Methods: This is a clinical trial with a quantitative design conducted on 69 premature infants (gestational age between 29 and 32 weeks who were assigned to cup (n = 34 and palady (n = 35 feeding groups through random allocation. The first feeding was administrated either by cup or palady method in each shift within seven sequential days (total of 21 cup and palady feedings. Then, the rest of feeding was administrated by gavage. Results: Mean hospitalization time (cup = 39.01 and palady = 30.4; P < 0.001 and mean time interval to reach full oral feeding (cup = 33.7 and palady = 24.1; P < 0.001 were significantly lower in palady group compared to cup group. Mean weight changes of neonates 7 weeks after the intervention compared to those in the beginning of the intervention were significantly more in palady group compared to the cup group (cup = 146.7 and palady = 198.8; P < 0.001. Conclusions: The neonates in palady group reached full oral feeding earlier than those of cup group. Subjects′ weight gain was also higher in palady group compared to the cup group. Premature neonates with over 30 weeks of gestational age and physiological stability can be fed by palady.
Directory of Open Access Journals (Sweden)
Aldo-Jonathan Muñoz-Vázquez
2017-01-01
Full Text Available The problem of designing a continuous control to guarantee finite-time tracking based on output feedback for a system subject to a Hölder disturbance has remained elusive. The main difficulty stems from the fact that such disturbance stands for a function that is continuous but not necessarily differentiable in any integer-order sense, yet it is fractional-order differentiable. This problem imposes a formidable challenge of practical interest in engineering because (i it is common that only partial access to the state is available and, then, output feedback is needed; (ii such disturbances are present in more realistic applications, suggesting a fractional-order controller; and (iii continuous robust control is a must in several control applications. Consequently, these stringent requirements demand a sound mathematical framework for designing a solution to this control problem. To estimate the full state in finite-time, a high-order sliding mode-based differentiator is considered. Then, a continuous fractional differintegral sliding mode is proposed to reject Hölder disturbances, as well as for uncertainties and unmodeled dynamics. Finally, a homogeneous closed-loop system is enforced by means of a continuous nominal control, assuring finite-time convergence. Numerical simulations are presented to show the reliability of the proposed method.
Global Time Tomography of Finite Frequency Waves with Optimized Tetrahedral Grids.
Montelli, R.; Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G.; Hung, S.
2001-12-01
Besides true velocity heterogeneities, tomographic images reflect the effect of data errors, model parametrization, linearization, uncertainties involved with the solution of the forward problem and the greatly inadequate sampling of the earth by seismic rays. These influences cannot be easily separated and often produce artefacts in the final image with amplitudes comparable to those of the velocity heterogeneities. In practice, the tomographer uses some form of damping of the ill-resolved aspects of the model to get a unique solution and reduce the influence of the errors. However damping is not fully adequate, and may reveal a strong influence of the ray path coverage in tomographic images. If some cells are ill determinated regularization techniques may lead to heterogeneity because these cells are damped towards zero. Thus we want a uniform resolution of the parameters in our model. This can be obtained by using an irregular grid with variable length scales. We have introduced an irregular parametrization of the velocity structure by using a Delaunay triangulation. Extensively work on error analysis of tomographic images together with mesh optimization has shown that both resolution and ray density can provide the critical informations needed to re-design grids. However, criteria based on resolution are preferred in the presence of narrow ray beams coming from the same direction. This can be understood if we realise that resolution is not only determined by the number of rays crossing a region, but also by their azimutal coverage. We shall discuss various strategies for grid optimization. In general the computation of the travel times is restricted to ray theory, the infinite frequency approximation of the elastodynamic equation of motion. This simplifies the mathematic and is therefore widely applied in seismic tomography. But ray theory does not account for scattering, wavefront healing and other diffraction effects that render the traveltime of a finite
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Modular 125 ps resolution time interval digitizer for 10 MHz stop burst rates and 33 ms range
International Nuclear Information System (INIS)
Turko, B.
1978-01-01
A high resolution multiple stop time interval digitizer is described. It is capable of resolving stop burst rates of up to 10 MHz with an incremental resolution of 125 ps within a range of 33 ms. The digitizer consists of five CAMAC modules and uses a standard CAMAC crate and controller. All the functions and ranges are completely computer controlled. Any two subsequent stop pulses in a burst can be resolved within 100 ns due to a new dual interpolation technique employed. The accuracy is maintained by a high stability 125 MHz reference clock. Up to 131 stop events can be stored in a 48-bit, 10 MHz derandomizing storage register before the digitizer overflows. The experimental data are also given
Directory of Open Access Journals (Sweden)
Leboeuf-Yde Charlotte
2010-03-01
Full Text Available Abstract Background The management of chiropractic patients with acute and chronic/persistent conditions probably differs. However, little is known on this subject. There is, for example, a dearth of information on maintenance care (MC. Thus it is not known if patients on MC are coerced to partake in a program of frequent treatments over a long period of time, or if they are actively involved in designing their own individualized treatment program. Objectives It was the purpose of this study to investigate how chiropractic patients with low back pain were scheduled for treatment, with special emphasis on MC. The specific research questions were: 1. How many patients are on maintenance care? 2 Are there specific patterns of intervals between treatments for patients and, if so, do they differ between MC patients and non-MC patients? 3. Who decides on the next treatment, the patient, the chiropractor or both, and are there any differences between MC patients and non-MC patients? Methods Chiropractic students, who during their summer holidays were observers in chiropractic clinics in Norway and Denmark, recorded whether patients were classified by the treating chiropractor as a MC-patient or not, dates for last and subsequent visits, and made a judgement on whether the patient or the chiropractor decided on the next appointment. Results Observers in the study were 16 out of 30 available students. They collected data on 868 patients from 15 Danish and 13 Norwegian chiropractors. Twenty-two percent and 26%, respectively, were classified as MC patients. Non-MC patients were most frequently seen within 1 week. For MC patients, the previous visit was most often 2-4 weeks prior to the actual visit, and the next appointment between 1 and 3 months. This indicates a gradual increase in intervals. The decision of the next visit was mainly made by the chiropractor, also for MC patients. However, the study samples of chiropractors appear not to be
Directory of Open Access Journals (Sweden)
Daniel Garces
2018-05-01
Full Text Available Huntington disease (HD is an autosomal dominantly inherited, progressive neurodegenerative disorder which is accompanied by executive dysfunctions and emotional alteration. The aim of the present study was to assess the impact of emotion/stress on on-going highly demanding cognitive tasks, i.e., temporal processing, as a function of age in BACHD rats (a “full length” model of HD. Middle-aged (4–6 months and old (10–12 months rats were first trained on a 2 vs. 8-s temporal discrimination task, and then exposed to a series of bisection tests under normal and stressful (10 mild unpredictable foot-shocks conditions. The animals were then trained on a peak interval task, in which reinforced fixed-interval (FI 30-s trials were randomly intermixed with non-reinforced probe trials. After training, the effect of stress upon time perception was again assessed. Sensitivity to foot-shocks was also assessed independently. The results show effects of both age and genotype, with largely greater effects in old BACHD animals. The older BACHD animals had impaired learning in both tasks, but reached equivalent levels of performance as WT animals at the end of training in the temporal discrimination task, while remaining impaired in the peak interval task. Whereas sensitivity to foot-shock did not differ between BACHD and WT rats, delivery of foot-shocks during the test sessions had a disruptive impact on temporal behavior in WT animals, an effect which increased with age. In contrast, BACHD rats, independent of age, did not show any significant disruption under stress. In conclusion, BACHD rats showed a disruption in temporal learning in late symptomatic animals. Age-related modification in stress-induced impairment of temporal control of behavior was also observed, an effect which was greatly reduced in BACHD animals, thus confirming previous results suggesting reduced emotional reactivity in HD animals. The results suggest a staggered onset in cognitive
International Nuclear Information System (INIS)
Aurenche, P.; Becherrawy, T.
1991-07-01
The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs
International Nuclear Information System (INIS)
Pontaza, J.P.; Reddy, J.N.
2004-01-01
We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least
International Nuclear Information System (INIS)
Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen
2010-01-01
We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
International Nuclear Information System (INIS)
Curi, Marcos Filardy
2011-01-01
In view of the problem of global warming and the search for clean energy sources, a worldwide expansion on the use of nuclear energy is foreseen. Thus, the development of science and technology regarding nuclear power plants is essential, in particular in the field of reactor engineering. Fluid mechanics and heat transfer play an important role in the development of nuclear reactors. Computational Fluid Mechanics (CFD) is becoming ever more important in the optimization of cost and safety of the designs. This work presents a stabilized second-order time accurate finite element formulation for incompressible flows with heat transfer. A second order time discretization precedes a spatial discretization using finite elements. The terms that stabilize the finite element method arise naturally from the discretization process, rather than being introduced a priori in the variational formulation. The method was implemented in the program 'ns n ew s olvec2d av 2 M PI' written in FORTRAN90, developed in the Parallel Computing Laboratory at the Institute of Nuclear Engineering (LCP/IEN). Numerical solutions of some representative examples, including free, mixed and forced convection, demonstrate that the proposed stabilized formulation attains very good agreement with experimental and computational results available in the literature. (author)
Aziz, Abdul Rashid; Chia, Michael Yong Hwa; Low, Chee Yong; Slater, Gary John; Png, Weileen; Teh, Kong Chuan
2012-10-01
This study examines the effects of Ramadan fasting on performance during an intense exercise session performed at three different times of the day, i.e., 08:00, 18:00, and 21:00 h. The purpose was to determine the optimal time of the day to perform an acute high-intensity interval exercise during the Ramadan fasting month. After familiarization, nine trained athletes performed six 30-s Wingate anaerobic test (WAnT) cycle bouts followed by a time-to-exhaustion (T(exh)) cycle on six separate randomized and counterbalanced occasions. The three time-of-day nonfasting (control, CON) exercise sessions were performed before the Ramadan month, and the three corresponding time-of-day Ramadan fasting (RAM) exercise sessions were performed during the Ramadan month. Note that the 21:00 h session during Ramadan month was conducted in the nonfasted state after the breaking of the day's fast. Total work (TW) completed during the six WAnT bouts was significantly lower during RAM compared to CON for the 08:00 and 18:00 h (p effect size [d] = .55 [small] and .39 [small], respectively) sessions, but not for the 21:00 h (p = .03, d = .18 [trivial]) session. The T(exh) cycle duration was significantly shorter during RAM than CON in the 18:00 (p Ramadan fasting had a small to moderate, negative impact on quality of performance during an acute high-intensity exercise session, particularly during the period of the daytime fast. The optimal time to conduct an acute high-intensity exercise session during the Ramadan fasting month is in the evening, after the breaking of the day's fast.
International Nuclear Information System (INIS)
Corana, A.; Bortolan, G.; Casaleggio, A.
2004-01-01
We present and compare two automatic methods for dimension estimation from time series. Both methods, based on conceptually different approaches, work on the derivative of the bi-logarithmic plot of the correlation integral versus the correlation length (log-log plot). The first method searches for the most probable dimension values (MPDV) and associates to each of them a possible scaling region. The second one searches for the most flat intervals (MFI) in the derivative of the log-log plot. The automatic procedures include the evaluation of the candidate scaling regions using two reliability indices. The data set used to test the methods consists of time series from known model attractors with and without the addition of noise, structured time series, and electrocardiographic signals from the MIT-BIH ECG database. Statistical analysis of results was carried out by means of paired t-test, and no statistically significant differences were found in the large majority of the trials. Consistent results are also obtained dealing with 'difficult' time series. In general for a more robust and reliable estimate, the use of both methods may represent a good solution when time series from complex systems are analyzed. Although we present results for the correlation dimension only, the procedures can also be used for the automatic estimation of generalized q-order dimensions and pointwise dimension. We think that the proposed methods, eliminating the need of operator intervention, allow a faster and more objective analysis, thus improving the usefulness of dimension analysis for the characterization of time series obtained from complex dynamical systems