WorldWideScience

Sample records for finite size pencil

  1. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray, E-mail: liucr@ufl.edu [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385 (United States)

    2015-04-15

    Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm{sup 2} square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm{sup 2} beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm{sup 2}, where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm{sup 2} beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (

  2. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    CERN Document Server

    Gu, Xuejun; Li, Jinsheng; Jia, Xun; Jiang, Steve B

    2011-01-01

    Targeting at developing an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against MCSIM Monte Carlo dose calculations are conducted on 10 IMRT treatment plans with heterogeneous treatment regions (5 head-and-neck cases and 5 lung cases). For head and neck cases, when cavities exist near the target, the improvement with the 3D-density correction over the conventional FSPB algorithm is significant. However, when there are high-density dental filling materials in beam paths, the improvement is small and the accuracy of the new algorithm is still unsatisfactory. On the other hand, significant improvement of dose calculation accuracy is observed in all lung cases. Especially when the target is in the m...

  3. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    Science.gov (United States)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  4. GPU-based ultra fast dose calculation using a finite pencil beam model

    CERN Document Server

    Gu, Xuejun; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-01-01

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well-suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation on a case of a water phantom and a case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200~400 times when using a NVIDIA Tesla C1060 card...

  5. Design and construction of small sized pencil probe to measure bio-impedance.

    Science.gov (United States)

    Keshtkar, Ahmad

    2007-11-01

    Currently, bio-impedance measurements are performed with relatively large probes which are not suitable for all in vivo studies. These are typically designed and constructed for different uses, such as for cervical and oesophagus tissues and are too large for many investigations, including those involving the bladder. Therefore, it was decided to design and construct a small sized pencil probe, using a microscope to solder very small wires to a tiny tip (about 2mm in diameter). In addition, different approaches were used to construct, treat, and perform the safety tests and calibration procedure on the probe before taking impedance measurements of the urinary bladder.

  6. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    Science.gov (United States)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  7. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  8. Finite-size effects from giant magnons

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: frolovs@aei.mpg.de; Zamaklar, Marija [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: marzam@aei.mpg.de

    2007-08-27

    In order to analyze finite-size effects for the gauge-fixed string sigma model on AdS{sub 5}xS{sup 5}, we construct one-soliton solutions carrying finite angular momentum J. In the infinite J limit the solutions reduce to the recently constructed one-magnon configuration of Hofman and Maldacena. The solutions do not satisfy the level-matching condition and hence exhibit a dependence on the gauge choice, which however disappears as the size J is taken to infinity. Interestingly, the solutions do not conserve all the global charges of the psu(2,2-vertical bar4) algebra of the sigma model, implying that the symmetry algebra of the gauge-fixed string sigma model is different from psu(2,2-vertical bar4) for finite J, once one gives up the level-matching condition. The magnon dispersion relation exhibits exponential corrections with respect to the infinite J solution. We also find a generalisation of our one-magnon configuration to a solution carrying two charges on the sphere. We comment on the possible implications of our findings for the existence of the Bethe ansatz describing the spectrum of strings carrying finite charges.

  9. Finite-size scaling at quantum transitions

    Science.gov (United States)

    Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore

    2014-03-01

    We develop the finite-size scaling (FSS) theory at quantum transitions. We consider various boundary conditions, such as open and periodic boundary conditions, and characterize the corrections to the leading FSS behavior. Using renormalization-group (RG) theory, we generalize the classical scaling ansatz to describe FSS in the quantum case, classifying the different sources of scaling corrections. We identify nonanalytic corrections due to irrelevant (bulk and boundary) RG perturbations and analytic contributions due to regular backgrounds and analytic expansions of the nonlinear scaling fields. To check the general predictions, we consider the quantum XY chain in a transverse field. For this model exact or numerically accurate results can be obtained by exploiting its fermionic quadratic representation. We study the FSS of several observables, such as the free energy, the energy differences between low-energy levels, correlation functions of the order parameter, etc., confirming the general predictions in all cases. Moreover, we consider bipartite entanglement entropies, which are characterized by the presence of additional scaling corrections, as predicted by conformal field theory.

  10. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  11. Finite-size effects in silica: a landscape perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saksaengwijit, A; Heuer, A [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Physikalische Chemie and International Graduate School of Chemistry, Corrensstrasse 30, 48149 Muenster (Germany)

    2007-05-23

    Finite-size effects are analysed for the well-known BKS model of silica. Results are presented for thermodynamic as well as dynamic observables which play a key role in the analysis of the potential energy landscape. It turns out that, for the analysed temperature range (T{>=}3000 K), a system with only N = 99 particles does not display significant finite-size effects in thermodynamic observables. In agreement with previous work, one observes finite-size effects for the dynamics. However, after rescaling of time the finite-size effects nearly disappear. These results suggest that for BKS-silica a system with only N = 99 particles is sufficiently large to study important properties of structural relaxation in the temperature range considered.

  12. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  13. Finite-size Energy of Non-interacting Fermi Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Martin, E-mail: gebert@math.lmu.de [ETH Zürich , Theoretische Physik (Switzerland)

    2015-12-15

    We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/L. We are particularly interested in subdominant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson’s orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.

  14. Finite-size Energy of Non-interacting Fermi Gases

    Science.gov (United States)

    Gebert, Martin

    2015-12-01

    We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/ L. We are particularly interested in subdominant terms proportional to 1/ L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35-41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743-5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson's orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.

  15. Dynamic properties of epidemic spreading on finite size complex networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Yang; Shan Xiu-Ming; Ren Yong; Jiao Jian; Qiu Ben

    2005-01-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptibleinfected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  16. Magnetic catalysis of a finite size pion condensate

    CERN Document Server

    Ayala, Alejandro; Villavicencio, C

    2016-01-01

    We study the Bose-Einstein condensation of a finite size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite size effects. We use experimentally reported values of pion source sizes and multiplicities at LHC energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collision, is at least partially preserved up to the hadronic phase, the combined finite size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.

  17. Magnetic catalysis of a finite-size pion condensate

    Science.gov (United States)

    Ayala, Alejandro; Mercado, Pedro; Villavicencio, C.

    2017-01-01

    We study the Bose-Einstein condensation of a finite-size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite-size effects. We use experimentally reported values of pion source sizes and multiplicities at Large Hadron Collider (LHC) energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collisions, is at least partially preserved up to the hadronic phase, the combined finite-size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.

  18. Development and Clinical Implementation of a Universal Bolus to Maintain Spot Size During Delivery of Base of Skull Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Shen, Jiajian [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona (United States); Kirk, Maura; Lin, Liyong; Tang, Shikui; Alonso-Basanta, Michelle; Lustig, Robert; Lin, Haibo; Deville, Curtiland; Hill-Kayser, Christine; Tochner, Zelig; McDonough, James [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-09-01

    Purpose: To report on a universal bolus (UB) designed to replace the range shifter (RS); the UB allows the treatment of shallow tumors while keeping the pencil beam scanning (PBS) spot size small. Methods and Materials: Ten patients with brain cancers treated from 2010 to 2011 were planned using the PBS technique with bolus and the RS. In-air spot sizes of the pencil beam were measured and compared for 4 conditions (open field, with RS, and with UB at 2- and 8-cm air gap) in isocentric geometry. The UB was applied in our clinic to treat brain tumors, and the plans with UB were compared with the plans with RS. Results: A UB of 5.5 cm water equivalent thickness was found to meet the needs of the majority of patients. By using the UB, the PBS spot sizes are similar with the open beam (P>.1). The heterogeneity index was found to be approximately 10% lower for the UB plans than for the RS plans. The coverage for plans with UB is more conformal than for plans with RS; the largest increase in sparing is usually for peripheral organs at risk. Conclusions: The integrity of the physical properties of the PBS beam can be maintained using a UB that allows for highly conformal PBS treatment design, even in a simple geometry of the fixed beam line when noncoplanar beams are used.

  19. Finite-size effects in the spherical model of finite thickness

    Science.gov (United States)

    Chamati, H.

    2008-09-01

    A detailed analysis of the finite-size effects on the bulk critical behaviour of the d-dimensional mean spherical model confined to a film geometry with finite thickness L is reported. Along the finite direction different kinds of boundary conditions are applied: periodic (p), antiperiodic (a) and free surfaces with Dirichlet (D), Neumann (N) and a combination of Neumann and Dirichlet (ND) on both surfaces. A systematic method for the evaluation of the finite-size corrections to the free energy for the different types of boundary conditions is proposed. The free energy density and the equation for the spherical field are computed for arbitrary d. It is found, for 2 finite-size scaling form at the bulk critical temperature only for (p) and (a). For the remaining boundary conditions the standard finite-size scaling hypothesis is not valid. At d = 3, the critical amplitude of the singular part of the free energy (related to the so-called Casimir amplitude) is estimated. We obtain Δ(p) = -2ζ(3)/(5π) = -0.153 051..., Δ(a) = 0.274 543... and Δ(ND) = 0.019 22..., implying a fluctuation-induced attraction between the surfaces for (p) and repulsion in the other two cases. For (D) and (N) we find a logarithmic dependence on L.

  20. Finite-size scaling a collection of reprints

    CERN Document Server

    1988-01-01

    Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.

  1. Finite-size geometric entanglement from tensor network algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Shi Qianqian; Zhou Huanqiang [Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044 (China); Orus, Roman; Fjaerestad, John Ove [University of Queensland, Department of Physics, Brisbane, QLD 4072 (Australia)], E-mail: orus@physics.uq.edu.au

    2010-02-15

    The global geometric entanglement (GE) is studied in the context of newly developed tensor network algorithms for finite systems. For one-dimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global GE per site behaves as b/n, where n is the size of the system and b a given coefficient. Our conclusion is based on the computation of the GE per spin for the quantum Ising model in a transverse magnetic field and for the spin-1/2 XXZ model. We also discuss the possibility of coefficient b being universal.

  2. Finite data-size scaling of clustering in earthquake networks

    CERN Document Server

    Abe, Sumiyoshi; Suzuki, Norikazu

    2010-01-01

    Earthquake network introduced in the work [S. Abe and N. Suzuki, Europhys.Lett. 65, 581 (2004)] is known to be of the small-world type. The values of the network characteristics, however, depend not only on the cell size (i.e., the scale of coarse graining needed for constructing the network) but also on the size of a seismic data set. Here, discovery of a scaling law for the clustering coefficient in terms of the data size, which is refereed to here as finite data-size scaling, is reported. Its universality is shown to be supported by the detailed analysis of the data taken from California, Japan, and Iran.

  3. Transition to Turbulence in the Presence of Finite Size Particles

    NARCIS (Netherlands)

    Lashgari, I.; Picano, F.; Breugem, W.P.; Brandt, L.

    2015-01-01

    We study the transition from laminar to turbulent flow in a channel seeded with finite-size neutrally buoyant particles. A fixed ratio of 10 between the channel height and the particle diameter is considered. The flow is examined in the range of Reynolds numbers 500 ≤ Re ≤ 5000 and the particle volu

  4. Finite size scaling in the planar Lebwohl-Lasher model

    Science.gov (United States)

    Mondal, Enakshi; Roy, Soumen Kumar

    2003-06-01

    The standard finite size scaling method for second order phase transition has been applied to Monte Carlo data obtained for a planar Lebwohl-Lasher lattice model using the Wolff cluster algorithm. We obtain Tc and the exponents γ, ν, and z and the results are different from those obtained by other investigators.

  5. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  6. Analytical theory of finite-size effects in mechanical desorption

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Fleer, G.J.; Leermakers, F.A.M.

    2010-01-01

    We discuss a unique system that allows exact analytical investigation of first- and second-order transitions with finite-size effects: mechanical desorption of an ideal lattice polymer chain grafted with one end to a solid substrate with a pulling force applied to the other end. We exploit the analo

  7. Conjugacy Class Sizes and Solvability of Finite Groups

    Indian Academy of Sciences (India)

    Qinhui Jiang; Changguo Shao

    2013-05-01

    Let be a finite group and * be the set of primary, biprimary and triprimary elements of . We prove that if the conjugacy class sizes of * are {1,,,} with positive coprime integers and ,then is solvable. This extends a recent result of Kong (Manatsh. Math. 168(2)(2012) 267–271).

  8. Finite Groups with Three Conjugacy Class Sizes of some Elements

    Indian Academy of Sciences (India)

    Qingjun Kong

    2012-08-01

    Let be a finite group. We prove as follows: Let be a -solvable group for a fixed prime . If the conjugacy class sizes of all elements of primary and biprimary orders of are $\\{1,p^a,n\\}$ with and two positive integers and (,)=1, then is -nilpotent or has abelian Sylow -subgroups.

  9. Do Finite-Size Lyapunov Exponents detect coherent structures?

    Science.gov (United States)

    Karrasch, Daniel; Haller, George

    2013-12-01

    Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the FSLE and LCSs, however, has been missing. Here, we prove that an FSLE ridge satisfying certain conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field, which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our conditions, however, are seen to be false positives for LCSs. We also find further limitations of the FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities, and sensitivity with respect to the computational time step.

  10. Chiral anomaly and anomalous finite-size conductivity in graphene

    Science.gov (United States)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  11. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  12. Dynamic finite-size scaling at first-order transitions

    Science.gov (United States)

    Pelissetto, Andrea; Vicari, Ettore

    2017-07-01

    We investigate the dynamic behavior of finite-size systems close to a first-order transition (FOT). We develop a dynamic finite-size scaling (DFSS) theory for the dynamic behavior in the coexistence region where different phases coexist. This is characterized by an exponentially large time scale related to the tunneling between the two phases. We show that, when considering time scales of the order of the tunneling time, the dynamic behavior can be described by a two-state coarse-grained dynamics. This allows us to obtain exact predictions for the dynamical scaling functions. To test the general DFSS theory at FOTs, we consider the two-dimensional Ising model in the low-temperature phase, where the external magnetic field drives a FOT, and the 20-state Potts model, which undergoes a thermal FOT. Numerical results for a purely relaxational dynamics fully confirm the general theory.

  13. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  14. Finite-Size Scaling in Random K-SAT Problems

    Science.gov (United States)

    Ha, Meesoon; Lee, Sang Hoon; Jeon, Chanil; Jeong, Hawoong

    2010-03-01

    We propose a comprehensive view of threshold behaviors in random K-satisfiability (K-SAT) problems, in the context of the finite-size scaling (FSS) concept of nonequilibrium absorbing phase transitions using the average SAT (ASAT) algorithm. In particular, we focus on the value of the FSS exponent to characterize the SAT/UNSAT phase transition, which is still debatable. We also discuss the role of the noise (temperature-like) parameter in stochastic local heuristic search algorithms.

  15. Implicit Finite-Size Effects in Computer Simulations

    OpenAIRE

    Denton, A. R.; EGELSTAFF, P. A.

    1997-01-01

    The influence of periodic boundary conditions (implicit finite-size effects) on the anisotropy of pair correlations in computer simulations is studied for a dense classical fluid of pair-wise interacting krypton atoms near the triple point. Molecular dynamics simulation data for the pair distribution function of N-particle systems, as a function of radial distance, polar angle, and azimuthal angle are compared directly with corresponding theoretical predictions [L. R. Pratt and S. W. Haan, J....

  16. Nonuniversal Finite-Size Effects Near Critical Points

    Science.gov (United States)

    Dohm, V.

    2008-11-01

    We study the finite-size critical behavior of the anisotropic φ4 lattice model with periodic boundary conditions in a d-dimensional hypercubic geometry above, at, and below Tc. Our perturbation approach at fixed d = 3 yields excellent agreement with the Monte Carlo (MC) data for the finite-size amplitude of the free energy of the three-dimensional Ising model at Tc by Mon [Phys. Rev. Lett. 54, 2671 (1985)]. Below Tc a minimum of the scaling function of the excess free energy is found. We predict a measurable dependence of this minimum on the anisotropy parameters. Our theory agrees quantitatively with the non-monotonic dependence of the Binder cumulant on the ferromagnetic next-nearest neighbor (NNN) coupling of the two-dimensional Ising model found by MC simulations of Selke and Shchur [J. Phys. A 38, L739 (2005)]. Our theory also predicts a non-monotonic dependence for small values of the anti-ferromagnetic NNN coupling and the existence of a Lifshitz point at a larger value of this coupling. The tails of the large-L behavior at T ≠ Tc violate both finite-size scaling and universality even for isotropic systems as they depend on the bare four-point coupling of the φ4 theory, on the cutoff procedure, and on subleading long-range interactions.

  17. Finite size effects in the dynamics of opinion formation

    CERN Document Server

    Toral, R; Tessone, Claudio J.; Toral, Raul

    2006-01-01

    For some models of relevance in the social sciences we review some examples in which system size plays an important role in the final outcome of the dynamics. We discuss the conditions under which changes of behavior can appear only when the number of agents in the model takes a finite value. Those changes of behavior can be related to the apparent phase transitions that appear in some physical models. We show examples in the Galam's model of opinion transmission and the Axelrod's model of culture formation stressing the role that the network of interactions has on the main results of both models. Finally, we present the phenomenon of system-size stochastic resonance by which a forcing signal (identified as an advertising agent) is optimally amplified by a population of the right (intermediate) size. Our work stresses the role that the system size has in the dynamics of social systems and the inappropriateness of taking the thermodynamic limit for these systems.

  18. Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation

    CERN Document Server

    Shiokawa, K

    1999-01-01

    Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.

  19. Finite-size scaling of heavy-light mesons

    CERN Document Server

    Bernardoni, Fabio; Necco, Silvia

    2009-01-01

    We study the finite-size scaling of heavy-light mesons in the static limit. The most relevant effects are due to the pseudo-Goldstone boson cloud. In the HMChPT framework we compute two-point functions of left current densitities as well as pseudoscalar densitites for the cases in which some or all of them lay in the epsilon-regime. As expected, finite volume dependence turns out to be significant in this regime and can be predicted in the effective theory in terms of the infinite-volume low-energy couplings. These results might be relevant for extraction of heavy-light meson properties from lattice simulations.

  20. Finite-size effects for percolation on Apollonian networks.

    Science.gov (United States)

    Auto, Daniel M; Moreira, André A; Herrmann, Hans J; Andrade, José S

    2008-12-01

    We study the percolation problem on the Apollonian network model. The Apollonian networks display many interesting properties commonly observed in real network systems, such as small-world behavior, scale-free distribution, and a hierarchical structure. By taking advantage of the deterministic hierarchical construction of these networks, we use the real-space renormalization-group technique to write exact iterative equations that relate percolation network properties at different scales. More precisely, our results indicate that the percolation probability and average mass of the percolating cluster approach the thermodynamic limit logarithmically. We suggest that such ultraslow convergence might be a property of hierarchical networks. Since real complex systems are certainly finite and very commonly hierarchical, we believe that taking into account finite-size effects in real-network systems is of fundamental importance.

  1. Finite size effects in Neutron Star and Nuclear matter simulations

    CERN Document Server

    Molinelli, P A Giménez

    2014-01-01

    In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...

  2. Tunable finite-sized chains to control magnetic relaxation

    Science.gov (United States)

    Ekstrand, Paul D.; Javier, Daniel J.; Gredig, Thomas

    2017-01-01

    The magnetic dynamics of low-dimensional iron ion chains have been studied with regards to the tunable finite-sized chain length using iron phthalocyanine thin films. The deposition temperature varies the diffusion length during thin-film growth by limiting the average crystal size in the range from 40 to 110 nm . Using a method common for single chain magnets, the magnetic relaxation time for each chain length is determined from temporal remanence data and fit to a stretched exponential form in the temperature range below 5 K , the onset for magnetic hysteresis. A temperature-independent master curve is generated by scaling the remanence by its relaxation time to fit the energy barrier for spin reversal, and the single spin-relaxation time. The energy barrier of 95 K is found to be independent of the chain length. In contrast, the single spin-relaxation time increases with longer chains from under 1 ps to 800 ps. We show that thin films provide the nanoarchitecture to control magnetic relaxation and a testbed to study finite-size effects in low-dimensional magnetic systems.

  3. Finite-size scaling approach to dynamic storage allocation problem

    Science.gov (United States)

    Seyed-allaei, Hamed

    2003-09-01

    It is demonstrated how dynamic storage allocation algorithms can be analyzed in terms of finite-size scaling. The method is illustrated in the three simple cases of the first-fit, next-fit and best-fit algorithms, and the system works at full capacity. The analysis is done from two different points of view-running speed and employed memory. In both cases, and for all algorithms, it is shown that a simple scaling function exists and the relevant exponents are calculated. The method can be applied on similar problems as well.

  4. Finite size and finite temperature studies of the osp(1|2) spin chain

    Science.gov (United States)

    Tavares, T. S.; Ribeiro, G. A. P.

    2017-08-01

    We studied a quantum spin chain invariant by the superalgebra osp (1 | 2). We derived non-linear integral equations for the row-to-row transfer matrix eigenvalue in order to analyze its finite size scaling behavior and we determined its central charge. We also studied the thermodynamical properties of the spin chain via non-linear integral equations for the quantum transfer matrix eigenvalue. We numerically solved these NLIE and evaluated the specific heat and magnetic susceptibility. The analytical low temperature analysis was performed providing the effective central charge. The computed values are in agreement with the numerical predictions in the literature.

  5. On finite-size Lyapunov exponents in multiscale systems

    CERN Document Server

    Mitchell, Lewis

    2012-01-01

    We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes the error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the large scales of FSLE spectra is shown to be a signature of slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full deterministic model are well approximated whereas small scale feat...

  6. Thinking outside the box: fluctuations and finite size effects

    Science.gov (United States)

    Villamaina, Dario; Trizac, Emmanuel

    2014-05-01

    The isothermal compressibility of an interacting or non-interacting system may be extracted from the fluctuations of the number of particles in a well-chosen control volume. Finite size effects are prevalent and should be accounted for to obtain a meaningful, thermodynamic compressibility. In the traditional computational setup, where a given simulation box is replicated with periodic boundary conditions, we study particle number fluctuations outside the box (i.e. when the control volume exceeds the box itself), which bear relevant thermodynamic information. We also investigate the related problem of extracting the compressibility from the structure factor in the small wave-vector limit (k → 0). The calculation should be restricted to the discrete set of wave-vectors k that are compatible with the periodicity of the system, and we assess the consequences of considering other k values, a widespread error among beginners.

  7. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  8. Finite-size effects in amorphous indium oxide

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-04-01

    We study the low-temperature magnetotransport properties of several highly disordered amorphous indium oxide (a:InO) samples. Simultaneously fabricated devices comprising a two-dimensional (2D) film and 10 -μ m -long wires of different widths were measured to investigate the effect of size as we approach the 1D limit, which is around 4 times the correlation length, and happens to be around 100 nm for a:InO. The film and the wires showed magnetic field (B )-induced superconductor to insulator transition (SIT). In the superconducting side, the resistance increased with decrease in wire width, whereas an opposite trend is observed in the insulating side. We find that this effect can be explained in light of charge-vortex duality picture of the SIT. Resistance of the 2D film follows an activated behavior over the temperature (T ), whereas, the wires show a crossover from the high-T -activated to a T -independent behavior. At high-temperature regime the wires' resistance follow the film's until they deviate and became independent of T . We find that the temperature at which this deviation occurs evolves with the magnetic field and the width of the wire, which show the effect of finite size on the transport.

  9. Simulated identification of epidemic threshold in finite-size networks

    CERN Document Server

    Shu, Panpan; Tang, Ming

    2014-01-01

    Epidemic threshold is one of the most important features of the epidemic dynamics. Based on a lot of numerical simulations of classic Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) models on various types of networks, we study the simulated thresholds for finite-size networks. We confirm that the susceptibility measure goes awry for the SIR model due to the bimodal distribution of outbreak sizes near the critical point, while the simulated thresholds of the SIS and SIR models can be accurately determined by analyzing the peak of the epidemic variability. We further verify the accuracy of theoretical predictions of the heterogeneous mean-field theory (HMF) and of the quenched mean-field theory (QMF), by comparing them with the simulated threshold of the SIR model obtained from the variability measure. The results show that the HMF prediction agrees very well with the simulated threshold, except the case that the networks are disassortive, in which the QMF prediction is more clo...

  10. The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W-F.

    2010-04-06

    We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.

  11. Scattering from finite size methods in lattice QCD

    CERN Document Server

    Feng, Xu; Renner, Dru B

    2009-01-01

    Using two flavors of maximally twisted mass fermions, we calculate the S-wave pion-pion scattering length in the isospin I=2 channel and the P-wave pion-pion scattering phase in the isospin I=1 channel. In the former channel, the lattice calculations are performed at pion masses ranging from 270 MeV to 485 MeV. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m_pi a_pipi(I=2)=-0.04385(28)(38) for the scattering length. In the latter channel, the calculation is currently performed at a single pion mass of 391 MeV. Making use of finite size methods, we evaluate the scattering phase in both the center of mass frame and the moving frame. The effective range formula is employed to fit our results, from which the rho resonance mass and decay width are evaluated.

  12. Finite-Size Scaling Effects in Chromia thin films

    Science.gov (United States)

    Echtenkamp, Will; He, Xi; Binek, Christian

    2012-02-01

    Controlling magnetism by electrical means remains a key challenge in the area of spintronics. The use of magnetoelectrically active materials is one of the most promising approaches to this problem. Utilizing Cr2O3 as the magnetoelectric pinning layer in a magnetic heterostructure both temperature assisted and isothermal electrical control of exchange bias have been achieved [1,2]. Interestingly, this ME switching of exchange bias has only been achieved using bulk Cr2O3 crystals, isothermal switching of exchange bias using thin film chromia remains elusive. We investigate the origin of unusually pronounced finite-size scaling effects on the properties of Cr2O3 grown by Molecular Beam Epitaxy; in particular we focus on the different temperature dependencies of the magnetic susceptibility of bulk vs. thin film chromia, the change in Nèel temperatures, and the implications for the magneto electric properties of chromia thin films. [4pt] [1] P. Borisov et al., Phys. Rev. Lett. 94, 117203 (2005).[0pt] [2] X. He et al., Nature Mater. 9, 579 (2010).

  13. Holographic Relaxation of Finite Size Isolated Quantum Systems

    CERN Document Server

    Abajo-Arrastia, Javier; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2014-01-01

    We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the traveling shell is brought into correspondence with the evolution of the e...

  14. Finite Size Corrections to the Excitation Energy Transfer in a Massless Scalar Interaction Model

    CERN Document Server

    Maeda, N; Tobita, Y; Ishikawa, K

    2016-01-01

    We study the excitation energy transfer (EET) for a simple model in which a virtual massless scalar particle is exchanged between two molecules. If the time interval is finite, then the finite size effect generally appears in a transition amplitude through the regions where the wave nature of quanta remains. We calculated the transition amplitude for EET and obtained finite size corrections to the standard formula derived by using Fermi's golden rule. These corrections for the transition amplitude appear outside the resonance energy region. The estimation in a photosynthesis system indicates that the finite size correction could reduce the EET time considerably.

  15. Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis

    DEFF Research Database (Denmark)

    Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.

    2004-01-01

    A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...

  16. Universal order parameters and quantum phase transitions: a finite-size approach.

    Science.gov (United States)

    Shi, Qian-Qian; Zhou, Huan-Qiang; Batchelor, Murray T

    2015-01-08

    We propose a method to construct universal order parameters for quantum phase transitions in many-body lattice systems. The method exploits the H-orthogonality of a few near-degenerate lowest states of the Hamiltonian describing a given finite-size system, which makes it possible to perform finite-size scaling and take full advantage of currently available numerical algorithms. An explicit connection is established between the fidelity per site between two H-orthogonal states and the energy gap between the ground state and low-lying excited states in the finite-size system. The physical information encoded in this gap arising from finite-size fluctuations clarifies the origin of the universal order parameter. We demonstrate the procedure for the one-dimensional quantum formulation of the q-state Potts model, for q = 2, 3, 4 and 5, as prototypical examples, using finite-size data obtained from the density matrix renormalization group algorithm.

  17. Finite-size effects in parametric subharmonic instability

    CERN Document Server

    Bourget, Baptiste; Dauxois, Thierry; Bars, Michaël Le; Odier, Philippe; Joubaud, Sylvain

    2014-01-01

    The parametric subharmonic instability in stratified fluids depends on the frequency and the amplitude of the primary plane wave. In this paper, we present experimental and numerical results emphasizing that the finite width of the beam also plays an important role on this triadic instability. A new theoretical approach based on a simple energy balance is developed and compared to numerical and experimental results. Because of the finite width of the primary wave beam, the secondary pair of waves can leave the interaction zone which affects the transfer of energy. Experimental and numerical results are in good agreement with the prediction of this theory, which brings new insights on energy transfers in the ocean where internal waves with finite-width beams are dominant.

  18. Effects of finite system-size and finite inhomogeneity on the conductivity of broadly distributed resistor networks

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, T.H

    2003-10-01

    Monte Carlo simulation is used to investigate the critical path calculation of the conductivity of a random resistor network that has a logarithmically broad distribution of bond conductances. It has been argued that in three dimensions the conductivity prefactor exponent y is equal to the percolation correlation length exponent {nu}, but past numerical computations have always found y<{nu}. Finite-size effects are usually blamed but have never been documented. Our analysis of Monte Carlo data also finds y<{nu}, but we show that the result is not due to finite-size effects. Instead, the observed y<{nu} is due to the effects of finite inhomogeneity. The conductivity is controlled by critical conductors, but the distance between current carrying pathways is less than presumed in the theoretical arguments that lead to y={nu}. The shorter separation distance results in y<{nu}.

  19. Theory of Finite Size Effects for Electronic Quantum Monte Carlo Calculations of Liquids and Solids

    CERN Document Server

    Holzmann, Markus; Morales, Miguel A; Tubmann, Norm M; Ceperley, David M; Pierleoni, Carlo

    2016-01-01

    Concentrating on zero temperature Quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one and two-body correlation functions. We introduce new effective procedures, such as using the potential and wavefunction split-up into long and short range functions to simplify the method and we discuss how to treat backflow wavefunctions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.

  20. Probing finite size effects in $(\\lambda \\Phi^{4})_4$ MonteCarlo calculations

    CERN Document Server

    Agodi, A

    1999-01-01

    The Constrained Effective Potential (CEP) is known to be equivalent to the usual Effective Potential (EP) in the infinite volume limit. We have carried out MonteCarlo calculations based on the two different definitions to get informations on finite size effects. We also compared these calculations with those based on an Improved CEP (ICEP) which takes into account the finite size of the lattice. It turns out that ICEP actually reduces the finite size effects which are more visible near the vanishing of the external source.

  1. SEMI-ELLIPTIC SURFACE CRACK IN AN ELASTIC SOLID WITH FINITE SIZE UNDER IMPACT LOADING

    Institute of Scientific and Technical Information of China (English)

    Guo Ruiping; Liu Guanting; Fan Tianyou

    2006-01-01

    In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.

  2. Pencil and paper

    DEFF Research Database (Denmark)

    Wong, Bang; Kjærgaard, Rikke Schmidt

    2012-01-01

    Creating pictures is integral to scientific thinking. In the visualization process, putting pencil to paper is an essential act of inward reflec- tion and outward expression. It is a constructive activity that makes our thinking specific and explicit. Compared to other constructive approaches...

  3. Sifting attacks in finite-size quantum key distribution

    Science.gov (United States)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  4. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully

  5. Fast, accurate and stable scattering calculation method with application to finite sized photonic crystal waveguides

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2009-01-01

    We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....

  6. Finite Size Corrected Relativistic Mean-Field Model and QCD Critical End Point

    CERN Document Server

    Uddin, Saeed; Ahmad, Jan Shabir

    2012-01-01

    The effect of finite size of hadrons on the QCD phase diagram is analyzed using relativistic mean field model for the hadronic phase and the Bag model for the QGP phase. The corrections to the EOS for hadronic phase are incorporated in a thermodynamic consistent manner for Van der Waals like interaction. It is found that the effect of finite size of baryons is to shift CEP to higher chemical potential values.

  7. Finite Size Scaling and "perfect" actions the three dimensional Ising model

    CERN Document Server

    Ballesteros, H G; Martín-Mayor, V; Muñoz-Sudupe, A

    1998-01-01

    Using Finite-Size Scaling techniques, we numerically show that the first irrelevant operator of the lattice $\\lambda\\phi^4$ theory in three dimensions is (within errors) completely decoupled at $\\lambda=1.0$. This interesting result also holds in the Thermodynamical Limit, where the renormalized coupling constant shows an extraordinary reduction of the scaling-corrections when compared with the Ising model. It is argued that Finite-Size Scaling analysis can be a competitive method for finding improved actions.

  8. Finite-size effects on semi-directed Barabási-Albert networks

    Science.gov (United States)

    Radwan, M. A.; Sumour, Muneer A.; Elbitar, A. M.; Shabat, M. M.; Lima, F. W. S.

    2016-04-01

    In scale-free Barabási-Albert (BA) networks, we study the finite-size effect at different number m of neighbors. So, we investigate the effects of finite network size N for the recently developed semi-directed BA networks (SDBA1 and SDBA2) at fixed 2≤m≤300) and show and explain the gap in the distribution of the number k(i) of neighbors of the nodes i.

  9. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media

    CERN Document Server

    Poddubny, Alexander N; Kivshar, Yuri S

    2011-01-01

    We study the radiative decay rate and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the longitudinal and transverse dielectric constants of the medium are opposite, and the isofrequency contour has a hyperbolic shape. We reveal that the Purcell enhancement factor remains finite even in the absence of losses, and it depends on the emitter size.

  10. Finite-size anisotropy in statistically uniform porous media

    CERN Document Server

    Koza, Zbigniew; Khalili, Arzhang

    2009-01-01

    Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes of transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is $a/L$, being the ratio of the obstacle to system size. Distribution of the angle $\\alpha$ between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of $\\alpha$ is found to decay with the system size as $(a/L)^{d/2}$, where $d$ is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume.

  11. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M; Bassler, K E, E-mail: bassler@uh.edu [Department of Physics, University of Houston, 617 Science and Research 1, Houston, TX 77204-5005 (United States)

    2011-01-28

    Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.

  12. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Finite size correction by image sources

    Science.gov (United States)

    Alimonti, L.; Atalla, N.

    2017-02-01

    This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.

  13. Finite size corrections to the radiation reaction force in classical electrodynamics.

    Science.gov (United States)

    Galley, Chad R; Leibovich, Adam K; Rothstein, Ira Z

    2010-08-27

    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius R of a spherically symmetric charge is order R2 rather than order R in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincaré and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.

  14. Pencils on real curves

    CERN Document Server

    Coppens, Marc

    2011-01-01

    We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.

  15. Pencil and paper

    DEFF Research Database (Denmark)

    Wong, Bang; Kjærgaard, Rikke Schmidt

    2012-01-01

    Creating pictures is integral to scientific thinking. In the visualization process, putting pencil to paper is an essential act of inward reflec- tion and outward expression. It is a constructive activity that makes our thinking specific and explicit. Compared to other constructive approaches suc...... such as writing or verbal explanations, visual representa- tion places distinct demands on our reasoning skills by forcing us to contextualize our understanding spatially....

  16. Finite-size modifications of the magnetic properties of clusters

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker

    1993-01-01

    The spin-wave spectrum of Heisenberg spin clusters of various structures (bcc, fcc, and disordered) ranging in size between 9 and 749 spins is calculated by a self-consistent diagonalization of the equation of motion of S+ in real space. The spin-wave spectrum of the clusters is strongly modified...

  17. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  18. Finite-size effects and percolation properties of Poisson geometries

    Science.gov (United States)

    Larmier, C.; Dumonteil, E.; Malvagi, F.; Mazzolo, A.; Zoia, A.

    2016-07-01

    Random tessellations of the space represent a class of prototype models of heterogeneous media, which are central in several applications in physics, engineering, and life sciences. In this work, we investigate the statistical properties of d -dimensional isotropic Poisson geometries by resorting to Monte Carlo simulation, with special emphasis on the case d =3 . We first analyze the behavior of the key features of these stochastic geometries as a function of the dimension d and the linear size L of the domain. Then, we consider the case of Poisson binary mixtures, where the polyhedra are assigned two labels with complementary probabilities. For this latter class of random geometries, we numerically characterize the percolation threshold, the strength of the percolating cluster, and the average cluster size.

  19. LIGHT-PENCIL COORDINATE POSITIONER,

    Science.gov (United States)

    information sources such as radar and IFF PPI repeaters and computer displays. A light pencil which detects and controls a positionand intensity...position the video gate which extracts desired signals from the radar/IFF returns without requiring the operator to hold the pencil in position. The light ...to-one light pencil motion to marker motion. Except for the light detection photomultipler, the entire design is solid state. (Author)

  20. Finite-size scaling study of the three-dimensional classical Heisenberg model

    CERN Document Server

    Holm, C; Holm, Christian; Janke, Wolfhard

    1993-01-01

    We use the single-cluster Monte Carlo update algorithm to simulate the three-dimensional classical Heisenberg model in the critical region on simple cubic lattices of size $L^3$ with $L=12, 16, 20, 24, 32, 40$, and $48$. By means of finite-size scaling analyses we compute high-precision estimates of the critical temperature and the critical exponents, using extensively histogram reweighting and optimization techniques. Measurements of the autocorrelation time show the expected reduction of critical slowing down at the phase transition. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors in finite-size scaling analyses.

  1. A Hybrid Solver of Size Modified Poisson-Boltzmann Equation by Domain Decomposition, Finite Element, and Finite Difference

    CERN Document Server

    Ying, Jinyong

    2016-01-01

    The size-modified Poisson-Boltzmann equation (SMPBE) is one important variant of the popular dielectric model, the Poisson-Boltzmann equation (PBE), to reflect ionic size effects in the prediction of electrostatics for a biomolecule in an ionic solvent. In this paper, a new SMPBE hybrid solver is developed using a solution decomposition, the Schwartz's overlapped domain decomposition, finite element, and finite difference. It is then programmed as a software package in C, Fortran, and Python based on the state-of-the-art finite element library DOLFIN from the FEniCS project. This software package is well validated on a Born ball model with analytical solution and a dipole model with a known physical properties. Numerical results on six proteins with different net charges demonstrate its high performance. Finally, this new SMPBE hybrid solver is shown to be numerically stable and convergent in the calculation of electrostatic solvation free energy for 216 biomolecules and binding free energy for a DNA-drug com...

  2. Approximate solution for frequency synchronization in a finite-size Kuramoto model.

    Science.gov (United States)

    Wang, Chengwei; Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S

    2015-12-01

    Scientists have been considering the Kuramoto model to understand the mechanism behind the appearance of collective behavior, such as frequency synchronization (FS) as a paradigm, in real-world networks with a finite number of oscillators. A major current challenge is to obtain an analytical solution for the phase angles. Here, we provide an approximate analytical solution for this problem by deriving a master solution for the finite-size Kuramoto model, with arbitrary finite-variance distribution of the natural frequencies of the oscillators. The master solution embodies all particular solutions of the finite-size Kuramoto model for any frequency distribution and coupling strength larger than the critical one. Furthermore, we present a criterion to determine the stability of the FS solution. This allows one to analytically infer the relationship between the physical parameters and the stable behavior of networks.

  3. Finite size effect on dynamical entanglement entropy: CFT and holography

    CERN Document Server

    Mandal, Gautam; Ugajin, Tomonori

    2016-01-01

    Time-dependent entanglement entropy (EE) is computed for a single interval in two-dimensional conformal theories from a quenched initial state in the presence of spatial boundaries. The EE is found to be periodic in time with periodicity equal to the system size $L$. For large enough $L$, the EE shows a rise to a thermal value (characterized by a temperature $1/\\beta$ determined by the initial state), followed by periodic returns to the original value. This works irrespective of whether the conformal field theory (CFT) is rational or irrational. For conformal field theories with a holographic dual, the large $c$ limit plays an essential role in ensuring that the EE computed from the CFT is universal (independent of the details of the CFT and of boundary conditions) and is exactly matched by the holographic EE. The dual geometry is computed and it interpolates between a BTZ black hole at large $L$ and global AdS at large $\\beta$.

  4. Finite-size effects and the search for the critical endpoint in heavy ion collisions

    CERN Document Server

    Palhares, Leticia F; Kodama, Takeshi

    2009-01-01

    We discuss how the finiteness of the system created in a heavy-ion collision affects possible signatures of the QCD critical endpoint. We show sizable results for the modifications of the chiral phase diagram at volume scales typically encountered in current heavy-ion collisions and address the applicability of finite-size scaling as a tool in the experimental search for the critical endpoint.

  5. Geometric measures of multipartite entanglement in finite-size spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-09-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  6. Finite-size analysis of continuous-variable quantum key distribution

    CERN Document Server

    Leverrier, Anthony; Grangier, Philippe

    2010-01-01

    The goal of this paper is to extend the framework of finite size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than the ones obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite size scenario, over distances larger than 50 km.

  7. Nuclear Zemach Moments and Finite-Size Corrections to Allowed Beta Decay

    CERN Document Server

    Wang, X B; Hayes, A C

    2016-01-01

    The finite-size correction to $\\beta$-decay plays an important role in determining the expected antineutrino spectra from reactors at a level that is important for the reactor-neutrino anomaly. Here we express the leading-order finite-size correction to allowed $\\beta$-decay in terms of Zemach moments. We calculate the Zemach moments within a Hartree-Fock model using a Skyrme-like energy density functional. We find that the Zemach moments are increased relative to predictions based on the simple assumption of identical uniform nuclear-charge and weak-transition densities. However, for allowed ground-state to ground-state transitions in medium and heavy nuclei, the detailed nuclear structure calculations do not change the finite-size corrections significantly from the simple model predictions, and are only 10-15% larger than the latter even though the densities differ significantly.

  8. Life Cycle of a Pencil.

    Science.gov (United States)

    Reeske, Mike

    2000-01-01

    Explains a project called "Life Cycle of a Pencil" which was developed by the National Science Teachers Association (NSTA) and the U.S. Environmental Protection Agency (USEPA). Describes the life cycle of a pencil in stages starting from the first stage of design to the sixth stage of product disposal. (YDS)

  9. Finite-size corrections for logarithmic representations in critical dense polymers

    Energy Technology Data Exchange (ETDEWEB)

    Izmailian, Nickolay Sh., E-mail: izmailan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 10617, Taiwan (China); Ruelle, Philippe, E-mail: philippe.ruelle@uclouvain.be [Institut de Recherche en Mathematique et Physique, Universite catholique de Louvain, B-1348 Louvain-La-Neuve (Belgium); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-05-01

    We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order.

  10. Communication: Finite size correction in periodic coupled cluster theory calculations of solids

    Science.gov (United States)

    Liao, Ke; Grüneis, Andreas

    2016-10-01

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  11. Finite population size effects in quasispecies models with single-peak fitness landscape

    Science.gov (United States)

    Saakian, David B.; Deem, Michael W.; Hu, Chin-Kun

    2012-04-01

    We consider finite population size effects for Crow-Kimura and Eigen quasispecies models with single-peak fitness landscape. We formulate accurately the iteration procedure for the finite population models, then derive the Hamilton-Jacobi equation (HJE) to describe the dynamic of the probability distribution. The steady-state solution of HJE gives the variance of the mean fitness. Our results are useful for understanding the population sizes of viruses in which the infinite population models can give reliable results for biological evolution problems.

  12. Finite size effects on the phase diagram of the thermodynamical cluster model

    CERN Document Server

    Mallik, S; Chaudhuri, G

    2016-01-01

    The thermodynamical cluster model is known to present a first-order liquid-gas phase transition in the idealized case of an uncharged, infinitely extended medium. However, in most practical applications of this model, the system is finite and charged. In this paper we study how the phase diagram is modified by finite size and Coulomb effects. We show that the thermodynamic anomalies which are associated to the finite system counterpart of first order phase transitions, are correctly reproduced by this effective model. However, approximations in the calculation of the grandcanonical partition sum prevent obtaining the exact mapping between statistical ensembles which should be associated to finite systems. The ensemble inequivalence associated to the transition persists in the presence of Coulomb, but the phase diagram is deeply modified with respect to the simple liquid-gas phase transition characteristic of the neutral system.

  13. Finite-size effects and the search for the critical endpoint of QCD

    CERN Document Server

    Fraga, Eduardo S; Palhares, Letícia F; Sorensen, Paul

    2011-01-01

    Taking into account the finiteness of the system created in heavy ion collisions, we show sizable results for the modifications of the chiral phase diagram at volume scales typically encountered in current experiments and demonstrate the applicability of finite-size scaling as a tool in the experimental search for the critical endpoint. Using data from RHIC and SPS and assuming finite-size scaling, we find that RHIC data from 200 GeV down to 19.6 GeV is only consistent with a critical point at \\mu \\gtrsim 510 MeV. We also present predictions for the fluctuations at lower energies currently being investigated in the Beam Energy Scan program.

  14. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness.

    Science.gov (United States)

    Huang, Qihua; Wang, Hao

    2016-08-01

    The question of the effects of environmental toxins on ecological communities is of great interest from both environmental and conservational points of view. Mathematical models have been applied increasingly to predict the effects of toxins on a variety of ecological processes. Motivated by the fact that individuals with different sizes may have different sensitivities to toxins, we develop a toxin-mediated size-structured model which is given by a system of first order fully nonlinear partial differential equations (PDEs). It is very possible that this work represents the first derivation of a PDE model in the area of ecotoxicology. To solve the model, an explicit finite difference approximation to this PDE system is developed. Existence-uniqueness of the weak solution to the model is established and convergence of the finite difference approximation to this unique solution is proved. Numerical examples are provided by numerically solving the PDE model using the finite difference scheme.

  15. Light propagation in tissues: effect of finite size of tissue sample

    Science.gov (United States)

    Melnik, Ivan S.; Dets, Sergiy M.; Rusina, Tatyana V.

    1995-12-01

    Laser beam propagation inside tissues with different lateral dimensions has been considered. Scattering and anisotropic properties of tissue critically determine spatial fluence distribution and predict sizes of tissue specimens when deviations of this distribution can be neglected. Along the axis of incident beam the fluence rate weakly depends on sample size whereas its relative increase (more than 20%) towards the lateral boundaries. The finite sizes were considered to be substantial only for samples with sizes comparable with the diameter of the laser beam. Interstitial irradiance patterns simulated by Monte Carlo method were compared with direct measurements in human brain specimens.

  16. Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    The problem of the lower bound on the radiation Q for an arbitrarily shaped finite size antenna of non-zero volume is formulated in terms of equivalent electric and magnetic currents densities distributed on a closed surface coinciding with antenna exterior surface. When these equivalent currents...

  17. Roughness and Finite Size Effect in the NYSE Stock-Price Fluctuations

    CERN Document Server

    Alfi, V; Petri, A; Pietronero, L

    2006-01-01

    We consider the roughness properties of NYSE (New York Stock Exchange) stock-price fluctuations. The statistical properties of the data are relatively homogeneous within the same day but the large jumps between different days prevent the extension of the analysis to large times. This leads to intrinsic finite size effects which alter the apparent Hurst (H) exponent. We show, by analytical methods, that finite size effects always lead to an enhancement of H. We then consider the effect of fat tails on the analysis of the roughness and show that the finite size effects are strongly enhanced by the fat tails. The non stationarity of the stock price dynamics also enhances the finite size effects which, in principle, can become important even in the asymptotic regime. We then compute the Hurst exponent for a set of stocks of the NYSE and argue that the interpretation of the value of H is highly ambiguous in view of the above results. Finally we propose an alternative determination of the roughness in terms of the ...

  18. Finite-size scaling of interface free energies in the 3d Ising model

    CERN Document Server

    Pepé, M; Forcrand, Ph. de

    2002-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  19. Finite-size scaling of interface free energies in the 3d Ising model

    OpenAIRE

    Pepe, M.; de Forcrand, Ph.

    2001-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  20. Finite size scaling analysis of intermittency moments in the two dimensional Ising model

    CERN Document Server

    Burda, Z; Peschanski, R; Wosiek, J

    1993-01-01

    Finite size scaling is shown to work very well for the block variables used in intermittency studies on a 2-d Ising lattice. The intermittency exponents so derived exhibit the expected relations to the magnetic critical exponent of the model. Email contact: pesch@amoco.saclay.cea.fr

  1. An explicit expression for finite-size corrections to the chemical potential

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1989-01-01

    In this article an expression is derived for the finite-size corrections to the excess chemical potential in an N-particle system with periodic boundary conditions. The leading N-dependence of the chemical potential is predicted to be proportional to 1/N. The authors derive a simple expression relat

  2. The finite size spectrum of the 2-dimensional O(3) nonlinear sigma-model

    OpenAIRE

    Balog, Janos(Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, MTA Lendület Holographic QFT Group, 1525, Budapest 114, P.O.B. 49, Hungary); Hegedus, Arpad

    2009-01-01

    Nonlinear integral equations are proposed for the description of the full finite size spectrum of the 2-dimensional O(3) nonlinear sigma-model in a periodic box. Numerical results for the energy eigenvalues are compared to the rotator spectrum and perturbation theory for small volumes and with the recently proposed generalized Luscher formulas at large volumes.

  3. Finite-size corrections to the free energies of crystalline solids

    NARCIS (Netherlands)

    Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.

    2000-01-01

    We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free ene

  4. Finite-size corrections to the free energies of crystalline solids

    NARCIS (Netherlands)

    Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.

    2000-01-01

    We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free

  5. Spurious finite-size instabilities in nuclear energy density functionals: Spin channel

    Science.gov (United States)

    Pastore, A.; Tarpanov, D.; Davesne, D.; Navarro, J.

    2015-08-01

    Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s .Δ s . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s .Δ s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.

  6. Simulation of suspension flow of finite-size spherical particles in a 3D square channel

    Science.gov (United States)

    Gao, Hui; Wang, Lian-Ping

    2008-11-01

    Suspension flow of finite-size particles in a turbulent gas is of importance to many engineering applications and natural phenomena. As a first step, the present work focuses on the motion and hydrodynamic interaction of finite-size particles in the absence of background carrier-fluid turbulence. The major challenge for an accurate simulation is twofold: an efficient implementation of no-slip boundary conditions on the moving particle surface and an accurate representation of short-range lubrication effects that typically are not resolved numerically. A Navier-Stokes based hybrid approach (i.e., Physalis) developed by Prosperetti and co-workers is employed to solve the suspension flows of a pair of finite-size, freely-moving particles at finite particle Reynolds numbers. A lubrication force representation, designed by Ladd, involving particle relative location and velocity, is incorporated to capture the short-range interactions between particles. The accuracy of the representation and its compatibility with the flow simulation will be examined. A mesoscopic lattice Boltzmann equation (LBE) approach is also used to simulate the same problem for cross validation. Specific implementation issues will be addressed. Comparison with available numerical data will also be discussed.

  7. Reflection of sound from finite-size plane and curved surfaces

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2005-01-01

    and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array and it was demonstrated that the performance......The author’s research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite size plate was studied using the Kirchhoff-Fresnel approximation...... of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...

  8. Quasi-long-range ordering in a finite-size 2D Heisenberg model

    CERN Document Server

    Kapikranian, O; Holovatch, Yu; Berche, Bertrand; Holovatch, Yurij; Kapikranian, Oleksandr

    2006-01-01

    We analyse the low-temperature behaviour of the Heisenberg model on a two-dimensional lattice of finite size. Presence of a residual magnetisation in a finite-size system enables us to use the spin wave approximation, which is known to give reliable results for the XY model at low temperatures T. For the system considered, we find that the spin-spin correlation function decays as 1/r^eta(T) for large separations r bringing about presence of a quasi-long-range ordering. We give analytic estimates for the exponent eta(T) in different regimes and support our findings by Monte Carlo simulations of the model on lattices of different sizes at different temperatures.

  9. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    Science.gov (United States)

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-06-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  10. Reflection of sound from finite-size plane and curved surfaces

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2005-01-01

    and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array and it was demonstrated that the performance...... of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...... in the refurbishment of the concert hall of the Danish Radio in Copenhagen 1989, and later in many other halls. In order to describe the scattering due to edge diffraction the directional characteristic of reflections from a finite-size plate has been studied and a simple approximation valid for octave bands has been...

  11. Spatially localized attacks on interdependent networks: the existence of a finite critical attack size

    CERN Document Server

    Berezin, Yehiel; Danziger, Michael M; Li, Daqing; Havlin, Shlomo

    2013-01-01

    Many real world complex systems such as infrastructure, communication and transportation networks are embedded in space, where entities of one system may depend on entities of other systems. These systems are subject to geographically localized failures due to malicious attacks or natural disasters. Here we study the resilience of a system composed of two interdependent spatially embedded networks to localized geographical attacks. We find that if an attack is larger than a finite (zero fraction of the system) critical size, it will spread through the entire system and lead to its complete collapse. If the attack is below the critical size, it will remain localized. In contrast, under random attack a finite fraction of the system needs to be removed to initiate system collapse. We present both numerical simulations and a theoretical approach to analyze and predict the effect of local attacks and the critical attack size. Our results demonstrate the high risk of local attacks on interdependent spatially embedd...

  12. Finite-size effects in quasi-one-dimensional conductors with a charge-density wave

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev-Zotov, Sergei V [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-06-30

    Recent studies of finite-size effects in charge-density wave conductors are reviewed. Various manifestations of finite-size effects, including the transverse-size dependence of the nonlinear-conduction threshold field, the Peierls transition temperature, high-frequency conduction, and the relaxation rates of metastable states, are discussed. Resistivity jumps in thin samples, the smeared threshold field for nonlinear conduction, and threshold conduction above the Peierls transition temperature are considered, as are mesoscopic oscillations of the threshold field, one-dimensional conduction in thin crystals, absolute negative conductivity of quasi-one-dimensional conductors, the length dependence of the phase-slip voltage, and the Aharonov-Bohm oscillations in sliding CDWs. Problems yet to be solved are discussed. (reviews of topical problems)

  13. Imaging properties of finite-size left-handed material slabs.

    Science.gov (United States)

    Chen, Jianbing J; Grzegorczyk, Tomasz M; Wu, Bae-Ian; Kong, Jin Au

    2006-10-01

    Finite-size left-handed material (LHM) slabs are studied both analytically and numerically. The analytical method is based on Huygens' principles using truncated current sheets that cover only the apertures of the slabs. It is shown that the main effects on the images' spectra due to the size of the slabs can be predicted by the proposed analytical method, which can, therefore, be used as a fast alternative to the numerical simulations. Furthermore, the property of negative-energy streams at the image plane is explained. This unique property is found to be due to the interactions between propagating and evanescent waves and can only occur with LHM slabs, both finite size and infinite.

  14. Finite-size corrections and scaling for the dimer model on the checkerboard lattice

    Science.gov (United States)

    Izmailian, Nickolay Sh.; Wu, Ming-Chya; Hu, Chin-Kun

    2016-11-01

    Lattice models are useful for understanding behaviors of interacting complex many-body systems. The lattice dimer model has been proposed to study the adsorption of diatomic molecules on a substrate. Here we analyze the partition function of the dimer model on a 2 M ×2 N checkerboard lattice wrapped on a torus and derive the exact asymptotic expansion of the logarithm of the partition function. We find that the internal energy at the critical point is equal to zero. We also derive the exact finite-size corrections for the free energy, the internal energy, and the specific heat. Using the exact partition function and finite-size corrections for the dimer model on a finite checkerboard lattice, we obtain finite-size scaling functions for the free energy, the internal energy, and the specific heat of the dimer model. We investigate the properties of the specific heat near the critical point and find that the specific-heat pseudocritical point coincides with the critical point of the thermodynamic limit, which means that the specific-heat shift exponent λ is equal to ∞ . We have also considered the limit N →∞ for which we obtain the expansion of the free energy for the dimer model on the infinitely long cylinder. From a finite-size analysis we have found that two conformal field theories with the central charges c =1 for the height function description and c =-2 for the construction using a mapping of spanning trees can be used to describe the dimer model on the checkerboard lattice.

  15. Universal Finite Size Corrections and the Central Charge in Non-solvable Ising Models

    Science.gov (United States)

    Giuliani, Alessandro; Mastropietro, Vieri

    2013-11-01

    We investigate a non-solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength λ. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all and λ 0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.

  16. Finite size corrections in the random energy model and the replica approach

    Science.gov (United States)

    Derrida, Bernard; Mottishaw, Peter

    2015-01-01

    We present a systematic and exact way of computing finite size corrections for the random energy model, in its low temperature phase. We obtain explicit (though complicated) expressions for the finite size corrections of the overlap functions. In its low temperature phase, the random energy model is known to exhibit Parisi's broken symmetry of replicas. The finite size corrections given by our exact calculation can be reproduced using replicas if we make specific assumptions about the fluctuations (with negative variances!) of the number and sizes of the blocks when replica symmetry is broken. As an alternative we show that the exact expression for the non-integer moments of the partition function can be written in terms of coupled contour integrals over what can be thought of as ‘complex replica numbers’. Parisi's one step replica symmetry breaking arises naturally from the saddle point of these integrals without making any ansatz or using the replica method. The fluctuations of the ‘complex replica numbers’ near the saddle point in the imaginary direction correspond to the negative variances we observed in the replica calculation. Finally our approach allows one to see why some apparently diverging series or integrals are harmless.

  17. Reflection of sound from finite-size plane and curved surfaces

    Science.gov (United States)

    Rindel, Jens H.

    2005-09-01

    The author's research on reflectors over nearly 25 years is summarized. The influence of curvature was analyzed by a geometrical model in order to quantify the attenuation by a simple expression. Reflection from a finite-size plate was studied using the Kirchhoff-Fresnel approximation, and the design frequency for a single reflector was derived. Above the design frequency the attenuation due to the finite size can be neglected and the reflection is efficient in the specular direction. The method was extended to the case of a reflector array, and it was demonstrated that the performance of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used in the refurbishment of the concert hall of the Danish Radio in Copenhagen 1989, and later in many other halls. In order to describe the scattering due to edge diffraction, the directional characteristic of reflections from a finite-size plate has been studied and a simple approximation valid for octave bands has been derived.

  18. Finite-size scaling in silver nanowire films: design considerations for practical devices

    Science.gov (United States)

    Large, Matthew J.; Cann, Maria; Ogilvie, Sean P.; King, Alice A. K.; Jurewicz, Izabela; Dalton, Alan B.

    2016-07-01

    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of

  19. A finite-element approach to evaluating the size effects of complex nanostructures

    Science.gov (United States)

    Lu, Dingjie; Xie, Yi Min; Li, Qing; Huang, Xiaodong; Li, Yang Fan; Zhou, Shiwei

    2016-12-01

    The size effects that reveal the dramatic changes of mechanical behaviour at nanoscales have traditionally been analysed for regular beam systems. Here, the method of using finite-element analysis is explored with the intention of evaluating the size effects for complex nanostructures. The surface elasticity theory and generalized Young-Laplace equation are integrated into a beam element to account for the size effects in classical Euler-Bernoulli and Timoshenko beam theories. Computational results match well with the theoretical predictions on the size effect for a cantilever beam and a cubic unit cell containing 24 horizontal/vertical ligaments. For a simply supported nanowire, it is found that the results are very close to the experimental data. With the assumption that nanoporous gold is composed of many randomly connected beams, for the first time, the size effect of such a complex structure is numerically determined.

  20. Finite-size effects, pseudocritical quantities and signatures of the chiral critical endpoint of QCD

    CERN Document Server

    Palhares, L F; Kodama, T

    2009-01-01

    We investigate finite-size effects on the phase diagram of strong interactions, and discuss their influence (and utility) on experimental signatures in high-energy heavy ion collisions. We calculate the modification of the pseudocritical transition line and isentropic trajectories, and discuss how this affects proposed signatures of the chiral critical endpoint. We argue that a finite-size scaling analysis may be crucial in the process of data analysis in the Beam Energy Scan program at RHIC and in future experiments at FAIR-GSI. We propose the use of extrapolations, full scaling plots and a chi-squared method as tools for searching the critical endpoint of QCD and determining its universality class.

  1. Spatial Kerr solitons in optical fibres of finite size cross section: beyond the Townes soliton

    Science.gov (United States)

    Drouart, F.; Renversez, G.; Nicolet, A.; Geuzaine, C.

    2008-12-01

    We propose a new and efficient numerical method to find spatial solitons in optical fibres with a nonlinear Kerr effect including microstructured ones. A nonlinear non-paraxial scalar model of the electric field in the fibre is used (nonlinear Helmholtz equation) and an iterative algorithm is proposed to obtain the nonlinear solutions using the finite element method. The field is supposed to be harmonic in time and along the direction of invariance of the fibre but inhomogeneous in the cross section. In our approach, we solve a nonlinear eigenvalue problem in which the propagation constant is the eigenvalue. Several examples dealing with step-index fibres and microstructured optical fibres with a finite size cross section are described. In each geometry, a single self-coherent nonlinear solution is obtained. This solution, which also depends on the size of the structure, is different from the Townes soliton—but converges towards it at small wavelengths.

  2. Finite-size effects in the Nagel-Schreckenberg traffic model

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana A.

    2016-05-01

    We examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. We show that the low-density limit can be described as a dilute gas of vehicles with a repulsive core. At the transition to jamming, we observe finite-size effects in a variety of quantities describing the flow and the density correlations, but only if the maximum speed Vmax is larger than a certain value. A finite-size scaling analysis of several order parameters shows universal behavior, with scaling exponents that depend on Vmax. The jamming transition at large Vmax can be viewed as the nucleation of jams in a background of freely flowing vehicles. For small Vmax no such clean separation into jammed and free vehicles is possible.

  3. Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets

    Science.gov (United States)

    Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro

    2015-03-01

    The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.

  4. Finite Size Effect in Path Integral Monte Carlo Simulations of 4He Systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xing-Wen; CHENG Xin-Lu

    2008-01-01

    Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of 4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the ground state for systems consisted of 32, 64 and 128 4He atoms, respectively. We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.

  5. A Finite Difference Approximation for a Coupled System of Nonlinear Size-Structured Populations

    Science.gov (United States)

    2000-01-01

    We study a quasilinear nonlocal hyperbolic initial-boundary value problem that models the evolution of N size-structured subpopulations competing for common resources. We develop an implicit finite difference scheme to approximate the solution of this model. The convergence of this approximation to a unique bounded variation weak solution is obtained. The numerical results for a special case of this model suggest that when subpopulations are closed under reproduction, one subpopulation survives and the others go to extinction. Moreover

  6. Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition

    CERN Document Server

    Bajnok, Z; Takács, G

    2001-01-01

    The sine-Gordon model with Neumann boundary condition is investigated. Using the bootstrap principle the spectrum of boundary bound states is established. Somewhat surprisingly it is found that Coleman-Thun diagrams and bound state creation may coexist. A framework to describe finite size effects in boundary integrable theories is developed and used together with the truncated conformal space approach to confirm the bound states and reflection factors derived by bootstrap.

  7. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    Science.gov (United States)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.

  8. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Directory of Open Access Journals (Sweden)

    Tilo Schwalger

    2017-04-01

    Full Text Available Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  9. Finite nuclear size corrections to the recoil effect in hydrogenlike ions

    CERN Document Server

    Aleksandrov, I A; Glazov, D A; Shabaev, V M

    2014-01-01

    The finite nuclear size corrections to the relativistic recoil effect in H-like ions are calculated within the Breit approximation. The calculations are performed for the $1s$, $2s$, and $2p_{1/2}$ states in the range $Z =$ 1-110. The obtained results are compared with previous evaluations of this effect. It is found that for heavy ions the previously neglected corrections amount to about 20% of the total nuclear size contribution to the recoil effect calculated within the Breit approximation.

  10. Finite-size scaling analysis of a nonequilibrium phase transition in the naming game model

    Science.gov (United States)

    Brigatti, E.; Hernández, A.

    2016-11-01

    We realize an extensive numerical study of the naming game model with a noise term which accounts for perturbations. This model displays a nonequilibrium phase transition between an absorbing ordered consensus state, which occurs for small noise, and a disordered phase with fragmented clusters characterized by heterogeneous memories, which emerges at strong noise levels. The nature of the phase transition is studied by means of a finite-size scaling analysis of the moments. We observe a scaling behavior typical of a discontinuous transition and we are able to estimate the thermodynamic limit. The scaling behavior of the clusters size seems also compatible with this kind of transition.

  11. Finite size scaling analysis of a nonequilibrium phase transition in the naming game model

    CERN Document Server

    Brigatti, E

    2016-01-01

    We realize an extensive numerical study of the Naming Game model with a noise term which accounts for perturbations. This model displays a non-equilibrium phase transition between an absorbing ordered consensus state, which occurs for small noise, and a disordered phase with fragmented clusters characterized by heterogeneous memories, which emerges at strong noise levels. The nature of the phase transition is studied by means of a finite-size scaling analysis of the moments. We observe a scaling behavior typical of a discontinuous transition and we are able to estimate the thermodynamic limit. The scaling behavior of the clusters size seems also compatible with this kind of transition.

  12. A generalization of the inhomogeneity measure for point distributions to the case of finite size objects

    Science.gov (United States)

    Piasecki, Ryszard

    2008-09-01

    The statistical measure of spatial inhomogeneity for n points placed in χ cells each of size k×k is generalized to incorporate finite size objects like black pixels for binary patterns of size L×L. As a function of length scale k, the measure is modified in such a way that it relates to the smallest realizable value for each considered scale. To overcome the limitation of pattern partitions to scales with k being integer divisors of L, we use a sliding cell-sampling approach. For given patterns, particularly in the case of clusters polydispersed in size, the comparison between the statistical measure and the entropic one reveals differences in detection of the first peak while at other scales they well correlate. The universality of the two measures allows both a hidden periodicity traces and attributes of planar quasi-crystals to be explored.

  13. Spurious finite-size instabilities in nuclear energy density functionals: spin channel

    CERN Document Server

    Pastore, A; Davesne, D; Navarro, J

    2015-01-01

    It has been recently shown, that some Skyrme functionals can lead to non-converging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. We show that the finite-size instabilities not only affect the ground state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. We perform systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term $\\mathbf{s}\\cdot \\Delta \\mathbf{s}$ . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because RPA the stability matrix becomes non-positive.By comparing the RPA calculations of atomic nucl...

  14. Finite-size analysis of the detectability limit of the stochastic block model

    Science.gov (United States)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  15. Finite size effects on the helical edge states on the Lieb lattice

    Science.gov (United States)

    Rui, Chen; Bin, Zhou

    2016-06-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin-orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).

  16. Investigation of finite-size effects in chemical bonding of AuPd nanoalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Beien [Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Oğuz, Ismail Can; Guesmi, Hazar, E-mail: hazar.guesmi@enscm.fr [CNRS-ICG UMR 5253, équipe MACS, 8 rue de l’Ecole Normale, 34296 Montpellier (France)

    2015-10-14

    In this paper, the size-dependent changes in energetic, vibrational, and electronic properties of C–O gas molecule interacting with surface Pd atom of a variety of AuPd nanoalloy structures are investigated by means of first principles calculations. The variation in C–O adsorption energies, C–O vibration frequencies (ν{sub C−O}), and Pd d-bond centers (ε{sub d}) on a series of non-supported Au{sub n−1}–Pd{sub 1} nanoparticles (with n varying from 13 to 147) and on two semi-finite surfaces are inspected with cluster size. We demonstrate for the first time that, with small AuPd bimetallic three-dimensional clusters as TOh{sub 38}, one can reach cluster size convergence even for such a sensitive observable as the adsorption energy on a metal surface. Indeed, the results show that the adsorbate-induced perturbation is extremely local and it only concerns the isolated Pd interacting with the reactive gas molecule. Except for 13 atom clusters, in which molecular behaviour is predominant, no finite-size effects are observed for surface Pd atom substituted in AuPd free nanoclusters above 38 atoms.

  17. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    Science.gov (United States)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-03

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text].

  18. Homoclinic snaking in plane Couette flow: bending, skewing, and finite-size effects

    CERN Document Server

    Gibson, John F

    2015-01-01

    Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift-Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar-turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing, and finite-size effects. We show that the finite-si...

  19. N[Formula: see text] azide anion confined inside finite-size carbon nanotubes.

    Science.gov (United States)

    Battaglia, Stefano; Evangelisti, Stefano; Faginas-Lago, Noelia; Leininger, Thierry

    2017-09-26

    In this work, the confinement of an N[Formula: see text] azide anion inside finite-size single-wall zigzag and armchair carbon nanotubes of different diameters has been studied by wave function and density functional theory. Unrelaxed and relaxed interaction energies have been computed, resulting in a favorable interaction between the guest and host system. In particular, the largest interaction has been observed for the confinement in an armchair (5,5) carbon nanotube, for which a natural population analysis as well as an investigation based on the molecular electrostatic potential has been carried out. The nature of the interaction between the two fragments appears to be mainly electrostatic, favored by the enhanced polarizability of the nanotube wall treated as a finite system and passivated by hydrogen atoms. The results obtained are promising for possible applications of this complex as a starting point for the stabilization of larger polynitrogen compounds, suitable as a high-energy density material.

  20. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    Science.gov (United States)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  1. Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh-B\\'enard convection

    CERN Document Server

    Weiss, Stephan; Zhong, Jin-Qiang; Clercx, Herman J H; Lohse, Detlef; Ahlers, Guenter; 10.1103/PhysRevLett.105.224501

    2011-01-01

    In turbulent thermal convection in cylindrical samples of aspect ratio \\Gamma = D/L (D is the diameter and L the height) the Nusselt number Nu is enhanced when the sample is rotated about its vertical axis, because of the formation of Ekman vortices that extract additional fluid out of thermal boundary layers at the top and bottom. We show from experiments and direct numerical simulations that the enhancement occurs only above a bifurcation point at a critical inverse Rossby number $1/\\Ro_c$, with $1/\\Ro_c \\propto 1/\\Gamma$. We present a Ginzburg-Landau like model that explains the existence of a bifurcation at finite $1/\\Ro_c$ as a finite-size effect. The model yields the proportionality between $1/\\Ro_c$ and $1/\\Gamma$ and is consistent with several other measured or computed system properties.

  2. Topological phase transitions in finite-size periodically driven translationally invariant systems

    Science.gov (United States)

    Ge, Yang; Rigol, Marcos

    2017-08-01

    It is known that, in the thermodynamic limit, the Chern number of a translationally invariant system cannot change under unitary time evolutions that are smooth in momentum space. Yet a real-space counterpart of the Chern number, the Bott index, has been shown to change in periodically driven systems with open boundary conditions. Here we prove that the Bott index and the Chern number are identical in translationally invariant systems in the thermodynamic limit. Using the Bott index, we show that, in finite-size translationally invariant systems, a Fermi sea under a periodic drive that is turned on slowly can acquire a different topology from that of the initial state. This can happen provided that the gap-closing points in the thermodynamic limit are absent in the discrete Brillouin zone of the finite system. Hence, in such systems, a periodic drive can be used to dynamically prepare topologically nontrivial states starting from topologically trivial ones.

  3. Finite-size corrections to scaling behavior in sorted cell aggregates.

    Science.gov (United States)

    Klopper, A V; Krens, G; Grill, S W; Heisenberg, C-P

    2010-10-01

    Cell sorting is a widespread phenomenon pivotal to the early development of multicellular organisms. In vitro cell sorting studies have been instrumental in revealing the cellular properties driving this process. However, these studies have as yet been limited to two-dimensional analysis of three-dimensional cell sorting events. Here we describe a method to record the sorting of primary zebrafish ectoderm and mesoderm germ layer progenitor cells in three dimensions over time, and quantitatively analyze their sorting behavior using an order parameter related to heterotypic interface length. We investigate the cell population size dependence of sorted aggregates and find that the germ layer progenitor cells engulfed in the final configuration display a relationship between total interfacial length and system size according to a simple geometrical argument, subject to a finite-size effect.

  4. Eye Injuries from Pencil Lead: Three Cases

    National Research Council Canada - National Science Library

    Ceyhun Arici; Osman Sevki Arslan; Burcu Görgülü; Rengin Yildirim; Umut Onur

    2017-01-01

      Corneal stromal and/or penetrating ocular injuries from pencils and pencil lead are more common in childhood and may lead to intraocular infection or severe intraocular sterile inflammatory reaction...

  5. Eye Injuries from Pencil Lead: Three Cases

    National Research Council Canada - National Science Library

    Ceyhun Arıcı; Osman Şevki Arslan; Burcu Görgülü; Rengin Yıldırım; Umut Onur

    2017-01-01

    Corneal stromal and/or penetrating ocular injuries from pencils and pencil lead are more common in childhood and may lead to intraocular infection or severe intraocular sterile inflammatory reaction...

  6. Near-Field Characterization of a Printed Circuit Board in the Presence of a Finite-sized Metallic Ground Plane

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    Model of a generic printed circuit board (PCB) in a presence of a finite-sized metallic ground plane is introduced as a commonly occurring scenario of electronic module whose electromagnetic fields are disturbed by a nearby object. Finite-difference time-domain simulations are performed...

  7. Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors

    Science.gov (United States)

    Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya

    2014-10-01

    Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.

  8. Critical Behaviors and Finite-Size Scaling of Principal Fluctuation Modes in Complex Systems

    Science.gov (United States)

    Li, Xiao-Teng; Chen, Xiao-Song

    2016-09-01

    Complex systems consisting of N agents can be investigated from the aspect of principal fluctuation modes of agents. From the correlations between agents, an N × N correlation matrix C can be obtained. The principal fluctuation modes are defined by the eigenvectors of C. Near the critical point of a complex system, we anticipate that the principal fluctuation modes have the critical behaviors similar to that of the susceptibity. With the Ising model on a two-dimensional square lattice as an example, the critical behaviors of principal fluctuation modes have been studied. The eigenvalues of the first 9 principal fluctuation modes have been invesitigated. Our Monte Carlo data demonstrate that these eigenvalues of the system with size L and the reduced temperature t follow a finite-size scaling form λn (L, t) = Lγ/ν fn(tL1/ν), where γ is critical exponent of susceptibility and ν is the critical exponent of the correlation length. Using eigenvalues λ1, λ2 and λ6, we get the finite-size scaling form of the second moment correlation length ξ (L, t) &equals L\\tilde ξ (tL1/ν ). It is shown that the second moment correlation length in the two-dimensional square lattice is anisotropic. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384

  9. Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems

    Science.gov (United States)

    Liu, Xi-Jing; Hu, Bing-Quan; Cho, Sam Young; Zhou, Huan-Qiang; Shi, Qian-Qian

    2016-10-01

    Recently, the finite-size corrections to the geometrical entanglement per lattice site in the spin-1/2 chain have been numerically shown to scale inversely with system size, and its prefactor b has been suggested to be possibly universal [Q-Q. Shi et al., New J. Phys. 12, 025008 (2010)]. As possible evidence of its universality, the numerical values of the prefactors have been confirmed analytically by using the Affleck-Ludwig boundary entropy with a Neumann boundary condition for a free compactified field [J-M. Stephan et al., Phys. Rev. B 82, 180406(R) (2010)]. However, the Affleck-Ludwig boundary entropy is not unique and does depend on conformally invariant boundary conditions. Here, we show that a unique Affleck-Ludwig boundary entropy corresponding to a finitesize correction to the geometrical entanglement per lattice site exists and show that the ratio of the prefactor b to the corresponding minimum groundstate degeneracy gmin for the Affleck- Ludwig boundary entropy is a constant for any critical region of the spin-1 XXZ system with the single-ion anisotropy, i.e., b/(2 log2 g min ) = -1. Previously studied spin-1/2 systems, including the quantum three-state Potts model, have verified the universal ratio. Hence, the inverse finite-size correction to the geometrical entanglement per lattice site and its prefactor b are universal for one-dimensional critical systems.

  10. Finite-size scaling of two-point statistics and the turbulent energy cascade generators.

    Science.gov (United States)

    Cleve, Jochen; Dziekan, Thomas; Schmiegel, Jürgen; Barndorff-Nielsen, Ole E; Pearson, Bruce R; Sreenivasan, Katepalli R; Greiner, Martin

    2005-02-01

    Within the framework of random multiplicative energy cascade models of fully developed turbulence, finite-size-scaling expressions for two-point correlators and cumulants are derived, taking into account the observationally unavoidable conversion from an ultrametric to an Euclidean two-point distance. The comparison with two-point statistics of the surrogate energy dissipation, extracted from various wind tunnel and atmospheric boundary layer records, allows an accurate deduction of multiscaling exponents and cumulants, even at moderate Reynolds numbers for which simple power-law fits are not feasible. The extracted exponents serve as input for parametric estimates of the probabilistic cascade generator. Various cascade generators are evaluated.

  11. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Science.gov (United States)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-02-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of 100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix.

  12. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition

    Science.gov (United States)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.

  13. Finite size effects in the static structure factor of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Davletov, A. E., E-mail: askar@physics.kz; Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K. [Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty (Kazakhstan)

    2014-07-15

    Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.

  14. Unusual finite size effects on critical temperature in fcc Ising antiferromagnets

    Science.gov (United States)

    Pommier, J.; Diep, H. T.; Ghazali, A.; Lallemand, P.

    1988-04-01

    A new multispin coding technique is presented for Monte Carlo simulation of antiferromagnetic Ising spin systems on an fcc lattice. The nearest- and next-nearest-neighbor interactions J1 and J2 are included. This technique allows a considerable gain in CPU time and computer memory. As a first application, we have studied samples of 4L3 spins with L up to 48. An unusual behavior of the critical temperature with increasing L is found in the case of nearest-neighbor interaction in zero field. Finite size effects on the locations of tricrical points in the (T,J2/J1) plane are discussed.

  15. Interacting spins in a cavity: Finite-size effects and symmetry-breaking dynamics

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2012-01-01

    , and for small chains, we find significant and nontrivial finite-size effects. Below the first-order phase transition, even quite large spin chains of 30–40 spins give rise to a mean photon number and number fluctuations significantly above the mean-field vacuum result. Near the second-order phase critical point......-transition the random character of the measurement process causes a measurement-induced symmetry breaking in the system. This symmetry breaking occurs on the time scale needed for an observer to gather sufficient information to distinguish between the two possible (mean-field) symmetry-broken states....

  16. 75 FR 67102 - Cased Pencils From China

    Science.gov (United States)

    2010-11-01

    ... COMMISSION Cased Pencils From China AGENCY: United States International Trade Commission. ] ACTION: Institution of a five-year review concerning the antidumping duty order on cased pencils from China. SUMMARY... order on cased pencils from China would be likely to lead to continuation or recurrence of...

  17. 76 FR 11267 - Cased Pencils From China

    Science.gov (United States)

    2011-03-01

    ... COMMISSION Cased Pencils From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on cased pencils from China... of the antidumping duty order on cased pencils from China would be likely to lead to continuation...

  18. 76 FR 38697 - Cased Pencils From China

    Science.gov (United States)

    2011-07-01

    ... COMMISSION Cased Pencils From China Determination On the basis of the record \\1\\ developed in the subject... order on cased pencils from China would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4239 (June 2011), entitled Cased Pencils from...

  19. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion.

    Science.gov (United States)

    Godec, Aljaž; Metzler, Ralf

    2013-07-01

    Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τ(c), such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τ(c).

  20. Single-file diffusion of interacting particles in a finite-sized channel.

    Science.gov (United States)

    Delfau, J B; Coste, C; Even, C; Saint Jean, M

    2010-09-01

    We study the dynamics of charged macroscopic particles (millimetric steel balls) confined in a linear channel of finite length, sufficiently narrow to avoid particles crossing. We show that their individual response to thermal fluctuations strongly depends either on their position in the channel or the local potential they experience. Three different dynamical regimes are identified. At small times, a "free regime" takes place, with the outermost particles exhibiting the highest diffusion coefficient. This effect results from an "echo" of the thermal fluctuations reflected by the channel wall. Then, forbidden crossing induces a correlated regime similar to single file diffusion. Surprisingly, the corresponding mobility increases with the local potential. Lastly, the finite length of the channel induces the saturation of fluctuations. We show that those behaviors may be described heuristically with the help of models for N hard-core interacting particles diffusing in a finite channel of length L, provided that we replace the uniform interparticle distance L/N by a characteristic distance (k(B)T/K)(1/2) built upon the temperature T and the stiffness K of the local potential. It provides a very satisfactory estimate for the fluctuations sizes, whereas they are greatly overestimated assuming hard-core interactions.

  1. Investigating feedback mechanisms between stress and grain-size: preliminary findings from finite-element modelling

    Science.gov (United States)

    Cross, A. J.; Prior, D. J.; Ellis, S. M.

    2012-12-01

    It is widely accepted that changes in stress and grain size can induce a switch between grain-size insensitive (GSI) and sensitive (GSS) creep mechanisms. Under steady-state conditions, grains evolve to an equilibrium size in the boundary region between GSS and GSI, described by the paleopiezometer for a given material. Under these conditions, significant rheological weakening is not expected, as grain size reduction processes are balanced by grain growth processes. However, it has been shown that the stress field surrounding faults varies through the seismic cycle, with both rapid loading and unloading of stress possible in the co- and post-seismic stages. We propose that these changes in stress in the region of the brittle-ductile transition zone may be sufficient to force a deviation from the GSI-GSS boundary and thereby cause a change in grain size and creep mechanism prior to system re-equilibration. Here we present preliminary findings from numerical modelling of stress and grain size changes in response to loading of mechanical inhomogeneities. Our results are attained using a grain-size evolution (GSE) subroutine incorporated into the SULEC finite-element code developed by Susan Ellis and Susanne Buiter, which utilises an iterative approach of solving for spatial and temporal changes in differential stress, grain size and active creep mechanism. Preliminary models demonstrate that stress changes in response to the opening of a fracture in a flowing medium can be significant enough to cause a switch from GSI to GSS creep. These results are significant in the context of understanding spatial variations and feedback between stress, grain size and deformation mechanisms through the seismic cycle.

  2. Ray pencils of general divergency

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available That a thin refracting element can have a dioptric power which is asymmetric immediately raises questions at the fundamentals of linear optics.  In optometry the important concept of vergence, in particular, depends on the concept of a pencil of rays which in turn depends on the existence of a focus.  But systems that contain refracting elements of asymmetric power may have no focus at all.  Thus the existence of thin systems with asym-metric power forces one to go back to basics and redevelop a linear optics from scratch that is sufficiently general to be able to accommodate suchsystems.  This paper offers an axiomatic approach to such a generalized linear optics.  The paper makes use of two axioms: (i a ray in a homogeneous medium is a segment of a straight line, and (ii at an interface between two homogeneous media a ray refracts according to Snell’s equation.  The familiar paraxial assumption of linear optics is also made.  From the axioms a pencil of rays at a transverse plane T in a homogeneous medium is defined formally (Definition 1 as an equivalence relation with no necessary association with a focus.  At T the reduced inclination of a ray in a pencil is an af-fine function of its transverse position.  If the pencilis centred the function is linear.  The multiplying factor M, called the divergency of the pencil at T, is a real  2 2×  matrix.  Equations are derived for the change of divergency across thin systems and homogeneous gaps.  Although divergency is un-defined at refracting surfaces and focal planes the pencil of rays is defined at every transverse plane ina system (Definition 2.  The eigenstructure gives aprincipal meridional representation of divergency;and divergency can be decomposed into four natural components.  Depending on its divergency a pencil in a homogeneous gap may have exactly one point focus, one line focus, two line foci or no foci.Equations are presented for the position of a focusand of its

  3. Anomalous finite-size effects in the Battle of the Sexes

    CERN Document Server

    Cremer, Jonas; Frey, Erwin

    2007-01-01

    The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the meantime, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.

  4. Finite-size corrections for universal boundary entropy in bond percolation

    CERN Document Server

    de Gier, Jan; Ponsaing, Anita

    2016-01-01

    We compute the boundary entropy for bond percolation on the square lattice in the presence of a boundary loop weight, and prove explicit and exact expressions on a strip and on a cylinder of size $L$. For the cylinder we provide a rigorous asymptotic analysis which allows for the computation of finite-size corrections to arbitrary order. For the strip we provide exact expressions that have been verified using high-precision numerical analysis. Our rigorous and exact results corroborate an argument based on conformal field theory, in particular concerning universal logarithmic corrections for the case of the strip due to the presence of corners in the geometry. We furthermore observe a crossover at a special value of the boundary loop weight.

  5. Weakest-Link Scaling and Finite Size Effects on Recurrence Times Distribution

    CERN Document Server

    Hristopulos, Dionissios T; Kaniadakis, Giorgio

    2013-01-01

    Tectonic earthquakes result from the fracturing of the Earth's crust due to the loading induced by the motion of the tectonic plates. Hence, the statistical laws of earthquakes must be intimately connected to the statistical laws of fracture. The Weibull distribution is a commonly used model of earthquake recurrence times (ERT). Nevertheless, deviations from Weibull scaling have been observed in ERT data and in fracture experiments on quasi-brittle materials. We propose that the weakest-link-scaling theory for finite-size systems leads to the kappa-Weibull function, which implies a power-law tail for the ERT distribution. We show that the ERT hazard rate function decreases linearly after a waiting time which is proportional to the system size (in terms of representative volume elements) raised to the inverse of the Weibull modulus. We also demonstrate that the kappa-Weibull can be applied to strongly correlated systems by means of simulations of a fiber bundle model.

  6. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  7. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids

    DEFF Research Database (Denmark)

    Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.

    2011-01-01

    We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold n......). Below that critical size, finite-size effects can be observed, and we show those to be related to variations in the local atomic structure augmented by quantum size effects for the smallest clusters.......We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...... nanoparticles ranging from 13 to 1,415 atoms, or 0.8–3.7 nm, have been made possible by exploiting massively parallel computing on up to 32,768 cores on the Blue Gene/P computer at Argonne National Laboratory. We show that bulk surface properties are obtained for clusters larger than ca. 560 atoms (2.7 nm...

  8. Finite size scaling RG: detailed description and applications to diluted Ising systems

    Science.gov (United States)

    de Figueiredo Neto, João Monteiro; de Oliveira, Suzana Maria Moss; de Oliveira, Paulo Murilo Castro

    1994-05-01

    The finite size scaling renormalisation group (FSSRG) was introduced in Europhysics Letters 20 (1992) 621. Based only on the finite size scaling hypothesis, with no further assumptions, it differs from other real space renormalisation groups (RSRGs) in the following essential point: one does not need to adopt any particular recipe exp(- H‧( S‧/ T = σ sP( S, S‧) exp[- H( S)/ T] relating the spin states S of the original system to the spin states S' of a renormalised system. The choice of a particular weight function P( S, S‧), e.g. the so called majority rule, is generally based on plausibility arguments, and involves uncontrollable approximations. In addition to being free from these drawbacks, FSSRG shares with RSRG some good features as, for instance, the possibility of extracting qualitative informations from multi-parameter RG flow diagrams, including crossovers, universality classes, universality breakings, multicriticalities, orders of transitions, etc. Other unpleasant consequences of particular weight functions, as the so called proliferation of parameters, are also absent in the FSSRG. Using it in three-dimensions, we were able to find a semi-unstable fixed point in the critical frontier concentration p versus exchange coupling J, characterizing a universality class crossover when one goes from pure to diluted Ising ferromagnets. The specific heat exponents we have obtained for the pure and diluted regimes are in agreement with the Harris criterion.

  9. A simple method for estimating genetic diversity in large populations from finite sample sizes

    Directory of Open Access Journals (Sweden)

    Rajora Om P

    2009-12-01

    Full Text Available Abstract Background Sample size is one of the critical factors affecting the accuracy of the estimation of population genetic diversity parameters. Small sample sizes often lead to significant errors in determining the allelic richness, which is one of the most important and commonly used estimators of genetic diversity in populations. Correct estimation of allelic richness in natural populations is challenging since they often do not conform to model assumptions. Here, we introduce a simple and robust approach to estimate the genetic diversity in large natural populations based on the empirical data for finite sample sizes. Results We developed a non-linear regression model to infer genetic diversity estimates in large natural populations from finite sample sizes. The allelic richness values predicted by our model were in good agreement with those observed in the simulated data sets and the true allelic richness observed in the source populations. The model has been validated using simulated population genetic data sets with different evolutionary scenarios implied in the simulated populations, as well as large microsatellite and allozyme experimental data sets for four conifer species with contrasting patterns of inherent genetic diversity and mating systems. Our model was a better predictor for allelic richness in natural populations than the widely-used Ewens sampling formula, coalescent approach, and rarefaction algorithm. Conclusions Our regression model was capable of accurately estimating allelic richness in natural populations regardless of the species and marker system. This regression modeling approach is free from assumptions and can be widely used for population genetic and conservation applications.

  10. Influence of Finite Element Size in Residual Strength Prediction of Composite Structures

    Science.gov (United States)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid

    2012-01-01

    The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.

  11. Influences of finite-size effectson the self-organized critical-ity of forest-fire model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influences of finite-size effects on the self-organized criticality (SOC) of the traditional forest-fire model are investigated by means of a new method. The forest size is originally set to a value much greater than the correlation length of the forest. Finite-size effects are then studied by equally dividing the forest into more and more separate subsystems on condition that the forest size, igniting probability and planting probability are invariant. A new phenomenon, i.e. the finite-size effects with one-side frequency peak, is observed. The boundary between two neighboring subsystems can be regarded as a firebreak. The concept of 'separation ability' is introduced to represent the probability for the firebreak to block off the fire successfully. Restraining effects of separation ability on finite-size effects are analyzed. Finite-size effects and separation ability, as well as their relations are found to have practical importance to the actual forest-fire protection.

  12. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.

    Science.gov (United States)

    Choi, A P C; Zheng, Y P

    2005-03-01

    Young's modulus and Poisson's ratio of a tissue can be simultaneously obtained using two indentation tests with two different sized indentors in two indentations. Owing to the assumption of infinitesimal deformation of the indentation, the finite deformation effect of indentation on the calculated material parameters was not fully understood in the double indentation approach. However, indentation tests with infinitesimal deformation are not practical for the measurement of real tissues. Accordingly, finite element models were developed to simulate the indentation with different indentor diameters and different deformation ratios to investigate the finite deformation effect of indentation. The results indicated that Young's modulus E increased with the increase in the indentation deformation w, if the finite deformation effect of indentation was not considered. This phenomenon became obvious when Poisson's ratio v approached 0.5 and/or the ratio of indentor radius and tissue thickness a/h increased. The calculated Young's modulus could be different by 23% at 10% deformation in comparison with its real value. The results also demonstrated that the finite deformation effect to indentation on the calculation of Poisson's ratio v was much smaller. After the finite deformation effect of indentation was considered, the error of the calculated Young's modulus could be controlled within 5% (a/h = 1) and 2% (a/h = 2) for deformation up to 10%.

  13. Pencil it in: pencil drawn electrochemical sensing platforms.

    Science.gov (United States)

    Foster, Christopher W; Brownson, Dale A C; Ruas de Souza, Ana P; Bernalte, Elena; Iniesta, Jesus; Bertotti, Mauro; Banks, Craig E

    2016-06-20

    Inspired by recent reports concerning the utilisation of hand drawn pencil macroelectrodes (PDEs), we report the fabrication, characterisation (physicochemical and electrochemical) and implementation (electrochemical sensing) of various PDEs drawn upon a flexible polyester substrate. Electrochemical characterisation reveals that there are no quantifiable electrochemical responses upon utilising these PDEs with an electroactive analyte that requires an electrochemical oxidation step first, therefore the PDEs have been examined towards the electroactive redox probes hexaammineruthenium(iii) chloride, potassium ferricyanide and ammonium iron(ii) sulfate. For the first time, characterisation of the number of drawn pencil layers and the grade of pencil are examined; these parameters are commonly overlooked when utilising PDEs. It is demonstrated that a PDE drawn ten times with a 6B pencil presented the most advantageous electrochemical platform, in terms of electrochemical reversibility and peak height/analytical signal. In consideration of the aforementioned limitation, analytes requiring an electrochemical reduction as the first process were solely analysed. We demonstrate the beneficial electroanalytical capabilities of these PDEs towards p-benzoquinone and the simultaneous detection of heavy metals, namely lead(ii) and cadmium(ii), all of which are explored for the first time utilising PDEs. Initially, the detection limits of this system were higher than desired for electroanalytical platforms, however upon implementation of the PDEs in a back-to-back configuration (in which two PDEs are placed back-to-back sharing a single connection to the potentiostat), the detection limits for lead(ii) and cadmium(ii) correspond to 10 μg L(-1) and 98 μg L(-1) respectively within model aqueous (0.1 M HCl) solutions.

  14. Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2007-01-01

    Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...

  15. How reliable are Finite-Size Lyapunov Exponents for the assessment of ocean dynamics?

    CERN Document Server

    Hernández-Carrasco, Ismael; López, Cristóbal; Turiel, Antonio

    2010-01-01

    Much of atmospheric and oceanic transport is associated with coherent structures. Lagrangian methods are emerging as optimal tools for their identification and analysis. An important Lagrangian technique which is starting to be widely used in oceanography is that of Finite-Size Lyapunov Exponents (FSLEs). Despite this growing relevance there are still many open questions concerning the reliability of the FSLEs in order to analyse the ocean dynamics. In particular, it is still unclear how robust they are when confronted with real data. In this paper we analyze the effect on this Lagrangian technique of the two most important effects when facing real data, namely noise and dynamics of unsolved scales. Our results, using as a benchmarch data from a primitive numerical model of the Mediterranean Sea, show that even when some dynamics is missed the FSLEs results still give an accurate picture of the oceanic transport properties.

  16. Lasing in dark and bright modes of a finite-sized plasmonic lattice

    CERN Document Server

    Hakala, T K; Väkeväinen, A I; Martikainen, J -P; Moilanen, A J; Törmä, P

    2016-01-01

    Lasing at the nanometer scale promises strong light-matter interactions and ultrafast operation. The first realizations of nanoscale lasing have been achieved but suffer from losses and lack of beam directionality. Band-edge lasing in periodic plasmonic structures offered an improvement but radiative losses remained high. Intriguingly, plasmonic nanoparticle arrays support also non-radiative dark modes that offer longer life-times but are inaccessible to far field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nanometers at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.

  17. Finite Size Scaling of the Higgs-Yukawa Model near the Gaussian Fixed Point

    CERN Document Server

    Chu, David Y -J; Knippschild, Bastian; Lin, C -J David; Nagy, Attila

    2016-01-01

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  18. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.

    Science.gov (United States)

    Chamberlin, Ralph V; Nasir, Derek M

    2014-07-01

    Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

  19. Finite size effects on the electromagnetic field enhancement from low-dimensional silver nanoshell dimer arrays

    Energy Technology Data Exchange (ETDEWEB)

    Song, Youlin [Zhengzhou University, China; Zhao, Ke [ORNL; Jia, Yu [Zhengzhou University, China; Hu, Xing [Zhengzhou University, China; Zhang, Zhenyu [ORNL

    2008-01-01

    Finite size effects on the optical properties of one-dimensional 1D and two-dimensional 2D nanoshell dimer arrays are investigated using generalized Mie theory and coupled dipole approximation within the context of surface-enhanced Raman spectroscopy SERS. It is shown that the huge enhancement in the electromagnetic EM field at the center of a given dimer oscillates with the length of the 1D array. For an array of fixed length, the EM enhancement also oscillates along the array, but with a different period. Both types of oscillations can be attributed to the interference of the dynamic dipole fields from different dimers in the array. When generalized to 2D arrays, EM enhancement higher than that of the 1D arrays can be gained with a constant magnitude, a salient feature advantageous to experimental realization of single-molecule SERS. 2008 American Institute of Physics. DOI: 10.1063/1.3009293

  20. Finite Size Effects on the Electromagnetic Field Enhancement from Low-dimensional Silver Nanoshell Dimer Arrays

    Science.gov (United States)

    Song, Youlin; Zhao, Ke; Jia, Yu; Hu, Xing; Zhang, Zhenyu

    2009-03-01

    Finite size effects on the optical properties of one-dimensional (1D) and 2D nanoshell dimer arrays are investigated using generalized Mie theory and coupled dipole approximation within the context of surface-enhanced Raman spectroscopy (SERS). It is shown that the huge enhancement in the electromagnetic (EM) field at the center of a given dimer oscillates with the length of the 1D array. For an array of fixed length, the EM enhancement also oscillates along the array, but with a different period. Both types of oscillations can be attributed to the interference of the dynamic dipole fields from different dimers in the array. When generalized to 2D arrays, EM enhancement higher than that of the 1D arrays can be gained with a constant magnitude, a salient feature advantageous to experimental realization of single-molecule SERS. [K. Zhao et al, J. Chem. Phys. 125, 081102 (2005); Y. L. Song et al, accepted by J. Chem. Phys.

  1. Fully-resolved DNS of finite-size particles exposed to a turbulent stream

    Science.gov (United States)

    Botto, Lorenzo; Prosperetti, Andrea

    2008-11-01

    A field of homogeneous isotropic turbulence is convected with a mean velocity past a group of fixed, finite-size particles and the structure and intensity of the resulting downstream turbulence are compared to the particle-free case. The diameter of the particles is larger than the Kolmogorov scale and is of the order of the Taylor micro-scale. The results illustrate the central role played by the particle wakes in destroying the isotropy and homogeneity of the incident turbulence. Furthermore, as a result of wake interactions, the time-dependent hydrodynamic forces on the downstream and upstream spheres are correlated. The numerical simulations are carried out on a uniform grid by employing the ``Physalis'' method which can be regarded as a combination of an immersed boundary and spectral method. Among other advantages, it does not require interpolation and its spectral convergence permits computations with relatively few grid nodes per particle.

  2. Transition and self-sustained turbulence in dilute suspensions of finite-size particles

    CERN Document Server

    Lashgari, Iman; Brandt, Luca

    2015-01-01

    We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e. $\\Phi \\approx 0.001$. The critical Reynolds number above which turbulence is sustained reduces to $Re \\approx 1675$, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e. $Re\\approx1775$. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic. Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow.

  3. Loss of acoustic black hole effect in a structure of finite size

    Science.gov (United States)

    Tang, Liling; Cheng, Li

    2016-07-01

    The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thickness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect exhibits appealing features for various applications, such as passive vibration control, energy harvesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally and theoretically. Analyses show that the phenomenon takes place at frequencies which are close to the low order local resonant frequencies of the portion of the beam demarcated by the position of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH applications.

  4. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  5. Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting.

    Science.gov (United States)

    Medrano-T, Rene O; Moura, Alessandro; Tél, Tamás; Caldas, Iberê L; Grebogi, Celso

    2008-11-01

    We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.

  6. Finite Size Effects in Adsorption of Helium Mixtures by Alkali Substrates

    Science.gov (United States)

    Barranco, M.; Guilleumas, M.; Hernández, E. S.; Mayol, R.; Pi, M.; Szybisz, L.

    2004-08-01

    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.

  7. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  8. Finite-size effects in the spectrum of the OSp(3|2 superspin chain

    Directory of Open Access Journals (Sweden)

    Holger Frahm

    2015-05-01

    Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  9. Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain

    Science.gov (United States)

    Frahm, Holger; Martins, Márcio J.

    2015-05-01

    The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.

  10. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.

    Science.gov (United States)

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne

    2014-02-18

    A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

  11. Equilibrium states of a test particle coupled to finite-size heat baths.

    Science.gov (United States)

    Wei, Qun; Smith, S Taylor; Onofrio, Roberto

    2009-03-01

    We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constrains the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques and for engineering reservoirs capable of mitigating the back action on a mechanical system.

  12. Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum

    CERN Document Server

    Yu, Zongfu; Zhang, Torbjorn Skauli Gang; Wang, Hailiang; Fan, Shanhui

    2012-01-01

    The understanding of far-field thermal radiation had directly led to the discovery of quantum mechanics a century ago, and is of great current practical importance for applications in energy conversions, radiative cooling, and thermal control. It is commonly assumed that for any macroscopic thermal emitter, its maximal emitted power within any given frequency range cannot exceed that of a blackbody with the same surface area. In contrast to such conventional wisdom, here we propose, and experimentally demonstrate, that the emitted power from a finite size macroscopic blackbody to far field vacuum can be significantly enhanced, within the constraint of the second law of thermodynamics. To achieve such an enhancement, the thermal body needs to have internal electromagnetic density of states (DOS) greater than that of vacuum, and one needs to provide a thermal extraction mechanism to enable the contributions of all internal modes to far field radiation.

  13. Defect Formation in Superconducting Rings: External Fields and Finite-Size Effects

    Science.gov (United States)

    Weir, D. J.; Monaco, R.; Rivers, R. J.

    2013-06-01

    Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practise, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.

  14. Simple rules govern finite-size effects in scale-free networks

    CERN Document Server

    Cuenda, Sara

    2011-01-01

    We give an intuitive though general explanation of the finite-size effect in scale-free networks in terms of the degree distribution of the starting network. This result clarifies the relevance of the starting network in the final degree distribution. We use two different approaches: the deterministic mean-field approximation used by Barab\\'asi and Albert (but taking into account the nodes of the starting network), and the probability distribution of the degree of each node, which considers the stochastic process. Numerical simulations show that the accuracy of the predictions of the mean-field approximation depend on the contribution of the dispersion in the final distribution. The results in terms of the probability distribution of the degree of each node are very accurate when compared to numerical simulations. The analysis of the standard deviation of the degree distribution allows us to assess the influence of the starting core when fitting the model to real data.

  15. Mode splitting in high-index-contrast grating with mini-scale finite size.

    Science.gov (United States)

    Wang, Zhixin; Ni, Liangfu; Zhang, Haiyang; Zhang, Hanxing; Jin, Jicheng; Peng, Chao; Hu, Weiwei

    2016-08-15

    The mode-splitting phenomenon within finite-size, mini-scale high-index-contrast gratings (HCGs) has been investigated theoretically and experimentally. The high-Q resonance splits into a series of in-plane modes due to the confinement of boundaries but can still survive even on a mini-scale footprint. Q factors up to ∼3300 and ∼2200 have been observed for the HCGs with footprints that are only 55  μm×300  μm and 27.5  μm×300  μm, which would be promising for realizing optical communication and sensing applications with compact footprint.

  16. Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape

    CERN Document Server

    Kim, Oleksiy S

    2015-01-01

    The problem of the lower bound on the radiation Q for an arbitrarily shaped finite size antenna of non-zero volume is formulated in terms of equivalent electric and magnetic currents densities distributed on a closed surface coinciding with antenna exterior surface. When these equivalent currents radiate in free space, the magnetic current augments the electric current, so that the fields interior to the surface vanish. In contrast to approaches based solely on electric currents, the proposed technique ensures no stored energy interior to the antenna exterior surface, and thus, allows the fundamental lower bound on Q to be determined. To facilitate the computation of the bound, new expressions for the stored energy, radiated power, and Q of coupled electric and magnetic source currents in free space are derived.

  17. Renormalization-group theory for finite-size scaling in extreme statistics.

    Science.gov (United States)

    Györgyi, G; Moloney, N R; Ozogány, K; Rácz, Z; Droz, M

    2010-04-01

    We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.

  18. Finite size corrections to scaling of the formation probabilities and the Casimir effect in the conformal field theories

    Science.gov (United States)

    Rajabpour, M. A.

    2016-12-01

    We calculate formation probabilities of the ground state of the finite size quantum critical chains using conformal field theory (CFT) techniques. In particular, we calculate the formation probability of one interval in the finite open chain and also formation probability of two disjoint intervals in a finite periodic system. The presented formulas can be also interpreted as the Casimir energy of needles in particular geometries. We numerically check the validity of the exact CFT results in the case of the transverse field Ising chain.

  19. Finite cell-size effects on protein variability in Turing patterned tissues.

    Science.gov (United States)

    Buceta, Javier

    2017-08-01

    Herein we present a framework to characterize different sources of protein expression variability in Turing patterned tissues. In this context, we introduce the concept of granular noise to account for the unavoidable fluctuations due to finite cell-size effects and show that the nearest-neighbours autocorrelation function provides the means to measure it. To test our findings, we perform in silico experiments of growing tissues driven by a generic activator-inhibitor dynamics. Our results show that the relative importance of different sources of noise depends on the ratio between the characteristic size of cells and that of the pattern domains and on the ratio between the pattern amplitude and the effective intensity of the biochemical fluctuations. Importantly, our framework provides the tools to measure and distinguish different stochastic contributions during patterning: granularity versus biochemical noise. In addition, our analysis identifies the protein species that buffer the stochasticity the best and, consequently, it can help to determine key instructive signals in systems driven by a Turing instability. Altogether, we expect our study to be relevant in developmental processes leading to the formation of periodic patterns in tissues. © 2017 The Author(s).

  20. Modeling of finite-size droplets and particles in multiphase flows

    Directory of Open Access Journals (Sweden)

    Prashant Khare

    2015-08-01

    Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.

  1. Unified approach to thermodynamic Bethe ansatz and finite size corrections for lattice models and field theories

    CERN Document Server

    Destri, C

    1994-01-01

    We present a unified approach to the Thermodynamic Bethe Ansatz (TBA) for magnetic chains and field theories that includes the finite size (and zero temperature) calculations for lattice BA models. In all cases, the free energy follows by quadratures from the solution of a {\\bf single} non-linear integral equation (NLIE). [A system of NLIE appears for nested BA]. We derive the NLIE for: a) the six-vertex model with twisted boundary conditions; b) the XXZ chain in an external magnetic field h_z and c) the sine-Gordon-massive Thirring model (sG-mT) in a periodic box of size \\b \\equiv 1/T using the light-cone approach. This NLIE is solved by iteration in one regime (high T in the XXZ chain and low T in the sG-mT model). In the opposite (conformal) regime, the leading behaviors are obtained in closed form. Higher corrections can be derived from the Riemann-Hilbert form of the NLIE that we present.

  2. The finite, kinematic rupture properties of great-sized earthquakes since 1990

    Science.gov (United States)

    Hayes, Gavin

    2017-01-01

    Here, I present a database of >160 finite fault models for all earthquakes of M 7.5 and above since 1990, created using a consistent modeling approach. The use of a common approach facilitates easier comparisons between models, and reduces uncertainties that arise when comparing models generated by different authors, data sets and modeling techniques.I use this database to verify published scaling relationships, and for the first time show a clear and intriguing relationship between maximum potency (the product of slip and area) and average potency for a given earthquake. This relationship implies that earthquakes do not reach the potential size given by the tectonic load of a fault (sometimes called “moment deficit,” calculated via a plate rate over time since the last earthquake, multiplied by geodetic fault coupling). Instead, average potency (or slip) scales with but is less than maximum potency (dictated by tectonic loading). Importantly, this relationship facilitates a more accurate assessment of maximum earthquake size for a given fault segment, and thus has implications for long-term hazard assessments. The relationship also suggests earthquake cycles may not completely reset after a large earthquake, and thus repeat rates of such events may appear shorter than is expected from tectonic loading. This in turn may help explain the phenomenon of “earthquake super-cycles” observed in some global subduction zones.

  3. Finite Size Scaling and the Universality Class of SU(2) Lattice Gauge Theory

    Science.gov (United States)

    Staniford-Chen, Stuart Gresley

    For a system near a second order phase transition, the correlation length becomes extremely large. This gives rise to much interesting physics such as the existence of critical exponents and the division of physical theories into universality classes. SU(2) lattice gauge theory has such a phase transition at finite temperature and it has been persuasively argued in the literature that it should be in the same universality class as the Ising model in a space with dimensionality one less than the gauge theory. This is in the sense that the effective theory for the SU(2) Wilson lines is universal with the Ising model. This prediction has been checked for d = 3 + 1 SU(2) by comparing the critical exponents, and those checks appear to confirm it to the modest accuracy currently available. However, the theory of finite size scaling predicts a very rich set of objects which should be the same across universality classes. For example, the shape of the graph of various observables against temperature near the transition is universal. Not only that, but whole collections of probability distributions as a function of temperature can be given a scaling form and the shape of this object is universal. I develop a methodology for comparing such sets of distributions. This gives a two dimensional surface for each theory which can then be used in comparisons. I then use this approach and compare the surface for the order parameter in SU(2) with that in phi^4. The visual similarity is very striking. I perform a semi-quantitative error analysis which does not reveal significant differences between the two surfaces. This strengthens the idea that the SU(2) effective line theory is in the Ising universality class. I conclude by discussing the advantages and disadvantages of the method used here.

  4. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...... for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which...

  5. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...... for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which...

  6. Finite-size giant magnons on η-deformed AdS5×S5

    Directory of Open Access Journals (Sweden)

    Changrim Ahn

    2014-10-01

    Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  7. Modeling of beam customization devices in the pencil beam splitting algorithm for heavy charged particle radiotherapy

    OpenAIRE

    Kanematsu, Nobuyuki

    2010-01-01

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter w...

  8. Finite-size effects in Luther-Emery phases of Holstein and Hubbard models

    Science.gov (United States)

    Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.

    2015-12-01

    The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.

  9. Length and temperature dependence of the mechanical properties of finite-size carbyne

    Science.gov (United States)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.

    2017-09-01

    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  10. Finite nuclear size and Lamb shift of p-wave atomic states

    CERN Document Server

    Milstein, A I; Terekhov, I S

    2003-01-01

    We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qualitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a $p_{1/2}$-state starts from $\\alpha\\ln(1/Z\\alpha)$-term, while for $s_{1/2}$-states it starts from $Z\\alpha^2$ term. Here $\\alpha$ is the fine structure constant and $Z$ is the nuclear charge. In the present work we calculate the $\\alpha$-terms for $2p$-states, the result for $2p_{1/2}$-state reads $(8\\alpha/9\\pi)[\\ln(1/(Z\\alpha)^2)+0.710]$. Even more interesting are $p_{3/2}$-states. In this case the ``correction'' is by several orders of magnitude larger than the ``leading'' FNS shift.

  11. Logarithmic finite-size effects on interfacial free energies: Phenomenological theory and Monte Carlo studies

    Science.gov (United States)

    Schmitz, Fabian; Virnau, Peter; Binder, Kurt

    2014-07-01

    The computation of interfacial free energies between coexisting phases (e.g., saturated vapor and liquid) by computer simulation methods is still a challenging problem due to the difficulty of an atomistic identification of an interface and interfacial fluctuations on all length scales. The approach to estimate the interfacial tension from the free-energy excess of a system with interfaces relative to corresponding single-phase systems does not suffer from the first problem but still suffers from the latter. Considering d-dimensional systems with interfacial area Ld -1 and linear dimension Lz in the direction perpendicular to the interface, it is argued that the interfacial fluctuations cause logarithmic finite-size effects of order ln(L)/Ld -1 and order ln(Lz)/Ld -1, in addition to regular corrections (with leading-order const/Ld -1). A phenomenological theory predicts that the prefactors of the logarithmic terms are universal (but depend on the applied boundary conditions and the considered statistical ensemble). The physical origin of these corrections are the translational entropy of the interface as a whole, "domain breathing" (coupling of interfacial fluctuations to the bulk order parameter fluctuations of the coexisting domains), and capillary waves. Using a new variant of the ensemble switch method, interfacial tensions are found from Monte Carlo simulations of d =2 and d =3 Ising models and a Lennard-Jones fluid. The simulation results are fully consistent with the theoretical predictions.

  12. Accounting for Finite Size of Ions in Nanofluidic Channels Using Density Functional Theory

    Science.gov (United States)

    McCallum, Christopher; Gillespie, Dirk; Pennathur, Sumita

    2016-11-01

    The physics of nanofluidic devices are dominated by ion-wall interactions within the electric double layer (EDL). A full understanding of the EDL allows for better exploitation of micro and nanofluidic devices for applications such as biologic separations, desalination, and energy conversion, Although continuum theory is generally used to study the fluidics within these channels, in very confined geometries, high surface charge channels, or significant solute concentration systems, continuum theories such as Poisson-Boltzmann cease to be valid because the finite size of ions is not considered. Density functional theory (DFT) provides an accurate and efficient method for predicting the concentration of ions and the electrostatic potential near a charged wall because it accounts for more complex electrostatic and hard-sphere correlations. This subsequently allows for a better model for ion flux, fluid flow, and current in electrokinetic systems at high surface charge, confined geometries, and concentrated systems. In this work, we present a theoretical approach utilizing DFT to predict unique flow phenomena in nanofluidic, electrokinetic systems. CBET-1402736 from the National Science Foundation.

  13. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  14. Finite-size effects in a metallic multichannel ring with Kondo impurity: Persistent currents and magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Ukrainian Academy of Sciences, 47, Lenin Avenue, 310164, Kharkov (Ukraine); Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)

    1996-12-01

    We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron {Gamma}{sub 8} into two doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy. These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity. {copyright} {ital 1996 The American Physical Society.}

  15. Lasing in dark and bright modes of a finite-sized plasmonic lattice

    Science.gov (United States)

    Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.; Martikainen, J.-P.; Nečada, M.; Moilanen, A. J.; Törmä, P.

    2017-01-01

    Lasing at the nanometre scale promises strong light-matter interactions and ultrafast operation. Plasmonic resonances supported by metallic nanoparticles have extremely small mode volumes and high field enhancements, making them an ideal platform for studying nanoscale lasing. At visible frequencies, however, the applicability of plasmon resonances is limited due to strong ohmic and radiative losses. Intriguingly, plasmonic nanoparticle arrays support non-radiative dark modes that offer longer life-times but are inaccessible to far-field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nm at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.

  16. Finite-Size Scaling of Non-Gaussian Fluctuations Near the QCD Critical Point

    CERN Document Server

    Lacey, Roy A; Magdy, Niseem; Schweid, B; Ajitanand, N N

    2016-01-01

    Finite-Size Scaling (FSS) of moment products from recent STAR measurements of the variance $\\sigma$, skewness $S$ and kurtosis $\\kappa$ of net-proton multiplicity distributions, are reported for a broad range of collision centralities in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) collisions. The products $S\\sigma $ and $\\kappa \\sigma^2 $, which are directly related to the hgher-order baryon number susceptibility ratios $\\chi^{(3)}_B/\\chi^{(2)}_B$ and $\\chi^{(4)}_B/\\chi^{(2)}_B$, show scaling patterns consistent with earlier indications for a second order phase transition at a critical end point (CEP) in the plane of temperature vs. baryon chemical potential ($T,\\mu_B$) of the QCD phase diagram. The resulting scaling functions validate the earlier estimates of $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 95$~MeV for the location of the CEP, and the critical exponents used to assign its 3D Ising model universality class.

  17. MHD flow in a cylindrical vessel of finite size with turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachev, L.P.; Nikitin, N.V.

    1979-01-01

    The hydrodynamic characteristics of flows generated by electromagnetic forces in a cylindrical vessel of finite size, for the case of large values of the hydrodynamic and small values of the magnetic Reynolds numbers have been inadequately analyzed in previous literature, since neither the nonlinear nor the linear theory adequately accounts for secondary flows due to the strong action of boundary layers formed at the end faces of the cylinders at large Reynolds numbers and the results do not agree with experimental data. This paper generalizes the previously more accurate nonlinear scheme of the same authors, the basis for which was the fact that viscosity at large Reynolds numbers is manifest only close to solid surfaces. Two cases are treated: crossed fields and a rotating magnetic field in the cylindrical vessel, where the entire flow region is broken down into an inviscid core and end face boundary layers. It is assumed that the velocity distribution near the end surfaces obeys an empirical one-seventh power law, which is applicable to turbulent liquid flow in a tube in a range of Re = 3 x 10/sup 3/ to 10/sup 5/ simple engineering formulas are derived for the angular velocity, which exhibit good agreement with the experimental data for Hartmann numbers less than 10. The procedure can be generalized to the case of a rotating magnetic field having several pairs of poles. 6 references, 2 figures.

  18. Tuning surface reactivity by finite size effects: role of orbital symmetry in the d - band model

    Science.gov (United States)

    Snijders, Paul; Yin, Xiangshi; Cooper, Valentino; Weitering, Hanno

    Catalytic activity depends sensitively on the strength of the interactions between reactant molecules and catalyst surface: too weak and the catalyst cannot capture enough molecules to react; too strong and the reaction products do not desorb, blocking further reactions. The ability to control the binding strength of molecules to metal surfaces is thus fundamental to the design of efficient and selective catalysts. Catalyst design often relies on increasing the interaction strength on relatively non-reactive materials by introducing active sites. Here, we present a complementary approach: we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time. While bulk Pd(111) is reactive toward oxygen, we find that Pd films thinner than 6 atom layers are surprisingly inert to oxidation. This observation can be explained with the d-band model only when it is applied to the orbitals directly involved in the bonding. The insight into orbital specific contributions to surface reactivity could be useful in the design of catalysts. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  19. Simulation of finite size particles in turbulent flows using entropic lattice boltzmann method

    Science.gov (United States)

    Gupta, Abhineet; Clercx, Herman J. H.; Toschi, Federico

    2016-11-01

    Particle-laden turbulent flows occur in variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we will present results on the development of numerical methods, based on the Lattice Boltzmann method, suitable for the study of suspensions of finite-size particles under turbulent flow conditions and with varying geometrical complexity. The turbulent flow is modeled by an entropic lattice Boltzmann method, and the interaction between particles and carrier fluid is modeled using bounce back rule. Direct contact and lubrication force models for particle-particle interactions and particle-wall interaction are taken into account to allow for a full four-way coupled interaction. The accuracy and robustness of the method is discussed by validating velocity profile in turbulent pipe flow, sedimentation velocity of spheres in duct flow and resistance functions of approaching particles. Results show that the velocity profiles and turbulence statistics can be significantly altered by the presence of the dispersed solid phase. The author is supported by Shell-NWO computational sciences for energy research (CSER) Grant (12CSER034).

  20. Finite-size effects and scaling for the thermal QCD deconfinementphase transition within the exact color-singlet partition function

    Energy Technology Data Exchange (ETDEWEB)

    Ladrem, M.; Ait-El-Djoudi, A. [Ecole Normale Superieure-Kouba, Laboratoire de Physique des Particules et Physique Statistique, B.P. 92, Vieux-Kouba, Algiers (Algeria)

    2005-10-01

    We study the finite-size effects for the thermal quantum chromodynamics (QCD) deconfinement phase transition, and use a numerical finite-size scaling analysis to extract the scaling exponents characterizing its scaling behavior when approaching the thermodynamic limit (V{yields}{infinity}). For this, we use a simple model of coexistence of hadronic gas and color-singlet quark gluon plasma (QGP) phases in a finite volume. The color-singlet partition function of the QGP cannot be exactly calculated and is usually derived within the saddle-point approximation. When we try to do calculations with such an approximate color-singlet partition function, a problem arises in the limit of small temperatures and/or volumes VT{sup 3}<<1, requiring additional approximations if we want to carry out calculations. We propose in this work a method for an accurate calculation of any quantity of the finite system, without any approximation. By probing the behavior of some useful thermodynamic response functions on the whole range of temperature, it turns out that, in a finite-size system, all singularities in the thermodynamic limit are smeared out and the transition point is shifted away. A numerical finite-size scaling (FSS) analysis of the obtained data allows us to determine the scaling exponents of the QCD deconfinement phase transition. Our results expressing the equality between their values and the space dimensionality is a consequence of the singularity characterizing a first-order phase transition and agree very well with the predictions of other FSS theoretical approaches to a first-order phase transition and with the results of calculations using Monte Carlo methods in both lattice QCD and statistical physics models. (orig.)

  1. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    Science.gov (United States)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles.

  2. Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures

    DEFF Research Database (Denmark)

    Søndergaard, T.; Tromborg, Bjarne

    2002-01-01

    A full-vectorial integral equation method is presented for calculating near fields and far fields generated by a given distribution of sources located inside finite-sized dielectric structures. Special attention is given to the treatment of the singularity of the dipole source field. A method is ...

  3. The recoil correction to the proton-finite-size contribution to the Lamb shift in muonic hydrogen

    CERN Document Server

    Karshenboim, Savely G; Ivanov, Vladimir G; Shelyuto, Valery A

    2015-01-01

    The Lamb shift in muonic hydrogen was measured some time ago to a high accuracy. The theoretical prediction of this value is very sensitive to the proton-finite-size effects. The proton radius extracted from muonic hydrogen is in contradiction with the results extracted from elastic electron-proton scattering. That creates a certain problem for the interpretation of the results from the muonic hydrogen Lamb shift. For the latter we need also to take into account the two-photon-exchange contribution with the proton finite size involved. The only way to describe it relies on the data from the scattering, which may produce an internal inconsistency of theory. Recently the leading proton-finite-size contribution to the two-photon exchange was found within the external field approximation. The recoil part of the two-photon-exchange has not been considered. Here we revisit calculation of the external-field part and take the recoil correction to the finite-size effects into account.

  4. Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model

    NARCIS (Netherlands)

    Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.

    2010-01-01

    We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due

  5. Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model

    NARCIS (Netherlands)

    Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.

    2010-01-01

    We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due

  6. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

    OpenAIRE

    Chang-Wan Kim; Mai Duc Dai; Kilho Eom

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on...

  7. Finite-size scaling relations for a four-dimensional Ising model on Creutz cellular automatons

    Science.gov (United States)

    Merdan, Z.; Güzelsoy, E.

    2011-06-01

    The four-dimensional Ising model is simulated on Creutz cellular automatons using finite lattices with linear dimensions 4 ≤ L ≤ 8. The temperature variations and finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for 7, 14, and 21 independent simulations. Approximate values for the critical temperature of the infinite lattice of Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without the logarithmic factor), 6.6921(22) (without the logarithmic factor), 6.6909(2) (without the logarithmic factor), 6.6822(13) (with the logarithmic factor), 6.6819(11) (with the logarithmic factor), and 6.6808(8) (with the logarithmic factor) are obtained from the intersection points of the specific heat curves, the Binder parameter curves, and straight line fits of specific heat maxima for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the results, 6.6802(1) and 6.6808(8), are in very good agreement with the results of a series expansion of Tc(∞), 6.6817(15) and 6.6802(2), the dynamic Monte Carlo value Tc(∞) = 6.6803(1), the cluster Monte Carlo value Tc(∞) = 6.680(1), and the Monte Carlo value using the Metropolis-Wolff cluster algorithm Tc(∞) = 6.6802632 ± 5 . 10-5. The average values calculated for the critical exponent of the specific heat are α =- 0.0402(15), - 0.0393(12), - 0.0391(11) with 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the result, α =- 0.0391(11), agrees with the series expansions result, α =- 0.12 ± 0.03 and the Monte Carlo result using the Metropolis-Wolff cluster algorithm, α ≥ 0 ± 0.04. However, α =- 0.0391(11) is inconsistent with the renormalization group prediction of α = 0.

  8. The Kinetic and Equilibrium Cluster Size Distributions of Finite Bond Aggregation Processes

    Science.gov (United States)

    Sherman, Derin Andrew

    Aggregation is a phenomenon central to many natural and synthetic processes. In this thesis, I explore in detail the phenomenon of antibody-induced colloidal aggregation. I use a new and novel system composed of highly charged uniform polystyrene microspheres to which antigens are covalently coupled. Bivalent antibodies in solution bind to the antigens on the spheres' surfaces and crosslink the spheres causing them to aggregate. As such, the bonds which form between the spheres are discrete and rigid. Using a single particle light scattering instrument developed in the Cohen laboratory, I have measured the temporal evolution of the cluster size distribution for the system of spheres and antibodies. The results show that the cluster size distribution exhibits dynamic scaling. Although antigen coated colloidal spheres have been used extensively in the past, the system I use is unique in that the bonds which form between the antibodies and the spheres are fragile making the aggregation process thermodynamically reversible. This effect causes the system to reach equilibrium in a finite amount of time. The classical theory which predicts the equilibrium cluster size distribution for a variety of aggregating systems is known as Flory -Stockmayer theory. Since each monomer possesses several antibodies and several antigens,m the colloidal system is expected to obey the statistics for the Flory A _{f}RB_{g} model where f,ggg 1. In Flory's model, the system is expected to gel. However, I see no evidence of gelation. I am able to resolve this discrepancy using the ideas of Ball and colleagues. I have also developed the theory by which this system may be used to measure the binding affinity between antibodies and antigens. I have used the light scattering instrument to measure the binding affinity between a monoclonal antibody and a number of different antigens covering a large range of binding affinities. I have demonstrated that the instrument is capable of detecting small

  9. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  10. Finite size effects in the presence of a chemical potential: A study in the classical nonlinear O(2) sigma model

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh

    2010-06-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the “worm algorithm.” Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane.

  11. The finite size effect of galaxies on the cosmic virial theorem and the pairwise peculiar velocity dispersions

    CERN Document Server

    Suto, Y; Suto, Yasushi; Jing, Yi-Peng

    1996-01-01

    We discuss the effect of the finite size of galaxies on estimating small-scale relative pairwise peculiar velocity dispersions from the cosmic virial theorem (CVT). Specifically we evaluate the effect by incorporating the finite core radius $r_c$ in the two-point correlation function of mass, i.e. softening $r_s$ on small scales. We analytically obtain the lowest-order correction term for $\\gamma 2$. Compared with the idealistic point-mass approximation ($r_s=r_c=0$), the finite size effect can significantly reduce the small-scale velocity dispersions of galaxies at scales much larger than $r_s$ and $r_c$. Even without considering the finite size of galaxies, nonzero values for $r_c$ are generally expected, for instance, for cold dark matter (CDM) models with a scale-invariant primordial spectrum. For these CDM models, a reasonable force softening $r_s\\le 100 \\hikpc$ would have rather tiny effect. We present the CVT predictions for the small-scale pairwise velocity dispersion in the CDM models normalized by t...

  12. General finite-size effects for zero-entropy states in one-dimensional quantum integrable models

    Science.gov (United States)

    Eliëns, Sebas; Caux, Jean-Sébastien

    2016-12-01

    We present a general derivation of the spectrum of excitations for gapless states of zero entropy density in Bethe ansatz solvable models. Our formalism is valid for an arbitrary choice of bare energy function which is relevant to situations where the Hamiltonian for time evolution differs from the Hamiltonian in a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle and hole excitations, as measured with the time-evolution Hamiltonian, is shown to include additional contributions stemming from the shifts of the Fermi points that may now have finite energy. The finite-size effects are also derived and the connection with conformal field theory discussed. The critical exponents can still be obtained from the finite-size spectrum, however the velocity occurring here differs from the one in the constant Casimir term. The derivation highlights the importance of the phase shifts at the Fermi points for the critical exponents of asymptotes of correlations. We generalize certain results known for the ground state and discuss the relation to the dressed charge (matrix). Finally, we discuss the finite-size corrections in the presence of an additional particle or hole, which are important for dynamical correlation functions.

  13. Dispersion of finite size droplets and solid particles in isotropic turbulence

    Science.gov (United States)

    Rosso, Michele

    Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e. dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel droplets in the combustion chamber of internal combustion engines. However, the physics of the interaction between a dispersed phase and turbulence is not yet fully understood. The objective of this study is to compare the dispersion of deformable finite size droplets with that of solid particles in a turbulent flow in the absence of gravity, by performing Direct Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the order of the Taylor's microscale of turbulence, and the same density ratio to the carrier flow. The solid particle-laden turbulence is simulated by coupling a standard projection method with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space and time without considering particle/particle collisions (two-way coupling). The liquid droplet-laden turbulence is simulated by coupling a variable-density projection method with the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are allowed (four-way coupling). The results presented here show that in isotropic turbulence the dispersion of liquid droplets in a given direction is larger than that of solid particles due to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of the droplets.

  14. No-slip boundary condition in finite-size dissipative particle dynamics

    Science.gov (United States)

    Ranjith, S. Kumar; Patnaik, B. S. V.; Vedantam, Srikanth

    2013-01-01

    Dissipative particle dynamics (DPD) is an efficient, particle based mesoscopic numerical scheme to simulate dynamics of complex fluids and micro-flows, with spatio-temporal scales in the range of micrometers and microseconds. While the traditional DPD method treated particles as point masses, a modified DPD scheme was introduced recently [W. Pan, I.V. Pivkin, G.E. Karniadakis, Single-particle hydrodynamics in DPD: a new formulation, Europhysics Letters 84 (2008) 10012] by including transverse forces between finite sized particles in addition to the central forces of the standard DPD. The capability of a DPD scheme to solve confined wall bounded flows, depends on its ability to model the flow boundaries and effectively impose the classical no-slip boundary condition. Previous simulations with the modified DPD scheme used boundary conditions from the traditional DPD schemes, resorting to the velocity reversal of re-inserted particles which cross the solid wall. In the present work, a new method is proposed to impose no-slip or tunable slip boundary condition by controlling the non-central dissipative components in the modified DPD scheme. The solid wall is modeled in such a way that the fluid particles feel the presence of a continuous wall rather than a few discrete frozen particles as in conventional wall models. The fluid particles interact with the walls using a modified central repulsive potential to reduce the spurious density fluctuations. Several different benchmark problems (Poiseuille flow, lid-driven cavity and flow past circular cylinder) were solved using the new approach to demonstrate its validity.

  15. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2017-04-15

    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  16. Dynamic finite element analysis of third size charpy specimens of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Lansberry, M.R.; Kumar, A.S.; Mueller, G.E. [Univ. of Missouri, Rolla, MO (United States); Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    A 2-D finite element analysis was performed on precracked, one third scale CVN specimens to investigate the sensitivity of model results to key material parameters such as yield strength, failure strain and work hardening characteristics. Calculations were carried out at temperatures of -196{degree}C and 50{degree}C. The dynamic finite element analyses were conducted using ABAQUS/Explicit V5.4. The finite element results were compared to experimental results for the production-scale heat of V-4Cr-4Ti (ANL Heat No. 832665) as a benchmark. Agreement between the finite element model and experimental data was very good at -196{degree}C, whereas at 50{degree}C the model predicted a slightly lower absorbed energy than actually measured.

  17. Finite-size corrections to scaling of the magnetization distribution in the two-dimensional XY model at zero temperature.

    Science.gov (United States)

    Palma, G; Niedermayer, F; Rácz, Z; Riveros, A; Zambrano, D

    2016-08-01

    The zero-temperature, classical XY model on an L×L square lattice is studied by exploring the distribution Φ_{L}(y) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of Φ_{L}(y), and the limit distribution Φ_{L→∞}(y)=Φ_{0}(y) is obtained with high precision. The two leading finite-size corrections Φ_{L}(y)-Φ_{0}(y)≈a_{1}(L)Φ_{1}(y)+a_{2}(L)Φ_{2}(y) are also extracted both from numerics and from analytic calculations. We find that the amplitude a_{1}(L) scales as ln(L/L_{0})/L^{2} and the shape correction function Φ_{1}(y) can be expressed through the low-order derivatives of the limit distribution, Φ_{1}(y)=[yΦ_{0}(y)+Φ_{0}^{'}(y)]^{'}. Thus, Φ_{1}(y) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a_{2}(L)∝1/L^{2} and one finds that a_{2}Φ_{2}(y)≪a_{1}Φ_{1}(y) already for small system size (L>10). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the XY model at low temperatures, including T=0.

  18. Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach

    Science.gov (United States)

    Pustovit, Vitaliy N.; Shahbazyan, Tigran V.

    2006-06-01

    We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.

  19. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals.

    Science.gov (United States)

    Kronik, Leeor; Stein, Tamar; Refaely-Abramson, Sivan; Baer, Roi

    2012-05-08

    Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview

  20. Exact solution for the inhomogeneous Dicke model in the canonical ensemble: Thermodynamical limit and finite-size corrections

    Energy Technology Data Exchange (ETDEWEB)

    Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)

    2017-06-15

    We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.

  1. Exact solution for the inhomogeneous Dicke model in the canonical ensemble: Thermodynamical limit and finite-size corrections

    Directory of Open Access Journals (Sweden)

    W.V. Pogosov

    2017-06-01

    Full Text Available We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states. In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.

  2. Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process

    Science.gov (United States)

    Derrida, Bernard; Retaux, Martin

    2013-09-01

    The symmetric simple exclusion process is one of the simplest out-of-equilibrium systems for which the steady state is known. Its large deviation functional of the density has been computed in the past both by microscopic and macroscopic approaches. Here we obtain the leading finite size correction to this large deviation functional. The result is compared to the similar corrections for equilibrium systems.

  3. Some current problems in perovskite nano-ferroelectrics and multiferroics: kinetically-limited systems of finite lateral size

    Science.gov (United States)

    Scott, James F.; Schilling, Alina; Rowley, S. E.; Gregg, J. Marty

    2015-06-01

    We describe some unsolved problems of current interest; these involve quantum critical points in ferroelectrics and problems which are not amenable to the usual density functional theory, nor to classical Landau free energy approaches (they are kinetically limited), nor even to the Landau-Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter) because they are dominated by finite aperiodic boundary conditions.

  4. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  5. Finite size properties of staggered U{sub q}[sl(2{vert_bar}1)] superspin chains

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany); Martins, Marcio J. [Departamento de Fisica, Universidade Federal de Sao Carlos, C.P. 676, 13565-905 Sao Carlos (Brazil)

    2011-06-01

    Based on the exact solution of the eigenvalue problem for the U{sub q}[sl(2{vert_bar}1)] vertex model built from alternating three-dimensional fundamental and dual representations by means of the algebraic Bethe ansatz we investigate the ground state and low energy excitations of the corresponding mixed superspin chain for deformation parameter q=exp(-i{gamma}/2). The model has a line of critical points with central charge c=0 and continua of conformal dimensions grouped into sectors with {gamma}-dependent lower edges for 0{<=}{gamma}<{pi}/2. The finite size scaling behavior is consistent with a low energy effective theory consisting of one compact and one non-compact bosonic degree of freedom. In the 'ferromagnetic' regime {pi}<{gamma}{<=}2{pi} the critical theory has c=-1 with exponents varying continuously with the deformation parameter. Spin and charge degrees of freedom are separated in the finite size spectrum which coincides with that of the U{sub q}[osp(2{vert_bar}2)] spin chain. In the intermediate regime {pi}/2<{gamma}<{pi} the finite size scaling of the ground state energy depends on the deformation parameter.

  6. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.

    Science.gov (United States)

    Izumida, Yuki; Okuda, Koji

    2014-05-01

    We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.

  7. Comparison of magnetic field uniformities for discretized and finite-sized standard $\\cos\\theta$, solenoidal, and spherical coils

    CERN Document Server

    Nouri, N

    2013-01-01

    A significant challenge for experiments requiring a highly uniform magnetic field concerns the identification and design of a discretized and finite-sized magnetic field coil of minimal size. In this work we compare calculations of the magnetic field uniformities and field gradients for three different standard (i.e., non-optimized) types of coils: $\\cos\\theta$, solenoidal, and spherical coils. For an experiment with a particular requirement on either the field uniformity or the field gradient, we show that the volume required by a spherical coil form which satisfies these requirements can be significantly less than the volumes required by $\\cos\\theta$ and solenoidal coil forms.

  8. Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry

    Science.gov (United States)

    Lopes Cardozo, David; Holdsworth, Peter C. W.

    2016-04-01

    The magnetization probability density in d  =  2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.

  9. Finite-particle tracking reveals submicroscopic-size changes of mitochondria during transport in mitral cell dendrites

    Science.gov (United States)

    Gennerich, Arne; Schild, Detlev

    2006-03-01

    The mechanisms of molecular motor regulation during bidirectional organelle transport are still uncertain. There is, for instance, the unsettled question of whether opposing motor proteins can be engaged in a tug-of-war. Clearly, any non-synchronous activation of the molecular motors of one cargo can principally lead to changes in the cargo's shape and size; the cargo's size and shape parameters would certainly be observables of such changes. We therefore set out to measure position, shape and size parameters of fluorescent mitochondria (during their transport) in dendrites of cultured neurons using a finite-particle tracking algorithm. Our data clearly show transport-related submicroscopic-size changes of mitochondria. The observed displacements of the mitochondrial front and rear ends are consistent with a model in which microtubule plus- and minus-end-directed motor proteins or motors of the same type but moving along anti-parallel microtubules are often out-of-phase and occasionally engaged in a tug-of-war. Mostly the leading and trailing ends of mitochondria undergo similar characteristic movements but with a substantial time delay between the displacements of both ends, a feature reminiscent of an inchworm-like motility mechanism. More generally, we demonstrate that observing the position, shape and size of actively transported finite objects such as mitochondria can yield information on organelle transport that is generally not accessible by tracking the organelles' centroid alone.

  10. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.

    2002-01-01

    Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number of ele...

  11. Knudsen Diffusion in finite-size channels from a forst-passage point of view.

    NARCIS (Netherlands)

    Dammers, A.J.; Coppens, M.O.

    2012-01-01

    We studied the distribution of molecular hits on the wall of a finite cylindrical channel in the Knudsen regime. Particles entered the channel and either returned to the entrance or were transmitted to the opposite channel end. Using a first-passage approach we derived expressions for the spatial di

  12. Electronic states in crystals of finite size quantum confinement of bloch waves

    CERN Document Server

    Ren, Shang Yuan

    2017-01-01

    This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...

  13. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    Science.gov (United States)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-08-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  14. Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions

    Science.gov (United States)

    Degrand, Thomas

    2011-12-01

    I carry out a finite-size scaling study of the correlation length in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, using recent data published by Fodor, Holland, Kuti, Nógradi and Schroeder [Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B 703, 348 (2011).PYLBAJ0370-269310.1016/j.physletb.2011.07.037]. I make the assumption that the system is conformal in the zero-mass, infinite volume limit, that scaling is violated by both nonzero fermion mass and by finite volume, and that the scaling function in each channel is determined self-consistently by the data. From several different observables I extract a common exponent for the scaling of the correlation length ξ with the fermion mass mq, ξ˜mq-1/ym with ym˜1.35. Shortcomings of the analysis are discussed.

  15. Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method

    Science.gov (United States)

    Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia

    2016-11-01

    Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.

  16. Dynamic finite element modeling of the effects of size on the upper shelf energy of pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Sidener, S.E. [Missouri Univ., Rolla, MO (United States); Kumar, A.S. [Missouri Univ., Rolla, MO (United States); Oglesby, D.B. [Missouri Univ., Rolla, MO (United States); Schubert, L.E. [Pacific Northwest Lab., Richland, WA (United States); Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Rosinski, S.T. [Electric Power Research Inst., Inc. (EPRI), Charlotte, NC (United States)

    1996-12-01

    Dynamic finite element modeling (FEM) of the fracture behavior of fatigue-precracked Charpy specimens was performed to determine the effect of single variable changes in ligament size, width, span, and thickness on the upper shelf energy. A tensile fracture-strain based method for modeling crack initiation and propagation was used. It was found that the upper shelf energy of precracked specimens (USE{sub p}) is proportional to b{sup n}, where b is ligament size and n varies from about 1.6 for subsize to 1.9 for full size specimens. The USE{sub p} was found to be proportional to (width){sup 2.5}. The dependence on span was found to be non-linear. The dependence on thickness was found to be linear for all cases studied. Some of the data from the FEM analysis were compared with experimental data and were found to be in reasonable agreement. (orig.).

  17. Finite element modeling of wall-loss sizing in a steam generator tube using a pulsed eddy current probe

    Science.gov (United States)

    Babbar, V. K.; Lepine, B.; Buck, J.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2015-03-01

    Inspection of steam generator (SG) tubes by conventional eddy current may, in general, involve analysis of indications from volumetric wall loss, cracks, fouling and support-plate degradation; however, it may be difficult to size or quantify effects from support-to-tube gap and tube tilt, especially in the presence of support plates. Pulsed eddy current (PEC) technology is being developed to investigate such complex tube and flaw geometries. The present work employs finite element modeling to investigate the effectiveness of PEC in identifying and sizing the outer diameter wall-loss in SG tubes. The signals analyzed using a modified principal components analysis (PCA) method reveal the potential success of a PEC-PCA combination to produce scores that can be used to size the wall-loss in the presence of support plates. The modeling results are in good agreement with experimental observations.

  18. Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data

    Science.gov (United States)

    Palhares, L. F.; Fraga, E. S.

    2012-07-01

    We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.

  19. Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data

    Energy Technology Data Exchange (ETDEWEB)

    Palhares, L. F., E-mail: leticia@if.ufrj.br [CEA Saclay, Institut de Physique Theorique (France); Fraga, E. S., E-mail: fraga@if.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil)

    2012-07-15

    We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.

  20. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium

    Directory of Open Access Journals (Sweden)

    Sebastián Bustingorry

    2010-02-01

    Full Text Available We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning. Received: 20 October 2010, Accepted: 1 December 2010; Edited by:  A. Vindigni; Reviewed by: A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; DOI: 10.4279/PIP.020008

  2. Finite-size scaling in Ising-like systems with quenched random fields: evidence of hyperscaling violation.

    Science.gov (United States)

    Vink, R L C; Fischer, T; Binder, K

    2010-11-01

    In systems belonging to the universality class of the random field Ising model, the standard hyperscaling relation between critical exponents does not hold, but is replaced with a modified hyperscaling relation. As a result, standard formulations of finite-size scaling near critical points break down. In this work, the consequences of modified hyperscaling are analyzed in detail. The most striking outcome is that the free-energy cost ΔF of interface formation at the critical point is no longer a universal constant, but instead increases as a power law with system size, ΔF∝L(θ), with θ as the violation of hyperscaling critical exponent and L as the linear extension of the system. This modified behavior facilitates a number of numerical approaches that can be used to locate critical points in random field systems from finite-size simulation data. We test and confirm the approaches on two random field systems in three dimensions, namely, the random field Ising model and the demixing transition in the Widom-Rowlinson fluid with quenched obstacles.

  3. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  4. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

    Science.gov (United States)

    Pan, Xue; Chen, Li-Zhu; Wu, Yuan-Fang

    2016-09-01

    The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments. Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the temperature at which the cumulant changes sign. Supported by Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University for Doctor (2016RC004), Major State Basic Research Development Program of China (2014CB845402) and National Natural Science Foundation of China (11405088, 11221504)

  5. Interface localization-delocalization transition in a symmetric polymer blend: A finite-size scaling Monte Carlo study

    Science.gov (United States)

    Müller, M.; Binder, K.

    2001-02-01

    Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e., the left wall attracts the A component of the mixture with the same strength as the right wall does the B component, and this gives rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localization-delocalization transition, and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis φ=1/2 of the phase diagram, and for D~2Rg we encounter a tricritical point. For an even smaller film thickness the interface localization-delocalization transition is second order, and we find a single critical point at φ=1/2. Measuring the probability distribution of the interface position, we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in the framework of a microscopic model.

  6. Interface localization-delocalization transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study.

    Science.gov (United States)

    Müller, M; Binder, K

    2001-02-01

    Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e., the left wall attracts the A component of the mixture with the same strength as the right wall does the B component, and this gives rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localization-delocalization transition, and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis straight phi=1/2 of the phase diagram, and for D approximately 2R(g) we encounter a tricritical point. For an even smaller film thickness the interface localization-delocalization transition is second order, and we find a single critical point at straight phi=1/2. Measuring the probability distribution of the interface position, we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in the framework of a microscopic model.

  7. On controlling the electronic states of shallow donors using a finite-size metal gate

    Energy Technology Data Exchange (ETDEWEB)

    Levchuk, E. A., E-mail: liauchuk@bsu.by; Makarenko, L. F. [Belarusian State University (Belarus)

    2016-01-15

    The effect of an external electric field on the states of a shallow donor near a semiconductor surface is numerically simulated. A disk-shaped metal gate is considered as an electric-field source. The wavefunctions and energies of bound states are determined by the finite-element method. The critical characteristics of electron relocation between the donor and gate are determined for various gate diameters and boundary conditions, taking into account dielectric mismatch. The empirical dependences of these characteristics on the geometrical parameters and semiconductor properties are obtained. A simple trial function is proposed, which can be used to calculate the critical parameters using the Ritz variational method.

  8. Finite-size effect on the Raman-active modes of double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sbai, K [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Rahmani, A [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Chadli, H [Equipe de Physique Informatique et Modelisation des Systemes, Universite MY Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Sauvajol, J-L [Laboratoire des Colloides, Verres et Nanomateriaux (UMR CNRS 5587), Universite Montpellier II, 34095 Montpellier Cedex 5 (France)

    2008-01-09

    The dependence of the breathing-like phonon modes (BLM) and tangential-like phonon modes (TLM) of individual, finite and infinite bundles of double-walled carbon nanotubes (DWCNTs) as a function of the relative lengths of the inner (L{sub i}) and outer (L{sub o}) tubes is calculated by using the spectral moments method in the framework of the bond-polarization theory. Depending on the relative lengths of the inner (L{sub i}) and outer (L{sub o}) tubes, additional modes are evidenced in the BLM region. These modes must be considered in the analysis of the experimental data.

  9. Finite size scaling study of dynamical phase transitions in two dimensional models: ferromagnet, symmetric and non symmetric spin glasses

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.U.; Derrida, B.

    1988-10-01

    We study the time evolution of two configurations submitted to the same thermal noise for several two dimensional models (Ising ferromagnet, symmetric spin glass, non symmetric spin glass). For all these models, we find a non zero critical temperature above which the two configurations always meet. Using finite size scaling ideas, we determine for these three models this dynamical phase transition and some of the critical exponents. For the ferromagnet, the transition T/sub c/ approx. = 2.25 coincides with the Curie temperature whereas for the two spin glass models +- J distribution of bonds) we obtain T/sub c/ approx. = 1.5-1.7.

  10. Finite size dependence of scaling functions of the three dimensional O(4) model in an external field

    CERN Document Server

    Engels, J

    2014-01-01

    We calculate universal finite size scaling functions for the order parameter and the longitudinal susceptibility of the three-dimensional O(4) model. The phase transition of this model is supposed to be in the same universality class as the chiral transition of two-flavor QCD. The scaling functions serve as a testing device for QCD simulations on small lattices, where, for example, pseudocritical temperatures are difficult to determine. In addition, we have improved the infinite volume limit parametrization of the scaling functions by using newly generated high statistics data for the 3d O(4) model in the high temperature region on an L=120 lattice.

  11. Finite-size effect of \\eta-deformed AdS_5 x S^5 at strong coupling

    CERN Document Server

    Ahn, Changrim

    2016-01-01

    We compute Luscher corrections for a giant magnon in the \\eta-deformed (AdS_5\\times S^5)_{\\eta} using the su(2|2)_q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2)_q-invariant S-matrix is describing world-sheet excitations of the \\eta-deformed background.

  12. Computing a Finite Size Representation of the Set of Approximate Solutions of an MOP

    CERN Document Server

    Schuetze, Oliver; Tantar, Emilia; Talbi, El-Ghazali

    2008-01-01

    Recently, a framework for the approximation of the entire set of $\\epsilon$-efficient solutions (denote by $E_\\epsilon$) of a multi-objective optimization problem with stochastic search algorithms has been proposed. It was proven that such an algorithm produces -- under mild assumptions on the process to generate new candidate solutions --a sequence of archives which converges to $E_{\\epsilon}$ in the limit and in the probabilistic sense. The result, though satisfactory for most discrete MOPs, is at least from the practical viewpoint not sufficient for continuous models: in this case, the set of approximate solutions typically forms an $n$-dimensional object, where $n$ denotes the dimension of the parameter space, and thus, it may come to perfomance problems since in practise one has to cope with a finite archive. Here we focus on obtaining finite and tight approximations of $E_\\epsilon$, the latter measured by the Hausdorff distance. We propose and investigate a novel archiving strategy theoretically and emp...

  13. Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables

    Science.gov (United States)

    Guijarro, G.; Solís, M. A.

    2016-05-01

    The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig-Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.

  14. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects.

    Science.gov (United States)

    Vörtler, Horst L; Schäfer, Katja; Smith, William R

    2008-04-17

    We study the simulation cell size dependence of chemical potential isotherms in subcritical square-well fluids by means of series of canonical ensemble Monte Carlo simulations with increasing numbers of particles, for both three-dimensional bulk systems and two-dimensional planar layers, using Widom-like particle insertion methods. By estimating the corresponding vapor/liquid coexistence densities using a Maxwell-like equal area rule for the subcritical chemical potential isotherms, we are able to study the influence of system size not only on chemical potentials but also on the coexistence properties. The chemical potential versus density isotherms show van der Waals-like loops in the subcritical vapor/liquid coexistence range that exhibit distinct finite size effects for both two- and three-dimensional fluids. Generally, in agreement with recent findings for related studies of Lennard-Jones fluids, the loops shrink with increasing number of particles. In contrast to the subcritical isotherms themselves, the equilibrium vapor/liquid densities show only a weak system size dependence and agree quantitatively with the best-known literature values for three-dimensional fluids. This allows our approach to be used to accurately predict the phase coexistence properties. Our resulting phase equilibrium results for two-dimensional square-well fluids are new. Knowledge concerning finite size effects of square-well systems is important not only for the simulation of thermodynamic properties of simple fluids, but also for the simulation of models of more complex fluids (such as aqueous or polymer fluids) involving square-well interactions.

  15. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆

    2002-01-01

    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  16. Shadowing growth of three-dimensional nanostructures on finite size seeds

    Science.gov (United States)

    Ye, D.-X.; Ellison, C. L.; Lim, B.-K.; Lu, T.-M.

    2008-05-01

    We reported the fabrication of silicon (Si) nanorods and springs on arrays of seeds with different diameters by using glancing angle deposition technique. Single nanorod is possible to grow on individual seeds if the size of the seeds is small enough. On large size seeds, however, multiple Si nanorods are observed in experiments. The effects of the size of seeds were studied by using Monte Carlo simulations based on a ballistic aggregation model. The simulation model also includes ballistic sticking, shadowing, and surface mobility. Both of the top-view and cross-sectional images of the nanostructures were generated in simulation and compared to the images of experimental samples taken by scanning electron microscopy. We also investigated the effect of surface diffusion on the formation of nanostructures. In our experiments, no separate rods formed when the surface mobility is sufficiently high, such as the deposition of cobalt on the large size seeds.

  17. Precision of recombination frequency estimates after random intermating with finite population sizes.

    Science.gov (United States)

    Frisch, Matthias; Melchinger, Albrecht E

    2008-01-01

    Random intermating of F2 populations has been suggested for obtaining precise estimates of recombination frequencies between tightly linked loci. In a simulation study, sampling effects due to small population sizes in the intermating generations were found to abolish the advantages of random intermating that were reported in previous theoretical studies considering an infinite population size. We propose a mating scheme for intermating with planned crosses that yields more precise estimates than those under random intermating.

  18. Kinetic simulation of the electron-cyclotron maser instability: effect of a finite source size

    CERN Document Server

    Kuznetsov, A A

    2012-01-01

    The electron-cyclotron maser instability is widespread in the Universe, producing, e.g., radio emission of the magnetized planets and cool substellar objects. Diagnosing the parameters of astrophysical radio sources requires comprehensive nonlinear simulations of the radiation process. We simulate the electron-cyclotron maser instability in a very low-beta plasma. The model used takes into account the radiation escape from the source region and the particle flow through this region. We developed a kinetic code to simulate the time evolution of an electron distribution in a radio emission source. The model includes the terms describing the particle injection to and escape from the emission source region. The spatial escape of the emission from the source is taken into account by using a finite amplification time. The unstable electron distribution of the horseshoe type is considered. A number of simulations were performed for different parameter sets typical of the magnetospheres of planets and ultracool dwarf...

  19. Finite-size corrections for confined polymers in the extended de Gennes regime

    Science.gov (United States)

    Smithe, T. St Clere; Iarko, V.; Muralidhar, A.; Dorfman, K. D.; Mehlig, B.

    2015-01-01

    Theoretical results for the extension of a polymer confined to a channel are usually derived in the limit of infinite contour length. But experimental studies and simulations of DNA molecules confined to nanochannels are not necessarily in this asymptotic limit. We calculate the statistics of the span and the end-to-end distance of a semiflexible polymer of finite length in the extended de Gennes regime, exploiting the fact that the problem can be mapped to a one-dimensional weakly self-avoiding random walk. The results thus obtained compare favourably with pruned-enriched Rosenbluth method (PERM) simulations of a three-dimensional discrete wormlike chain model of DNA confined in a nanochannel. We discuss the implications for experimental studies of linear λ-DNA confined to nanochannels at the high ionic strengths used in many experiments. PMID:26764718

  20. Collective spin excitation in finite size array of patterned magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Piao, H.-G. [College of Science, China Three Gorges University, Yichang 443002 (China); Shim, J.-H. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Pan, L. [College of Science, China Three Gorges University, Yichang 443002 (China); Yu, S.-C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, D.-H., E-mail: donghyun@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2016-04-01

    We explore further details of the collectively excited spin wave mode in finite arrays of elliptically shaped ferromagnetic nanoelements as two-dimensional magnonic crystals by means of micromagnetic simulations. Under a pulsed magnetic driving field, collective spin wave modes were intensively investigated with variation of nanoelement dimensions and interelement separation as structural parameters of the magnonic crystal as well as changing the applied bias magnetic field. Via observing and analyzing the dynamic behavior of collective spin wave modes, we have found that the dynamic behavior strongly depends on the bias magnetic field with a quasi-linear dependency. The quasi-linear dependency of spin wave frequency transition can be achieved to a high sensitivity of the pT/Hz level. By modulating the magnonic crystal lattice structures and the bias magnetic field, the spin wave dynamic behavior is tunable which might be a promising property for a future magnonic crystal application and multifunctional sensors.

  1. Exact finite-size corrections for the spanning-tree model under different boundary conditions

    Science.gov (United States)

    Izmailian, N. Sh.; Kenna, R.

    2015-02-01

    We express the partition functions of the spanning tree on finite square lattices under five different sets of boundary conditions in terms of a principal partition function with twisted-boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the logarithm of the partition function for each case. We have also established several groups of identities relating spanning-tree partition functions for the different boundary conditions. We also explain an apparent discrepancy between logarithmic correction terms in the free energy for a two-dimensional spanning-tree model with periodic and free-boundary conditions and conformal field theory predictions. We have obtained corner free energy for the spanning tree under free-boundary conditions in full agreement with conformal field theory predictions.

  2. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Alexander P., E-mail: APPopov@mephi.ru [Department of Molecular Physics, National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Gloria Pini, Maria, E-mail: mariagloria.pini@isc.cnr.it [Istituto dei Sistemi Complessi del CNR (CNR-ISC), Unità di Firenze, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Rettori, Angelo [Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2016-03-15

    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii–Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls–Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain. - Highlights: • A finite-size chain of N classical spins within the XY-chiral model is investigated. • Using a systematic theoretical method, all equilibrium states are calculated for N=10. • The ground state has a non-uniform helical order with unique rotational sense. • Metastable states contain a domain wall whose energy

  3. Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

    Directory of Open Access Journals (Sweden)

    Morteza karimi

    2015-07-01

    Full Text Available In this article, finite difference method (FDM is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. To include the surface effects in the equations, Gurtin-Murdoch continuum elasticity approach has been employed. The effects of surface properties including the surface elasticity, surface residual stress and surface mass density are considered to be the main causes for size-dependent behaviors that arise from the increase in surface-to-volume ratios at smaller scales. Numerical results are presented to demonstrate the difference between the natural frequency obtained by considering the surface effects and that obtained without considering surface properties. It is observed that the effects of surface properties tend to diminish in thicker nanoplates, and vice versa.

  4. When the expansion of finite-size corrections to hydrogen Lamb shift in moments of charge distribution breaks down

    CERN Document Server

    Hagelstein, Franziska

    2015-01-01

    We point out a limitation of the standard way of accounting the finite-size effects, i.e., when the leading $[(Z\\alpha)^4]$ and subleading $[(Z\\alpha)^5]$ contributions to the Lamb shift are given by the mean-square radius and the third Zemach moment of the charge distribution. This limitation may have profound consequences for the interpretation of the "proton size puzzle". We find, for instance, that the de R\\'ujula toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third Zemach moment. Given the formula which does not rely on the radii expansion, we show how tiny (less than a hundredth of percent) changes in the proton electric form factor at a MeV scale would be able to explain the puzzle.

  5. Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot

    Institute of Scientific and Technical Information of China (English)

    Wu Shao-Quan; Wang Shun-Jin; Sun Wei-Li; Yu Wan-Lun

    2004-01-01

    The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility Ximp directly in future experiments.

  6. Finite-size effects in the microscopic structure of a hard-sphere fluid in a narrow cylindrical pore.

    Science.gov (United States)

    Román, F L; White, J A; González, A; Velasco, S

    2006-04-21

    We examine the microscopic structure of a hard-sphere fluid confined to a small cylindrical pore by means of Monte Carlo simulation. In order to analyze finite-size effects, the simulations are carried out in the framework of different statistical mechanics ensembles. We find that the size effects are specially relevant in the canonical ensemble where noticeable differences are found with the results in the grand canonical ensemble (GCE) and the isothermal isobaric ensemble (IIE) which, in most situations, remain very close to the infinite system results. A customary series expansion in terms of fluctuations of either the number of particles (GCE) or the inverse volume (IIE) allows us to connect with the results of the canonical ensemble.

  7. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    Science.gov (United States)

    Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo

    2016-03-01

    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.

  8. The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field

    Science.gov (United States)

    Merdan, Ziya; Kürkçü, Cihan; Öztürk, Mustafa K.

    2014-12-01

    The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ ( ∞ ) = 6 , 680 (1) obtained for h = 0 agrees well with the values T c ( ∞ ) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finite-size scaling relations of | M L ( t ) | and χ L ( t ) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified.

  9. DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction

    CERN Document Server

    Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus

    2013-01-01

    We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...

  10. Particle motion in a periodic driving flow. The role of added mass force and the finite size of particles

    Science.gov (United States)

    Ruiz Chavarria, Gerardo; Lopez Sanchez, Erick Javier

    2016-11-01

    The motion of particles in a fluid is an open problem. The main difficulty arises from the fact that hydrodynamical forces acting on a particle depend on the flow properties. In addition, the form and the size of particles must be taken into account. In this work we present numerical results of the particle transport in a periodic driving flow in a channel flushing into an open domain. To study the transport of particles we solve the equation of motion for a spherical particle in which we include the drag, the gravity, the buoyancy, the added mass and the history force. Additionally we include the corrections for a particle of finite size. For solving this equation a knowledge of the velocity field is required. To obtain the velocity field we solve the Navier Stokes and the continuity equations with a finite volume method. In the flow under study a vorticity dipole and a spanwise vortex are present, both have an important influence on the motion of particles. The dipole enhances displacement of particles because flow between vortices behaves like a jet and the spanwise vortex produces the lifting and deposition of particles from/to the bottom. We observe clustering of particles both into the channel and in the open domain as observed in coastal systems. The authors acknowledge DGAPA-UNAM by support under project PAPIIT IN115315 "Ondas y estructuras coherentes en dinámica de fluidos".

  11. Main transition in the Pink membrane model: finite-size scaling and the influence of surface roughness.

    Science.gov (United States)

    Sadeghi, Sina; Vink, R L C

    2012-06-01

    We consider the main transition in single-component membranes using computer simulations of the Pink model [D. A. Pink et al., Biochemistry 19, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E 47, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multidomain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.

  12. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H.S. [School of Mechanical, Material and Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Singh, H., E-mail: harpreetsingh@iitrpr.ac.in [School of Mechanical, Material and Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Dhindaw, B.K. [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Penang 14300 (Malaysia)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer Magnesium alloy AE42 was friction stir processed under different cooling conditions. Black-Right-Pointing-Pointer Heat flow model was developed using finite difference heat equations. Black-Right-Pointing-Pointer Generalized MATLAB code was developed for solving heat flow model. Black-Right-Pointing-Pointer Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  13. Laser spectroscopy of finite size and covering effects in magnetite nanoparticles

    Science.gov (United States)

    Nikiforov, V. N.; Ignatenko, A. N.; Ivanov, A. V.; Irkhin, V. Yu

    2016-02-01

    Experiments on the impact of the size of magnetite clusters on various magnetic properties (magnetic moment, Curie temperature, blocking temperature etc) have been carried out. The methods of magnetic separation and centrifugation of water suspensions of biocompatible iron oxide nanoparticles (NPs) allow one to produce fractions with diameters of nanoparticles in the range of 4-22 nm. The size of the NPs is controlled by the methods of dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). For the first time the DLS method is applied in real time to control the size during the process of the separation of the NPs in aqueous suspensions. The changes of the size of NPs cause a shift in the Curie temperature and changes in the specific magnetic properties of the iron NPs. The experimental data is interpreted on the basis of Monte Carlo simulations for the classical Heisenberg model with different bulk and surface magnetic moments. It is demonstrated experimentally and by theoretical modeling that the magnetic properties of magnetite NPs are determined not only by their sizes, but also by their surface spin states, while both growing and falling dependences of the magnetic moment (per Fe3O4 formula unit) are possible, depending on the number of magnetic atoms in the nanoparticle. NPs that are both clean and covered with bioresorbable layer clusters have been investigated.

  14. Finite-size effects in a model for plasticity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire; Hansen, Jesper Schmidt

    2016-01-01

    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...... flow stress of the amorphous composite. In particular, the departure from the mixing law shows opposite trends associated to the competing effects of the matrix and the reinforcing particles, respectively. The reinforcing mechanisms and their effects on localization are discussed. Plastic strain...... is shown to gradually concentrate on the weakest band of the system. This correlation of the plastic behavior with the material structure is used to design a simple analytical model. The latter nicely captures reinforcement size effects in (logN/N)1/2, where N is the linear size of the system, observed...

  15. Simultaneous Topology, Shape, and Sizing Optimisation of Plane Trusses with Adaptive Ground Finite Elements Using MOEAs

    Directory of Open Access Journals (Sweden)

    Norapat Noilublao

    2013-01-01

    Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.

  16. Effects of anisotropic diffusion and finite island sizes in homoepitaxial growth Pt on Pt(100)-hex

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Linderoth, T.R.; Jacobsen, Karsten Wedel

    1998-01-01

    size is i=1 and that the mobility of dimers is negligible. Furthermore, an early onset of island coalescence is revealed. From the scaling of the measured saturation island density, N-x similar to(R/h)(chi), where h = v exp(-E-d/k(B)T) is the adatom hopping rate, an effective barrier for diffusion of E......The diffusion, nucleation, and growth of Pt on the hexagonally reconstructed Pt(100)-hex surface are investigated. By means of Scanning Tunneling Microscopy (STM), the positions, sizes, and number densities of monoatomically high, rectangular. reconstructed Pt islands, formed in the submonolayer...... of the determined island positions, it is revealed that the islands are distributed with long/short correlation lengths along, perpendicular to the reconstruction channels. The autocorrelation analysis allows us to quantify the degree of anisotropy in adatom diffusion. Island size distributions obtained...

  17. Modeling of beam customization devices in the pencil beam splitting algorithm for heavy charged particle radiotherapy

    CERN Document Server

    Kanematsu, Nobuyuki

    2010-01-01

    Broad-beam-delivery methods use multiple devices to form a conformal field of heavy charged particles. To overcome an intrinsic difficulty of pencil-beam algorithms in dealing with fine lateral structure, we applied the pencil-beam-splitting algorithm to a beam-customization system conprised of multiple collimators and a range compensating filter. The pencil beams were initially defined at the range compensating filter with angular acceptance correction for the upstream collimators followed by the range compensation effects. They were individually transported with possible splitting near the downstream collimator edges. The dose distribution was calculated and compared with existing experimental data. The penumbra sizes for various collimator edges agreed between them to a submillimeter level. This beam-customization model will complete an accurate and efficient dose-calculation algorithm for treatment planning.

  18. Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters

    DEFF Research Database (Denmark)

    Li, Lin; Larsen, Ask Hjorth; Romero, Nichols A.

    2012-01-01

    In this paper, we use density functional theory (DFT) calculations on highly parallel computing resources to study size-dependent changes in the chemical and electronic properties of platinum (Pt) for a number of fixed freestanding clusters ranging from 13 to 1415 atoms, or 0.7–3.5 nm in diameter...

  19. Martensitic transformations in nanostructured nitinol: Finite element modeling of grain size and distribution effects

    DEFF Research Database (Denmark)

    Liu, Hong-Sheng; Mishnaevsky, Leon

    2013-01-01

    A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation, it was demonstra...... between the coarse and fine grained regions, and expand inside the region with small grains along the shear band direction....

  20. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arribas, A. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)], E-mail: alf@we.lc.ehu.es; Barandiaran, J.M.; Cos, D. de [Departamento de Electricidad y Electronica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)

    2008-07-15

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices.

  1. Finite-size and correlation-induced effects in Mean-field Dynamics

    CERN Document Server

    Touboul, Jonathan

    2010-01-01

    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon a recent approach that includes correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of...

  2. Electric near-field enhancing properties of a finite-size metal conical nano-tip.

    Science.gov (United States)

    Goncharenko, A V; Chang, Hung-Chih; Wang, Juen-Kai

    2007-01-01

    Finite-difference time-domain (FDTD) technique simulations are performed to study the near-field resonance properties of a silver conical nano-tip with a rounded end. Varying the tip geometry, we have computed the electric field distribution, as well as the electric field enhancement factor in the immediate vicinity of the tip apex. The aim of this study is to find optimal geometric parameters of the conical tip, such as its angle and length, in order to maximize the electric field enhancement factor. The increase of the tip length is shown to result in a redshift of the tip resonance wavelength. In addition, some subsidiary (non-dipole) peaks appear for relatively long tips. The peak enhancement values for the small-angle tips increase with the tip length while those for the large-angle ones decrease with it. At the same time, the dependencies of the field enhancement on the cone angle exhibit non-monotonic behavior. In other words, an optimal angle exists allowing one to maximize the electric near field. Finally, the effect of the supporting dielectric medium on the electric field near the tip apex is discussed. In the approximation used, the effect is shown to leave the main conclusions unchanged.

  3. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan); Zhang, Xu [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); Shang, Fulin [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources and pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.

  4. Dynamic finite element modeling of the effects of size on the upper shelf energy of ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sidener, S.E.; Kumar, A.S.; Schubert, L.E.; Hamilton, M.L.; Rosinski, S.T.

    1996-04-01

    Both the fusion and light water reactor program require the use of the subsize specimens to obtain sufficient irradiation data on neutron-induced embrittlement of ferritic steels. While the development of fusion-relevant size effects correlations can proceed analytically, it is more cost-effective at this time to use data currently being obtained on embrittlement of pressure vessel steels to test and expand the correlations developed earlier using fusion relevant steels. Dynamic finite elements modeling of the fracture behavior of fatigue-precracked Charpy Specimens was performed to determine the effect of single variable changes in ligament size, width, span, and thickness on the upper shelf energy. A method based on tensile fracture strain was used for modeling crack initiation and propagation. It was found that the upper shelf energy of precracked specimens (USE{sub p}) is proportional to b{sup n}, where b is ligament size and n varies from about 1.6 for subsize to 1.9 for full size specimens. The USE{sub p} was found to be proportional to width according to W{sup 25}. The dependence on thickness was found to be linear for all cases studied. Some of the data from the FEM analysis were compared with experimental data and were found to be in reasonable agreement.

  5. 3D finite element and experimental study of the size requirements for measuring toughness on tempered martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, P. [Fusion Technology-Materials, CRPP-EPFL, Association EURATOM-Confederation Suisse, 5232 Villigen PSI (Switzerland)], E-mail: pablo.mueller@psi.ch; Spaetig, P. [Fusion Technology-Materials, CRPP-EPFL, Association EURATOM-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2009-06-01

    The fracture properties of the tempered martensitic steel Eurofer97, which is among the main candidates for fusion power plant structural applications, were studied with two sizes of pre-cracked compact specimens (0.35T C(T) and 0.87T C(T)). The fracture toughness behavior was characterized within the temperature range -80 to -40 deg. C. The ductile-to-brittle transition reference temperature, as defined in the ASTM standard E1921, was around T{sub 0} {approx} -75 deg. C. At -60 deg. C, it was found that two sets of toughness data obtained with 0.35T and 0.87T C(T) specimens are not consistent with the size adjustments recommended in the ASTM standard. It was then shown that the underlying reason of this inconsistency is an inappropriate specimen size limit of the ASTM standard for this type of steel. From published fracture toughness data on the tempered martensitic steel F82H steel, similar results were also highlighted. 3D finite elements simulations of the compact specimens were performed to compare the stresses and deformations at the onset of fracture. A local approach model based on the attainment of a critical stress and a critical volume was used to study the constraint loss phenomenon. Within the framework of this model, the strong toughness increase by reducing the specimen size could be satisfactorily explained.

  6. 3D finite element and experimental study of the size requirements for measuring toughness on tempered martensitic steels

    Science.gov (United States)

    Mueller, P.; Spätig, P.

    2009-06-01

    The fracture properties of the tempered martensitic steel Eurofer97, which is among the main candidates for fusion power plant structural applications, were studied with two sizes of pre-cracked compact specimens (0.35T C(T) and 0.87T C(T)). The fracture toughness behavior was characterized within the temperature range -80 to -40 °C. The ductile-to-brittle transition reference temperature, as defined in the ASTM standard E1921, was around T0 ≈ -75 °C. At -60 °C, it was found that two sets of toughness data obtained with 0.35T and 0.87T C(T) specimens are not consistent with the size adjustments recommended in the ASTM standard. It was then shown that the underlying reason of this inconsistency is an inappropriate specimen size limit of the ASTM standard for this type of steel. From published fracture toughness data on the tempered martensitic steel F82H steel, similar results were also highlighted. 3D finite elements simulations of the compact specimens were performed to compare the stresses and deformations at the onset of fracture. A local approach model based on the attainment of a critical stress and a critical volume was used to study the constraint loss phenomenon. Within the framework of this model, the strong toughness increase by reducing the specimen size could be satisfactorily explained.

  7. Alignment modification for pencil eye shields

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.D.; Pla, M.; Podgorsak, E.B. (McGill Univ., Quebec (Canada))

    1989-01-01

    Accurate alignment of pencil beam eye shields to protect the lens of the eye may be made easier by means of a simple modification of existing apparatus. This involves drilling a small hole through the center of the shield to isolate the rayline directed to the lens and fabricating a suitable plug for this hole.

  8. A review of finite size effects in quasi-zero dimensional superconductors.

    Science.gov (United States)

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  9. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    Science.gov (United States)

    Annenkova, E. A.; Kreider, W.; Sapozhnikov, O. A.

    2015-10-01

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  10. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Kreider, W. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States)

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  11. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. II. Molecular dynamics simulations

    Science.gov (United States)

    Mikolasek, Mirko; Nicolazzi, William; Terki, Férial; Molnár, Gábor; Bousseksou, Azzedine

    2017-07-01

    In the first part of this work, an experimental study of the lattice dynamics of spin crossover nanoparticles was performed using the nuclear inelastic scattering (NIS). A size dependence of low energy phonon modes appears under 10 nm, but its origin is not well understood. In this paper, we investigate the phonon confinement effects in the framework of molecular dynamics simulations by modeling three-dimensional nanoparticles considering a cubic lattice with an octahedral pattern. The vibrational density of states is computed and compared to the experiment. The simulations allow one to highlight both the role of the phonon quantification and the role of the size and shape distributions of particles on the extracted parameters leading to a better understanding of the experimental results.

  12. On limitation of quality factor of single mode resonators with finite size

    CERN Document Server

    Ferdous, Fahmida; Vyatchanin, Sergey P; Matsko, Andrey B; Maleki, Lute

    2014-01-01

    Using realistic numerical models we analyze radiative loss of bound and unbound modes of specially designed high-Q whispering gallery and Fabry-Perot cavities of similar size and shape, and find a set of parameters when they can be treated as single mode structures. We show that these cavities have similar properties in spite of their different loss mechanisms. The cavity morphology engineering does not lead to reduction of the resonator quality factor.

  13. Synchronization in scale-free networks: The role of finite-size effects

    Science.gov (United States)

    Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.

    2015-06-01

    Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.

  14. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  15. Finite-size scaling of entanglement entropy in one-dimensional topological models

    Science.gov (United States)

    Wang, Yuting; Gulden, Tobias; Kamenev, Alex

    2017-02-01

    We consider scaling of the entanglement entropy across a topological quantum phase transition for the Kitaev chain model. The change of the topology manifests itself in a subleading term, which scales as L-1 /α with the size of the subsystem L , here α is the Rényi index. This term reveals the scaling function hα(L /ξ ) , where ξ is the correlation length, which is sensitive to the topological index. The scaling function hα(L /ξ ) is independent of model parameters, suggesting some degree of its universality.

  16. Synchronization in Scale Free networks: The role of finite size effects

    CERN Document Server

    Torres, Débora; La Rocca, Cristian E; Braunstein, Lidia A

    2015-01-01

    Synchronization problems in complex networks are very often studied by researchers due to its many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, Scale Free networks with degree distribution $P(k)\\sim k^{-\\lambda}$, are widely used in research since they are ubiquitous in nature and other real systems. In this paper we focus on the surface relaxation growth model in Scale Free networks with $2.5< \\lambda <3$, and study the scaling behavior of the fluctuations, in the steady state, with the system size $N$. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of $N=N^*$ that depends on $\\lambda$: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above $N^{*}$, the fluctuations decrease with $\\lambda$, which means that the synchroniza...

  17. Linked Gauss-Diffusion processes for modeling a finite-size neuronal network.

    Science.gov (United States)

    Carfora, M F; Pirozzi, E

    2017-08-02

    A Leaky Integrate-and-Fire (LIF) model with stochastic current-based linkages is considered to describe the firing activity of neurons interacting in a (2×2)-size feed-forward network. In the subthreshold regime and under the assumption that no more than one spike is exchanged between coupled neurons, the stochastic evolution of the neuronal membrane voltage is subject to random jumps due to interactions in the network. Linked Gauss-Diffusion processes are proposed to describe this dynamics and to provide estimates of the firing probability density of each neuron. To this end, an iterated integral equation-based approach is applied to evaluate numerically the first passage time density of such processes through the firing threshold. Asymptotic approximations of the firing densities of surrounding neurons are used to obtain closed-form expressions for the mean of the involved processes and to simplify the numerical procedure. An extension of the model to an (N×N)-size network is also given. Histograms of firing times obtained by simulations of the LIF dynamics and numerical firings estimates are compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spectral statistics, finite-size scaling and multifractal analysis of quasiperiodic chain with p-wave pairing

    Science.gov (United States)

    Wang, Yucheng; Wang, Yancheng; Chen, Shu

    2016-11-01

    We study the spectral and wavefunction properties of a one-dimensional incommensurate system with p-wave pairing and unveil that the system demonstrates a series of particular properties in its ciritical region. By studying the spectral statistics, we show that the bandwidth distribution and level spacing distribution in the critical region follow inverse power laws, which however break down in the extended and localized regions. By performing a finite-size scaling analysis, we can obtain some critical exponents of the system and find these exponents fulfilling a hyperscaling law in the whole critical region. We also carry out a multifractal analysis on system's wavefuntions by using a box-counting method and unveil the wavefuntions displaying different behaviors in the critical, extended and localized regions.

  19. Photonic band gap in an imperfect atomic diamond lattice: Penetration depth and effects of finite size and vacancies

    Science.gov (United States)

    Antezza, Mauro; Castin, Yvan

    2013-09-01

    We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a Jg=0→Je=1 atomic transition, and for atomic lattices containing up to N≈3×104 atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.

  20. Proton form-factor dependence of the finite-size correction to the Lamb shift in muonic hydrogen

    CERN Document Server

    Carroll, J D; Rafelski, J; Miller, G A

    2011-01-01

    The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, corresponding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.

  1. Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

    Science.gov (United States)

    Sharma, P.; Mišković, Z. L.

    2014-09-01

    We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

  2. Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization

    Science.gov (United States)

    Mehta, Dhagash; Hauenstein, Jonathan D.; Niemerg, Matthew; Simm, Nicholas J.; Stariolo, Daniel A.

    2015-02-01

    Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes (PELs) for several statistical mechanics models, we perform a numerical study of the finite-size 2-spin spherical model using both numerical polynomial homotopy continuation and a reformulation via non-Hermitian matrices. The continuation approach computes all of the complex stationary points of this model while the matrix approach computes the real stationary points. Using these methods, we compute the average number of stationary points while changing the topology of the PEL as well as the variance. Histograms of these stationary points are presented along with an analysis regarding the complex stationary points. This work connects topology trivialization to two different branches of mathematics: algebraic geometry and catastrophe theory, which is fertile ground for further interdisciplinary research.

  3. Reprint of : Finite-size effects on the minimal conductivity in graphene with Rashba spin-orbit coupling

    Science.gov (United States)

    Rakyta, Péter; Oroszlány, László; Kormányos, Andor; Cserti, József

    2016-08-01

    We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin-orbit coupling. The Rashba spin-orbit interaction causes the low-energy bands to undergo trigonal-warping deformation and for energies smaller than the Lifshitz energy, the Fermi circle breaks up into parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of length L and width W within the Landauer-Büttiker formalism in a continuum and in a tight binding model. We show that the minimal conductivity depends on the relative orientation of the sample and the probing electrodes due to the interference of states related to different Dirac cones. We also explore the effects of finite system size and find that the minimal conductivity can be lowered compared to that of an infinitely wide sample.

  4. An Ising iron(ii) chain exhibits a large finite-size energy barrier and "hard" magnetic behaviour.

    Science.gov (United States)

    Deng, Yi-Fei; Han, Tian; Xue, Wei; Hayashi, Naoaki; Kageyama, Hiroshi; Zheng, Yan-Zhen

    2017-01-31

    One-dimensional spin chains featuring strong axial anisotropic magnetism are promising candidates for isolatable and miniatured information storage materials, the so-called single-chain magnets (SCMs). Here we show a mixed azido/carboxylato bridged metamagnetic iron(ii) chain [Fe(N3)2(4-mpc)]n (4-mpc = N-methylpyridinium-4-carboxylate) with a large energy barrier of 150 K, a large remnant magnetization (1.55Nβ) and coercivity (1.7 T at 2 K) for homo-spin SCMs. Heat capacity and Mössbauer spectroscopy studies corroborate the intrinsic nature of SCM behavior regardless of weak interchain magnetic interactions, which lead to the coexistence of metamagnetism but not long-range magnetic ordering. Moreover, detailed magnetic investigations indicate that the system is not only within the "Ising limit" but also in the "finite-size" regime.

  5. Finite size effects and spin transition in ball-milled γ-(FeMn) 30Cu 70 nanostructured alloys

    Science.gov (United States)

    Restrepo, J.; Greneche, J. M.; González, J. M.

    2004-12-01

    Fe 15Mn 15Cu 70 alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Mössbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 Å 3 at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.

  6. Finite size effect of proton-conductivity of amorphous silicate thin films based on mesoscopic fluctuation of glass network.

    Science.gov (United States)

    Aoki, Yoshitaka; Habazaki, Hiroki; Nagata, Shinji; Nakao, Aiko; Kunitake, Toyoki; Yamaguchi, Shu

    2011-03-16

    The finite size effect of proton conductivity of amorphous silicate thin films, a-M(0.1)Si(0.9)O(x) (M = Al, Ga, Hf, Ti, Ta, and La), was investigated. The proton conductivity across films, σ, was measured in dry air by changing the thickness in the range of 10-1000 nm. σ of the films with M = Al, Ga, and Ta was elevated in a power law by decreasing thickness into less than a few hundred nanometers, and the increment was saturated at a thickness of several 10's of nanometers. On the other hand, σ of the films with M = Hf, Ti, and La was not related to the decrease of the thickness in the range of >10 nm. Thickness-dependent conductivity of the former could be numerically simulated by a percolative resistor network model that involves the randomly distributed array of two kinds of resistors R(1) and R(2) (R(1) > R(2)) in the form of a simple cubic-type lattice. High-resolution TEM clarified that a-M(0.1)Si(0.9)O(x) films involved heterogeneous microstructures made of the condensed domain and the surrounding uncondensed matrix due to the fluctuation of glass networks on the nanometer scale. The condensed domain had a wormlike shape with an average length of several 10's of nanometers and performed the role of the proton conduction pathway penetrating through the poorly conducting matrix. It was concluded that the thickness-dependent conductivity could be identical to finite-size scaling of the percolative network of the interconnected domains in the nanometer range.

  7. A model to predict modal radiation by finite-sized sources in semi-infinite isotropic plates

    Science.gov (United States)

    Stévenin, M.; Lhémery, A.; Grondel, S.

    2017-01-01

    Elastic guided wave (GW) propagation is involved in various non-destructive testing (NDT) techniques of plate-like structures. The present paper aims at describing an efficient model to predict the GW field radiated by various sources attached at a distance of the straight boundary of an isotropic plate, a configuration often encountered in typical examinations. Since the interpretation of GW propagation and scattering in plates is made easier by the use of modal description, the model is derived in the classical theoretical framework of modal solutions. Direct radiation by a uniform source of finite size in an isotropic plate can be efficiently modelled by deriving Fraunhofer-like approximation. A rigorous treatment is proposed based upon i) the stationary phase method to describe the field after reflection at a plate edge, ii) on the computation of modal reflection coefficients for an arbitrary incidence relative to the edge and iii) on the Fraunhofer approximation to account for the finite size of the source. The stationary phase method allows us to easily express the amplitude of reflected modes, that is to say, the way waves spread, including reflections involving mode conversions. The computation of modal reflection coefficients for plane GW at oblique incidence was recently treated in the literature and our work for this very problem simply consisted in adapting it to the SAFE calculation we use to compute modal solutions. The overall computation of the direct and reflected contributions is numerically very efficient. Once the total field is computed at a given frequency, the time-dependent field is obtained by simple Fourier synthesis.

  8. Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, F. [Max-Planck-Institute fuer Mikrostrukturphysik (Germany); Romero, A. H. [CINVESTAV, Unidad Queretaro (Mexico); Mejia-Lopez, J., E-mail: jmejia@puc.cl [Facultad de Fisica, Pontificia Universidad Catolica de Chile (Chile); Moran-Lopez, J. L. [Universidad Nacional Autonoma de Mexico, Laboratorio Interdisciplinario, Departamento de Fisica, Facultad de Ciencias (Mexico)

    2013-04-15

    The geometric and the electronic structures, the magnetic moments, and the magnetocrystalline anisotropy energy of bcc-Fe nanowires with z-axis along the (110) direction are calculated in the framework of ab initio theories. In particular, we report a systematic study of free standing nanowires with geometries and sizes ranging from diatomic to 1 nm wide with 31 atoms per unit cell. We found that for nanowires with less than 14 atoms per unit cell, the ground-state structure is body-centered tetragonal. We also calculated the contributions of the dipolar magnetic energy to the magnetic anisotropy energy and found that in some cases, this contribution overcomes the magnetocrystalline part, determining thereby the easy axis direction. These results emphasize the importance and competition between both contributions in low dimensional systems.

  9. Finite-size effect on magnetic properties in iron sulfide nanowire arrays.

    Science.gov (United States)

    Yue, G H; Yan, P X; Wang, L S; Wang, W; Chen, Y Z; Peng, D L

    2008-05-14

    We report the size effect on the magnetic properties in Fe(7)S(8) nanowire arrays. Samples with diameters in the range of 50-200 nm have been prepared by electrodeposition with AAO films. The Mössbauer measurement results show that four parameters (hyperfine fields, isomer shift, quadrupole splitting, full width at half-maximum) increased with decreasing the diameter of the nanowires. The magnetic properties were investigated. The hysteresis loop shape and the magnetization are dependent on the diameter of the nanowires. The thermomagnetic measurements on the as-synthesized nanowire samples and the corresponding bulk display a mixed-type curve and a Weiss-type curve, respectively.

  10. GIFFT: A Fast Solver for Modeling Sources in a Metamaterial Environment of Finite Size

    Energy Technology Data Exchange (ETDEWEB)

    Capolino, F; Basilio, L; Fasenfest, B J; Wilton, D R

    2006-01-23

    Due to the recent explosion of interest in studying the electromagnetic behavior of large (truncated) periodic structures such as phased arrays, frequency-selective surfaces, and metamaterials, there has been a renewed interest in efficiently modeling such structures. Since straightforward numerical analyses of large, finite structures (i.e., explicitly meshing and computing interactions between all mesh elements of the entire structure) involve significant memory storage and computation times, much effort is currently being expended on developing techniques that minimize the high demand on computer resources. One such technique that belongs to the class of fast solvers for large periodic structures is the GIFFT algorithm (Green's function interpolation and FFT), which is first discussed in [1]. This method is a modification of the adaptive integral method (AIM) [2], a technique based on the projection of subdomain basis functions onto a rectangular grid. Like the methods presented in [3]-[4], the GIFFT algorithm is an extension of the AIM method in that it uses basis-function projections onto a rectangular grid through Lagrange interpolating polynomials. The use of a rectangular grid results in a matrix-vector product that is convolutional in form and can thus be evaluated using FFTs. Although our method differs from [3]-[6] in various respects, the primary differences between the AIM approach [2] and the GIFFT method [1] is the latter's use of interpolation to represent the Green's function (GF) and its specialization to periodic structures by taking into account the reusability properties of matrices that arise from interactions between identical cell elements. The present work extends the GIFFT algorithm to allow for a complete numerical analysis of a periodic structure excited by dipole source, as shown in Fig 1. Although GIFFT [1] was originally developed to handle strictly periodic structures, the technique has now been extended to efficiently

  11. Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence

    CERN Document Server

    Uhlmann, Markus

    2016-01-01

    We have performed interface-resolved direct numerical simulations of forced homogeneous-isotropic turbulence in a dilute suspension of spherical particles in the Reynolds number range Re-lambda=115-140. The solid-fluid density ratio was set to 1.5, gravity was set to zero, and two particle diameters were investigated corresponding to approximately 5 and 11 Kolmogorov lengths. Note that these particle sizes are clearly outside the range of validity of the point-particle approximation, as has been shown by Homann & Bec (2010). At the present parameter points the global effect of the particles upon the fluid flow is weak. We observe that the dispersed phase exhibits clustering with moderate intensity. The tendency to cluster, which was quantified in terms of the standard deviation of Voronoi cell volumes, decreases with the particle diameter. We have analyzed the relation between particle locations and the location of intense vortical flow structures. The results do not reveal any significant statistical cor...

  12. Statistical properties of the Green function in finite size for Anderson localization models with multifractal eigenvectors

    Science.gov (United States)

    Monthus, Cécile

    2017-03-01

    For Anderson localization models with multifractal eigenvectors on disordered samples containing N sites, we analyze in a unified framework the consequences for the statistical properties of the Green function. We focus in particular on the imaginary part of the Green function at coinciding points GxxI≤ft(E-\\text{i}η \\right) and study the scaling with the size N of the moments of arbitrary indices q when the broadening follows the scaling η =\\frac{c}{{{N}δ}} . For the standard scaling regime δ =1 , we find in the two limits c\\ll 1 and c\\gg 1 that the moments are governed by the anomalous exponents Δ (q) of individual eigenfunctions, without the assumption of strong correlations between the weights of consecutive eigenstates at the same point. For the non-standard scaling regimes 0function follows some Fréchet distribution in the typical region, while rare events are important to obtain the scaling of the moments. We describe the application to the case of Gaussian multifractality and to the case of linear multifractality.

  13. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  14. A study of dynamic finite size scaling behavior of the scaling functions—calculation of dynamic critical index of Wolff algorithm

    Science.gov (United States)

    Gündüç, Semra; Dilaver, Mehmet; Aydın, Meral; Gündüç, Yiğit

    2005-02-01

    In this work we have studied the dynamic scaling behavior of two scaling functions and we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic finite size scaling of scaling functions opens possibilities for a wide range of applications. As an application we have calculated the dynamic critical exponent (z) of Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial magnetization are chosen in order to avoid complications due to initial magnetization. The observed dynamic finite size scaling behavior during early stages of the Monte Carlo simulation yields z for Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models with vanishing values which are consistent with the values obtained from the autocorrelations. Especially, the vanishing dynamic critical exponent we obtained for d=3 implies that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte Carlo simulations than previously reported.

  15. Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data

    CERN Document Server

    Fraga, Eduardo S; Sorensen, Paul

    2011-01-01

    Given the short lifetime and the reduced volume of the quark-gluon plasma (QGP) formed in high-energy heavy ion collisions, a possible critical endpoint (CEP) will be blurred in a region and the effects from criticality severely smoothened. Nevertheless, the non-monotonic behavior of correlation functions near criticality for systems of different sizes, given by different centralities in heavy ion collisions, must obey finite-size scaling. We apply the predicting power of scaling plots to the search for the CEP of strong interactions in heavy ion collisions using data from RHIC and SPS. The results of our data analysis exclude a critical point below chemical potentials $\\mu\\sim 450 $MeV. Extrapolating the analysis, we speculate that criticality could appear slightly above $\\mu\\sim 500 $MeV. Using available data we extrapolate our scaling curves to predict the behavior of new data at lower center-of-mass energy, currently being investigated in the Beam Energy Scan program at RHIC. If it turns out that the QGP ...

  16. Ising universality class for the liquid-liquid critical point of a one component fluid: a finite-size scaling test.

    Science.gov (United States)

    Gallo, Paola; Sciortino, Francesco

    2012-10-26

    We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and determine the size-dependent critical parameters. Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size study allows us to establish that critical fluctuations are consistent with the Ising universality class and to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous one-component liquids like water.

  17. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chad R., E-mail: chad.snyder@nist.gov; Guttman, Charles M., E-mail: charles.guttman@nist.gov [Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899 (United States); Di Marzio, Edmund A., E-mail: edmund.dimarzio@nist.gov [Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899 (United States); Bio-Poly-Phase, 14205 Parkvale Road, Rockville, Maryland 20853 (United States)

    2014-01-21

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  18. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    Science.gov (United States)

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications.

  19. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class

    CERN Document Server

    Pan, Xue; Wu, Yuan-Fang

    2016-01-01

    The high-order cumulants of conserved charges are suggested to be sensitive observables to search for the critical point of Quantum Chromodynamics (QCD). The order has been calculated to the sixth one at experiments. The corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality class with QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external magnetic field plane. We found that when the critical point is approached from the crossover side, the sixth order cumulant is negative. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising mod...

  20. Numerical study of DNA denaturation with self-avoidance: pseudo-critical temperatures and finite size behaviour

    Science.gov (United States)

    Coluzzi, Barbara; Yeramian, Edouard

    2016-04-01

    We perform an extensive numerical study of the disordered Poland-Scheraga (PS) model for DNA denaturation in which self-avoidance is completely taken into account. To complement to our previous work, we focus here on the finite size scaling in terms of pseudo-critical temperatures. Notably, we find that the mean value and the fluctuations of the pseudo-T c scale with the same exponent, the correlation length exponent {ν\\text{r}} (for which we provide the refined evaluation {ν\\text{r}}=2.9+/- 0.4 ). This result (coherent with the typical picture that describes random ferromagnets when disorder is relevant) is at variance with the numerical results reported in the literature for the PS model with self-avoidance, leading to an alternative scenario with a pseudo-first-order transition. We moreover introduce a crossover chain length N *, which we evaluate, appropriate for characterizing the approach to the asymptotic regime in this model. Essentially, below N *, the behaviour of the model in our study could also agree with such an alternative scenario. Based on an approximate prediction of the dependence of N * on the parameters of the model, we show that following the choice of such parameters it would not be possible to reach the asymptotic regime in practice. In such a context it becomes then possible to reconcile the apparently contradictory numerical studies.

  1. Finite-Size Scaling Analysis of the Conductivity of Dirac Electrons on a Surface of Disordered Topological Insulators

    Science.gov (United States)

    Takane, Yositake

    2016-09-01

    Two-dimensional (2D) massless Dirac electrons appear on a surface of three-dimensional topological insulators. The conductivity of such a 2D Dirac electron system is studied for strong topological insulators in the case of the Fermi level being located at the Dirac point. The average conductivity is numerically calculated for a system of length L and width W under the periodic or antiperiodic boundary condition in the transverse direction, and its behavior is analyzed by applying a finite-size scaling approach. It is shown that is minimized at the clean limit, where it becomes scale-invariant and depends only on L/W and the boundary condition. It is also shown that once disorder is introduced, monotonically increases with increasing L. Hence, the system becomes a perfect metal in the limit of L → ∞ except at the clean limit, which should be identified as an unstable fixed point. Although the scaling curve of strongly depends on L/W and the boundary condition near the unstable fixed point, it becomes almost independent of them with increasing , implying that it asymptotically obeys a universal law.

  2. Investigation of full and partial ground effects on a flapping foil hovering above a finite-sized platform

    Science.gov (United States)

    Wang, Lu; Yeung, Ronald W.

    2016-07-01

    The full and partial ground effects on the lift generation of a flapping airfoil in normal hovering mode are investigated numerically using the discrete vortex method in two dimensions. To achieve full ground effect, the airfoil of chord c is made to hover above the center of a finite-sized platform of length 10c. We have observed the force-enhancement, force-reduction, and force-recovery regimes at low, medium, and high ground clearances in line with the existing literature. This paper puts special focus on partial ground effect when the airfoil is hovering near the edge of the platform. Lift-modifying mechanisms not previously observed under full ground effect have been discovered. When stroke reversal occurs near the edge of the platform, a relatively stationary strong vortex may form above the platform edge. This strong vortex can either increase or decrease the instantaneous lift force on the airfoil depending on the position of the airfoil relative to the platform edge. Also, the platform edge may lead to the formation of an additional vortex pair which increases the instantaneous lift force as the airfoil sweeps past the edge under suitable conditions. Lastly, the platform edge can lead to the formation of a reverse von Kármán vortex street that extends well below the stroke plane under suitable geometric arrangements.

  3. Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with nonuniform finite-size diffraction beam illuminations.

    Science.gov (United States)

    Lee, Jae Yong; Hahn, Jae Won; Lee, Hai-Woong

    2002-05-01

    The transmission of a plane-mirror Fabry-Perot (PFP) interferometer is theoretically modeled and investigated by treating the spatial and spectral features in a unified manner. A spatiospectral transfer function is formulated and utilized to describe the beam propagation and the multiple-beam interference occurring in an ideal one-dimensional strip PFP interferometer with no diffraction loss. The spatial-frequency filtration of a finite-size beam input not only determines the transmitted spatial beam profile but also plays a crucial role in affecting the overall spectral transmittance. The inherent deviations of the spectral transmittance from what we know as the standard Airy's formula are revealed in diverse aspects, including the less-than-unity peak transmittance, the displacement of a resonance peak frequency, and the asymmetric detuning profile. Our theoretical analysis extends to the misaligned PFP interferometers, such as the cases in which non-normal-incidence beams or wedge-aligned mirrors are used that could severely degrade the effective interferometer finesse.

  4. System Size Dependence of Finite-Amplitude Thresholds for Transition to Turbulence in Taylor-Couette Flow

    Science.gov (United States)

    Borrero-Echeverrry, Daniel; Morrison, Benjamin; Peairs, Evan

    2015-11-01

    Despite centuries of study, fluid dynamicists are still unable to explain why a large class of flows, including pipe flow and plane Couette flow, become turbulent. Hydrodynamic stability theory predicts these flows should be stable to infinitesimal perturbations, which means finite-amplitude perturbations need to be applied to destabilize them. We present the results of a series of experiments studying such subcritical transitions to turbulence in linearly-stable configurations of Taylor-Couette flow. In particular, we discuss how the stability of these flows depends on the size and duration of the applied perturbation as the aspect ratio of the experimental apparatus is varied. We show that for experimental configurations where the end caps rotate with the outer cylinder, the stability of the flow is enhanced at small aspect ratios. We find that at sufficiently high Reynolds numbers, perturbations must exceed a critical amplitude before the transition to turbulence can be triggered. The scaling of this threshold with Re appears to be different than that which has been reported for other linearly-stable shear flows. This work was supported by Reed College's Summer Scholarship Fund, the James Borders Physics Student Fellowship, and the Reed College Science Research Fellowship. We also thank H.L. Swinney, who kindly donated the apparatus used in these experiments.

  5. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    Science.gov (United States)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  6. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  7. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  8. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  9. Development of a new ridge filter with honeycomb geometry for a pencil beam scanning system in particle radiotherapy

    Science.gov (United States)

    Tansho, R.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    A ridge filter (RGF), a beam energy modulation device, is usually used for particle radiotherapy with a pencil beam scanning system. The conventional RGF has a one-dimensional (1D) periodic laterally stepped structure in orthogonal plane with a central beam direction. The energy of a beam passing through the different thicknesses of the stepped RGF is modulated. Although the lateral pencil beam size is required to cover the several stepped RGF units to modulate its energy as designed, the current trend is to decrease lateral beam size to improve the scanning system. As a result, the beam size becomes smaller than the size of the individual RGF unit. The aim of this study was to develop a new RGF with two-dimensional (2D) honeycomb geometry to simultaneously achieve both a decrease in lateral beam size and the desired energy modulation. The conventional 1D-RGF and the 2D-RGF with honeycomb geometry were both designed so that the Bragg peak size of a 79 MeV/u carbon ion pencil beam in water was 1 mm RMS in the beam direction. To validate the design of the 2D-RGF, we calculated depth dose distributions in water using a simplified Monte Carlo method. In the calculations, we decreased the lateral pencil beam size at the entrance of the RGF and investigated the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size for each type of RGF. In addition, we calculated lateral dose distributions in air downstream from the RGF and evaluated the inhomogeneity of the lateral dose distributions. Using the 2D-RGF, the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size was smaller than that using the 1D-RGF. Moreover, the distance from the RGF at which the lateral dose distribution becomes uniform was shorter using the 2D-RGF than that using the 1D-RGF. These results indicate that when the periodic length of both RGFs is the same, the 2D-RGF allows use of a pencil beam with smaller lateral

  10. Finite-Size and Composition-Driven Topological Phase Transition in (Bi1-xInx)2Se3 Thin Films.

    Science.gov (United States)

    Salehi, Maryam; Shapourian, Hassan; Koirala, Nikesh; Brahlek, Matthew J; Moon, Jisoo; Oh, Seongshik

    2016-09-14

    In a topological insulator (TI), if its spin-orbit coupling (SOC) strength is gradually reduced, the TI eventually transforms into a trivial insulator beyond a critical point of SOC, at which point the bulk gap closes: this is the standard description of the topological phase transition (TPT). However, this description of TPT, driven solely by the SOC (or something equivalent) and followed by closing and reopening of the bulk band gap, is valid only for infinite-size samples, and little is known how TPT occurs for finite-size samples. Here, using both systematic transport measurements on interface-engineered (Bi1-xInx)2Se3 thin films and theoretical simulations (with animations in the Supporting Information), we show that description of TPT in finite-size samples needs to be substantially modified from the conventional picture of TPT due to surface-state hybridization and bulk confinement effects. We also show that the finite-size TPT is composed of two separate transitions, topological-normal transition (TNT) and metal-insulator transition (MIT), by providing a detailed phase diagram in the two-dimensional phase space of sample size and SOC strength.

  11. Influence of the implant diameter with different sizes of hexagon: analysis by 3-dimensional finite element method.

    Science.gov (United States)

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary; de Carvalho, Paulo Sérgio Perri; Noritomi, Pedro Yoshito

    2013-08-01

    The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

  12. Pencil beam proton radiography using a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-01-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (+/- 0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a

  13. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Swetha Sara Philip; Deepa John; Sheeja Susan John

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  14. Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered.

    Science.gov (United States)

    Park, Harold S

    2009-03-18

    There are two major objectives to the present work. The first objective is to demonstrate that, in contrast to predictions from linear surface elastic theory, when nonlinear, finite deformation kinematics are considered, the residual surface stress does impact the resonant frequencies of silicon nanowires. The second objective of this work is to delineate, as a function of nanowire size, the relative contributions of both the residual (strain-independent) and the surface elastic (strain-dependent) parts of the surface stress to the nanowire resonant frequencies. Both goals are accomplished by using the recently developed surface Cauchy-Born model, which accounts for nanoscale surface stresses through a nonlinear, finite deformation continuum mechanics model that leads to the solution of a standard finite element eigenvalue problem for the nanowire resonant frequencies. In addition to demonstrating that the residual surface stress does impact the resonant frequencies of silicon nanowires, we further show that there is a strong size dependence to its effect; in particular, we find that consideration of the residual surface stress alone leads to significant errors in predictions of the nanowire resonant frequency, with an increase in error with decreasing nanowire size. Correspondingly, the strain-dependent part of the surface stress is found to have an increasingly important effect on the resonant frequencies of the nanowires with decreasing nanowire size.

  15. Finite-size corrections to scaling of the magnetization distribution in the two-dimensional X Y model at zero temperature

    Science.gov (United States)

    Palma, G.; Niedermayer, F.; Rácz, Z.; Riveros, A.; Zambrano, D.

    2016-08-01

    The zero-temperature, classical X Y model on an L ×L square lattice is studied by exploring the distribution ΦL(y ) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of ΦL(y ) , and the limit distribution ΦL →∞(y ) =Φ0(y ) is obtained with high precision. The two leading finite-size corrections ΦL(y ) -Φ0(y ) ≈a1(L ) Φ1(y ) +a2(L ) Φ2(y ) are also extracted both from numerics and from analytic calculations. We find that the amplitude a1(L ) scales as ln(L /L0) /L2 and the shape correction function Φ1(y ) can be expressed through the low-order derivatives of the limit distribution, Φ1(y ) =[yΦ0(y ) +Φ0'(y ) ] ' . Thus, Φ1(y ) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a2(L ) ∝1 /L2 and one finds that a2Φ2(y ) ≪a1Φ1(y ) already for small system size (L >10 ). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the X Y model at low temperatures, including T =0 .

  16. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  17. Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films.

    Science.gov (United States)

    Kastening, Boris

    2012-10-01

    Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ(>) the largest and ξ(temperature near criticality, we find that the dependence of these functions on the ratio ξ() and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞(d-1) geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.

  18. A new model for the grid size optimization of the finite element method --Based on its application to the water quality modeling of the topographically complicated river

    Institute of Scientific and Technical Information of China (English)

    ZENG Guangming; SU Xiaokang; HUANG Guohe; XIE Gengxin

    2003-01-01

    The finite element method is one of the typical methods that are used for numerical water quality modeling of the topographically complicated river. In this paper, based on the principle of probability theory the probability density of pollutants is introduced. A new model for the grid size optimization based on the finite element method is developed with the incorporation of the maximum information entropy theory when the length of the grid is given. Combined with the experiential evaluation approach of the flow discharge per unit river width, this model can be used to determine the grid size of the finite element method applied to water quality modeling of the topographically complicated river when the velocity field of the river is not given. The calculating results of the application of the model to an ideal river testified the correctness of the model. In a practical case-the application of the model to the Xingjian River (the Hengyang section of the Xiangjiang River), the optimized width of the grid of the finite element method was gained and the influence of parameters was studied, which demonstrated that the model reflected the real situation of the pollutants in the river, and that the model had many excellent characteristics such as stabilization, credibility and high applicability in practical applications.

  19. Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) sigma-model

    CERN Document Server

    Banerjee, Debasish

    2010-01-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind non-trivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical non-linear O(2) sigma model with a coupling $\\beta$ and chemical potential $\\mu$ on a 2+1 dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at non-zero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of world-line of particles, the sign problem is absent and the model can be studied efficiently with the "worm algorithm". Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum ...

  20. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    Science.gov (United States)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density

  1. Hidden zero-temperature bicritical point in the two-dimensional anisotropic Heisenberg model: Monte Carlo simulations and proper finite-size scaling

    OpenAIRE

    Zhou, Chenggang; Landau, D. P.; Schulthess, Thomas C.

    2006-01-01

    By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in $2+\\epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $\\sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dime...

  2. Cosmogenesis and the tipping pencil analogy

    Science.gov (United States)

    Adler, Ronald J.

    2012-05-01

    We present a toy model and scenario for cosmogenesis which provides an interesting rationale for the spatial flatness of the universe. The basic assumptions are that the cosmological scale factor obeys the standard Friedmann equation of general relativistic cosmology and that the equation is dominated by a cosmological constant term and a curvature term. The dynamics of the universe is then similar to that of a tipping pencil. The scale factor cannot remain at an unstable initial value of zero and must increase according to the uncertainty principle. If it is also assumed that the universe expands at the minimum asymptotic rate consistent with the uncertainty principle, the result is exact spatial flatness, rather than the near flatness obtained in standard inflation theory.

  3. Probability distribution of the number of distinct sites visited by a random walk on the finite-size fully-connected lattice

    CERN Document Server

    Turban, L

    2016-01-01

    The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($t\\to\\infty$, $N\\to\\infty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the ...

  4. Finite-size-induced stability of a permanent magnet levitating over a superconductor in the Meissner state

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Garcia-Prada, Juan Carlos

    2007-10-01

    The force between a magnetic dipole and a finite superconductor in the Meissner state (Hfiniteness of a piece of superconductor therefore suffices to explain a stability for the levitation of a magnet over it or even the suspension of one of them under the other one. This does not contradict the existence of flux penetration. However, this makes the flux penetration not necessary to explain both stability and attractiveness, as has been assumed until now.

  5. An Assessment of Compressive Size Effect of Plane Concrete Using Combination of Micro-Plane Damage Based Model and 3D Finite Elements Approach

    Directory of Open Access Journals (Sweden)

    A. Labibzadeh

    2008-01-01

    Full Text Available In recent years, the material behavior dependence of laboratory concrete specimens built with the same concrete mixture under the same load conditions to their geometrical sizes is well established. This phenomenon which is observed not only in concrete but also in most quasi-brittle materials such as rock, ceramic or composite materials is now called as size effect. Many of the existing structural analyzing codes are not able to consider this important feature of concrete structures especially under compressive loadings. However we know that the main purpose of concrete application in structural members is to resist compression. The aim of this study is to show the ability of author's recently developed 3D finite elements code equipped with the proposed author's newly micro-planes damage based model for considering of compressive size effect of plane concrete. To do so, two different sizes of cubic concrete specimens are modeled with mentioned code under the uniaxial compressive test and their fracture mechanisms, pre-peak and post-peak strain-stress paths are investigated. Obtained results reveal the good coincidence with experimental evidences. In fact, the combination of proposed micro-planes damage based model and developed presented 3D finite elements technique creates a powerful numerical tool to capture and predict precisely strain localization and fracture mechanism in the specimens and consequently to assess properly the compressive size effect of plane concrete in analysis and design.

  6. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  7. Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz–Keldysh effects

    Science.gov (United States)

    Bonabi, Farzad; Pedersen, Thomas G.

    2017-04-01

    The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz–Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.

  8. Calibration of a pencil ionization chamber with and without preamplifier

    OpenAIRE

    Maia, Ana Figueiredo

    2004-01-01

    The pencil ionization chamber is a cylindrical dosimeter developed for computed tomography beams. Many kinds of ionization chambers have a preamplifier connected to the chamber to make it electrically more stable, specially for field instruments. In this study, the performance of a Victoreen pencil ionization chamber with the original preamplifier and after its removal was compared. The objective of the preamplifier removal was to enable connecting the chamber to other kinds of electromete...

  9. Effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter

    Science.gov (United States)

    Ko, William L.; Olona, Timothy

    1987-01-01

    The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.

  10. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S [McLaren Cancer Institute, Flint, MI (United States)

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  11. Nonlinearities and effects of transverse beam size in beam position monitors

    Science.gov (United States)

    Kurennoy, Sergey S.

    2001-09-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  12. Nonlinearities and effects of transverse beam size in beam position monitors

    Directory of Open Access Journals (Sweden)

    Sergey S. Kurennoy

    2001-09-01

    Full Text Available The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  13. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.

    Science.gov (United States)

    Kastening, Boris; Dohm, Volker

    2010-06-01

    Finite-size effects are investigated in the Gaussian model with isotropic and anisotropic short-range interactions in film geometry with nonperiodic boundary conditions (bc) above, at, and below the bulk critical temperature Tc. We have obtained exact results for the free energy and the Casimir force for antiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed bc in 1film critical temperature Tc,film(L)film thickness L . Our results include an exact description of the dimensional crossover between the d -dimensional finite-size critical behavior near bulk Tc and the (d-1) -dimensional critical behavior near Tc,film(L). This dimensional crossover is illustrated for the critical behavior of the specific heat. Particular attention is paid to an appropriate representation of the free energy in the region Tc,film(L)≤T≤Tc. For 2theory at fixed dimension d and are then compared with the ε=4-d expansion results at ε=1 as well as with d=3 Monte Carlo data. For d=2 , the Gaussian results for the Casimir force scaling function are compared with those for the Ising model with periodic, antiperiodic, and free bc; unexpected exact relations are found between the Gaussian and Ising scaling functions. For both the d -dimensional Gaussian model and the two-dimensional Ising model it is shown that anisotropic couplings imply nonuniversal scaling functions of the Casimir force that depend explicitly on microscopic couplings. Our Gaussian results provide the basis for the investigation of finite-size effects of the mean spherical model in film geometry with nonperiodic bc above, at, and below the bulk critical temperature.

  14. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ.......34±0.1 for the water-suspended samples. The intensity of scattering was found to scale with the correlation length in the manner expected for a fractal system...

  15. Levitation force between a small magnet and a superconducting sample of finite size in the Meissner state

    Science.gov (United States)

    Lugo, Jorge; Sosa, Victor

    1999-10-01

    The repulsion force between a cylindrical superconductor in the Meissner state and a small permanent magnet was calculated under the assumption that the superconductor was formed by a continuous array of dipoles distributed in the finite volume of the sample. After summing up the dipole-dipole interactions with the magnet, we obtained analytical expressions for the levitation force as a function of the superconductor-magnet distance, radius and thickness of the sample. We analyzed two configurations, with the magnet in a horizontal or vertical orientation.

  16. Finite-Size Scaling Approach for Critical Wetting: Rationalization in Terms of a Bulk Transition with an Order Parameter Exponent Equal to Zero

    Science.gov (United States)

    Albano, Ezequiel V.; Binder, Kurt

    2012-07-01

    Clarification of critical wetting with short-range forces by simulations has been hampered by the lack of accurate methods to locate where the transition occurs. We solve this problem by developing an anisotropic finite-size scaling approach and show that then the wetting transition is a “bulk” critical phenomenon with order parameter exponent equal to zero. For the Ising model in two dimensions, known exact results are straightforwardly reproduced. In three dimensions, it is shown that previous estimates for the location of the transition need revision, but the conclusions about a slow crossover away from mean-field behavior remain unaltered.

  17. Determination of the Origin and Magnitude of Logarithmic Finite-Size Effects on Interfacial Tension: Role of Interfacial Fluctuations and Domain Breathing

    Science.gov (United States)

    Schmitz, Fabian; Virnau, Peter; Binder, Kurt

    2014-03-01

    The ensemble-switch method for computing wall excess free energies of condensed matter is extended to estimate the interface free energies between coexisting phases very accurately. By this method, system geometries with linear dimensions L parallel and Lz perpendicular to the interface with various boundary conditions in the canonical or grand canonical ensemble can be studied. Using two- and three-dimensional Ising models, the nature of the occurring logarithmic finite-size corrections is studied. It is found crucial to include interfacial fluctuations due to "domain breathing."

  18. Numerical estimate of the finite-size corrections to the free energy of the Sherrington-Kirkpatrick model using Guerra-Toninelli interpolation

    Science.gov (United States)

    Billoire, Alain

    2006-04-01

    I use an interpolation formula, introduced recently by Guerra and Toninelli, in order to prove the existence of the free energy of the Sherrington-Kirkpatrick spin glass model in the infinite volume limit, to investigate numerically the finite-size corrections to the free energy of this model. The results are compatible with a (1/12N)ln(N/N0) behavior at Tc , as predicted by Parisi, Ritort, and Slanina, and a 1/N2/3 behavior below Tc .

  19. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.

    2014-06-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  20. Radiative nonrecoil nuclear finite size corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine splitting of S-states in muonic hydrogen

    CERN Document Server

    Faustov, R N; Martynenko, G A; Sorokin, V V

    2014-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order $\\alpha(Z\\alpha)^5$ to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  1. Control and Interpretation of Finite-Size Effects and Initial Morphology in Directional Solidification of a Rod-Type Eutectic Transparent Metal-Analog

    Science.gov (United States)

    Napolitano, R. E.; Şerefoğlu, Melis

    2012-01-01

    Transparent metal-analog materials offer a great opportunity for in situ investigation of the morphological dynamics that govern the formation of microstructure in metallic alloys. There are, however, several experimental factors that must be controlled or considered for proper and reproducible interpretation. We examine some of these issues here, summarizing our recent findings related to the case of rod-type eutectic solidification, for which we examine the importance of ampoule geometry and initial conditions. Employing directional solidification experiments with thin-slab specimens, we look specifically at finite-size effects on growth morphology and the influence of initial structure on the mechanisms of eutectic onset.

  2. Elastodynamic wave scattering by finite-sized resonant scatterers at the surface of a horizontally layered halfspace.

    Science.gov (United States)

    Lombaert, Geert; Clouteau, Didier

    2009-04-01

    The present paper deals with the multiple scattering by randomly distributed elastodynamic systems at the surface of a horizontally layered elastic halfspace due to an incident plane wave. Instead of solving this problem for a particular configuration of the system, multiple scattering theory is used to compute the ensemble response statistics. The Dyson equation is used to calculate the mean field, while the nonstationary second order statistics are obtained by means of the Bethe-Salpeter equation. This allows for the determination of the mean square response of the system in the time and frequency domains. This model is used to study multiple scattering between buildings under seismic excitation. The influence of multiple scattering on the seismic site response is verified. Furthermore, the influence of the footprint and the damping of the buildings are investigated. The results are compared to results of a coupled finite element/boundary element solution for a group of buildings.

  3. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Seuli [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kang, Hyun-Ju; Kim, Yu-Sin; Chang, Yoon-Min; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kwon, Deuk-Chul [Plasma Technology Research Center, National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2016-06-15

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As a result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.

  4. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.

    Science.gov (United States)

    Woldtvedt, Daniel J; Womack, Wesley; Gadomski, Benjamin C; Schuldt, Dieter; Puttlitz, Christian M

    2011-06-01

    Current finite element modeling techniques utilize geometrically inaccurate cartilage distribution representations in the lumbar spine. We hypothesize that this shortcoming severely limits the predictive fidelity of these simulations. Specifically, it is unclear how these anatomically inaccurate cartilage representations alter range of motion and facet contact predictions. In the current study, cadaveric vertebrae were serially sectioned, and images were taken of each slice in order to identify the osteochondral interface and the articulating surface. A series of custom-written algorithms were utilized in order to quantify each facet joint's three-dimensional cartilage distribution using a previously developed methodology. These vertebrae-dependent thickness cartilage distributions were implemented on an L1 through L5 lumbar spine finite element model. Moments were applied in three principal planes of motion, and range of motion and facet contact predictions from the variable thickness and constant thickness distribution models were determined. Initial facet gap thickness dimensions were also parameterized. The data indicate that the mean and maximum cartilage thickness increased inferiorly from L1 to L5, with an overall mean thickness value of 0.57 mm. Cartilage distribution and initial facet joint gap thickness had little influence on the lumbar range of motion in any direction, whereas the mean contact pressure, total contact force, and total contact area predictions were altered considerably. The data indicate that range of motion predictions alone are insufficient to establish model validation intended to predict mechanical contact parameters. These data also emphasize the need for the careful consideration of the initial facet joint gap thickness with respect to the spinal condition being studied.

  5. Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    CERN Document Server

    Klein, Simon; Bérut, Antoine; Bodenschatz, Eberhard

    2012-01-01

    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that makes them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/{\\eta} \\approx 100) than the Kolmogorov length scale {\\eta} in a von K\\'arm\\'an swirling water flow (R{\\lambda} \\approx 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the in...

  6. The role of finite-size effects on the spectrum of equivalent photons in proton–proton collisions at the LHC

    Directory of Open Access Journals (Sweden)

    Mateusz Dyndal

    2015-02-01

    Full Text Available Photon–photon interactions represent an important class of physics processes at the LHC, where quasi-real photons are emitted by both colliding protons. These reactions can result in the exclusive production of a final state X, p+p→p+p+X. When computing such cross sections, it has already been shown that finite size effects of colliding protons are important to consider for a realistic estimate of the cross sections. These first results have been essential in understanding the physics case of heavy-ion collisions in the low invariant mass range, where heavy ions collide to form an exclusive final state like a J/Ψ vector meson. In this paper, our purpose is to present some calculations that are valid also for the exclusive production of high masses final states in proton–proton collisions, like the production of a pair of W bosons or the Higgs boson. Therefore, we propose a complete treatment of the finite size effects of incident protons irrespective of the mass range explored in the collision. Our expectations are shown to be in very good agreement with existing experimental data obtained at the LHC.

  7. Finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3

    CERN Document Server

    Astolfi, Davide; Grignani, Gianluca; Harmark, Troels; Orselli, Marta

    2008-01-01

    We consider finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3, which is the string dual of the recently constructed N=6 superconformal Chern-Simons theory of Aharony, Bergman, Jafferis and Maldacena (ABJM theory). The string states we consider are in the R x S^2 x S^2 subspace of AdS_4 x CP^3 with an angular momentum J on CP^3 being large. We compute the finite-size corrections using two different methods, one is to consider curvature corrections to the Penrose limit giving an expansion in 1/J, the other by considering a low energy expansion in lambda'=lambda/J^2 of the string theory sigma-model, lambda being the 't Hooft coupling of the dual ABJM theory. For both methods there are interesting issues to deal with. In the near-pp-wave method there is a 1/\\sqrt{J} interaction term for which we use zeta-function regularization in order to compute the 1/J correction to the energy. For the low energy sigma-model expansion we have to take into account a non-trivial coupli...

  8. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2009-04-08

    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D(2)/H(2) separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 Å exceeds 60 mmol cm(-3); for comparison, the liquid density of para-H(2) at 30 K and 30 MPa is 42 mmol cm(-3)). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  9. Lane Formation Dynamics of Oppositely Self-Driven Binary Particles: Effects of Density and Finite System Size

    Science.gov (United States)

    Ikeda, Kosuke; Kim, Kang

    2017-04-01

    We examined the lane formation dynamics of oppositely self-driven binary particles by molecular dynamics simulations of a two-dimensional system. Our study comprehensively revealed the effects of the density and system size on the lane formation. The phase diagram distinguishing the no-lane and lane states was systematically determined for various combinations of the anisotropic friction coefficient and the desired velocity. A peculiar clustered structure was observed when the lane was destroyed by considerably increasing the desired velocity. A strong system size effect was demonstrated by the relationship between the temporal and spatial scales of the lane structure. This system size effect can be attributed to an analogy with the driven lattice gas. The transport efficiency was characterized from the scaling relation in terms of the degree of lane formation and the interface thickness between different lanes.

  10. Spin coupling and magnetic field effects on the finite-size free energy and its non-extensivity for 1-D Ising model with nearest and next-nearest neighbor interactions in nanosystem

    Science.gov (United States)

    Taherkhani, Farid; Abroshan, Hadi; Akbarzadeh, Hamed; Fortunelli, Alessandro

    2012-07-01

    The effects of second-neighbor spin coupling interactions and a magnetic field are investigated on the free energies of a finite-size 1-D Ising model. For both ferromagnetic of nearest neighbor (NN) and next-nearest neighbor (NNN) spin coupling interactions, the finite-size free energy first increases and then approaches a constant value for any size of the spin chain. In contrast, when NNN and NN spin coupling interactions are antiferromagnetic and ferromagnetic, respectively, the finite-size free energy gradually decreases by increasing the competition factor and eventually vanishes for large values of it. When a magnetic field is applied, the finite-size free energy decreases with respect to the case of zero magnetic fields for both ferromagnetic and antiferromagnetic spin coupling interactions. Deviation of free energy per size for finite-size systems relative to the infinite system increases when the spin coupling interactions as well as the f parameter (the ratio of the magnetic field to NN spin coupling interaction) increase.

  11. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    Science.gov (United States)

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

  12. Grand canonical finite size numerical approaches in one and two dimensions: Real space energy renormalization and edge state generation

    Science.gov (United States)

    Hotta, Chisa; Nishimoto, Satoshi; Shibata, Naokazu

    2013-03-01

    The grand canonical numerical analysis recently developed for quantum many-body systems on a finite cluster [C. Hotta and N. Shibata, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.86.041108 86, 041108(R) (2012)] is the technique to efficiently obtain the physical quantities in an applied field. There, the observables are the continuous and real functions of fields, mimicking their thermodynamic limit, even when a small cluster is adopted. We develop a theory to explain the mechanism of this analysis based on the deformation of the Hamiltonian. The deformation spatially scales down the energy unit from the system center toward zero at the open edge sites, which introduces the renormalization of the energy levels in a way reminiscent of Wilson's numerical renormalization group. However, compared to Wilson's case, our deformation generates a number of far well-localized edge states near the chemical potential level, which are connected via a very small quantum fluctuation in k space with the “bulk” states which spread at the center of the system. As a response to the applied field, the particles on the cluster are self-organized to tune the particle number of the bulk states to their thermodynamic limit by using the “edges” as a buffer. We demonstrate the present analysis in two-dimensional quantum spin systems on square and triangular lattices, and determine the smooth magnetization curve with a clear (1)/(3) plateau structure in the latter.

  13. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.

    Science.gov (United States)

    Li, Haisen S; Romeijn, H Edwin; Dempsey, James F

    2006-09-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near monoenergetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  14. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation

    Science.gov (United States)

    Mikolasek, Mirko; Félix, Gautier; Peng, Haonan; Rat, Sylvain; Terki, Férial; Chumakov, Aleksandr I.; Salmon, Lionel; Molnár, Gábor; Nicolazzi, William; Bousseksou, Azzedine

    2017-07-01

    We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [ Fe (pyrazine ) (Ni (CN) 4) ] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (nanoparticles is also highlighted through the matrix dependence of the sound velocity.

  15. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    Science.gov (United States)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the

  16. Probabilistic Model Updating for Sizing of Hole-Edge Crack Using Fiber Bragg Grating Sensors and the High-Order Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2016-11-01

    Full Text Available This paper presents a novel framework for probabilistic crack size quantification using fiber Bragg grating (FBG sensors. The key idea is to use a high-order extended finite element method (XFEM together with a transfer (T-matrix method to analyze the reflection intensity spectra of FBG sensors, for various crack sizes. Compared with the standard FEM, the XFEM offers two superior capabilities: (i a more accurate representation of fields in the vicinity of the crack tip singularity and (ii alleviation of the need for costly re-meshing as the crack size changes. Apart from the classical four-term asymptotic enrichment functions in XFEM, we also propose to incorporate higher-order functions, aiming to further improve the accuracy of strain fields upon which the reflection intensity spectra are based. The wavelength of the reflection intensity spectra is extracted as a damage sensitive quantity, and a baseline model with five parameters is established to quantify its correlation with the crack size. In order to test the feasibility of the predictive model, we design FBG sensor-based experiments to detect fatigue crack growth in structures. Furthermore, a Bayesian method is proposed to update the parameters of the baseline model using only a few available experimental data points (wavelength versus crack size measured by one of the FBG sensors and an optical microscope, respectively. Given the remaining data points of wavelengths, even measured by FBG sensors at different positions, the updated model is shown to give crack size predictions that match well with the experimental observations.

  17. Pencil beam scanning dosimetry for large animal irradiation.

    Science.gov (United States)

    Lin, Liyong; Solberg, Timothy D; Carabe, Alexandro; Mcdonough, James E; Diffenderfer, Eric; Sanzari, Jenine K; Kennedy, Ann R; Cengel, Keith

    2014-09-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior-inferior) by 940 mm (anterior-posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity <2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm.

  18. On sets of vectors of a finite vector space in which every subset of basis size is a basis II

    CERN Document Server

    Ball, Simeon

    2012-01-01

    This article contains a proof of the MDS conjecture for $k \\leq 2p-2$. That is, that if $S$ is a set of vectors of ${\\mathbb F}_q^k$ in which every subset of $S$ of size $k$ is a basis, where $q=p^h$, $p$ is prime and $q$ is not and $k \\leq 2p-2$, then $|S| \\leq q+1$. It also contains a short proof of the same fact for $k\\leq p$, for all $q$.

  19. Finite-size effects on the magnetoelectric coupling in a ferroelectric/ferromagnetic structure revealed by ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Sukhov A.

    2014-07-01

    Full Text Available For a composite multiferroic chain corresponding to a BaTiO3/Fe-interface we report theoretical calculations of the spectra of ferromagnetic resonance relying on the solution of the coupled Landau-Khalatnikov equation for the FE polarization and the Landau-Lifshitz-Gilbert equation for the magnetization motion. We focus on the role of the system size. Additionally, we find that although the magnetoelectric coupling strength remains linear upon the electric field variation, its dependence on the thickness of the ferromagnet is not linear.

  20. L\\"uscher's finite size method with twisted boundary conditions: an application to $J/\\psi$-$\\phi$ system to search for narrow resonance

    CERN Document Server

    Ozaki, Sho

    2012-01-01

    We investigate an application of twisted boundary conditions for study of low-energy hadron-hadron interactions with L\\"ushcer's finite size method. It allows us to calculate the phase shifts for elastic scattering of two hadrons at any small value of the scattering momentum even in a finite volume. We then can extract model independent information of low-energy scattering parameters such as the scattering length, the effective range and the effective volume from the $S$-wave and $P$-wave scattering phase shifts through the effective range expansion. This approach also enables us to examine the existence of near-threshold and narrow resonance states, of which characteristic is observed in many of newly discovered charmonium-like $XYZ$ mesons. As a simple example, we demonstrate our method for low-energy $J/\\psi$-$\\phi$ scatterings to search for Y(4140) resonance using 2+1 flavor PACS-CS gauge configurations at the lightest pion mass, $m_{\\pi}=156$ MeV.

  1. Shape dependence and anisotropic finite-size scaling of the phase coherence of three-dimensional Bose-Einstein-condensed gases

    Science.gov (United States)

    Ceccarelli, Giacomo; Delfino, Francesco; Mesiti, Michele; Vicari, Ettore

    2016-11-01

    We investigate the equilibrium phase-coherence properties of Bose-condensed particle systems, focusing on their shape dependence and finite-size scaling (FSS). We consider three-dimensional (3D) homogeneous systems confined to anisotropic L ×L ×La boxes, below the Bose-Einstein-condensate (BEC) transition temperature Tc. We show that the phase correlations develop peculiar anisotropic FSS for any T universality is confirmed by quantum Monte Carlo simulations of the 3D Bose-Hubbard model in the BEC phase. The phase-coherence correlations of very elongated BEC systems, λ →∞ , are characterized by the coherence length ξa˜Atρs/T , where At is the transverse area and ρs is the superfluid density.

  2. A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method.

    Science.gov (United States)

    Bonfiglio, Paolo; Pompoli, Francesco; Lionti, Riccardo

    2016-04-01

    The transfer matrix method is a well-established prediction tool for the simulation of sound transmission loss and the sound absorption coefficient of flat multilayer systems. Much research has been dedicated to enhancing the accuracy of the method by introducing a finite size effect of the structure to be simulated. The aim of this paper is to present a reduced-order integral formulation to predict radiation efficiency and radiation impedance for a panel with equal lateral dimensions. The results are presented and discussed for different materials in terms of radiation efficiency, sound transmission loss, and the sound absorption coefficient. Finally, the application of the proposed methodology for rectangular multilayer systems is also investigated and validated against experimental data.

  3. Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich Long; Byon, Chan [Yeungnam University, Gyeongsan (Korea, Republic of)

    2015-07-15

    Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh number (5 X 10{sup 2} ≤ Ra ≤ 5X10{sup 5}), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ x{sub h}/L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt number (Nu{sub m}) increases as the heater size decreases. In addition, when x{sub h}/L is less than 0.4, Nu{sub m} increases as x{sub h}/L increases, and Num decreases again for a larger value of x{sub h}/L. However, this trend changes when Ra is less than 10{sup 4}, suggesting that Nu{sub m} attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.

  4. Finite size effects and spin transition in ball-milled {gamma}-(FeMn){sub 30}Cu{sub 70} nanostructured alloys

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, J. [Grupo de Estado Solido, Instituto de Fisica, Universidad de Antioquia, A. A. 1226, Medellin (Colombia)]. E-mail: jrestre@fisica.udea.edu.co; Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, 72085 Le Mans, Cedex 9 (France); Gonzalez, J.M. [Instituto de Magnetismo Aplicado, P.O. Box 155. 28230 Las Rozas, Madrid (Spain)

    2004-12-31

    Fe{sub 15}Mn{sub 15}Cu{sub 70} alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Moessbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 A{sup 3} at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.

  5. Insights on finite size effects in Ab-initio study of CO adsorption and dissociation on Fe 110 surface

    CERN Document Server

    Chakrabarty, Aurab; Mousseau, Normand; Becquart, Charlotte S; Mellouhi, Fadwa El

    2016-01-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps to carburization of metal. Here, we use density functional theory total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. For the absorption of CO, the contribution from van der Waals interaction in the computation of adsorption parameters is found important in small systems with high CO-coverages. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in larger surface systems associated with dilute CO-coverages, the dissociation barrier is significantly decreased. The elastic deformation of the surface is generic and can potentially applicable for all similar metal-hydrocarbon reactions and therefore a dilute coverage is necessary for the simul...

  6. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    Science.gov (United States)

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10(-4). The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  7. CAI versus Paper and Pencil--Discrepancies in Students' Performance.

    Science.gov (United States)

    Hativa, Nira

    1988-01-01

    This study identified differences in elementary school students' performance of arithmetic tasks using paper and pencil and computer-assisted instruction. Many were found to perform more poorly using the computer, while others showed the opposite tendency. These findings challenge the validity of decisions made by the computer-based management…

  8. A Pencil Beam for the Linac4 commissioning

    CERN Document Server

    Lallement, JB

    2010-01-01

    In order to characterize the different accelerating structures and transport lines of Linac4 and to proceed to its commissioning, we need to produce a low current, low emittance beam. This note describes the generation of two pencil beams and their dynamic through the Linac.

  9. Symplectic structures from Lefschetz pencils in high dimensions

    OpenAIRE

    Gompf, Robert E.

    2004-01-01

    A symplectic structure is canonically constructed on any manifold endowed with a topological linear k-system whose fibers carry suitable symplectic data. As a consequence, the classification theory for Lefschetz pencils in the context of symplectic topology is analogous to the corresponding theory arising in differential topology.

  10. Mixed Dominance and the Manner of Holding a Pencil.

    Science.gov (United States)

    Lovell, Virginia K.

    1982-01-01

    Reports on an informal study that revealed that a significant number of people who hold a pencil with two fingers and a thumb have mixed cerebral dominance, that more females than males have mixed dominance, and that those with mixed dominance tend to be more imaginative. (FL)

  11. Pseudospectra for matrix pencils and stability of equilibria

    NARCIS (Netherlands)

    Dorsselaer, J.L.M. van

    2001-01-01

    The concept of "{pseudospectra for matrices, introduced by Trefethen and his co-workers, has been studied extensively since 1990. In this paper, "{ pseudospectra for matrix pencils, which are relevant in connection with generalized eigenvalue problems, are considered. Some properties as well as the

  12. Assessing negative priming by attended distractors in a paper-and-pencil task

    Directory of Open Access Journals (Sweden)

    Rosin F.M.

    2004-01-01

    Full Text Available The paper-and-pencil digit-comparison task for assessing negative priming (NP was introduced, using a referent-size-selection procedure that was demonstrated to enhance the effect. NP is indicated by slower responses to recently ignored items, and proposed within the clinical-experimental framework as a major cognitive index of active suppression of distracting information, critical to executive functioning. The digit-comparison task requires circling digits of a list with digit-asterisk pairs (a baseline measure for digit-selection, and the larger of two digits in each pair of the unrelated (with different digits in successive digit-pairs and related lists (in which the smaller digit subsequently became a target. A total of 56 students (18-38 years participated in two experiments that explored practice effects across lists and demonstrated reliable NP, i.e., slowing to complete the related list relative to the unrelated list, (F(2, 44 = 52.42, P < 0.0001. A 3rd experiment examined age-related effects. In the paper-and-pencil digit-comparison task, NP was reliable for the younger (N = 8, 18-24 years and middle-aged adults (N = 8, 31-54 years, but absent for the older group (N = 8, 68-77 years. NP was also reduced with aging in a computer-implemented digit-comparison task, and preserved in a task typically used to test location-specific NP, accounting for the dissociation between identity- and spatial-based suppression of distractors (Rao R(3, 12 = 16.02, P < 0.0002. Since the paper-and-pencil digit-comparison task can be administered easily, it can be useful for neuropsychologists seeking practical measures of NP that do not require cumbersome technical equipment.

  13. Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility. II. Application to a model krypton fluid

    Science.gov (United States)

    Salacuse, J. J.; Denton, A. R.; Egelstaff, P. A.; Tau, M.; Reatto, L.

    1996-03-01

    The method described in the preceding paper [J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, preceding paper, Phys. Rev. E 53, 2382 (1996)] for computing the static structure factor S(Q) of a bulk fluid is used to analyze molecular dynamics computer simulation data for a model krypton fluid whose atoms interact via a truncated Aziz pair potential. Simulations have been carried out for two system sizes of N=706 and 2048 particles and two thermodynamic states, described by a common reduced temperature T*=1.51 and reduced densities ρ*=0.25 and 0.4. Results presented include the N-particle radial distribution function gN(r) and the bulk static structure factor S(Q). In addition we calculate the direct correlation function c(r) from the full S(Q). In comparison with corresponding predictions of the modified hypernetted chain theory, the results are generally in excellent agreement at all r and Q, to within random statistical errors in the simulation data.

  14. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    Science.gov (United States)

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  15. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.

    Science.gov (United States)

    Verhulp, E; Van Rietbergen, B; Muller, R; Huiskes, R

    2008-08-01

    Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 mum had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.

  16. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Hugo, E-mail: hugo.bouchard@npl.co.uk; Duane, Simon [Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Kamio, Yuji [Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Palmans, Hugo [Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Medical Physics, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  17. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions.

    Science.gov (United States)

    Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2010-04-14

    We perform histogram-reweighting grand canonical Monte Carlo simulations of the Lennard-Jones fluid confined between two parallel hard walls and determine the vapor-liquid critical and coexistence properties in the range of sigmasigma and 10sigmasigma, where H is the wall separation, L(x)=L(y) is the system size and sigma is the characteristic length. By matching the probability distribution of the ordering operator, P(M), to the three-dimensional (3D) and two-dimensional (2D) Ising universality classes according to the mixed-field finite-size scaling approach, we establish a "phase diagram" in the (H,L) plane, showing the boundary between four types of behavior: 3D, quasi-3D, quasi-2D, and 2D. In order to facilitate 2D critical point calculation, we present a four-parameter analytical expression for the 2D Ising universal distribution. We show that the infinite-system-size critical points obtained by extrapolation from the apparent 3D and 2D critical points have only minor differences with each other. In agreement with recent reports in the literature [Jana et al., J. Chem. Phys. 130, 214707 (2009)], we find departure from linearity in the relationship between critical temperature and inverse wall separation, as well as nonmonotonic dependence of the critical density and the liquid density at coexistence upon wall separation. Additional studies of the ST2 model of water show similar behavior, which suggests that these are quite general properties of confined fluids.

  18. Using Stable Distributions to Characterize Proton Pencil Beams

    CERN Document Server

    Heuvel, Frank Van den; Schreuder, Niek; George, Ben

    2016-01-01

    Purpose: To introduce and evaluate the use of stable distributions as a means of describing the behavior of charged particle pencil beams in a medium, with specific emphasis on proton beam scanning (PBS). Methods: The proton pencil beams of a clinically commissioned proton treatment facility are replicated in a Monte Carlo simulation system (FLUKA). For each available energy the beam deposition in water medium is characterized by the dose deposition. Using an alpha--stable distribution methodology each beam with a nominal energy $E$ is characterized by the lateral spread at depth $z$: $S(z;\\alpha,\\gamma,E)$ and a total energy deposition $I_D(z)$. The beams are then described as a function of the variation of the parameters at depth. Finally, an implementation in a freely available open source dose calculation suite (matRad, DKFZ, Heidelberg, Germany) is proposed. Results: Quantitatively, the fit of the stable distributions, compared to those implemented in standard treatment planning systems, are equivalent. ...

  19. Comprehensive proton dose algorithm using pencil beam redefinition and recursive dynamic splitting

    CERN Document Server

    Gottschalk, Bernard

    2016-01-01

    We compute, from first principles, the absolute dose or fluence distribution per incident proton charge in a known heterogeneous terrain exposed to known proton beams. The algorithm is equally amenable to scattered or scanned beams. All objects in the terrain (including collimators) are sliced into slabs, of any convenient thickness, perpendicular to the nominal beam direction. Transport is by standard Fermi-Eyges theory. Transverse heterogeneities are handled by breaking up pencil beams (PBs) either by conventional redefinition or a new form of 2D recursive dynamic splitting: the mother PB is replaced, conserving emittance and charge, by seven daughters of equal transverse size. One has 1/4 the charge and travels in the mother's direction and six have 1/8 the charge, are arranged hexagonally and radiate from the mother's virtual point source. The longitudinal (energy-like) variable is pv (proton momentum times speed). Each material encountered is treated on its own merits, not referenced to water. Slowing do...

  20. Pencil grips, legibility, and speed of fourth-graders' writing in cursive.

    Science.gov (United States)

    Koziatek, Susan M; Powell, Nancy J

    2003-01-01

    The purpose of this research was to study how the speed and legibility of fourth-graders handwriting was affected by type of pencil grip on the Evaluation Tool of Children's Handwriting-Cursive. Ninety-five typically developing students and 6 students receiving special education services completed the Evaluation Tool of Children's Handwriting-Cursive (ETCH-C). Photographs were taken of their pencil grips while they wrote the alphabet. One-way ANOVAs were calculated to compare legibility rates and writing speeds by type of pencil grip. Ninety-nine of the students used one of four pencil grips including the dynamic tripod (38 students), the dynamic quadrupod (18), the lateral tripod (22), and the lateral quadrupod (21). One student used the four-finger pencil grip and one used the interdigital pencil grip. Mean cursive writing speeds were similar for all pencil grips except for the interdigital grasp. Speeds obtained were slower than recently published fourth-grade speeds ranging from a mean of 29.45 to 34.75 letters per minute. CONCLUSION. This study found the lateral quadrupod and four-finger pencil grips to be as functional as the dynamic tripod, lateral tripod, and dynamic quadrupod pencil grips. This study provides average handwriting speeds for fourth-grade students on the ETCH-C.

  1. Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, Loic, E-mail: loic.grevillot@gmail.co [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); IBA, B-1348 Louvain-la-Neuve (Belgium); Frisson, Thibault [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Zahra, Nabil [Universite de Lyon, F-69622 Lyon (France); IPNL, CNRS UMR 5822, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Bertrand, Damien; Stichelbaut, Frederic [IBA, B-1348 Louvain-la-Neuve (Belgium); Freud, Nicolas [Universite de Lyon, F-69622 Lyon (France); CNDRI, INSA-Lyon, F-69621 Villeurbanne Cedex (France); Sarrut, David [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France)

    2010-10-15

    This study reports the investigation of different GEANT4 settings for proton therapy applications in the context of Treatment Planning System comparisons. The GEANT4.9.2 release was used through the GATE platform. We focused on the Pencil Beam Scanning delivery technique, which allows for intensity modulated proton therapy applications. The most relevant options and parameters (range cut, step size, database binning) for the simulation that influence the dose deposition were investigated, in order to determine a robust, accurate and efficient simulation environment. In this perspective, simulations of depth-dose profiles and transverse profiles at different depths and energies between 100 and 230 MeV have been assessed against reference measurements in water and PMMA. These measurements were performed in Essen, Germany, with the IBA dedicated Pencil Beam Scanning system, using Bragg-peak chambers and radiochromic films. GEANT4 simulations were also compared to the PHITS.2.14 and MCNPX.2.5.0 Monte Carlo codes. Depth-dose simulations reached 0.3 mm range accuracy compared to NIST CSDA ranges, with a dose agreement of about 1% over a set of five different energies. The transverse profiles simulated using the different Monte Carlo codes showed discrepancies, with up to 15% difference in beam widening between GEANT4 and MCNPX in water. A 8% difference between the GEANT4 multiple scattering and single scattering algorithms was observed. The simulations showed the inability of reproducing the measured transverse dose spreading with depth in PMMA, corroborating the fact that GEANT4 underestimates the lateral dose spreading. GATE was found to be a very convenient simulation environment to perform this study. A reference physics-list and an optimized parameters-list have been proposed. Satisfactory agreement against depth-dose profiles measurements was obtained. The simulation of transverse profiles using different Monte Carlo codes showed significant deviations. This point

  2. SU-E-CAMPUS-T-04: Measurement of Proton Pencil Beam Spot Profile Using Cherenkov Radiation in Two Dimensional Optical Fiber Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; SHIN, D; Park, J; Lim, Y; Lee, S; Kim, J [National Cancer Center, Goyang, Gyeonggi-do (Korea, Republic of); Son, J [National Cancer Center, Goyang, Gyeonggi-do, Korea University, Seoul, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul (Korea, Republic of)

    2014-06-15

    Purpose: Proton therapy aims to deliver a high dose in a well-defined target volume while sparing the healthy surrounding tissues thanks to their inherent depth dose characteristic (Bragg peak). In proton therapy, several techniques can be used to deliver the dose into the target volume. The one that allows the best conformity with the tumor, is called PBS (Pencil Beam Scanning). The measurement of the proton pencil beam spot profile (spot size) and position is very important for the accurate delivery of dose to the target volume with a good conformity. Methods: We have developed a fine segmented detector array to monitor the PBS. A prototype beam monitor using Cherenkov radiation in clear plastic optical fibers (cPOF) has been developed for continuous display of the pencil beam status during the therapeutic proton Pencil Beam Scanning mode operation. The benefit of using Cherenkov radiation is that the optical output is linear to the dose. Pedestal substraction and the gain adjustment between channels are performed. Spot profiles of various pencil beam energies(100 MeV to 226 MeV) are measured. Two dimensional gaussian fit is used to analyze the beam width and the spot center. The results are compared with that of Lynx(Scintillator-based sensor with CCD camera) and EBT3 Film. Results: The measured gaussian widths using fiber array system changes from 13 to 5 mm for the beam energies from 100 to 226 MeV. The results agree well with Lynx and Film within the systematic error. Conclusion: The results demonstrate good monitoring capability of the system. Not only measuing the spot profile but also monitoring dose map by accumulating each spot measurement is available. The x-y monitoing system with 128 channel readout will be mounted to the snout for the in-situ real time monitoring.

  3. Finite Automation

    OpenAIRE

    2005-01-01

    This self-paced narrated tutorial covers the following about Finite Automata: Uses, Examples, Alphabet, strings, concatenation, powers of an alphabet, Languages (automata and formal languages), Deterministic finite automata (DFA) SW4600 Automata, Formal Specification and Run-time Verification

  4. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.

    Science.gov (United States)

    Kłodowska, M; Olko, P; Waligórski, M P R

    2015-09-01

    Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.

  5. The use of research questionnaires with hearing impaired adults: online vs. paper-and-pencil administration

    Science.gov (United States)

    2012-01-01

    Background When evaluating hearing rehabilitation, it is reasonable to use self-report questionnaires as outcome measure. Questionnaires used in audiological research are developed and validated for the paper-and-pencil format. As computer and Internet use is increasing, standardized questionnaires used in the audiological context should be evaluated to determine the viability of the online administration format. The aim of this study was to compare administration of questionnaires online versus paper- and pencil of four standardised questionnaires used in hearing research and clinic. We included the Hearing Handicap Inventory for the Elderly (HHIE), the International Outcome Inventory for Hearing Aids (IOI-HA), Satisfaction with Amplification in Daily Life (SADL), and the Hospital Anxiety and Depression Scale (HADS). Methods A cross-over design was used by randomly letting the participants complete the questionnaires either online or on paper. After 3 weeks the participants filled out the same questionnaires again but in the other format. A total of 65 hearing-aid users were recruited from a hearing clinic to participate on a voluntary basis and of these 53 completed both versions of the questionnaires. Results A significant main effect of format was found on the HHIE (p questionnaires were no significant main or interaction effects of format. Significant correlations between the two ways of presenting the measures was found for all questionnaires (pquestionnaires and differences in Cronbachs α between administration formats were negligible. Conclusions For three of the four included questionnaires the participants’ scores remained consistent across administrations and formats. For the fourth included questionnaire (HHIE) a significant difference of format with a small effect size was found. The relevance of the difference in scores between the formats depends on which context the questionnaire is used in. On balance, it is recommended that the administration

  6. The use of research questionnaires with hearing impaired adults: online vs. paper-and-pencil administration

    Directory of Open Access Journals (Sweden)

    Thorén Elisabet

    2012-10-01

    Full Text Available Abstract Background When evaluating hearing rehabilitation, it is reasonable to use self-report questionnaires as outcome measure. Questionnaires used in audiological research are developed and validated for the paper-and-pencil format. As computer and Internet use is increasing, standardized questionnaires used in the audiological context should be evaluated to determine the viability of the online administration format. The aim of this study was to compare administration of questionnaires online versus paper- and pencil of four standardised questionnaires used in hearing research and clinic. We included the Hearing Handicap Inventory for the Elderly (HHIE, the International Outcome Inventory for Hearing Aids (IOI-HA, Satisfaction with Amplification in Daily Life (SADL, and the Hospital Anxiety and Depression Scale (HADS. Methods A cross-over design was used by randomly letting the participants complete the questionnaires either online or on paper. After 3 weeks the participants filled out the same questionnaires again but in the other format. A total of 65 hearing-aid users were recruited from a hearing clinic to participate on a voluntary basis and of these 53 completed both versions of the questionnaires. Results A significant main effect of format was found on the HHIE (p Conclusions For three of the four included questionnaires the participants’ scores remained consistent across administrations and formats. For the fourth included questionnaire (HHIE a significant difference of format with a small effect size was found. The relevance of the difference in scores between the formats depends on which context the questionnaire is used in. On balance, it is recommended that the administration format remain stable across assessment points.

  7. Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode

    Science.gov (United States)

    King, David; Friend, Jeffrey; Kariuki, James

    2010-01-01

    A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…

  8. Solving the infinite-dimensional discrete-time algebraic Riccati equation using the extended symplectic pencil

    NARCIS (Netherlands)

    Oostveen, J

    1996-01-01

    In this paper we present results about the algebraic Riccati equation (ARE) and a weaker version of the ARE, the algebraic Riccati system (ARS), for infinite-dimensional, discrete-time systems. We introduce an operator pencil, associated with these equations, the so-called extended symplectic Pencil

  9. Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode

    Science.gov (United States)

    King, David; Friend, Jeffrey; Kariuki, James

    2010-01-01

    A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…

  10. Paper-and-Pencil Programming Strategy toward Computational Thinking for Non-Majors: Design Your Solution

    Science.gov (United States)

    Kim, Byeongsu; Kim, Taehun; Kim, Jonghoon

    2013-01-01

    The paper-and-pencil programming strategy (PPS) is a way of representing an idea logically by any representation that can be created using paper and pencil. It was developed for non-computer majors to improve their understanding and use of computational thinking and increase interest in learning computer science. A total of 110 non-majors in their…

  11. Lines on the Dwork Pencil of Quintic Threefolds

    CERN Document Server

    Candelas, Philip; van Geemen, Bert; van Straten, Duco

    2012-01-01

    We present an explicit parametrization of the families of lines of the Dwork pencil of quintic threefolds. This gives rise to isomorphic curves which parametrize the lines. These curves are 125:1 covers of certain genus six curves. These genus six curves are first presented as curves in P^1*P^1 that have three nodes. It is natural to blow up P^1*P^1 in the three points corresponding to the nodes in order to produce smooth curves. The result of blowing up P^1*P^1 in three points is the quintic del Pezzo surface dP_5, whose automorphism group is the permutation group S_5, which is also a symmetry of the pair of genus six curves. The subgroup A_5, of even permutations, is an automorphism of each curve, while the odd permutations interchange the two curves. The ten exceptional curves of dP_5 each intersect each of the genus six curves in two points corresponding to van Geemen lines. We find, in this way, what should have anticipated from the outset, that the genus six curves are the curves of the Wiman pencil. We...

  12. An inexpensive method of small paraffin tissue microarrays using mechanical pencil tips

    Directory of Open Access Journals (Sweden)

    Shebl Abdelhadi M

    2011-12-01

    Full Text Available Abstract Background Tissue microarray technology has provided a high throughput means of evaluating potential biomarkers in archival pathological specimens. This study was carried out in order to produce tissue microarray blocks using mechanical pencil tips without high cost. Method Conventional mechanical pencil tips (Rotring Tikky II Mechanical Pencil 1.0 mm were used to cut out 1 mm wax cylinders from the recipient block, creating from 36 to 72 holes. Three cores of tumor areas were punched out manually by using the mechanical pencil tips from donor paraffin embedded tissue blocks and transferred to the holes of the paraffin tissue microarrays. Results This technique was easy and caused little damage to the donor blocks. We successfully performed H&E slides and immunodetection without substantial tissue cylinder loss. Conclusion Our mechanical pencil tip technique is the most inexpensive easy technique among the literature. It also takes a reasonable amount of time and reduces antibody consumption during immunohistochemistry

  13. Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Elena Bernalte

    2016-08-01

    Full Text Available We explore the fabrication, physicochemical characterisation (SEM, Raman, EDX and XPS and electrochemical application of hand-drawn pencil electrodes (PDEs upon an ultra-flexible polyester substrate; investigating the number of draws (used for their fabrication, the pencil grade utilised (HB to 9B and the electrochemical properties of an array of batches (i.e, pencil boxes. Electrochemical characterisation of the PDEs, using different batches of HB grade pencils, is undertaken using several inner- and outer-sphere redox probes and is critically compared to screen-printed electrodes (SPEs. Proof-of-concept is demonstrated for the electrochemical sensing of dopamine and acetaminophen using PDEs, which are found to exhibit competitive limits of detection (3σ upon comparison to SPEs. Nonetheless, it is important to note that a clear lack of reproducibility was demonstrated when utilising these PDEs fabricated using the HB pencils from different batches. We also explore the suitability and feasibility of a pencil-drawn reference electrode compared to screen-printed alternatives, to see if one can draw the entire sensing platform. This article reports a critical assessment of these PDEs against that of its screen-printed competitors, questioning the overall feasibility of PDEs’ implementation as a sensing platform.

  14. Evaluating the accuracy of a three-term pencil beam algorithm in heterogeneous media

    Science.gov (United States)

    Chapman, J. W.; Knutson, N. C.; Fontenot, J. D.; Newhauser, W. D.; Hogstrom, K. R.

    2017-02-01

    The goal of this work was to evaluate the accuracy of our in-house analytical dose calculation code against MCNPX data in heterogeneous phantoms. The analytical model utilizes a pencil beam model based on Fermi-Eyges theory to account for multiple Coulomb scattering and a least-squares fit to Monte Carlo data to account for nonelastic nuclear interactions as well as any remaining, uncharacterized scatter (the ‘nuclear halo’). The model characterized dose accurately (up to 1% of maximum dose in broad fields (4  ×  4 cm2 and 10  ×  10 cm2) and up to 0.01% in a narrow field (0.1  ×  0.1 cm2) fit to MCNPX data). The accuracy of the model was benchmarked in three types of stylized phantoms: (1) homogeneous, (2) laterally infinite slab heterogeneities, and (3) laterally finite slab heterogeneities. Results from homogeneous phantoms and laterally infinite slab heterogeneities showed high levels of accuracy (>98% of points within 2% or 0.1 cm distance-to-agreement (DTA)). However, because range straggling and secondary particle production were not included in our model, central-axis dose differences of 2-4% were observed in laterally infinite slab heterogeneities when compared to Monte Carlo dose. In the presence of laterally finite slab heterogeneities, the analytical model resulted in lower pass rates (>96% of points within 2% or 0.1 cm DTA), which was attributed to the use of the central-axis approximation.

  15. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  16. A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method

    Science.gov (United States)

    Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang

    2016-01-01

    Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.

  17. Pencil-Beam Surveys for Faint Trans-Neptunian Objects

    CERN Document Server

    Gladman, B; Nicholson, P D; Loredo, T J; Burns, J A; Gladman, Brett; Kavelaars, JJ; Nicholson, Philip D.; Loredo, Thomas J.; Burns, Joseph A.

    1998-01-01

    We have conducted pencil-beam searches for outer solar system objects to a limiting magnitude of R ~ 26. Five new trans-neptunian objects were detected in these searches. Our combined data set provides an estimate of ~90 trans-neptunian objects per square degree brighter than ~ 25.9. This estimate is a factor of 3 above the expected number of objects based on an extrapolation of previous surveys with brighter limits, and appears consistent with the hypothesis of a single power-law luminosity function for the entire trans-neptunian region. Maximum likelihood fits to all self-consistent published surveys with published efficiency functions predicts a cumulative sky density Sigma(

  18. Event-by-Event Analysis of Proton-Induced Nuclear Multifragmentation Determination of Phase Transition Universality-Class in System with Extreme Finite-Size Constraints

    CERN Document Server

    Berkenbusch, M K; Dillman, K; Pratt, S; Beaulieu, L; Kwiatkowski, K K; Lefort, T; Hsi, W C; Viola, V E; Yennello, S J; Korteling, R G; Breuer, H

    2002-01-01

    A percolation model of nuclear fragmentation is used to interpret 10.2 GeV/c p+197Au multi-fragmentation data. Emphasis is put on finding signatures of a continuous nuclear matter phase transition in finite nuclear systems. Based on model calculations, corrections accounting for physical constraints of the fragment detection and sequential decay processes are derived. Strong circumstantial evidence for a continuous phase transition is found, and the values of two critical exponents, sigma = 0.5+-0.1 and tau = 2.35+-0.05, are extracted from the data. A critical temperature of T_c = 8.3+-0.2 MeV is found.

  19. Pencil beam proton radiography using a multilayer ionization chamber

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  20. SU-E-T-375: Passive Scattering to Pencil-Beam-Scanning Comparison for Medulloblastoma Proton Therapy: LET Distributions and Radiobiological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D; MacDonald, S; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2014-06-01

    Purpose: To compare the linear energy transfer (LET) distributions between passive scattering and pencil beam scanning proton radiation therapy techniques for medulloblastoma patients and study the potential radiobiological implications. Methods: A group of medulloblastoma patients, previously treated with passive scattering (PS) proton craniospinal irradiation followed by prosterior fossa or involved field boost, were selected from the patient database of our institution. Using the beam geometry and planning computed tomography (CT) image sets of the original treatment plans, pencil beam scanning (PBS) treatment plans were generated for the cranial treatment for each patient, with average beam spot size of 8mm (sigma in air at isocenter). 3-dimensional dose and LET distributions were calculated by Monte Carlo methods (TOPAS) both for the original passive scattering and new pencil beam scanning treatment plans. LET volume histograms were calculated for the target and OARs and compared for the two delivery methods. Variable RBE weighted dose distributions and volume histograms were also calculated using a variable dose and LET-based model. Results: Better dose conformity was achieved with PBS planning compared to PS, leading to increased dose coverage for the boost target area and decreased average dose to the structures adjacent to it and critical structures outside the whole brain treatment field. LET values for the target were lower for PBS plans. Elevated LET values for OARs close to the boosted target areas were noticed, due to end of range of proton beams falling inside these structures, resulting in higher RBE weighted dose for these structures compared to the clinical RBE value of 1.1. Conclusion: Transitioning from passive scattering to pencil beam scanning proton radiation treatment can be dosimetrically beneficial for medulloblastoma patients. LET–guided treatment planning could contribute to better decision making for these cases, especially for

  1. Finite Size Vertex Correction to the Strong Decay of ηc and χc States and a Determination of αs(mc)

    Institute of Scientific and Technical Information of China (English)

    平荣刚; 姜焕清; 邹冰松

    2002-01-01

    We calculate the correction to the two-gluon decay width due to the finite extension of the vertex function. We obtain the corrected factor to the zero-range vertex γ=1.32,γ=1.45,γ=1.26 forηc,χc0,andχc2,respectively. With the decay width Г(ηc → 2g) we extract the value αs(mc) = 0.28 ± 0.05 which agrees with that calculated from the same correction to the process Г( J/ψ → 3g). This correction to the process Г(ηc → 2g) is not as large as that to the process Г(J/ψ → 3g).

  2. The Effect of the Number of Simulations on the Exponents Obtained by Finite-Size Scaling Relations of the Order Parameter and the Magnetic Susceptibility for the Four-Dimensional Ising Model on the Creutz Cellular Automaton

    Science.gov (United States)

    Merdan, Z.; Güzelsoy, E.

    2012-05-01

    The four-dimensional Ising model is simulated on the Creutz cellular automaton using finite-size lattices with linear dimension 4≤ L≤8. The exponents in the finite-size scaling relations for the order parameter and the magnetic susceptibility at the finite-lattice critical temperature are computed to be β=0.49(7), β=0.49(5), β=0.50(1) and γ=1.04(4), γ=1.03(4), γ=1.02(4) for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are consistent with the renormalization group predictions of β=0.5 and γ=1. The values for the critical temperature of the infinite lattice T c (∞)=6.6788(65), T c (∞)=6.6798(69), T c (∞)=6.6802(70) are obtained from the straight-line fit of the magnetic susceptibility maxima using 4≤ L≤8 for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are in very good agreement with the series expansion results of T c (∞)=6.6817(15), T c (∞)=6.6802(2), the dynamic Monte Carlo result of T c (∞)=6.6803(1), the cluster Monte Carlo result of T c (∞)=6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm result of T c (∞)=6.6802632±5×10-5.

  3. Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation

    CERN Document Server

    Yerriswamy, T; 10.5121/sipij.2011.2306

    2011-01-01

    Continuing to estimate the Direction-of-arrival (DOA) of the signals impinging on the antenna array, even when a few elements of the underlying Uniform Linear Antenna Array (ULA) fail to work will be of practical interest in RADAR, SONAR and Wireless Radio Communication Systems. This paper proposes a new technique to estimate the DOAs when a few elements are malfunctioning. The technique combines Singular Value Thresholding (SVT) based Matrix Completion (MC) procedure with the Direct Data Domain (D^3) based Matrix Pencil (MP) Method. When the element failure is observed, first, the MC is performed to recover the missing data from failed elements, and then the MP method is used to estimate the DOAs. We also, propose a very simple technique to detect the location of elements failed, which is required to perform MC procedure. We provide simulation studies to demonstrate the performance and usefulness of the proposed technique. The results indicate a better performance, of the proposed DOA estimation scheme under...

  4. Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil

    Directory of Open Access Journals (Sweden)

    Mei-yan Zheng

    2013-01-01

    Full Text Available The matrix enhancement and matrix pencil (MEMP plays important roles in modern signal processing applications. In this paper, MEMP is applied to attack the problem of two-dimensional sparse array synthesis. Firstly, the desired array radiation pattern, as the original pattern for approximating, is sampled to form an enhanced matrix. After performing the singular value decomposition (SVD and discarding the insignificant singular values according to the prior approximate error, the minimum number of elements can be obtained. Secondly, in order to obtain the eigenvalues, the generalized eigen-decomposition is employed on the approximate matrix, which is the optimal low-rank approximation of the enhanced matrix corresponding to sparse planar array, and then the ESPRIT algorithm is utilized to pair the eigenvalues related to each dimension of the planar array. Finally, element positions and excitations of the sparse planar array are calculated according to the correct pairing of eigenvalues. Simulation results are presented to illustrate the effectiveness of the proposed approach.

  5. Genesis and the tipping pencil; why the Universe is flat

    CERN Document Server

    Adler, Ronald J

    2011-01-01

    In a room with five cosmologists there there may easily be ten theories of cosmogenesis. Cosmogenesis is a popular topic for speculation because it is philosophically deep and because such speculations are unlikely to be proven wrong in the near future. The scenario we present here was intended mainly as a pedagogical illustration or toy model, but it turns out to possibly have a more serious and interesting result - a rationale for the spatial flatness of the Universe. Our basic assumptions are that the cosmological scale factor obeys the standard Friedman equation of general relativistic cosmology and that the equation is dominated by a cosmological constant term and a curvature term; the dynamics of the Universe is then (approximately) the same as that of a tipping pencil. The scale factor cannot remain at an unstable initial value of zero and must increase (i.e. the Universe must come into existence) according to the uncertainty principle, that is due to quantum fluctuations; in other words we propose in ...

  6. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Schuemann, J; Moteabbed, M; Paganetti, H [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  7. Conformationally averaged vertical detachment energy of finite size NO3(-)·nH2O clusters: a route connecting few to many.

    Science.gov (United States)

    Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar

    2011-04-07

    We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.

  8. Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution

    Science.gov (United States)

    Ferrari, Ulisse

    2016-08-01

    Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.

  9. Finite superstrings

    CERN Document Server

    Restuccia, A; Taylor, J G

    1992-01-01

    This is the first complete account of the construction and finiteness analysis of multi-loop scattering amplitudes for superstrings, and of the guarantee that for certain superstrings (in particular the heterotic one), the symmetries of the theory in the embedding space-time are those of the super-poincaré group SP10 and that the multi-loop amplitudes are each finite. The book attempts to be self-contained in its analysis, although it draws on the works of many researchers. It also presents the first complete field theory for such superstrings. As such it demonstrates that gravity can be quant

  10. Experimentally validated pencil beam scanning source model in TOPAS.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Ainsley, Christopher G; McDonough, James E

    2014-11-21

    The presence of a low-dose envelope, or 'halo', in the fluence profile of a proton spot can increase the output of a pencil beam scanning field by over 10%. This study evaluated whether the Monte Carlo simulation code, TOPAS 1.0-beta 8, based on Geant4.9.6 with its default physics list, can predict the spot halo at depth in phantom by incorporating a halo model within the proton source distribution. Proton sources were modelled using three 2D Gaussian functions, and optimized until simulated spot profiles matched measurements at the phantom surface out to a radius of 100 mm. Simulations were subsequently compared with profiles measured using EBT3 film in Solidwater® phantoms at various depths for 100, 115, 150, 180, 210 and 225 MeV proton beams. Simulations predict measured profiles within a 1 mm distance to agreement for 2D profiles extending to the 0.1% isodose, and within 1 mm/1% Gamma criteria over the integrated curve of spot profile as a function of radius. For isodose lines beyond 0.1% of the central spot dose, the simulated primary spot sigma is smaller than the measurement by up to 15%, and can differ by over 1 mm. The choice of particle interaction algorithm and phantom material were found to cause ~1 mm range uncertainty, a maximal 5% (0.3 mm) difference in spot sigma, and maximal 1 mm and ~2 mm distance to agreement in isodoses above and below the 0.1% level, respectively. Based on these observations, therefore, the selection of physics model and the application of Solidwater® as water replacement material in simulation and measurement should be used with caution.

  11. Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Toutaoui, Abdelkader, E-mail: toutaoui.aek@gmail.com [Departement de Physique Medicale, Centre de Recherche Nucleaire d' Alger, 2 Bd Frantz Fanon BP399 Alger RP, Algiers (Algeria); Khelassi-Toutaoui, Nadia, E-mail: nadiakhelassi@yahoo.fr [Departement de Physique Medicale, Centre de Recherche Nucleaire d' Alger, 2 Bd Frantz Fanon BP399 Alger RP, Algiers (Algeria); Brahimi, Zakia, E-mail: zsbrahimi@yahoo.fr [Departement de Physique Medicale, Centre de Recherche Nucleaire d' Alger, 2 Bd Frantz Fanon BP399 Alger RP, Algiers (Algeria); Chami, Ahmed Chafik, E-mail: chafik_chami@yahoo.fr [Laboratoire de Sciences Nucleaires, Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumedienne, BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)

    2012-01-15

    Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of

  12. Pencil-on-Paper Capacitors for Hand-Drawn RC Circuits and Capacitive Sensing

    Directory of Open Access Journals (Sweden)

    Jonathan E. Thompson

    2017-01-01

    Full Text Available Electronic capacitors were constructed via hand-printing on paper using pencil graphite. Graphite traces were used to draw conductive connections and capacitor plates on opposing sides of a sheet of standard notebook paper. The paper served as the dielectric separating the plates. Capacitance of the devices was generally < 1000 pF and scaled with surface area of the plate electrodes. By combining a pencil-drawn capacitor with an additional resistive pencil trace, an RC low-pass filter was demonstrated. Further utility of the pencil-on-paper devices was demonstrated through description of a capacitive force transducer and reversible chemical sensing. The latter was achieved for water vapor when the hygroscopic cellulose matrix of the paper capacitor’s dielectric adsorbed water. The construction and demonstration of pencil-on-paper capacitive elements broadens the scope of paper-based electronic circuits while allowing new opportunities in the rapidly expanding field of paper-based sensors.

  13. Dry writing of highly conductive electrodes on papers by using silver nanoparticle-graphene hybrid pencils.

    Science.gov (United States)

    Park, Jun-Ho; Park, Myung-Joo; Lee, Jang-Sik

    2017-01-05

    The development of paper electronics would enable realization of extremely cheap devices for portable, disposable, and environmentally-benign electronics. Here, we propose a simple dry-writing tool similar to a pencil, which can be used to draw electrically conducting lines on paper for use in paper-based electronic devices. The fabricated pencil is composed of silver nanoparticles decorated on graphene layers to construct layered hybrid nanostructures. This pencil can draw highly conductive lines that are flexible and foldable on conventional papers. Electrodes drawn using this pencil on conventional copy paper are stable during repetitive mechanical folding and highly resistant to moisture/chemicals. This pencil can draw a conductive line where its resistance can be tuned by changing the amount of nanoparticles. A nonvolatile memory device is realized on papers by hand written lines with different resistance. All memory elements are composed of carbons on papers, so complete data security can be achieved by burning the memory papers. This work will provide a new opportunity to fabricate electronic devices on real papers with good conductivity as well as robust mechanical/chemical stability.

  14. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm.

    Science.gov (United States)

    Warren, Daniel R; Partridge, Mike; Hill, Mark A; Peach, Ken

    2015-06-07

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  15. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    Science.gov (United States)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  16. Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard-Jones fluids by non-equilibrium molecular dynamic simulation

    Institute of Scientific and Technical Information of China (English)

    Ahmed Asad; Wu Jiang-Tao

    2011-01-01

    We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient,D,of a Lennard Jones fluid over a wide density and temperature range.The change in self-diffusion coefficient with temperature decreases by increasing density.For density p* =pσ3 =0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* =kT/ε =1.25.The value of the self-diffusion coefficient strongly depends on system size.The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments.This correction scales as N-α,where α is an adjustable parameter and N is the number of particles.It is observed that the values of α < 1 provide quite a good correction to the simulation data.The system size dependence is very strong for lower densities,but it is not as strong for higher densities.The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations from the literature.

  17. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    OpenAIRE

    Nakaiwa, K; Yamada, A; Tashiro, K.; Wakiwaka, H.

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  18. A comparative study of intra canal stress pattern in endodontically treated teeth with average sized canal diameter and reinforced wide canals with three different post systems using finite element analysis

    Directory of Open Access Journals (Sweden)

    Kaur Amandeep

    2010-01-01

    Full Text Available Study methodology: This is a comparative study of intra canal stress patterns in endodontically treated maxillary central incisor with: average sized canal diameter and wide canals reinforced with three different post systems - cast post and core, carbon fiber post, stainless steel post; restored with ceramic crown using finite element analysis (FEA. All the models were subjected to a force of 100N applied at 450 to the long axis of the tooth at the middle third of the palatal surface of the restored ceramic crown. Results: The FEA revealed that all the post systems showed maximum stress in the coronal and middle third of the root. Maximum stress was seen on the inner dentinal wall in case of stainless steel post followed by cast gold and carbon fiber post, both in the models without reinforcement as well as in the reinforced models.

  19. Comment on "Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution"

    CERN Document Server

    Arrington, J

    2016-01-01

    In a recent paper, Hagelstein and Pascalutsa examine the error associated with an expansion of proton structure corrections to the Lamb shift in terms of moments of the charge distribution. They propose a small modification to a conventional parameterization of the proton's charge form factor and show that this can resolve the proton radius puzzle. However, while the size of the "bump" they add to the form factor is small, it is large compared to the total proton structure effects in the initial parameterization, yielding a final form factor that is unphysical. Reducing their modification to the point where the resulting form factor is physical does not allow for a resolution of the radius puzzle.

  20. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept

    Science.gov (United States)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-01

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product (DAPw ). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60Co beam, the Monte Carlo calculation of beam quality correction factors—in terms of dose-area product—in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of DAPw of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields DAPw values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  1. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S [McLaren Cancer Institute, Flint, MI (United States); Gao, M; Pankuch, M [ProCure Treatment Centers, Warrenville, IL (United States); Boyer, S; Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pillainayagam, M [Wayne State University, Detroit, Michigan (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2014-06-15

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.

  2. Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions.

    Science.gov (United States)

    Fytas, Nikolaos G; Martín-Mayor, Víctor

    2016-06-01

    It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

  3. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons

    Science.gov (United States)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-03-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA-stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3p’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3p- and (3p  +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3p  +  2)-AABLGNRs are metallic, the ‘3j’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3j  -  1 and 3j  -  2, for the low-energy electronic transports. In the passivated wide (3p  +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3p’ and ‘3j’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3p  +  2)-AABLGNRs.

  4. Quasi-projectivity, Artin-Tits Groups, and Pencil Maps

    CERN Document Server

    Bartolo, Enrique Artal; Matei, Daniel

    2010-01-01

    We consider the problem of deciding if a group is the fundamental group of a smooth connected complex quasi-projective (or projective) variety using Alexander-based invariants. In particular, we solve the problem for large families of Artin-Tits groups. We also study finiteness properties of such groups and exhibit examples of hyperplane complements whose fundamental groups satisfy $\\text{F}_{k-1}$ but not $\\text{F}_k$ for any $k$.

  5. 75 FR 38980 - Certain Cased Pencils From the People's Republic of China: Final Results of the Antidumping Duty...

    Science.gov (United States)

    2010-07-07

    ... labor costs; (2) we changed the surrogate value for slats, using slat prices from ``Paper and Stationery... International Trade Administration Certain Cased Pencils From the People's Republic of China: Final Results of... certain cased pencils from the People's Republic of China (``PRC''), covering the period December 1, 2007...

  6. 77 FR 42276 - Certain Cased Pencils From the People's Republic of China: Initiation and Preliminary Results of...

    Science.gov (United States)

    2012-07-18

    ... order with respect to novelty drumstick pencils. The domestic industry has affirmatively expressed a... tipped (e.g., with erasers, etc.) in any fashion, and either sharpened or unsharpened. The pencils... to expedite this review pursuant to 19 CFR 351.221(c)(3)(ii) stems from the domestic industry's...

  7. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility

    Science.gov (United States)

    Petzoldt, J.; Roemer, K. E.; Enghardt, W.; Fiedler, F.; Golnik, C.; Hueso-González, F.; Helmbrecht, S.; Kormoll, T.; Rohling, H.; Smeets, J.; Werner, T.; Pausch, G.

    2016-03-01

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton’s range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225

  8. A new model of organic solar cells reveals open circuit conditions and size dependent power loss induced by the finite conductivity of a transparent contact

    Science.gov (United States)

    Gotleyb, Dor; Shikler, Rafi

    2017-01-01

    We report on a new approach to modelling the effect of the size of organic solar cells on their efficiency. Experimental results show a drastic deterioration in performance when scaling up organic solar cells. This reduction reflects in key parameters such as the short circuit current (Is c ) , the maximum power point (Pm ) , and the Fill Factor (F F ) . It is attributed to the transparent anode that exhibits a relatively low conductivity (σ) . Our unique approach is to account for the interplay between the two sub-domains of the solar cell. In the first domain, containing the electro-optic active materials, we solve the drift-diffusion model using a simplified model for the recombination to emphasize the role of the anode resistance. In the second domain, representing the anode, we solve only the Laplace equation. We introduce the coupling between these layers using the current of the active layer as the boundary condition for the anode and the position dependent potential of the anode as the boundary condition for the active layer. Our results reveal that as the length of the cell increases, the parts that are farther from the contact exhibit near open circuit conditions and do not contribute to the current. We found that the efficiency of the cell altered from linear to sub-linear behavior already at cell lengths of a few millimeters. The transition point strongly depends on the conductivity of the anode. The sub-linearity starts at 0.4, 0.5, and 0.7 cm for σ=100 , 200 , and 500 S /cm , respectively. Additionally, the efficiency begins to saturate sooner than both the short circuit current and the Fill-Factor. The saturation is observed at device lengths of 0.8, 1.2, and 2.1 cm for σ=100 , 200 , and 500 S /cm , respectively.

  9. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Xie, Yunhe; Schuemann, Jan; Yock, Torunn; Paganetti, Harald

    2016-01-01

    The purpose of this study was to compare the radiation-induced second cancer risks for in-field and out-of-field organs and tissues for pencil beam scanning (PBS) and passive scattering proton therapy (PPT) and assess the impact of adding patient-specific apertures to sharpen the penumbra in pencil beam scanning for pediatric brain tumor patients. Five proton therapy plans were created for each of three pediatric patients using PPT as well as PBS with two spot sizes (average sigma of ~17 mm and ~8 mm at isocenter) and choice of patient-specific apertures. The lifetime attributable second malignancy risks for both in-field and out-of-field tissues and organs were compared among five delivery techniques. The risk for in-field tissues was calculated using the organ equivalent dose, which is determined by the dose volume histogram. For out-of-field organs, the organ-specific dose equivalent from secondary neutrons was calculated using Monte Carlo and anthropomorphic pediatric phantoms. We find that either for small spot size PBS or for large spot size PBS, a patient-specific aperture reduces the in-field cancer risk to values lower than that for PPT. The reduction for large spot sizes (on average 43%) is larger than for small spot sizes (on average 21%). For out-of-field organs, the risk varies only marginally by employing a patient-specific aperture (on average from  -2% to 16% with increasing distance from the tumor), but is still one to two orders of magnitude lower than that for PPT. In conclusion, when pencil beam spot sizes are large, the addition of apertures to sharpen the penumbra decreases the in-field radiation-induced secondary cancer risk. There is a slight increase in out-of-field cancer risk as a result of neutron scatter from the aperture, but this risk is by far outweighed by the in-field risk benefit from using an aperture with a large PBS spot size. In general, the risk for developing a second malignancy in out-of-field organs for PBS remains

  10. A Novel Method to Implement the Matrix Pencil Super Resolution Algorithm for Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada

    2011-10-01

    Full Text Available This article highlights the estimation of the results for the algorithms implemented in order to estimate the delays and distances for the indoor positioning system. The data sets for the transmitted and received signals are captured at a typical outdoor and indoor area. The estimation super resolution algorithms are applied. Different state of art and super resolution techniques based algorithms are applied to avail the optimal estimates of the delays and distances between the transmitted and received signals and a novel method for matrix pencil algorithm is devised. The algorithms perform variably at different scenarios of transmitted and received positions. Two scenarios are experienced, for the single antenna scenario the super resolution techniques like ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique and theMatrix Pencil algorithms give optimal performance compared to the conventional techniques. In two antenna scenario RootMUSIC and Matrix Pencil algorithm performed better than other algorithms for the distance estimation, however, the accuracy of all the algorithms is worst than the single antenna scenario. In all cases our devised Matrix Pencil algorithm achieved the best estimation results.

  11. Acceptance of Computerized Compared to Paper-and-Pencil Assessment in Psychiatric Inpatients.

    Science.gov (United States)

    Weber, Bernhard; Schneider, Barbara; Fritze, Jurgen; Gille, Boris; Hornung, Stefan; Kuhner, Thorsten; Maurer, Konrad

    2003-01-01

    Investigated the acceptance of computerized assessment, particularly compared to conventional paper-and-pencil techniques, in seriously impaired psychiatric inpatients. Describes the development of a self-rating questionnaire (OPQ, Operation and Preference Questionnaire) and reports results that showed computerized assessment was convincingly…

  12. Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction.

    Science.gov (United States)

    Liu, Qian; Cheng, Mengting; Long, Yanmin; Yu, Miao; Wang, Thanh; Jiang, Guibin

    2014-01-17

    Graphenized pencil lead fiber was facilely prepared by in situ chemical exfoliation of graphite in pencil lead fiber to few-layered graphene sheets via a one-pot, one-step pressurized oxidation reaction for the first time. This new fiber was characterized and demonstrated to be a highly efficient but low-cost solid-phase microextraction (SPME) fiber. The extraction performance of the fiber was evaluated with four bisphenol analogs [bisphenol A (BPA), bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA)] as model analytes in direct SPME mode. Unlike commercially available fibers, the graphenized pencil lead fiber showed an excellent chemical stability in highly saline, acidic, alkaline and organic conditions due to its coating-free configuration. The fiber also showed a very long lifespan. Furthermore, high extraction efficiency and good selectivity for the analytes with a wide polarity range could be obtained due to the exceptional properties of graphene. The detection limits (LODs) for the analytes were in the range of 1.1-25ng/L. The fiber was successfully applied in the analysis of tap water and effluent samples from a waste water treatment plant with spike recoveries ranging from 68.5 to 105.1%. Therefore, the graphenized pencil lead fiber provides a high performance, cheap, robust, and reliable tool for SPME.

  13. A Paradigm Shift: From Paper-and-Pencil Tests to Performance-Based Assessment

    Science.gov (United States)

    Puppin, Leni

    2007-01-01

    This article describes how The Language Center at the Espirito Santo Federal University changed from using traditional pencil-andpaper tests to performance testing, based on authentic tasks. The change was prompted because people thought that their testing did not reflect a communicative approach to language teaching. The Assessment Project lasted…

  14. Pencil and Paper Versus Word Processing: A Comparative Study of Creative Writing in the Elementary School.

    Science.gov (United States)

    Nichols, Lois Mayer

    1996-01-01

    A comparison of compositions written by 19 sixth graders using pencil and paper with those written by 19 sixth graders using word processors found that though the quality of writing, accuracy of grammar, and reading ease did not differ between the two approaches, students using computers wrote more words and sentences. (PEN)

  15. Internet Administration of Paper-and-Pencil Questionnaires Used in Couple Research: Assessing Psychometric Equivalence

    Science.gov (United States)

    Brock, Rebecca L.; Barry, Robin A.; Lawrence, Erika; Dey, Jodi; Rolffs, Jaci

    2012-01-01

    This study examined the psychometric equivalence of paper-and-pencil and Internet formats of key questionnaires used in couple research. Self-report questionnaires assessing interpersonal constructs (relationship satisfaction, communication/conflict management, partner support, emotional intimacy) and intrapersonal constructs (individual traits,…

  16. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    Science.gov (United States)

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  17. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    Science.gov (United States)

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  18. Test Review: The Modern Language Aptitude Test (Paper-and-Pencil Version)

    Science.gov (United States)

    Sasaki, Miyuki

    2012-01-01

    The Modern Language Aptitude Test (Paper-and-Pencil Version, henceforth, the MLAT) measures "an individual's ability to learn a foreign language." It targets English-speaking adults (over Grade 9) who are literate. The test has only one form, which has not changed since it was first published by the Psychological Corporation in 1959. The test can…

  19. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  20. Finite volume form factors and correlation functions at finite temperature

    CERN Document Server

    Pozsgay, Balázs

    2009-01-01

    In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the $\\mu$-term) associate...

  1. Automated Traffic and the Finite Size Resonance

    Science.gov (United States)

    Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.

    2009-10-01

    We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.

  2. SU-E-T-441: Comparison of Dose Distributions for Spot-Scanned Pencil-Beam and Scattered-Beam Proton Treatments of Ocular Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Deisher, A; Whitaker, T; Kruse, J [Mayo Clinic, Rochester, MN (United States); Kooy, H; Trofimov, A [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: To study the cross-field and depth dose profiles of spot-scanned pencil beam configurations for the treatment of ocular tumors and to compare their performance to a simulated scattered beam. Methods: Dose distributions in a cubic water phantom were compared for beams that passed through a final 24mm diameter aperture to deposit maximum dose at 2.4cm depth. The pencil-beam spots formed a hexagonally-packed ring with a center-to-center spacing of 4mm. The protons exited the nozzle with energy 95.5MeV, traversed a 4.5cm water-equivalent range shifter, and travelled either 42.5cm or 100cm to the phantom surface. The aperture-to-phantom distance (APD) was 5.7cm to allow room for eye-tracking hardware. A configuration with APD=0 was also tested. The scattered beam was generated with energy 159MeV, passed through 127mm of Lexan, exited the final aperture, and travelled 5.7cm to the phantom surface. This latter configuration is comparable to the MGH single scattered beamline. All beams were modelled with TOPAS1.0-beta6 compiled with GEANT4.9.6p2. Results: The modeled scattered beam produced a distal fall-off along the central axis of zd90%-zd10%=3.6mm. For the pencil beam, the zd90%-zd10% was 1.6mm in all configurations. The scattered beam's cross-field penumbra at depth of maximum dose was r90%- r10%=1.9mm. For the spot-scanned configuration with the range-shifter-tophantom distance (RsPD) of 100cm, similar cross-field profiles were achieved with r90%-r10%=2.0mm. At shorter RsPD of 42.5cm, the crossfield penumbras were 5.6mm and 7.7mm for APD=0cm and APD=5.7cm, respectively. Conclusion: For proton treatments employing a range shifter, the cross-field and central axis dose profiles depend on the quality of the original beam, the size of the range shifter, the distance from the range shifter exit to the patient, and the distance from the final aperture to the patient. A spot-scanned pencil beam configuration can achieve cross-field penumbras equal to a

  3. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    Science.gov (United States)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  4. The impact of MCS models and EFAC values on the dose simulation for a proton pencil beam

    Science.gov (United States)

    Chen, Shih-Kuan; Chiang, Bing-Hao; Lee, Chung-Chi; Tung, Chuan-Jong; Hong, Ji-Hong; Chao, Tsi-Chian

    2017-08-01

    The Multiple Coulomb Scattering (MCS) model plays an important role in accurate MC simulation, especially for small field applications. The Rossi model is used in MCNPX 2.7.0, and the Lewis model in Geant4.9.6.p02. These two models may generate very different angular and spatial distributions in small field proton dosimetry. Beside angular and spatial distributions, step size is also an important issue that causes path length effects. The Energy Fraction (EFAC) value can be used in MCNPX 2.7.0 to control step sizes of MCS. In this study, we use MCNPX 2.7.0, Geant4.9.6.p02, and one pencil beam algorithm to evaluate the effect of dose deposition because of different MCS models and different EFAC values in proton disequilibrium situation. Different MCS models agree well with each other under a proton equilibrium situation. Under proton disequilibrium situations, the MCNPX and Geant4 results, however, show a significant deviation (up to 43%). In addition, the path length effects are more significant when EFAC is equal to 0.917 and 0.94 in small field proton dosimetry, and using a 0.97 EFAC value is the best for both accuracy and efficiency

  5. Extraction and Analysis of Inter-area Oscillation Using Improved Multi-signal Matrix Pencil Algorithm Based on Data Reduction in Power System

    Science.gov (United States)

    Liu, Cheng; Cai, Guowei; Yang, Deyou; Sun, Zhenglong

    2016-08-01

    In this paper, a robust online approach based on wavelet transform and matrix pencil (WTMP) is proposed to extract the dominant oscillation mode and parameters (frequency, damping, and mode shape) of a power system from wide-area measurements. For accurate and robust extraction of parameters, WTMP is verified as an effective identification algorithm for output-only modal analysis. First, singular value decomposition (SVD) is used to reduce the covariance signals obtained by natural excitation technique. Second, the orders and range of the corresponding frequency are determined by SVD from positive power spectrum matrix. Finally, the modal parameters are extracted from each mode of reduced signals using the matrix pencil algorithm in different frequency ranges. Compared with the original algorithm, the advantage of the proposed method is that it reduces computation data size and can extract mode shape. The effectiveness of the scheme, which is used for accurate extraction of the dominant oscillation mode and its parameters, is thoroughly studied and verified using the response signal data generated from 4-generator 2-area and 16-generator 5-area test systems.

  6. Sound radiation from finite surfaces

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2013-01-01

    A method to account for the effect of finite size in acoustic power radiation problem of planar surfaces using spatial windowing is developed. Cremer and Heckl presents a very useful formula for the power radiating from a structure using the spatially Fourier transformed velocity, which combined...... with spatially windowing of a plane waves can be used to take into account the finite size. In the present paper, this is developed by means of a radiation impedance for finite surfaces, that is used instead of the radiation impedance for infinite surfaces. In this way, the spatial windowing is included...... in the radiation formula directly, and no pre-windowing is needed. Examples are given for the radiation efficiency, and the results are compared with results found in the literature....

  7. Comparação entre o pencil beam convolution algorithm e o analytical anisotropic algorithm em tumores de mama

    OpenAIRE

    Sá, Ana Cravo; Coelho, Carina Marques; Monsanto, Fátima

    2014-01-01

    Objectivo do estudo: comparar o desempenho dos algoritmos Pencil Beam Convolution (PBC) e do Analytical Anisotropic Algorithm (AAA) no planeamento do tratamento de tumores de mama com radioterapia conformacional a 3D.

  8. Investigating the Effect of Computer-Administered Versus Traditional Paper and Pencil Assessments on Student Writing Achievement

    Directory of Open Access Journals (Sweden)

    Robert Laurie

    2015-04-01

    Full Text Available The effect of using a computer or paper and pencil on student writing scores on a provincial standardized writing assessment was studied. A sample of 302 francophone students wrote a short essay using a computer equipped with Microsoft Word with all of its correction functions enabled. One week later, the same students wrote a second short essay using paper and pencil with access to dictionaries. Mean scores were compared for essays on each medium as well as scores on six specific criteria. There was no significant difference between the overall mean scores on the paper and pencil essays and those written using a computer. Significant differences favoring the paper and pencil essays were seen on the ideas, punctuation, and syntax criteria. A significant difference in favor of the computer written essays was seen on the orthography criterion. Possible practical implications and suggestions for future research are discussed.

  9. Pencil beam algoritmens nøjagtighed ved gated strålebehandling af brystkræft

    DEFF Research Database (Denmark)

    Nygaard, Ditte Eklund

    2008-01-01

    . Dosisplaner er blevet beregnet med den CT-baserede pencil beam algoritme, som er tilgængelig i dosisplanlægningsprogrammet Eclipse, med brug af Bathos modificerede potenslov til korrektion for inhomogeniteter. Bathos modificerede potenslov tager dog ikke korrekt højde for lateral elektronspredning i f...... over hele respirationscyklen. I dette speciale undersøges pencil beam algoritmens grundlag og egenskaber og på baggrund heraf algoritmens teoretiske nøjagtighed. Desuden undersøges pencil beam algoritmens kliniske nøjagtighed i forbindelse med den gatede behandling af venstresidede lumpektomi...... respiration (EG) – dvs. for varierende densitet af venstre lunge. 3 af patienterne er desuden blevet CT-scannet i slut-ekspirationsfasen under holdt respiration (EBH). For hvert CT-scan er der beregnet dosisplaner med pencil beam algoritmen med udgangspunkt i to tangentielle felter og et felt forfra. Det...

  10. Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2015-06-01

    Full Text Available Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils are addressed. Conditions for pointwise completeness and pointwise degeneracy of the systems are established and illustrated by an example.

  11. CONFLICTS WITH "SKIN COLOR PENCIL": THE POLVO (OCTOPUS) SERIES, ADRIANA VAREJÃO AND MULTICULTURALISM IN THE ART TEACHING

    National Research Council Canada - National Science Library

    João Paulo Baliscei; Geiva Carolina Calsa; Ana Caroline Marques Godinho

    2017-01-01

    .... From the discussions about the color stereotypes, we think of possible teaching strategies to question the use of "skin color pencil " and develop reflections on the naturalness with which is choosen...

  12. 76 FR 27988 - Certain Cased Pencils From the People's Republic of China: Final Results of the Antidumping Duty...

    Science.gov (United States)

    2011-05-13

    ... of China: Preliminary Results and Partial Rescission of Antidumping Duty Administrative Review, 76 FR..., pens, non-cased crayons (wax), pastels, charcoals, chalks, and pencils produced under U.S....

  13. Finite Random Domino Automaton

    CERN Document Server

    Bialecki, Mariusz

    2012-01-01

    Finite version of Random Domino Automaton (FRDA) - recently proposed a toy model of earthquakes - is investigated. Respective set of equations describing stationary state of the FRDA is derived and compared with infinite case. It is shown that for the system of big size, these equations are coincident with RDA equations. We demonstrate a non-existence of exact equations for size N bigger then 4 and propose appropriate approximations, the quality of which is studied in examples obtained within Markov chains framework. We derive several exact formulas describing properties of the automaton, including time aspects. In particular, a way to achieve a quasi-periodic like behaviour of RDA is presented. Thus, based on the same microscopic rule - which produces exponential and inverse-power like distributions - we extend applicability of the model to quasi-periodic phenomena.

  14. On the transmutation and annihilation of pencil-generated spacetime dimensions

    Science.gov (United States)

    Saniga, Metod

    1996-03-01

    A spacetime manifold generated by the pencil of conics defined by two distinct pairs of complex-conjugated lines and a pair of real lines is considered. The manifold, originally endowed with two spatial and two temporal dimensions, is shown to substantially change its properties as we change the affine properties of the pencil. Two kinds of transformation are of particular interest. A dimensionality-preserving process, characterized by the transmutation of a temporal coordinate into a spatial one and leading to familiar (3+1)D spacetime, and a dimensionality-reducing scenario, featuring simultaneous ‘annihilation’ of one temporal and one spatia dimension and ending up with a (1+1)D spacetime. A striking difference between the nature of temporal and spatial is revealed; whereas we find purely spatial manifolds, those comprising exclusively temporal dimensions donot exist.

  15. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    Energy Technology Data Exchange (ETDEWEB)

    Westerly, David C. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mo Xiaohu; DeLuca, Paul M. Jr. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 (United States); Tome, Wolfgang A. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Institute of Onco-Physics, Albert Einstein College of Medicine and Division of Medical Physics, Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York 10461 (United States); Mackie, Thomas R. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2013-06-15

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at

  16. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    Science.gov (United States)

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed.

  17. Laser Pencil Beam Based Techniques for Visualization and Analysis of Interfaces Between Media

    Science.gov (United States)

    Adamovsky, Grigory; Giles, Sammie, Jr.

    1998-01-01

    Traditional optical methods that include interferometry, Schlieren, and shadowgraphy have been used successfully for visualization and evaluation of various media. Aerodynamics and hydrodynamics are major fields where these methods have been applied. However, these methods have such major drawbacks as a relatively low power density and suppression of the secondary order phenomena. A novel method introduced at NASA Lewis Research Center minimizes disadvantages of the "classical" methods. The method involves a narrow pencil-like beam that penetrates a medium of interest. The paper describes the laser pencil beam flow visualization methods in detail. Various system configurations are presented. The paper also discusses interfaces between media in general terms and provides examples of interfaces.

  18. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  19. Computational evaluation of a pencil ionization chamber in a standard diagnostic radiology beam

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Dalila Souza Costa; Neves, Lucio Pereira; Perini, Ana Paula, E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica; Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Belinato, Walmir [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil)

    2016-07-01

    In this work a pencil ionization chamber was evaluated. This evaluation consisted in the determination of the influence of the ionization chamber components in its response. For this purpose, the Monte Carlo simulations and the spectrum of the standard diagnostic radiology beam (RQR5) were utilized. The results obtained, showed that the influence of the ionization chamber components presented no significant influence on the chamber response. Therefore, this ionization chamber is a good alternative for dosimetry in diagnostic radiology. (author)

  20. Figure and formlessness in primitive art, spoliation and pencil stroke in a proposal of drawing

    Directory of Open Access Journals (Sweden)

    Adriana Rocío Pérez Rincón

    2013-08-01

    Full Text Available Through the concepts of formlessness and of image as an expression of spoliation, this paper intends to articulate the issue of figure in children’s drawings and primitive art. The image is taken as an ambiguous entity which lies between presence and absence, wavering between appearance and disappearance. These reflections unfold a proposal in which both gesture and pencil stroke are re-signified.