Finite-size corrections in simulation of dipolar fluids
Belloni, Luc; Puibasset, Joël
2017-12-01
Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.
Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections
van Enter, Aernout C. D.; Hulshof, Tim
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections
Enter, van A.C.D.; Hulshof, T.
2007-01-01
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Finite-size corrections to the free energies of crystalline solids
Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.
2000-01-01
We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free
An improved Landauer principle with finite-size corrections
International Nuclear Information System (INIS)
Reeb, David; Wolf, Michael M
2014-01-01
Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)
2017-06-15
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram
International Nuclear Information System (INIS)
Moretto, L.G.; Elliott, J.B.; Phair, L.
2003-01-01
In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)
Charge and finite size corrections for virtual photon spectra in second order Born approximation
International Nuclear Information System (INIS)
Durgapal, P.
1982-01-01
The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations
Two-dimensional quantum-corrected black hole in a finite size cavity
International Nuclear Information System (INIS)
Zaslavskii, O.B.
2004-01-01
We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-12-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.
International Nuclear Information System (INIS)
Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng
2011-01-01
Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.
Finite-size corrections for quantum strings on AdS_{4} x CP^{3}
DEFF Research Database (Denmark)
Astolfi, D.; Puletti, V.G.M.; Grignani, G.
2011-01-01
the one for light modes. With this prescription the strong-weak coupling interpolating function h(¿), entering the magnon dispersion relation, does not receive a one-loop correction, in agreement with the algebraic curve spectrum. However, the single magnon dispersion relation exhibits finite...
International Nuclear Information System (INIS)
Rittenberg, V.
1983-01-01
Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given
Finite size vertex correction to the strong decay of ηc and χc states and a determination of αs(mc)
International Nuclear Information System (INIS)
Ping Ronggang; Jiang Huanqing; Zou Bingsong
2002-01-01
In previous calculations of the strong decay of a charmonium, the first-order momentum dependence of the quark propagator is kept. It was found that the finite-size vertex correction to the Γ(J/ψ→3g) process is large. The authors calculate the two-gluon decay widths of η e , χ c0 and χ c2 by including the full momentum dependence of the quark propagator. Comparing to the zero-order calculation the authors find that the finite-size vertex correction factor to the two-gluon decay widths of η c is 1.32, and for the two-gluon decays of χ c0 and χ c2 , the vertex correction factors are 1.45 and 1.26, respectively. With the corrected decay widths Γ(η c →2g) authors extract the value as α s (m c ) = 0.28 +- 0.05 which agrees with that calculated from the Γ(J/ψ→3g) process with the same correction. The finite-size vertex correction to the process Γ(η c →3g) is not as large as that to the process Γ(J/ψ→3g)
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order Î±(ZÎ±)5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude...
Characterization of resonances using finite size effects
International Nuclear Information System (INIS)
Pozsgay, B.; Takacs, G.
2006-01-01
We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Energy Technology Data Exchange (ETDEWEB)
Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)
2014-06-02
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank
2018-02-12
Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in
Directory of Open Access Journals (Sweden)
R.N. Faustov
2017-12-01
Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order Î±(ZÎ±5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei. Keywords: Lamb shift, Muonic atoms, Quantum electrodynamics
Finite Size Scaling of Perceptron
Korutcheva, Elka; Tonchev, N.
2000-01-01
We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.
Finite size effects for giant magnons on physical strings
International Nuclear Information System (INIS)
Minahan, J.A.; Ohlsson Sax, O.
2008-01-01
Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges
Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?
Sayar, Mehmet
2005-03-01
Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.
Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB
Energy Technology Data Exchange (ETDEWEB)
Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-11-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Quark bag coupling to finite size pions
International Nuclear Information System (INIS)
De Kam, J.; Pirner, H.J.
1982-01-01
A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)
Finite size scaling and spectral density studies
International Nuclear Information System (INIS)
Berg, B.A.
1991-01-01
Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)
Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
Chiral anomaly and anomalous finite-size conductivity in graphene
Shen, Shun-Qing; Li, Chang-An; Niu, Qian
2017-09-01
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.
Finite groups with three conjugacy class sizes of some elements
Indian Academy of Sciences (India)
Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.
Effect of Hall Current and Finite Larmor Radius Corrections on ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Asymmetric fluid criticality. II. Finite-size scaling for simulations.
Kim, Young C; Fisher, Michael E
2003-10-01
The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.
Finite-Q22 Corrections to Parity-Violating DIS
International Nuclear Information System (INIS)
T. Hobbs; W. Melnitchouk
2008-01-01
Parity-violating deep inelastic scattering (PVDIS) has been proposed as an important new tool to extract the flavor and isospin dependence of parton distributions in the nucleon. We discuss finite-Q 2 effects in PVDIS asymmetries arising from subleading kinematical corrections and longitudinal contributions to the gamma Z interference. For the proton, these need to be accounted for when extracting the d/u ratio at large x. For the deuteron, the finite-Q 2 corrections can distort the effects of charge symmetry violation in parton distributions, or signals for physics beyond the standard model. We further explore the dependence of PVDIS asymmetries for polarized targets on the u and d helicity distributions at large x
Finite-size effects on current correlation functions
Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong
2014-02-01
We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.
Finite-size scaling of survival probability in branching processes
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro
2014-01-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...
Finite element design procedure for correcting the coining die profiles
Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.
2018-05-01
This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Finite-State Complexity and the Size of Transducers
Directory of Open Access Journals (Sweden)
Cristian Calude
2010-08-01
Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.
Dynamic properties of epidemic spreading on finite size complex networks
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects
International Nuclear Information System (INIS)
Yan, D; Yang, C; Nguyen, N-T; Huang, X
2006-01-01
In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices
Finite-size scaling of survival probability in branching processes.
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
Finite size and dynamical effects in pair production by an external field
International Nuclear Information System (INIS)
Martin, C.; Vautherin, D.
1988-12-01
We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei
Three-point correlation functions of giant magnons with finite size
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, Plamen
2011-01-01
We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.
Finite-size scaling a collection of reprints
1988-01-01
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Electroweak vacuum stability and finite quadratic radiative corrections
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)
2015-07-15
If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.
International Nuclear Information System (INIS)
Horvat, R.
1993-01-01
One-loop photonic corrections to the electron-neutrino (ν e ) charged-current medium induced self-energy are examined using finite temperature field theory. It is shown that irrespective of computing radiative corrections at finite temperature and density, there are no O(α) corrections to the charged-current contribution of the ν e 's dispersion relation
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
Coulomb systems seen as critical systems: Finite-size effects in two dimensions
International Nuclear Information System (INIS)
Jancovici, B.; Manificat, G.; Pisani, C.
1994-01-01
It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects
Distribution of quantum states in enclosures of finite size I
International Nuclear Information System (INIS)
Souto, J.H.; Chaba, A.N.
1989-01-01
The expression for the density of states of a particle in a three-dimensional rectangular box of finite size can be obtained directly by Poissons's Summation formula. The expression for the case of an enclosure in the form of an infinite rectangular slab is derived. (A.C.A.S.) [pt
Finite-Size Effects for Some Bootstrap Percolation Models
Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.
The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling
Finite size effects in quark-gluon plasma formation
International Nuclear Information System (INIS)
Gopie, Andy; Ogilvie, Michael C.
1999-01-01
Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c
Finite size effects in simulations of protein aggregation.
Directory of Open Access Journals (Sweden)
Amol Pawar
Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.
Finite-size modifications of the magnetic properties of clusters
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker
1993-01-01
relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...
A correction for emittance-measurement errors caused by finite slit and collector widths
International Nuclear Information System (INIS)
Connolly, R.C.
1992-01-01
One method of measuring the transverse phase-space distribution of a particle beam is to intercept the beam with a slit and measure the angular distribution of the beam passing through the slit using a parallel-strip collector. Together the finite widths of the slit and each collector strip form an acceptance window in phase space whose size and orientation are determined by the slit width, the strip width, and the slit-collector distance. If a beam is measured using a detector with a finite-size phase-space window, the measured distribution is different from the true distribution. The calculated emittance is larger than the true emittance, and the error depends both on the dimensions of the detector and on the Courant-Snyder parameters of the beam. Specifically, the error gets larger as the beam drifts farther from a waist. This can be important for measurements made on high-brightness beams, since power density considerations require that the beam be intercepted far from a waist. In this paper we calculate the measurement error and we show how the calculated emittance and Courant-Snyder parameters can be corrected for the effects of finite sizes of slit and collector. (Author) 5 figs., 3 refs
Finite-size polyelectrolyte bundles at thermodynamic equilibrium
Sayar, M.; Holm, C.
2007-01-01
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Finite size effects on hydrogen bonds in confined water
International Nuclear Information System (INIS)
Musat, R.; Renault, J.P.; Le Caer, S.; Pommeret, S.; Candelaresi, M.; Palmer, D.J.; Righini, R.
2008-01-01
Femtosecond IR spectroscopy was used to study water confined in 1-50 nm pores. The results show that even large pores induce significant changes (for example excited-state lifetimes) to the hydrogen-bond network, which are independent of pore diameter between 1 and 50 nm. Thus, the changes are not surface-induced but rather finite size effects, and suggest a confinement-induced enhancement of the acidic character of water. (authors)
fB from finite size effects in lattice QCD
International Nuclear Information System (INIS)
Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.
2003-01-01
We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD
Finite-size scaling in two-dimensional superfluids
International Nuclear Information System (INIS)
Schultka, N.; Manousakis, E.
1994-01-01
Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
Finite-size effects on multibody neutrino exchange
Abada, A; Rodríguez-Quintero, J; Abada, As
1998-01-01
The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria; Chapman, S. Jonathan
2013-01-01
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
Proton fragmentation functions considering finite-mass corrections
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Soleymaninia, M. [Payame Noor Universtiy, Department of Physics, Tehran (Iran, Islamic Republic of); Maktoubian, A. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)
2016-10-15
We present new sets of proton fragmentation functions (FFs) describing the production of protons from the gluon and each of the quarks, obtained by the NLO QCD fits to all relevant data sets of single-inclusive electron-positron annihilation. Specifically, we determine their uncertainties using the Gaussian method for error estimation. Our analysis is in good agreement with the e{sup +}e{sup -} annihilation data. We also include finite-mass effects of the proton in our calculations, a topic to which very little attention is paid in the literature. Proton mass effects turn out to be appreciable for gluon and light quark FFs. The inclusion of finite-mass effects tends to improve the overall description of the data by reducing the minimized χ{sup 2} values significantly. As an application, we apply the extracted FFs to make predictions for the scaled-energy distribution of protons inclusively produced in top quark decays at next-to-leading order, relying on the universality and scaling violations of FFs. (orig.)
Finite nuclear size and Lamb shift of p-wave atomic states
International Nuclear Information System (INIS)
Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.
2003-01-01
We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small
Finite-size giant magnons on η-deformed AdS{sub 5}×S{sup 5}
Energy Technology Data Exchange (ETDEWEB)
Ahn, Changrim, E-mail: ahn@ewha.ac.kr; Bozhilov, Plamen, E-mail: bozhilov@inrne.bas.bg
2014-10-07
We consider strings moving in the R{sub t}×S{sub η}{sup 3} subspace of the η-deformed AdS{sub 5}×S{sup 5} and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.
Finite-size giant magnons on η-deformed AdS5×S5
Directory of Open Access Journals (Sweden)
Changrim Ahn
2014-10-01
Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.
Energy Technology Data Exchange (ETDEWEB)
Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)
2016-08-15
I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.
Directory of Open Access Journals (Sweden)
Sachin Kaothekar
2016-08-01
Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Revisionist integral deferred correction with adaptive step-size control
Christlieb, Andrew
2015-03-27
© 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.
Integral image rendering procedure for aberration correction and size measurement.
Sommer, Holger; Ihrig, Andreas; Ebenau, Melanie; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion
2014-05-20
The challenge in rendering integral images is to use as much information preserved by the light field as possible to reconstruct a captured scene in a three-dimensional way. We propose a rendering algorithm based on the projection of rays through a detailed simulation of the optical path, considering all the physical properties and locations of the optical elements. The rendered images contain information about the correct size of imaged objects without the need to calibrate the imaging device. Additionally, aberrations of the optical system may be corrected, depending on the setup of the integral imaging device. We show simulation data that illustrates the aberration correction ability and experimental data from our plenoptic camera, which illustrates the capability of our proposed algorithm to measure size and distance. We believe this rendering procedure will be useful in the future for three-dimensional ophthalmic imaging of the human retina.
Directory of Open Access Journals (Sweden)
M. Payami
2003-12-01
Full Text Available In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.
International Nuclear Information System (INIS)
Payami, M.
2004-01-01
In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere
Holographic relaxation of finite size isolated quantum systems
International Nuclear Information System (INIS)
Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
Energy Technology Data Exchange (ETDEWEB)
Tsai, W-F.
2010-04-06
We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.
Finite size scaling analysis of disordered electron systems
International Nuclear Information System (INIS)
Markos, P.
2012-01-01
We demonstrated the application of the finite size scaling method to the analysis of the transition of the disordered system from the metallic to the insulating regime. The method enables us to calculate the critical point and the critical exponent which determines the divergence of the correlation length in the vicinity of the critical point. The universality of the metal-insulator transition was verified by numerical analysis of various physical parameters and the critical exponent was calculated with high accuracy for different disordered models. Numerically obtained value of the critical exponent for the three dimensional disordered model (1) has been recently supported by the semi-analytical work and verified by experimental optical measurements equivalent to the three dimensional disordered model (1). Another unsolved problem of the localization is the disagreement between numerical results and predictions of the analytical theories. At present, no analytical theory confirms numerically obtained values of critical exponents. The reason for this disagreement lies in the statistical character of the process of localization. The theory must consider all possible scattering processes on randomly distributed impurities. All physical variables are statistical quantities with broad probability distributions. It is in general not know how to calculate analytically their mean values. We believe that detailed numerical analysis of various disordered systems bring inspiration for the formulation of analytical theory. (authors)
Finite size effects in the intermittency analysis of the fragment-size correlations
International Nuclear Information System (INIS)
Bozek, P.; Ploszajczak, M.; Tucholski, A.
1991-01-01
An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs
Finite size effects in lattice QCD with dynamical Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Orth, B.
2004-06-01
Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass
International Nuclear Information System (INIS)
Iglói, Ferenc; Lin, Yu-Cheng
2008-01-01
Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions
Ono, Toshiaki; Ishihara, Asahi; Asada, Hideki
2017-11-01
By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95, 044017 (2017), 10.1103/PhysRevD.95.044017]. We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending angle of light in the finite-distance situation. We show that the proposed bending angle of light is coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in order to examine how the bending angle of light is computed by the present method. The finite-distance correction to the gravitomagnetic deflection angle due to the Sun's spin is around a pico-arcsecond level. The finite-distance corrections for Sgr A* also are estimated to be very small. Therefore, the gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present technology.
A multilevel correction adaptive finite element method for Kohn-Sham equation
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
Finite-size scaling method for the Berezinskii–Kosterlitz–Thouless transition
International Nuclear Information System (INIS)
Hsieh, Yun-Da; Kao, Ying-Jer; Sandvik, Anders W
2013-01-01
We test an improved finite-size scaling method for reliably extracting the critical temperature T BKT of a Berezinskii–Kosterlitz–Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness ρ s at T BKT in combination with the Kosterlitz–Nelson relation between the transition temperature and the stiffness, ρ s (T BKT ) = 2T BKT /π, we define a size-dependent transition temperature T BKT (L 1 ,L 2 ) based on a pair of system sizes L 1 ,L 2 , e.g., L 2 = 2L 1 . We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T BKT (L 1 ,L 2 ). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T BKT ≈ 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions. (paper)
Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis
DEFF Research Database (Denmark)
Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.
2004-01-01
A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...
Leading order finite size effects with spins for inspiralling compact binaries
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-06-10
The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.
Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution
Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong
2017-10-01
We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.
Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1988-01-01
Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model
Finite size giant magnons in the SU(2) x SU(2) sector of AdS4 x CP3
International Nuclear Information System (INIS)
Lukowski, Tomasz; Sax, Olof Ohlsson
2008-01-01
We use the algebraic curve and Luescher's μ-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS 4 x CP 3 . We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.
Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model
International Nuclear Information System (INIS)
Hamer, C.J.; Barber, M.N.
1979-01-01
Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ
International Nuclear Information System (INIS)
Su, Guozhen; Chen, Liwei; Chen, Jincan
2014-01-01
Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions
Theory of critical phenomena in finite-size systems scaling and quantum effects
Brankov, Jordan G; Tonchev, Nicholai S
2000-01-01
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals
Finite size effects and chiral symmetry breaking in quenched three-dimensional QED
International Nuclear Information System (INIS)
Hands, S.; Kogut, J.B.
1990-01-01
Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)
The finite horizon economic lot sizing problem in job shops : the multiple cycle approach
Ouenniche, J.; Bertrand, J.W.M.
2001-01-01
This paper addresses the multi-product, finite horizon, static demand, sequencing, lot sizing and scheduling problem in a job shop environment where the planning horizon length is finite and fixed by management. The objective pursued is to minimize the sum of setup costs, and work-in-process and
Finite-size scaling for quantum chains with an oscillatory energy gap
International Nuclear Information System (INIS)
Hoeger, C.; Gehlen, G. von; Rittenberg, V.
1984-07-01
We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)
Effect of sample size on bias correction performance
Reiter, Philipp; Gutjahr, Oliver; Schefczyk, Lukas; Heinemann, Günther; Casper, Markus C.
2014-05-01
The output of climate models often shows a bias when compared to observed data, so that a preprocessing is necessary before using it as climate forcing in impact modeling (e.g. hydrology, species distribution). A common bias correction method is the quantile matching approach, which adapts the cumulative distribution function of the model output to the one of the observed data by means of a transfer function. Especially for precipitation we expect the bias correction performance to strongly depend on sample size, i.e. the length of the period used for calibration of the transfer function. We carry out experiments using the precipitation output of ten regional climate model (RCM) hindcast runs from the EU-ENSEMBLES project and the E-OBS observational dataset for the period 1961 to 2000. The 40 years are split into a 30 year calibration period and a 10 year validation period. In the first step, for each RCM transfer functions are set up cell-by-cell, using the complete 30 year calibration period. The derived transfer functions are applied to the validation period of the respective RCM precipitation output and the mean absolute errors in reference to the observational dataset are calculated. These values are treated as "best fit" for the respective RCM. In the next step, this procedure is redone using subperiods out of the 30 year calibration period. The lengths of these subperiods are reduced from 29 years down to a minimum of 1 year, only considering subperiods of consecutive years. This leads to an increasing number of repetitions for smaller sample sizes (e.g. 2 for a length of 29 years). In the last step, the mean absolute errors are statistically tested against the "best fit" of the respective RCM to compare the performances. In order to analyze if the intensity of the effect of sample size depends on the chosen correction method, four variations of the quantile matching approach (PTF, QUANT/eQM, gQM, GQM) are applied in this study. The experiments are further
Energy Technology Data Exchange (ETDEWEB)
Bernard, Claude [Department of Physics, Washington University,One Brookings Drive, Saint Louis (United States); Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden); Gámiz, Elvira [CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada,Campus de Fuente Nueva, E-18002 Granada (Spain); Relefors, Johan [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden)
2017-03-23
The determination of |V{sub us}| from kaon semileptonic decays requires the value of the form factor f{sub +}(q{sup 2}=0) which can be calculated precisely on the lattice. We provide the one-loop partially quenched chiral perturbation theory expressions both with and without including the effects of staggered quarks for all form factors at finite volume and with partially twisted boundary conditions for both the vector current and scalar density matrix elements at all q{sup 2}. We point out that at finite volume there are more form factors than just f{sub +} and f{sub −} for the vector current matrix element but that the Ward identity is fully satisfied. The size of the finite-volume corrections at present lattice sizes is small. This will help improve the lattice determination of f{sub +}(q{sup 2}=0) since the finite-volume error is the dominant error source for some calculations. The size of the finite-volume corrections may be estimated on a single lattice ensemble by comparing results for various twist choices.
International Nuclear Information System (INIS)
Ainsworth, R.A.
1981-03-01
The CEGB failure assessment route is briefly described and is shown to be consistent with a plastic zone size correction method. Modifications to the assessment route which have recently been suggested for describing the effects of thermal and residual stresses are examined. It is shown that the plastic zone size correction method may be used to include local thermal and residual stresses in the assessment route in a simple manner. The assessment route is compared with finite-element solutions for a thermal stress problem and with strip-yield model solutions for a residual stress problem. In using finite-element solutions there are different contour integral methods available for calculating a post-yield fracture parameter. The J-integral of Rice and the J*-integral of Blackburn are examined and compared and the appropriate parameter is identified. (author)
Finite-size effects in the three-state quantum asymmetric clock model
International Nuclear Information System (INIS)
Gehlen, G. v.; Rittenberg, V.
1983-04-01
The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)
Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes
International Nuclear Information System (INIS)
Liu, M; Bassler, K E
2011-01-01
Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.
Modeling of finite-size droplets and particles in multiphase flows
Directory of Open Access Journals (Sweden)
Prashant Khare
2015-08-01
Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.
Density functional approach for pairing in finite size systems
International Nuclear Information System (INIS)
Hupin, G.
2011-09-01
The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)
The finite-size effect in thin liquid crystal systems
Śliwa, I.
2018-05-01
Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.
Discrete and mesoscopic regimes of finite-size wave turbulence
International Nuclear Information System (INIS)
L'vov, V. S.; Nazarenko, S.
2010-01-01
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
Finite size melting of spherical solid-liquid aluminium interfaces
DEFF Research Database (Denmark)
Chang, J.; Johnson, Erik; Sakai, T.
2009-01-01
We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...
Safe and sensible preprocessing and baseline correction of pupil-size data.
Mathôt, Sebastiaan; Fabius, Jasper; Van Heusden, Elle; Van der Stigchel, Stefan
2018-02-01
Measurement of pupil size (pupillometry) has recently gained renewed interest from psychologists, but there is little agreement on how pupil-size data is best analyzed. Here we focus on one aspect of pupillometric analyses: baseline correction, i.e., analyzing changes in pupil size relative to a baseline period. Baseline correction is useful in experiments that investigate the effect of some experimental manipulation on pupil size. In such experiments, baseline correction improves statistical power by taking into account random fluctuations in pupil size over time. However, we show that baseline correction can also distort data if unrealistically small pupil sizes are recorded during the baseline period, which can easily occur due to eye blinks, data loss, or other distortions. Divisive baseline correction (corrected pupil size = pupil size/baseline) is affected more strongly by such distortions than subtractive baseline correction (corrected pupil size = pupil size - baseline). We discuss the role of baseline correction as a part of preprocessing of pupillometric data, and make five recommendations: (1) before baseline correction, perform data preprocessing to mark missing and invalid data, but assume that some distortions will remain in the data; (2) use subtractive baseline correction; (3) visually compare your corrected and uncorrected data; (4) be wary of pupil-size effects that emerge faster than the latency of the pupillary response allows (within ±220 ms after the manipulation that induces the effect); and (5) remove trials on which baseline pupil size is unrealistically small (indicative of blinks and other distortions).
International Nuclear Information System (INIS)
Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.
2015-01-01
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability
Finite-size effect of η-deformed AdS5×S5 at strong coupling
Directory of Open Access Journals (Sweden)
Changrim Ahn
2017-04-01
Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.
Pyroelectric properties of finite size ferroelectric thin films with structural transition zones
International Nuclear Information System (INIS)
Zhou Jing; Lue Tianquan; Sun Punan; Xie Wenguang; Cao Wenwu
2009-01-01
A Fermi-type Green's function is used to study pyroelectric properties of the thin film with finite sizes in three dimensions based on a modified transverse Ising model. The results demonstrate that a decrease in the lateral size of the film has a disadvantageous influence on the pyroelectric coefficient of the thin film.
Point source atom interferometry with a cloud of finite size
Energy Technology Data Exchange (ETDEWEB)
Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)
2016-08-15
We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.
Geometric measures of multipartite entanglement in finite-size spin chains
Energy Technology Data Exchange (ETDEWEB)
Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2010-09-01
We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.
Geometric measures of multipartite entanglement in finite-size spin chains
International Nuclear Information System (INIS)
Blasone, M; Dell'Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F
2010-01-01
We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.
Simulation of the electron acoustic instability for a finite-size electron beam system
International Nuclear Information System (INIS)
Lin, C.S.; Winske, D.
1987-01-01
Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation
A stochastic-field description of finite-size spiking neural networks.
Dumont, Grégory; Payeur, Alexandre; Longtin, André
2017-08-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Dominant two-loop corrections to the MSSM finite temperature effective potential
International Nuclear Information System (INIS)
Espinosa, J.R.
1996-04-01
We show that two-loop corrections to the finite temperature effective potential in the MSSM can have a dramatic effect on the strength of the electroweak phase transition, making it more strongly first order. The change in the order parameter v/Tc can be as large as 75% of the one-loop daisy improved result. This effect can be decisive to widen the region in parameter space where erasure of the created baryons by sphaleron processes after the transition is suppressed and hence, where electroweak baryogenesis might be successful. We find an allowed region with tan β< or∼4.5 and a Higgs boson with standard couplings and mass below 80 GeV within the reach of LEP II. (orig.)
Finite temperature corrections to tachyon mass in intersecting D-branes
International Nuclear Information System (INIS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-01-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Finite temperature corrections to tachyon mass in intersecting D-branes
Energy Technology Data Exchange (ETDEWEB)
Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)
2017-04-19
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
The Nuclear Finite–Size Corrections to Energies of n = 1, n = 2 AND ...
African Journals Online (AJOL)
Results show that as the energy levels increases, the effects of the finite – size nucleus on the ... This gives us more information on the nuclear charge distribution. ... Hamiltonian; wave function; nucleus; point-size; finite–size; potential energy ...
Finite-size-scaling analysis of subsystem data in the dilute Ising model
International Nuclear Information System (INIS)
Hennecke, M.
1993-01-01
Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated
Correction Effect of Finite Pulse Duration for High Thermal Diffusivity Materials
International Nuclear Information System (INIS)
Park, Dae Gyu; Kim, Hee Moon; Baik, Seung Je; Yoo, Byoung Ok; Ahn, Sang Bok; Ryu, Woo Seok
2010-01-01
In the laser pulsed flash method, a pulse of energy is incident on one of two parallel faces of a sample. The subsequent temperature history of the opposite face is then related to the thermal diffusivity. When the heat pulse is of infinitesimal duration, the diffusivity is obtained from the transient response of the rear face temperature proposed by Parker et al. The diffusivity αis computed from relation 2222121.37cattαππ≡= (1) Where a is the sample thickness and is the time required for the rear face temperature to reach half-maximum, and t c ≡a 2 / π 2 t 1/2 is the characteristic rise time of the rear face temperature. When the pulse-time 1/2tτis not infinitesimal, but becomes comparable to tc, it is apparent that the rise in temperature of the rear face will be retarded, and will be greater than 1.37 t c . This retardation has been called the ' finite pulse-time effect.' Equation (1) is accurate to 1% for tc > ∼ 501/2tτ. For many substances, this inequality cannot be achieved with conventional optical sources (e.g. τ. 10 -3 sec for a solid state laser) unless the sample thickness is so large that its rise in temperature is too small for accurate measurement. One must therefore make an appropriate correction for the retardation of the temperature wave. Purpose of study are to observe impact of finite pulse time effect in appropriate sample thickness and to verify the effect of pulse correction using Cape and Lehman method for high thermal diffusivity materials
Priour, D. J.
2014-01-01
The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.
Lancellotti, V.; Tijhuis, A.G.
2012-01-01
The calculation of electromagnetic (EM) fields and waves inside finite-sized structures comprised of different media can benefit from a diakoptics method such as linear embedding via Green's operators (LEGO). Unlike scattering problems, the excitation of EM waves within the bulk dielectric requires
A finite size scaling test of an SU(2) gauge-spin system
International Nuclear Information System (INIS)
Tomiya, M.; Hattori, T.
1984-01-01
We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)
Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report
International Nuclear Information System (INIS)
Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.
2002-01-01
We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques
Finite size effects in the evaporation rate of 3He clusters
International Nuclear Information System (INIS)
Guirao, A.; Pi, M.; Barranco, M.
1991-01-01
We have computed the density of states and the evaporation rate of 3 He clusters, paying special attention to finite size effects which modify the 3 He level density parameter and chemical potential from their bulk values. Ready-to-use liquid-drop expansions of these quantities are given. (orig.)
Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces
Calzavarini, Enrico; Volk, Romain; Bourgoin, Mickael; Leveque, Emmanuel; Pinton, Jean-Francois; Toschi, Federico
2008-01-01
International audience; The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These ...
Energy Technology Data Exchange (ETDEWEB)
Castellano, M.; Cianchi, A.; Verzilov, V.A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Orlandi, G. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)]|[Rome Univ., Tor Vergata, Rome (Italy)
1999-07-01
Effects of diffraction and the size of the target on TR in the context of CTR-based bunch length measurements are studied on the basis of Kirchhoff diffraction theory. Spectra of TR from the finite-size target for several schemes of measurements are calculated in the far-infrared region showing strong distortion at low frequencies. Influence of the effect on the accuracy of bunch length measurements is estimated.
International Nuclear Information System (INIS)
Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa
2016-01-01
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Energy Technology Data Exchange (ETDEWEB)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)
2016-08-07
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Revisionist integral deferred correction with adaptive step-size control
Christlieb, Andrew; Macdonald, Colin; Ong, Benjamin; Spiteri, Raymond
2015-01-01
© 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step
Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions
Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin
2017-06-01
We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.
Finite size effects on the helical edge states on the Lieb lattice
International Nuclear Information System (INIS)
Chen Rui; Zhou Bin
2016-01-01
For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)
Correction of bubble size distributions from transmission electron microscopy observations
International Nuclear Information System (INIS)
Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.
1996-01-01
Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs
78 FR 45051 - Small Business Size Standards; Support Activities for Mining; Correction
2013-07-26
... Regulations by increasing small business size standards for three of the four industries in North American... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG44 Small Business Size Standards; Support Activities for Mining; Correction AGENCY: U.S. Small Business Administration. ACTION: Final rule; correction...
Finite-key-size effect in a commercial plug-and-play QKD system
Chaiwongkhot, Poompong; Sajeed, Shihan; Lydersen, Lars; Makarov, Vadim
2017-12-01
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturer’s software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele
2016-12-01
Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.
International Nuclear Information System (INIS)
Andrianov, I.V.; Danishevsky, V.V.
1994-01-01
Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions
The King model for electrons in a finite-size ultracold plasma
Energy Technology Data Exchange (ETDEWEB)
Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2008-10-24
A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
Many-body localization in disorder-free systems: The importance of finite-size constraints
Energy Technology Data Exchange (ETDEWEB)
Papić, Z., E-mail: zpapic@perimeterinstitute.ca [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Stoudenmire, E. Miles [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Abanin, Dmitry A. [Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva (Switzerland); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)
2015-11-15
Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Exchange bias in finite sized NiO nanoparticles with Ni clusters
Energy Technology Data Exchange (ETDEWEB)
Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw
2017-02-15
Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Exchange bias in finite sized NiO nanoparticles with Ni clusters
International Nuclear Information System (INIS)
Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace
2017-01-01
Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Precision of quantization of the hall conductivity in a finite-size sample: Power law
International Nuclear Information System (INIS)
Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.
2006-01-01
A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples
Dednam, W.; Botha, A. E.
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution
International Nuclear Information System (INIS)
Dednam, W; Botha, A E
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution
Safe and sensible preprocessing and baseline correction of pupil-size data
Mathôt, Sebastiaan; Fabius, Jasper; Van Heusden, Elle; Van der Stigchel, Stefan
Measurement of pupil size (pupillometry) has recently gained renewed interest from psychologists, but there is little agreement on how pupil-size data is best analyzed. Here we focus on one aspect of pupillometric analyses: baseline correction, i.e., analyzing changes in pupil size relative to a
Safe and sensible preprocessing and baseline correction of pupil-size data
Mathôt, Sebastiaan; Fabius, Jasper; Van Heusden, Elle; Van der Stigchel, Stefan
2018-01-01
Measurement of pupil size (pupillometry) has recently gained renewed interest from psychologists, but there is little agreement on how pupil-size data is best analyzed. Here we focus on one aspect of pupillometric analyses: baseline correction, that is, analyzing changes in pupil size relative to a
Elastodynamic models for extending GTD to penumbra and finite size flaws
International Nuclear Information System (INIS)
Djakou, A Kamta; Darmon, M; Potel, C
2016-01-01
The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)
Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation
International Nuclear Information System (INIS)
Kar, Soumitra; Biswas, Subhajit; Chaudhuri, Subhadra; Nambissan, P.M.G.
2005-01-01
Quantum confinement effects in nanocrystalline CdS were studied using positrons as spectroscopic probes to explore the defect characteristics. The lifetime of positrons annihilating at the vacancy clusters on nanocrystalline grain surfaces increased remarkably consequent to the onset of such finite-size effects. The Doppler broadened line shape was also found to reflect rather sensitively such distinct changes in the electron momentum redistribution scanned by the positrons, owing to the widening of the band gap. The nanocrystalline sizes of the samples used were confirmed from x-ray diffraction and high resolution transmission electron microscopy and the optical absorption results supported the quantum size effects. Positron annihilation results indicated distinct qualitative changes between CdS nanorods and the bulk sample, notwithstanding the identical x-ray diffraction pattern and close resemblance of the optical absorption spectra. The results are promising in the event of positron annihilation being proved to be a very successful tool for the study of such finite-size effects in semiconductor nanoparticles
Finite-size effects on two-particle production in continuous and discrete spectrum
Lednicky, R
2005-01-01
The effect of a finite space-time extent of particle production region on the lifetime measurement of hadronic atoms produced by a high energy beam in a thin target is discussed. Particularly, it is found that the neglect of this effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation on the level of the expected 10% statistical error. It is argued that the data on correlations of identical particles obtained in the same experimental conditions, together with transport code simulation, allow to diminish the systematic error in the extracted lifetime to an acceptable level. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair c.m.s., the space-time coherence and the residual charge are shown to be negligible.
Pairing mechanism in Bi-O superconductors: A finite-size chain calculation
International Nuclear Information System (INIS)
Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.
1989-01-01
We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic
International Nuclear Information System (INIS)
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing
2015-01-01
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
Goldring, Nicholas
The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second
Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride
International Nuclear Information System (INIS)
Thomas, Siby; Ajith, K M; Valsakumar, M C
2016-01-01
Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)
Finite-size effect and the components of multifractality in financial volatility
International Nuclear Information System (INIS)
Zhou Weixing
2012-01-01
Highlights: ► The apparent multifractality can be decomposed quantitatively. ► There is a marked finite-size effect in the detection of multifractality. ► The effective multifractality can be further decomposed into two components. ► A time series exhibits effective multifractality only if it possesses nonlinearity. ► The daily DJIA volatility is analyzed as an example. - Abstract: Many financial variables are found to exhibit multifractal nature, which is usually attributed to the influence of temporal correlations and fat-tailedness in the probability distribution (PDF). Based on the partition function approach of multifractal analysis, we show that there is a marked finite-size effect in the detection of multifractality, and the effective multifractality is the apparent multifractality after removing the finite-size effect. We find that the effective multifractality can be further decomposed into two components, the PDF component and the nonlinearity component. Referring to the normal distribution, we can determine the PDF component by comparing the effective multifractality of the original time series and the surrogate data that have a normal distribution and keep the same linear and nonlinear correlations as the original data. We demonstrate our method by taking the daily volatility data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. Extensive numerical experiments show that a time series exhibits effective multifractality only if it possesses nonlinearity and the PDF has an impact on the effective multifractality only when the time series possesses nonlinearity. Our method can also be applied to judge the presence of multifractality and determine its components of multifractal time series in other complex systems.
Fermi surface of the one-dimensional Hubbard model. Finite-size effects
Energy Technology Data Exchange (ETDEWEB)
Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))
1989-12-01
The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).
Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study
Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.
2004-05-01
The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.
Finite-size effects and switching times for Moran process with mutation.
DeVille, Lee; Galiardi, Meghan
2017-04-01
We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.
Directory of Open Access Journals (Sweden)
Mark Driscoll
2013-01-01
Full Text Available A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.
Assessment of relative individual renal function based on DMSA uptake corrected for renal size
International Nuclear Information System (INIS)
Estorch, M.; Camacho, V.; Tembl, A.; Mena, I.; Hernandez, A.; Flotats, A.; Carrio, I.; Torres, G.; Prat, L.
2002-01-01
Decreased relative renal DMSA uptake can be a consequence of abnormal kidney size, associated with normal or impaired renal function. The quantification of relative renal function based on DMSA uptake in both kidneys is an established method for the assessment of individual renal function. Aim: To assess relative renal function by means of quantification of renal DMSA uptake corrected for kidney size. Results were compared with relative renal DMSA uptake without size correction, and were validated against the absolute renal DMSA uptake. Material and Methods: Four-hundred-forty-four consecutive patients (147 adults, mean age 14 years) underwent a DMSA study for several renal diseases. The relative renal function, based on the relative DMSA uptake uncorrected and corrected for renal size, and the absolute renal DMSA uptake were calculated. In order to relate the relative DMSA uptake uncorrected and corrected for renal size with the absolute DMSA uptake, subtraction of uncorrected (SU) and corrected (SC) relative uptake percentages of each pair of kidneys was obtained, and these values were correlated to the matched subtraction percentages of absolute uptake (SA). If the individual relative renal function is normal (45%-55%), the subtraction value is less or equal to 10%. Results: In 227 patients (51%) the relative renal DMSA uptake value was normal either uncorrected or corrected for renal size (A), and in 149 patients (34%) it was abnormal by both quantification methods (B). Seventy-seven patients (15%) had the relative renal DMSA uptake abnormal only by the uncorrected method (C). Subtraction value of absolute DMSA uptake percentages was not significantly different of subtraction value of relative DMSA uptake percentages corrected for renal size when relative uncorrected uptake was abnormal and corrected normal. where * p<0.0001, and p=NS. Conclusion: When uncorrected and corrected relative DMSA uptake are abnormal, the absolute uptake is also impaired, while when
Renormalization group and finite size effects in scalar lattice field theories
International Nuclear Information System (INIS)
Bernreuther, W.; Goeckeler, M.
1988-01-01
Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)
Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).
Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R
2017-10-04
A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence
Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef
2015-09-01
Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.
Finite size effects in the thermodynamics of a free neutral scalar field
Parvan, A. S.
2018-04-01
The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.
The square lattice Ising model on the rectangle II: finite-size scaling limit
Hucht, Alfred
2017-06-01
Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
Finite-size anomalies of the Drude weight: Role of symmetries and ensembles
Sánchez, R. J.; Varma, V. K.
2017-12-01
We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N magnetic flux not only breaks spin-inversion in the zero magnetization sector but also lifts the loop-algebra degeneracies in all symmetry sectors—this effect is more pertinent at smaller Δ due to the larger contributions to D coming from the low-magnetization sectors which are more sensitive to the system's symmetries. Thus we generically find a finite D for fluxed rings and arbitrary 0 lifted.
Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions
Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul
2018-05-01
We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between
Finite temperature QCD corrections to lepton-pair formation in a quark-gluon plasma
International Nuclear Information System (INIS)
Altherr, T.
1989-02-01
We discuss the O(α S ) corrections to lepton-pair production in a quark-gluon plasma in equilibrium. The corrections are found to be very small in the domain of interest for ultrarelativistic heavy ions collisions. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
Mechanisms of self-organization and finite size effects in a minimal agent based model
International Nuclear Information System (INIS)
Alfi, V; Cristelli, M; Pietronero, L; Zaccaria, A
2009-01-01
We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity
Neutron density decay constant in a non-multiplying lattice of finite size
International Nuclear Information System (INIS)
Deniz, V.C.
1965-01-01
This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B 6 term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [fr
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.
2013-09-01
Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain
Frahm, Holger; Martins, Márcio J.
2015-05-01
The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Finite-size effects in the spectrum of the OSp(3|2 superspin chain
Directory of Open Access Journals (Sweden)
Holger Frahm
2015-05-01
Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states
de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.
2015-12-01
Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.
Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point
Energy Technology Data Exchange (ETDEWEB)
Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)
2016-12-15
We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
DEFF Research Database (Denmark)
Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin
2016-01-01
[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim
2014-01-01
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
Energy Technology Data Exchange (ETDEWEB)
Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)
2016-06-15
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.
Shih, Hong-Yan; Goldenfeld, Nigel
Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.
Length and temperature dependence of the mechanical properties of finite-size carbyne
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element.
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role.
An exact solution to the extended Hubbard model in 2D for finite size system
Harir, S.; Bennai, M.; Boughaleb, Y.
2008-08-01
An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.
Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model
Pan, Xue; Zhang, Yanhua; Chen, Lizhu; Xu, Mingmei; Wu, Yuanfang
2018-01-01
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class. Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)
Directory of Open Access Journals (Sweden)
Simone Benella
2017-07-01
Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.
An Improved Rank Correlation Effect Size Statistic for Single-Case Designs: Baseline Corrected Tau.
Tarlow, Kevin R
2017-07-01
Measuring treatment effects when an individual's pretreatment performance is improving poses a challenge for single-case experimental designs. It may be difficult to determine whether improvement is due to the treatment or due to the preexisting baseline trend. Tau- U is a popular single-case effect size statistic that purports to control for baseline trend. However, despite its strengths, Tau- U has substantial limitations: Its values are inflated and not bound between -1 and +1, it cannot be visually graphed, and its relatively weak method of trend control leads to unacceptable levels of Type I error wherein ineffective treatments appear effective. An improved effect size statistic based on rank correlation and robust regression, Baseline Corrected Tau, is proposed and field-tested with both published and simulated single-case time series. A web-based calculator for Baseline Corrected Tau is also introduced for use by single-case investigators.
p-Curve and Effect Size: Correcting for Publication Bias Using Only Significant Results.
Simonsohn, Uri; Nelson, Leif D; Simmons, Joseph P
2014-11-01
Journals tend to publish only statistically significant evidence, creating a scientific record that markedly overstates the size of effects. We provide a new tool that corrects for this bias without requiring access to nonsignificant results. It capitalizes on the fact that the distribution of significant p values, p-curve, is a function of the true underlying effect. Researchers armed only with sample sizes and test results of the published findings can correct for publication bias. We validate the technique with simulations and by reanalyzing data from the Many-Labs Replication project. We demonstrate that p-curve can arrive at conclusions opposite that of existing tools by reanalyzing the meta-analysis of the "choice overload" literature. © The Author(s) 2014.
Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems
van den Brink, J.; Sawatzky, G.A.
2000-01-01
We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and
Kok, de A.G.
2003-01-01
In this paper, we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin
Kok, de A.G.
2003-01-01
In this paper we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin probabilities
Directory of Open Access Journals (Sweden)
Maziar Heidari
2018-03-01
Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
Gravity dual corrections to the heavy quark potential at finite-temperature
International Nuclear Information System (INIS)
Grigoryan, Hovhannes R.; Kovchegov, Yuri V.
2011-01-01
We apply gauge/gravity duality to compute 1/N c 2 corrections to the heavy quark potentials of a quark-anti-quark pair (QQ-bar) and of a quark-quark pair (QQ) immersed into the strongly coupled N=4 SYM plasma. On the gravity side these corrections come from the exchanges of supergravity modes between two string worldsheets stretching from the UV boundary of AdS space to the black hole horizon in the bulk and smeared over S 5 . We find that the contributions to the QQ-bar potential coming from the exchanges of all of the relevant modes (such as dilaton, massive scalar, 2-form field, and graviton) are all attractive, leading to an attractive net QQ-bar potential. We show that at large separations r and/or high-temperature T the potential is of Yukawa-type, dominated by the graviton exchange, in agreement with earlier findings. On the other hand, at small-rT the QQ-bar potential scales as ∼(1/r)ln(1/rT). In the case of QQ potential the 2-form contribution changes sign and becomes repulsive: however, the net QQ potential remains attractive. At large-rT it is dominated by the graviton exchange, while at small-rT the QQ potential becomes Coulomb-like.
International Nuclear Information System (INIS)
Santillán, J M J; Videla, F A; Scaffardi, L B; Schinca, D C; Fernández van Raap, M B; Muraca, D
2013-01-01
The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment. This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10 nm, introducing a modification of the damping constant to account for the extra collisions with the particle's boundary. For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2 nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: K bulk = 2 × 10 24 (coefficient for bound-electron contribution), E g = 1.91 eV (gap energy), E F = 4.12 eV (Fermi energy), and γ b = 1.5 × 10 14 Hz (damping constant for bound electrons). Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric–subnanometric radius range can be calculated using Mie's theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core–shell. The former
Energy Technology Data Exchange (ETDEWEB)
Kneesch, Torben
2010-12-15
We have calculated the single-inclusive production cross section of massive quarks in electron-positron-annihilation with next-to-leading order QCD corrections. With these results we have extracted fragmentation functions for the fragmentation from partons into D{sup 0}, D{sup +} and D{sup *} mesons, where we have used experimental data from the B factories Belle and CLEO and from the ALEPH and OPAL experiments at the LEP collider. In our analysis we have included the masses of c and b quarks and of the D mesons and tested the evolution of fragmentation functions with a global fit spanning the B factories' center-of-mass energy of {radical}(s)=10.5 GeV to LEP's run at the Z boson resonance at M{sub Z}. We have applied this fragmentation functions in deep inelastic scattering for comparisons with HERA data using parton cross sections from the literature available in program form. We have then modified this cross section to calculate predictions for deep inelastic two-photon-scattering. By applying the Weizsaecker-Williams spectrum on the real photon we have calculated predictions for LEP1, LEP2 and the future ILC experiments. For ILC we have also included a beamstrahlung spectrum. Finally we have calculated production cross sections for the planned e{gamma} mode of the ILC with the help of a Compton spectrum. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)
2017-04-15
We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)
Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification
Energy Technology Data Exchange (ETDEWEB)
Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Radiology, Jerusalem (Israel); Katz, Ran [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Urology, Jerusalem (Israel); Salama, Shaden [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Emergency Medicine, Jerusalem (Israel)
2010-05-15
To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: {<=}5 mm, 6-9 mm and {>=}10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)
Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification
International Nuclear Information System (INIS)
Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith; Katz, Ran; Salama, Shaden
2010-01-01
To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: ≤5 mm, 6-9 mm and ≥10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)
Impedance modulation and feedback corrections in tracking targets of variable size and frequency.
Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J
2006-11-01
Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.
Finite size effects in liquid-gas phase transition of asymmetric nuclear matter
International Nuclear Information System (INIS)
Pawlowski, P.
2001-01-01
Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb
International Nuclear Information System (INIS)
Guigou, Marine
2009-01-01
This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr
International Nuclear Information System (INIS)
Suslov, I. M.
2006-01-01
An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Ebrahimi, R.; Zohren, S.
2018-03-01
In this paper we extend the orthogonal polynomials approach for extreme value calculations of Hermitian random matrices, developed by Nadal and Majumdar (J. Stat. Mech. P04001 arXiv:1102.0738), to normal random matrices and 2D Coulomb gases in general. Firstly, we show that this approach provides an alternative derivation of results in the literature. More precisely, we show convergence of the rescaled eigenvalue with largest modulus of a normal Gaussian ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality for ring distributions. Most interestingly, the here presented techniques are used to compute all slowly varying finite N correction of the above distributions, which is important for practical applications, given the slow convergence. Another interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the extreme value statistics of non-Hermitian random matrices resembling the large N expansion used in context of the double scaling limit of Hermitian matrix models in string theory.
International Nuclear Information System (INIS)
Bernardes, C.; Hadler Neto, J.C.; Lattes, C.M.G.; Araya, A.M.O.; Bigazzi, G.; Cesar, M.F.
1986-01-01
Two techniques may be employed for correcting thermally lowered fission track ages on glass material: the so called 'size-correcting method' and 'Plateau method'. Several results from fission track dating on obsidian were analysed in order to compare the model rising size-correction method with experimental evidences. The results from this work can be summarized as follows: 1) The assumption that mean size of spontaneous and induced etched tracks are equal on samples unaffected by partial fading is supported by experimental results. If reactor effects such as an enhancing of the etching rate in the irradiated fraction due to the radiation damage and/or to the fact that induced fission releases a quantity of energy slightly greater than spontaneous one exist, their influence on size-correction method is very small. 2) The above two correction techniques produce concordant results. 3) Several samples from the same obsidian, affected by 'instantaneous' as well as 'continuous' natural fading to different degrees were analysed: the curve showing decreasing of spontaneous track mean-size vs. fraction of spontaneous tracks lost by fading is in close agreement with the correction curve constructed for the same obsidian by imparting artificial thermal treatements on induced tracks. By the above points one can conclude that the assumptions on which size-correction method is based are well supported, at least in first approximation. (Author) [pt
Akdogan, E. K.; Safari, A.
2007-03-01
We compute the intrinsic dielectric and piezoelectric properties of single domain, mechanically free, and surface charge compensated PbTiO3 nanocrystals (n-Pt) with no depolarization fields, undergoing a finite size induced first order tetragonal→cubic ferrodistortive phase transition. By using a Landau-Devonshire type free energy functional, in which Landau coefficients are a function of nanoparticle size, we demonstrate substantial deviations from bulk properties in the range <150 nm. We find a decrease in dielectric susceptibility at the transition temperature with decreasing particle size, which we verify to be in conformity with predictions of lattice dynamics considerations. We also find an anomalous increase in piezocharge coefficients near ˜15 nm , the critical size for n-Pt.
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
International Nuclear Information System (INIS)
Park, Moon Shik; Suh, Yeong Sung; Song, Seung
2011-01-01
An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers
Directory of Open Access Journals (Sweden)
Alexandre Bambina
2018-01-01
Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
2002-01-01
Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.
DEFF Research Database (Denmark)
Marodi, M.; D'ovidio, Francesco; Vicsek, T.
2002-01-01
of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...
International Nuclear Information System (INIS)
Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A.
2004-01-01
We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample
Energy Technology Data Exchange (ETDEWEB)
Vindigni, A. E-mail: alessandro.vindigni@unifi.it; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A
2004-05-01
We investigate the relaxation time, {tau}, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of {tau}, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample.
Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.
2004-05-01
We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.
2017-11-01
Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Xie, Yang; Ying, Jinyong; Xie, Dexuan
2017-03-30
SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Small Scale Yielding Correction of Constraint Loss in Small Sized Fracture Toughness Test Specimens
International Nuclear Information System (INIS)
Kim, Maan Won; Kim, Min Chul; Lee, Bong Sang; Hong, Jun Hwa
2005-01-01
Fracture toughness data in the ductile-brittle transition region of ferritic steels show scatter produced by local sampling effects and specimen geometry dependence which results from relaxation in crack tip constraint. The ASTM E1921 provides a standard test method to define the median toughness temperature curve, so called Master Curve, for the material corresponding to a 1T crack front length and also defines a reference temperature, T 0 , at which median toughness value is 100 MPam for a 1T size specimen. The ASTM E1921 procedures assume that high constraint, small scaling yielding (SSY) conditions prevail at fracture along the crack front. Violation of the SSY assumption occurs most often during tests of smaller specimens. Constraint loss in such cases leads to higher toughness values and thus lower T 0 values. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimates. A lot of efforts have been made to adjust the constraint effect. In this work, we applied a small-scale yielding correction (SSYC) to adjust the constraint loss of 1/3PCVN and PCVN specimens which are relatively smaller than 1T size specimen at the fracture toughness Master Curve test
Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, P.
2009-01-01
We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.
The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain
International Nuclear Information System (INIS)
Martins, M.J.
1995-01-01
We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)
Suppression of bottomonia states in finite size quark gluon plasma in PbPb collisions at LHC
International Nuclear Information System (INIS)
Shukla, P.; Abdulsalam, Abdulla; Kumar, Vineet
2012-01-01
The paper estimated the suppression of bottomonium states in an expanding QGP of finite lifetime and size with the conditions relevant for PbPb collisions at LHC. The recent results on the properties of ϒ states have been used as ingredient in the study. The nuclear modification factor and the ratios of yields of ϒ states are then obtained as a function of transverse momentum and centrality. The study has compared the calculations with the bottomonia yields measured in Pb+Pb collisions at √S NN = 2.76 TeV
Directory of Open Access Journals (Sweden)
2012-01-01
Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.
2002-01-01
The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption. The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.
Directory of Open Access Journals (Sweden)
2014-01-01
Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].
El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.
2016-01-01
The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759
Energy Technology Data Exchange (ETDEWEB)
Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)
2016-10-01
The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.
Todoshchenko, I.
2018-04-01
We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt completely or grow to a large enough size.
Phase transition in the rich-get-richer mechanism due to finite-size effects
International Nuclear Information System (INIS)
Bagrow, James P; Ben-Avraham, Daniel; Sun Jie
2008-01-01
The rich-get-richer mechanism (agents increase their 'wealth' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale-free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r<1/2, and a Pareto-like tail (on the positive side) and a novel stretched exponential decay (on the negative side) for r<1/2
Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam
International Nuclear Information System (INIS)
Thomas, V.A.
1989-01-01
The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989
DEFF Research Database (Denmark)
Carstensen, Josephine Voigt; Jomaas, Grunde; Pankaj, Pankaj
2013-01-01
to extend this approach for RC at elevated temperatures. Prior to the extension, the approach is investigated for associated modeling issues and a set of limits of application are formulated. The available models of the behavior of plain concrete at elevated temperatures were used to derive inherent......One of the accepted approaches for postpeak finite-element modeling of RC comprises combining plain concrete, reinforcement, and interaction behaviors. In these, the postpeak strain-softening behavior of plain concrete is incorporated by the use of fracture energy concepts. This study attempts...... fracture energy variation with temperature. It is found that the currently used tensile elevated temperature model assumes that the fracture energy decays with temperature. The existing models in compression also show significant decay of fracture energy at higher temperatures (>400°) and a considerable...
International Nuclear Information System (INIS)
Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de
2008-01-01
The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices
Energy Technology Data Exchange (ETDEWEB)
Aspelund, O; Gustafsson, B
1967-05-15
After an introductory discussion of various methods for correction of experimental left-right ratios for polarized multiple-scattering and finite-geometry effects necessary and sufficient formulas for consistent tracking of polarization effects in successive scattering orders are derived. The simplifying assumptions are then made that the scattering is purely elastic and nuclear, and that in the description of the kinematics of the arbitrary Scattering {mu}, only one triple-parameter - the so-called spin rotation parameter {beta}{sup ({mu})} - is required. Based upon these formulas a general discussion of the importance of the correct inclusion of polarization effects in any scattering order is presented. Special attention is then paid to the question of depolarization of an already polarized beam. Subsequently, the afore-mentioned formulas are incorporated in the comprehensive Monte Carlo program MULTPOL, which has been designed so as to correctly account for finite-geometry effects in the sense that both the scattering sample and the detectors (both having cylindrical shapes) are objects of finite dimensions located at finite distances from each other and from the source of polarized fast-neutrons. A special feature of MULTPOL is the application of the method of correlated sampling for reduction of the standard deviations .of the results of the simulated experiment. Typical data of performance of MULTPOL have been obtained by the application of this program to the correction of experimental polarization data observed in n + '{sup 12}C elastic scattering between 1 and 2 MeV. Finally, in the concluding remarks the possible modification of MULTPOL to other experimental geometries is briefly discussed.
Faulkner, Robert A; Davison, K Shawn; Bailey, Donald A; Mirwald, Robert L; Baxter-Jones, Adam D G
2006-12-01
Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in
Shimamura, Miyuki K; Deguchi, Tetsuo
2002-05-01
Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.
Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray
2015-04-01
The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc
The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance
International Nuclear Information System (INIS)
Alcaraz, F.C.
1986-01-01
Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt
International Nuclear Information System (INIS)
Suh, Yeong Sung; Kim, Yong Bae
2012-01-01
The strength of particle reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite element unit cell model. the proposed method is shown to be very effective by performing finite element strength analysis of SiC p /Al2124 T4 composites that included ductile in the matrix and particle matrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle reinforced metal matrix composites
Wang, Chong
2018-03-01
In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0 is also given.
International Nuclear Information System (INIS)
Stevenin, Mathilde
2016-01-01
Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr
International Nuclear Information System (INIS)
Arora, H.S.; Singh, H.; Dhindaw, B.K.
2012-01-01
Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.
Directory of Open Access Journals (Sweden)
Norapat Noilublao
2013-01-01
Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.
Finite Size Effects in Chemical Bonding: From Small Clusters to Solids
DEFF Research Database (Denmark)
Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.
2011-01-01
We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...
Reflection of sound from finite-size plane and curved surfaces
DEFF Research Database (Denmark)
Rindel, Jens Holger
2005-01-01
of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...
Finite size effects in a model for platicity of amorphous composites
DEFF Research Database (Denmark)
Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt
2016-01-01
We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...
Finite size effects in phase transformation kinetics in thin films and surface layers
International Nuclear Information System (INIS)
Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il
2004-01-01
In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively
Finite-size scaling functions for directed polymers confined between attracting walls
Energy Technology Data Exchange (ETDEWEB)
Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Rechnitzer, A [Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 (Canada)
2008-01-25
The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been recently calculated. The walks can be considered to model the polymer-induced steric stabilization and sensitized flocculation of colloidal dispersions. The large-width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: Can one interpolate between the single wall and two wall cases? In this paper, we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic {theta} functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-02-28
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.
Reducing Data Size Inequality during Finite Element Model Separation into Superelements
Directory of Open Access Journals (Sweden)
Yu. V. Berchun
2015-01-01
Full Text Available The work considers two methods of automatic separation of final element model into super-elements to decrease computing resource demand when solving the linearly - elastic problems of solid mechanics. The first method represents an algorithm to separate a final element grid into simply connected sub-regions according to the set specific number of nodes in the super-element. The second method is based on the generation of a super-element with the set specific data size of the coefficient matrix of the system of equations of the internal nodes balance, which are eliminated during super-element transformation. Both methods are based on the theory of graphs. The data size of a matrix of coefficients is assessed on the assumption that the further solution of a task will use Holetsky’s method. Before assessment of data size, a KatkhillaMackey's (Cuthill-McKee algorithm renumbers the internal nodes of a super-element both to decrease a profile width of the appropriate matrix of the system of equations of balance and to reduce the number of nonzero elements. Test examples show work results of abovementioned methods compared in terms of inequality of generated super-element separation according to the number of nodes and data size of the coefficient matrix of the system of equations of the internal nodes balance. It is shown that the offered approach provides smaller inequality of data size of super-element matrixes, with slightly increasing inequality by the number of tops.
Energy Technology Data Exchange (ETDEWEB)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan); Zhang, Xu [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); Shang, Fulin [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources and pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.
A review of finite size effects in quasi-zero dimensional superconductors.
Bose, Sangita; Ayyub, Pushan
2014-11-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size
A review of finite size effects in quasi-zero dimensional superconductors
International Nuclear Information System (INIS)
Bose, Sangita; Ayyub, Pushan
2014-01-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non
Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size
Energy Technology Data Exchange (ETDEWEB)
Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Kreider, W. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States)
2015-10-28
Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.
Synchronization in scale-free networks: The role of finite-size effects
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
Sui, Xiaohong; Huang, Yu; Feng, Fuchen; Huang, Chenhui; Chan, Leanne Lai Hang; Wang, Guoxing
2015-05-01
A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm-1 was adopted as the activation threshold for RGCs. The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 µm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.
Herbert: Design and Realisation of an full-sized anthropometrically correct humanoid robot
Directory of Open Access Journals (Sweden)
Brennand ePierce
2015-06-01
Full Text Available In this paper we present the development of a new full-sized anthropometrically correct humanoid robot Herbert. Herbert has 33 DOFs: 1 29 active DOFs (2 × 4 in the legs, 2 × 7 in the arms, 4 in the waist and 3 in the head; 2 4 passive DOFs (2 × 2 in the ankles. We present the objectives of the design and the development of our system, the hardware (mechanical, electronics as well as the supporting software architecture that encompasses the realisation of the complete humanoid system.Several key elements, that have to be taken into account in our approach to keep the costs low while ensuring high-performance, will be presented. In realising Herbert we applied a modular design for the overall mechanical structure. Two core mechanical module types make up the main structural elements of Herbert: 1 small compact mechanical drive modules; and 2 compliant mechanical drive modules. The electronic system of Herbert, which is based on two different types of motor control boards and an FPGA module with a central controller, is discussed. The software architecture is based on ROS with a number of sub nodes used for the controller. All these supporting components have been important in the development of the complete system.Finally, we present results showing our robot’s performances: demonstrating the behaviour of the compliant modules, the ability of tracking a desired position/velocity as well as a simple torque controller. We also evaluate our custom communication system. Additionally, we demonstrate Herbert balancing and squatting to show its performance. Moreover, we also show the simplicity of the higher level supporting software framework in realising new behaviours. All in all, we show that our system is compact and able to achieve comparable human performances and has human proportions while being low cost.
Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.
2004-01-01
Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties
Finite-size effects on the vortex-glass transition in thin YBa2Cu3O7-δ films
International Nuclear Information System (INIS)
Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.
1995-01-01
Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa 2 Cu 3 O 7-δ films of a thickness t ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films (t≤400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities J, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low J by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature
Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes
International Nuclear Information System (INIS)
Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.
2006-01-01
A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field
International Nuclear Information System (INIS)
Eastham, P. R.; Littlewood, P. B.
2006-01-01
We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high-temperature and low-temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects
Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim
2017-04-01
Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
T. H. Raupach
2015-01-01
Full Text Available The raindrop size distribution (DSD quantifies the microstructure of rainfall and is critical to studying precipitation processes. We present a method to improve the accuracy of DSD measurements from Parsivel (particle size and velocity disdrometers, using a two-dimensional video disdrometer (2DVD as a reference instrument. Parsivel disdrometers bin raindrops into velocity and equivolume diameter classes, but may misestimate the number of drops per class. In our correction method, drop velocities are corrected with reference to theoretical models of terminal drop velocity. We define a filter for raw disdrometer measurements to remove particles that are unlikely to be plausible raindrops. Drop concentrations are corrected such that on average the Parsivel concentrations match those recorded by a 2DVD. The correction can be trained on and applied to data from both generations of OTT Parsivel disdrometers, and indeed any disdrometer in general. The method was applied to data collected during field campaigns in Mediterranean France for a network of first- and second-generation Parsivel disdrometers, and on a first-generation Parsivel in Payerne, Switzerland. We compared the moments of the resulting DSDs to those of a collocated 2DVD, and the resulting DSD-derived rain rates to collocated rain gauges. The correction improved the accuracy of the moments of the Parsivel DSDs, and in the majority of cases the rain rate match with collocated rain gauges was improved. In addition, the correction was shown to be similar for two different climatologies, suggesting its general applicability.
Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators.
Nishikawa, Isao; Tanaka, Gouhei; Aihara, Kazuyuki
2013-08-01
Universal scaling laws form one of the central issues in physics. A nonstandard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we found that a statistical quantity related to fluctuations follows a nonstandard scaling law with respect to the system size in a synchronized state of globally coupled nonidentical phase oscillators [I. Nishikawa et al., Chaos 22, 013133 (2012)]. However, it is still unclear how widely this nonstandard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems and validate the conditions by numerical simulations of several different models.
Energy Technology Data Exchange (ETDEWEB)
Bae, Keun Hyung; Jeon, Jun Young; Han, Jae Jun; Nam, Hyun Suk; Lee, Dae Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)
2016-08-15
In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness(J{sub IC}) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.
GIFFT: A Fast Solver for Modeling Sources in a Metamaterial Environment of Finite Size
International Nuclear Information System (INIS)
Capolino, F; Basilio, L; Fasenfest, B J; Wilton, D R
2006-01-01
Due to the recent explosion of interest in studying the electromagnetic behavior of large (truncated) periodic structures such as phased arrays, frequency-selective surfaces, and metamaterials, there has been a renewed interest in efficiently modeling such structures. Since straightforward numerical analyses of large, finite structures (i.e., explicitly meshing and computing interactions between all mesh elements of the entire structure) involve significant memory storage and computation times, much effort is currently being expended on developing techniques that minimize the high demand on computer resources. One such technique that belongs to the class of fast solvers for large periodic structures is the GIFFT algorithm (Green's function interpolation and FFT), which is first discussed in [1]. This method is a modification of the adaptive integral method (AIM) [2], a technique based on the projection of subdomain basis functions onto a rectangular grid. Like the methods presented in [3]-[4], the GIFFT algorithm is an extension of the AIM method in that it uses basis-function projections onto a rectangular grid through Lagrange interpolating polynomials. The use of a rectangular grid results in a matrix-vector product that is convolutional in form and can thus be evaluated using FFTs. Although our method differs from [3]-[6] in various respects, the primary differences between the AIM approach [2] and the GIFFT method [1] is the latter's use of interpolation to represent the Green's function (GF) and its specialization to periodic structures by taking into account the reusability properties of matrices that arise from interactions between identical cell elements. The present work extends the GIFFT algorithm to allow for a complete numerical analysis of a periodic structure excited by dipole source, as shown in Fig 1. Although GIFFT [1] was originally developed to handle strictly periodic structures, the technique has now been extended to efficiently handle a small
Random sequential adsorption with two components: asymptotic analysis and finite size effects
International Nuclear Information System (INIS)
Reeve, Louise; Wattis, Jonathan A D
2015-01-01
We consider the model of random sequential adsorption (RSA) in which two lengths of rod-like polymer compete for binding on a long straight rigid one-dimensional substrate. We take all lengths to be discrete, assume that binding is irreversible, and short or long polymers are chosen at random with some probability. We consider both the cases where the polymers have similar lengths and when the lengths are vastly different. We use a combination of numerical simulations, computation and asymptotic analysis to study the adsorption process, specifically, analysing how competition between the two polymer lengths affects the final coverage, and how the coverage depends on the relative sizes of the two species and their relative binding rates. We find that the final coverage is always higher than in the one-species RSA, and that the highest coverage is achieved when the rate of binding of the longer polymer is higher. We find that for many binding rates and relative lengths of binding species, the coverage due to the shorter species decreases with increasing substrate length, although there is a small region of parameter space in which all coverages increase with substrate length. (paper)
Does the Finite Size of Electrons Affect Quantum Noise in Electronic Devices?
International Nuclear Information System (INIS)
Colomés, E; Marian, D; Oriols, X
2015-01-01
Quantum transport is commonly studied with the use of quasi-particle infinite- extended states. This leads to a powerful formalism, the scattering-states theory, able to capture in compact formulas quantities of interest, such as average current, noise, etc.. However, when investigating the spatial size-dependence of quasi-particle wave packets in quantum noise with exchange and tunneling, unexpected new terms appear in the quantum noise expression. For this purpose, the two particle transmission and reflection probabilities for two initial one-particle wave packets (with opposite central momentums) spatially localized at each side of a potential barrier are studied. After the interaction, each wave packet splits into a transmitted and a reflected component. It can be shown that the probability of detecting two (identically injected) electrons at the same side of the barrier is different from zero in very common (single or double barrier) scenarios. This originates an increase of quantum noise which cannot be obtained through the scattering states formalism. (paper)
International Nuclear Information System (INIS)
Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray
2015-01-01
Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm 2 square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm 2 , where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a
Energy Technology Data Exchange (ETDEWEB)
Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)
2013-08-15
Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.
Energy Technology Data Exchange (ETDEWEB)
Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)
2014-12-15
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.
International Nuclear Information System (INIS)
Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.
2014-01-01
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions
Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik
2018-01-01
In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Semi-empirical procedures for correcting detector size effect on clinical MV x-ray beam profiles
International Nuclear Information System (INIS)
Sahoo, Narayan; Kazi, Abdul M.; Hoffman, Mark
2008-01-01
The measured radiation beam profiles need to be corrected for the detector size effect to derive the real profiles. This paper describes two new semi-empirical procedures to determine the real profiles of high-energy x-ray beams by removing the detector size effect from the measured profiles. Measured profiles are corrected by shifting the position of each measurement point by a specific amount determined from available theoretical and experimental knowledge in the literature. The authors developed two procedures to determine the amount of shift. In the first procedure, which employs the published analytical deconvolution procedure of other investigators, the shift is determined from the comparison of the analytical fit of the measured profile and the corresponding analytical real profile derived from the deconvolution of the fitted measured profile and the Gaussian detector response function. In the second procedure, the amount of shift at any measurement point is considered to be proportional to the value of an analytical function related to the second derivative of the real profile at that point. The constant of proportionality and a parameter in the function are obtained from the values of the shifts at the 90%, 80%, 20%, and 10% dose levels, which are experimentally known from the published results of other investigators to be approximately equal to half of the radius of the detector. These procedures were tested by correcting the profiles of 6 and 18 MV x-ray beams measured by three different ionization chambers and a stereotactic field diode detector with 2.75, 2, 1, and 0.3 mm radii of their respective active cylindrical volumes. The corrected profiles measured by different detectors are found to be in close agreement. The detector size corrected penumbra widths also agree with the expected values based on the results of an earlier investigation. Thus, the authors concluded that the proposed procedures are accurate and can be used to derive the real
Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent
2016-04-01
Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.
Rahman, N.; Alam, M. N.
2018-02-01
Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.
Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.
2018-02-01
Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
Fung, Tak; Keenan, Kevin
2014-01-01
The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Directory of Open Access Journals (Sweden)
Tak Fung
Full Text Available The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%, a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L., occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.
2001-06-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques
Chen, Xiao; Lu, Bin; Yan, Chao-Gan
2018-01-01
Concerns regarding reproducibility of resting-state functional magnetic resonance imaging (R-fMRI) findings have been raised. Little is known about how to operationally define R-fMRI reproducibility and to what extent it is affected by multiple comparison correction strategies and sample size. We comprehensively assessed two aspects of reproducibility, test-retest reliability and replicability, on widely used R-fMRI metrics in both between-subject contrasts of sex differences and within-subject comparisons of eyes-open and eyes-closed (EOEC) conditions. We noted permutation test with Threshold-Free Cluster Enhancement (TFCE), a strict multiple comparison correction strategy, reached the best balance between family-wise error rate (under 5%) and test-retest reliability/replicability (e.g., 0.68 for test-retest reliability and 0.25 for replicability of amplitude of low-frequency fluctuations (ALFF) for between-subject sex differences, 0.49 for replicability of ALFF for within-subject EOEC differences). Although R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC differences). By randomly drawing different sample sizes from a single site, we found reliability, sensitivity and positive predictive value (PPV) rose as sample size increased. Small sample sizes (e.g., < 80 [40 per group]) not only minimized power (sensitivity < 2%), but also decreased the likelihood that significant results reflect "true" effects (PPV < 0.26) in sex differences. Our findings have implications for how to select multiple comparison correction strategies and highlight the importance of sufficiently large sample sizes in R-fMRI studies to enhance reproducibility. Hum Brain Mapp 39:300-318, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Longford, Francis G. J.; Essex, Jonathan W.; Skylaris, Chris-Kriton; Frey, Jeremy G.
2018-06-01
We present an unexpected finite size effect affecting interfacial molecular simulations that is proportional to the width-to-surface-area ratio of the bulk phase Ll/A. This finite size effect has a significant impact on the variance of surface tension values calculated using the virial summation method. A theoretical derivation of the origin of the effect is proposed, giving a new insight into the importance of optimising system dimensions in interfacial simulations. We demonstrate the consequences of this finite size effect via a new way to estimate the surface energetic and entropic properties of simulated air-liquid interfaces. Our method is based on macroscopic thermodynamic theory and involves comparing the internal energies of systems with varying dimensions. We present the testing of these methods using simulations of the TIP4P/2005 water forcefield and a Lennard-Jones fluid model of argon. Finally, we provide suggestions of additional situations, in which this finite size effect is expected to be significant, as well as possible ways to avoid its impact.
Correcting for particle size effects on plasma actuator particle image velocimetry measurements
Masati, A.; Sedwick, R. J.
2018-01-01
Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.
Koek, W.D.; Zwet, E.J. van
2015-01-01
When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders
Energy Technology Data Exchange (ETDEWEB)
Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Zhang, Yong; Maginn, Edward J., E-mail: ed@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Tsimpanogiannis, Ioannis N. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” 15310 Aghia Paraskevi Attikis (Greece)
2016-08-21
Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.
Winkler, A; Wilms, D; Virnau, P; Binder, K
2010-10-28
When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.
International Nuclear Information System (INIS)
Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio
2013-01-01
In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Effect of source depth correction on the estimation of earthquake size
International Nuclear Information System (INIS)
Romanelli, F.; Panza, G.
1995-03-01
The relationship between surface wave magnitude, M s , and seismic moment, M o , of earthquakes is essential for the estimation of seismic risk in any region. In the hypothesis of constant stress drop, theoretical models predict that Log M o and M s are related by a linear law. The slope most commonly found in the literature is around 1.5. Here we show that the application to the Ms values of the necessary correction for the focal depth, gives a general increment of the correlation coefficient, and that a slope around 1.0 is consistent with the global data, while for regionalized data it can vary from about 1.0 to 2.0. (author). 14 refs, 3 tabs
Effect of source depth correction on the estimation of earthquake size
Energy Technology Data Exchange (ETDEWEB)
Romanelli, F [Universita degli Studi di Trieste, Trieste (Italy). Istituto di Geodesia e Geofisica; Panza, G
1995-03-01
The relationship between surface wave magnitude, M{sub s}, and seismic moment, M{sub o}, of earthquakes is essential for the estimation of seismic risk in any region. In the hypothesis of constant stress drop, theoretical models predict that Log M{sub o} and M{sub s} are related by a linear law. The slope most commonly found in the literature is around 1.5. Here we show that the application to the Ms values of the necessary correction for the focal depth, gives a general increment of the correlation coefficient, and that a slope around 1.0 is consistent with the global data, while for regionalized data it can vary from about 1.0 to 2.0. (author). 14 refs, 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Wang, Feng; Chen, Junlong; Liu, Jueping, E-mail: jpliu@whu.edu.cn [Department of Physics, School of Physics Science and Technology, Wuhan University, 430072, Wuhan (China)
2015-09-28
Based on a correction from instanton–gluon interference to the correlation function, the properties of the 0{sup -+} pseudoscalar glueball are investigated in a family of finite-width Gaussian sum rules. In the framework of a semiclassical expansion for quantum chromodynamics in the instanton liquid background, the contribution arising from the interference between instantons and the quantum gluon fields is calculated, and it is included in the correlation function together with a pure-classical contribution from instantons and the perturbative one. The interference contribution turns out to be gauge-invariant, to be free from an infrared divergence, and to have a great role to play in restoring the positivity of the spectra of the full correlation function. The negligible contribution from vacuum condensates is excluded in our correlation function to avoid double counting. Instead of the usual zero-width approximation for the resonances, the usual Breit–Wigner form with a suitable threshold behavior for the spectral function of the finite-width resonances is adopted. Consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0{sup -+} resonance in which the glueball fraction is dominant are obtained, and they agree with the phenomenological analysis.
Energy Technology Data Exchange (ETDEWEB)
Wang, Feng; Chen, Junlong; Liu, Jueping [Wuhan University, Department of Physics, School of Physics Science and Technology, Wuhan (China)
2015-09-15
Based on a correction from instanton-gluon interference to the correlation function, the properties of the 0{sup -+} pseudoscalar glueball are investigated in a family of finite-width Gaussian sum rules. In the framework of a semiclassical expansion for quantum chromodynamics in the instanton liquid background, the contribution arising from the interference between instantons and the quantum gluon fields is calculated, and it is included in the correlation function together with a pure-classical contribution from instantons and the perturbative one. The interference contribution turns out to be gauge-invariant, to be free from an infrared divergence, and to have a great role to play in restoring the positivity of the spectra of the full correlation function. The negligible contribution from vacuum condensates is excluded in our correlation function to avoid double counting. Instead of the usual zero-width approximation for the resonances, the usual Breit-Wigner form with a suitable threshold behavior for the spectral function of the finite-width resonances is adopted. Consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0{sup -+} resonance in which the glueball fraction is dominant are obtained, and they agree with the phenomenological analysis. (orig.)
Habermehl, Christina; Benner, Axel; Kopp-Schneider, Annette
2018-03-01
In recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Traduction et typologie des textes : pour une définition de la traduction «correcte»
Directory of Open Access Journals (Sweden)
Ioana Irina Durdureanu
2010-01-01
Full Text Available This article aims at establishing a short definition of translation in order to demonstrate the fact that the translation process is a very complex and complicated one, which implies an extra-linguistic universe from the translator. Translating literature, especially poetry, means using some “rules”, which are different from the rules used in the translation of specialized texts. Many theorists say that it is impossible to translate poetry, but we can talk in fact about what we lose and what we gain in translation. Modern translation theories established a series of translation typologies that take into account the type of text to translate so as the translator can transmit into another language the correct meaning
Is the market size hypothesis relevant for Botswana? Vector error correction framework
Directory of Open Access Journals (Sweden)
Kunofiwa Tsaurai
2015-10-01
Full Text Available The current study investigated the relevancy of the market size hypothesis of FDI in Botswana in Botswana using the VECM approach with data ranging from 1975 to 2013. The study used FDI net inflows (% of GDP as a measure of FDI and GDP per capita as a proxy of market size. The findings of the study are threefold: (1 observed that there exists a long run uni-directional causality relationship running from GDP per capita to FDI in Botswana, (2 there is no long run causality running from FDI to GDP per capita in Botswana between 1975 and 2013 and (3 failed to establish any short run causality either from GDP per capita to FDI or from FDI to GDP per capita in Botswana. Although, GDP per capita of Botswana was a conditional characteristic that attracted FDI, Botswana did not economically benefit from FDI net inflows during the period from 1975 to 2013. The findings defied the theory that mentions that FDI brings into the host country an improvement of human capital development and technology improvement among other advantages which boost economic growth. Possibly, there are other host country characteristics that Botswana needs to address if it hopes to benefit from FDI. The current study recommends further research to find out which are the other conditional characteristics that Botswana authorities need to put in place in ensure that FDI inflows is translated into economic benefits for the country
International Nuclear Information System (INIS)
Yang Yong; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) is an advanced form of radiation therapy and promises to improve dose conformation while reducing the irradiation to the sensitive structures. The modality is, however, more complicated than conventional treatment and requires much more stringent quality assurance (QA) to ensure what has been planned can be achieved accurately. One of the main QA tasks is the assurance of positioning accuracy of multileaf collimator (MLC) leaves during IMRT delivery. Currently, the routine quality assurance of MLC in most clinics is being done using radiographic films with specially designed MLC leaf sequences. Besides being time consuming, the results of film measurements are difficult to quantify and interpret. In this work, we propose a new and effective technique for routine MLC leaf positioning QA. The technique utilizes the fact that, when a finite-sized detector is placed under a leaf, the relative output of the detector will depend on the relative fractional volume irradiated. A small error in leaf positioning would change the fractional volume irradiated and lead to a deviation of the relative output from the normal reading. For a given MLC and detector system, the relation between the relative output and the leaf displacement can be easily established through experimental measurements and used subsequently as a quantitative means for detecting possible leaf positional errors. The method was tested using a linear accelerator with an 80-leaf MLC. Three different locations, including two locations on central plane (X1=X2=0) and one point on an off-central plane location (X1=-7.5, X=7.5), were studied. Our results indicated that the method could accurately detect a leaf positional change of ∼0.1 mm. The method was also used to monitor the stability of MLC leaf positioning for five consecutive weeks. In this test, we intentionally introduced two positional errors in the testing MLC leaf sequences: -0.2 mm and 1.2 mm. The technique
Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko
2015-04-01
Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z-R) and radar reflectivity-specific attenuation (Z-k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the
International Nuclear Information System (INIS)
Dorkhosh, Seyed Salman; Samet, Haidar
2015-01-01
Highlights: • Simultaneous allocation of DGs and fast directional protection switches (FPDSs) is made. • A protection constraint is proposed which restricts the allowable size of DGs. • The proposed constraint ensures the correct operation of upstream installed FDPS in all conditions. - Abstract: This paper presents simultaneous allocation of distributed generations (DGs) and fast directional protection switches (FDPSs) to decrease energy losses and enhance reliability of the network. The main contribution of the paper is restricting the allowable size of DGs to ensure the correct operation of upstream installed FDPS in all conditions. The paper introduces a method based on genetic algorithm to solve the optimization problem. Finally, to confirm the effectiveness of the proposed method some simulations considering a 33 bus test network are performed. The optimization problem with and without applying protection constraint is solved. Customer’s load is modeled by a three level yearly load. Time value of money and load growth rate are also considered. To assess the importance of the proposed protection constraint, fault studies after adding DGs and FDPSs to a 33 bus test network are performed. Results confirm the importance of the proposed protection constraint
International Nuclear Information System (INIS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.
2017-01-01
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1^ direction). We show that this eliminates the main NCI modes with moderate |k_1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k_1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1^ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
Energy Technology Data Exchange (ETDEWEB)
Shepard, J R; Zimmerman, W R; Kraushaar, J J [Colorado Univ., Boulder (USA). Dept. of Physics and Astrophysics
1977-01-04
Strong transitions in the /sup 58/Ni(/sup 3/He,..cap alpha..)/sup 57/Ni reaction were analyzed using both the zero-range and exact finite-range DWBA. Data considered covered a range of bombarding energies from 15 to 205 MeV. The zero-range DWBA described all data well when finite-range and non-locality corrections were included in the local energy approximation. Comparison of zero-range and exact finite-range calculations showed the local energy approximation correction to be very accurate over the entire energy region. Empirically determined D/sub 0/ values showed no energy dependence. A theoretical D/sub 0/ value calculated using an ..cap alpha.. wave function which reproduced the measured ..cap alpha.. rms charge radius and the elastic electron scattering form factor agreed well the empirical values. Comparison was made between these values and D/sub 0/ values quoted previously in the literature.
International Nuclear Information System (INIS)
Woll, J.P.P.; Garcia Vicente, A.M.; Gonzalez Garcia, B.; Delgado Portela, M.; Cordero Garcia, J.M.; Pardo Garcia, R.; Molino Trinidad, C.; Soriano Castrejon, A.M.; Cortes Romera, M.
2011-01-01
The aim of this study was to evaluate the impact of radioguided occult lesion localization (ROLL) in the correct location and excision of malignant breast lesions, and analyze if these results are affected by the histology and tumor size. A total of 105 patients with occult breast lesions were studied. The mean age was 55 years. An intralesional dose of 18.5 MBq of 99mTc-labeled macroaggregated human albumin (AMA) was administered using stereotaxic mammography or ultrasound. Surgical resection was carried out with the help of a gammadetector probe. In the histological study, disease-free margin was defined by a distance between the tumor lesion and the surgical margin of more than 1 mm. The possible influence of tumor histology and lesion diameter with respect to free/affected margins was analyzed. Correct radiotracer placement was achieved in 100/105 of the cases (95.2%). In the remaining 5 cases (4.8%), radiotracer placement was incorrect, with 2 of them being malignant lesions that were found by macroscopic inspection, and the other 3 having benign pathology. Among the malignant lesions (44 cases), correct placement of the radiotracer was achieved in 42 cases (95.5%). Of these 42 malignant lesions, in which the ROLL was correctly performed, free surgical margins were obtained in 24 cases (57.1%), while the other 18 (42.9%) had infiltrated surgical margins. The most common histological type among the malignant lesions was invasive ductal carcinoma (71.4%). The histological types with an increased frequency of infiltration of surgical margins were invasive and microinvasive cancer (94.4%). All the affected margins were in lesions greater than 10 mm, and the highest incidence was in those between 20 and 30 mm (55.5%). In our experience, the advantages of the ROLL technique are a precise localization of malignant breast lesions (95.5%) and an increased probability of a complete excision with free margins in more than one half of them. Nevertheless, special
Directory of Open Access Journals (Sweden)
V. V. Sychev
2014-01-01
laser cavity, a transport channel of powerful laser radiation with deflecting mirrors and a forming telescope with a segmented primary mirror;- formation of the performance criteria of adaptive optical systems;- multiplanimetric system of adaptive correction of distortions.The paper discusses test results of the transportation of powerful laser radiation on a horizontal track and shows an external view of forming optical system of comprehensive test stand.It is conclusively proven that using the proposed postulates when developing or modernizing the optical systems provides the lowest level of residual distortions and the operating efficiency of adaptive optical means.The proposed postulates for adaptive correction of radiation WF and positive experience of their use in full-scale optical complexes significantly reduce time and cost in developing the effective means to observe the distant objects, as well as the means to generate and supply power to various space objects for its multiple use such as power supply, telecommunications, fighting with space debris, providing security asteroid etc.It can be concluded that the state of the domestic optical science and its potential in the field of adaptive means to form and transport high-power laser radiation, as well as the results of theoretical and experimental studies, inspire the reasonable hope for the high-performance large-sized multipurpose optoelectronic devices to be available in the future.
Blanchard, Ray
2014-07-01
The term "fraternal birth order effect" denotes a statistical relation most commonly expressed in one of two ways: Older brothers increase the odds of homosexuality in later born males or, alternatively, homosexual men tend to have more older brothers than do heterosexual men. The demonstrability of this effect depends partly on the adequate matching of the homosexual and heterosexual study groups with respect to mean family size. If the homosexual group has too many siblings, relative to the heterosexual group, the homosexual group will tend to show the expected excess of older brothers but may also show an excess of other sibling-types (most likely older sisters); if the homosexual group has too few siblings, it will tend not to show a difference in number of older brothers but instead may show a deficiency of other sibling-types (most likely younger brothers and younger sisters). In the first part of this article, these consequences are illustrated with deliberately mismatched groups selected from archived data sets. In the second part, two slightly different methods for transforming raw sibling data are presented. These are intended to produce family-size-corrected variables for each of the four original sibling parameters (older brothers, older sisters, younger brothers, and younger sisters). Both versions are shown to render the fraternal birth order effect observable in the deliberately mismatched groups. In the third part of the article, fraternal birth order studies published in the last 5 years were surveyed for failures to find a statistically significant excess of older brothers for the homosexual group. Two such studies were found in the nine examined. In both cases, the collective findings for older sisters, younger brothers, and younger sisters suggested that the mean family size of the homosexual groups was smaller than that of the heterosexual comparison groups. Furthermore, the individual findings for the four classes of siblings resembled those
International Nuclear Information System (INIS)
Bocquet, L.; Hansen, J.P.; Piasecki, J.
1997-01-01
In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles
Lee-Yang zeroes and logarithmic corrections in the Φ44 theory
International Nuclear Information System (INIS)
Kenna, R.; Lang, C.B.
1993-01-01
The leading mean-field critical behaviour of φ 4 4 -theory is modified by multiplicative logarithmic corrections. We analyse these corrections both analytically and numerically. In particular we present a finite-size scaling theory for the Lee-Yang zeroes and temperature zeroes, both of which exhibit logarithmic corrections. On lattices from size 8 4 to 24 4 , Monte-Carlo cluster methods and multi-histogram techniques are used to determine the partition function zeroes closest to the critical point. Finite-size scaling behaviour is verified and the logarithmic corrections are found to be in good agreement with our analytical predictions. (orig.)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
DEFF Research Database (Denmark)
Freltoft, T.; Kjems, Jørgen; Sinha, S. K.
1986-01-01
Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...
Shahrestani, Shahed; Mokhtari, Ahmad Reza
2017-04-01
Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As
Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian
2016-01-01
Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the
Yuan, Chao; Chareyre, Bruno; Darve, Félix
2016-09-01
A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the
On sets of vectors of a finite vector space in which every subset of basis size is a basis II
Ball, Simeon; De Beule, Jan
2012-01-01
This article contains a proof of the MDS conjecture for k a parts per thousand currency sign 2p - 2. That is, that if S is a set of vectors of in which every subset of S of size k is a basis, where q = p (h) , p is prime and q is not and k a parts per thousand currency sign 2p - 2, then |S| a parts per thousand currency sign q + 1. It also contains a short proof of the same fact for k a parts per thousand currency sign p, for all q.
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
Energy Technology Data Exchange (ETDEWEB)
Ngo, Ich Long; Byon, Chan [Yeungnam University, Gyeongsan (Korea, Republic of)
2015-07-15
Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh number (5 X 10{sup 2} ≤ Ra ≤ 5X10{sup 5}), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ x{sub h}/L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt number (Nu{sub m}) increases as the heater size decreases. In addition, when x{sub h}/L is less than 0.4, Nu{sub m} increases as x{sub h}/L increases, and Num decreases again for a larger value of x{sub h}/L. However, this trend changes when Ra is less than 10{sup 4}, suggesting that Nu{sub m} attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.
Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.
2011-09-01
The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.
Roberts, W Eugene; Viecilli, Rodrigo F; Chang, Chris; Katona, Thomas R; Paydar, Nasser H
2015-12-01
In the absence of adequate animal or in-vitro models, the biomechanics of human malocclusion must be studied indirectly. Finite element analysis (FEA) is emerging as a clinical technology to assist in diagnosis, treatment planning, and retrospective analysis. The hypothesis tested is that instantaneous FEA can retrospectively simulate long-term mandibular arch retraction and occlusal plane rotation for the correction of a skeletal Class III malocclusion. Seventeen published case reports were selected of patients treated with statically determinate mechanics using posterior mandible or infrazygomatic crest bone screw anchorage to retract the mandibular arch. Two-dimensional measurements were made for incisor and molar movements, mandibular arch rotation, and retraction relative to the maxillary arch. A patient with cone-beam computed tomography imaging was selected for a retrospective FEA. The mean age for the sample was 23.3 ± 3.3 years; there were 7 men and 10 women. Mean incisor movements were 3.35 ± 1.55 mm of retraction and 2.18 ± 2.51 mm of extrusion. Corresponding molar movements were retractions of 4.85 ± 1.78 mm and intrusions of 0.85 ± 2.22 mm. Retraction of the mandibular arch relative to the maxillary arch was 4.88 ± 1.41 mm. Mean posterior rotation of the mandibular arch was -5.76° ± 4.77° (counterclockwise). The mean treatment time (n = 16) was 36.2 ± 15.3 months. Bone screws in the posterior mandibular region were more efficient for intruding molars and decreasing the vertical dimension of the occlusion to close an open bite. The full-cusp, skeletal Class III patient selected for FEA was treated to an American Board of Orthodontics Cast-Radiograph Evaluation score of 24 points in about 36 months by en-masse retraction and posterior rotation of the mandibular arch: the bilateral load on the mandibular segment was about 200 cN. The mandibular arch was retracted by about 5 mm, posterior rotation was about 16.5°, and molar intrusion was about 3
International Nuclear Information System (INIS)
Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui
2017-01-01
Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p + 1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p + 2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j − 1 and 3 j − 2, for the low-energy electronic transports. In the passivated wide (3 p + 2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p + 2)-AABLGNRs. (paper)
Westgate, Philip M
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.
Energy Technology Data Exchange (ETDEWEB)
Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov
2001-06-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.
International Nuclear Information System (INIS)
Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov
2001-01-01
Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom
Olsson, Mats; Wilson, Mark; Uller, Tobias; Mott, Beth; Isaksson, Caroline
2009-01-01
Many organisms show differences between males and females in growth rate and crucial life history parameters, such as longevity. Considering this, we may expect levels of toxic metabolic by-products of the respiratory chain, such as reactive oxygen species (ROS), to vary with age and sex. Here, we analyse ROS levels in female Australian painted dragon lizards ( Ctenophorus pictus) and their offspring using fluorescent probes and flow cytometry. Basal level of four ROS species (singlet oxygen, peroxynitrite, superoxide and H2O2) measured with a combined marker, and superoxide measured specifically, varied significantly among families but not between the sexes. When blood cells from offspring were chemically encouraged to accelerate the electron transport chain by mitochondrial uncoupling, net superoxide levels were three times higher in daughters than sons (resulting in levels outside of the normal ROS range) and varied among mothers depending on offspring sex (significant interaction between maternal identity and offspring sex). In offspring, there were depressive effects on ROS of size-controlled relative clutch size, which relies directly on circulating levels of vitellogenin, a confirmed antioxidant in some species. Thus, levels of reactive oxygen species varies among females, offspring and in relation to reproductive investment in a manner that makes its regulatory processes likely targets of selection.
Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal
2018-06-01
Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.
Shimansky, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-05-01
This paper presents a method of improving the accuracy of a circular laser system in fabrication of large-diameter diffractive optical elements by means of a polar coordinate system and the results of their use. An algorithm for correcting positioning errors of a circular laser writing system developed at the Institute of Automation and Electrometry, SB RAS, is proposed and tested. Highprecision synthesized holograms fabricated by this method and the results of using these elements for testing the 6.5 m diameter aspheric mirror of the James Webb space telescope (JWST) are described..
Finite fields and applications
Mullen, Gary L
2007-01-01
This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...
Energy Technology Data Exchange (ETDEWEB)
Hubeny, V.
2005-01-12
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.
Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko
2014-11-01
Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the
Rhyu, K H; Kim, Y H; Park, W M; Kim, K; Cho, T-J; Choi, I H
2011-09-01
In experimental and clinical research, it is difficult to directly measure responses in the human body, such as contact pressure and stress in a joint, but finite element analysis (FEA) enables the examination of in vivo responses by contact analysis. Hence, FEA is useful for pre-operative planning prior to orthopaedic surgeries, in order to gain insight into which surgical options will result in the best outcome. The present study develops a numerical simulation technique based on FEA to predict the surgical outcomes of osteotomy methods for the treatment of slipped capital femoral epiphyses. The correlation of biomechanical parameters including contact pressure and stress, for moderate and severe cases, is investigated. For severe slips, a base-of-neck osteotomy is thought to be the most reliable and effective surgical treatment, while any osteotomy may produce dramatic improvement for moderate slips. This technology of pre-operative planning using FEA can provide information regarding biomechanical parameters that might facilitate the selection of optimal osteotomy methods and corresponding surgical options.
Li, Zipeng; Lai, Kelvin Yi-Tse; Chakrabarty, Krishnendu; Ho, Tsung-Yi; Lee, Chen-Yi
2017-12-01
Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. In recent years, digital microfluidic biochips (DMFBs) have been adopted as a platform for sample preparation. However, there remain two major problems associated with sample preparation on a conventional DMFB. First, only a (1:1) mixing/splitting model can be used, leading to an increase in the number of fluidic operations required for sample preparation. Second, only a limited number of sensors can be integrated on a conventional DMFB; as a result, the latency for error detection during sample preparation is significant. To overcome these drawbacks, we adopt a next generation DMFB platform, referred to as micro-electrode-dot-array (MEDA), for sample preparation. We propose the first sample-preparation method that exploits the MEDA-specific advantages of fine-grained control of droplet sizes and real-time droplet sensing. Experimental demonstration using a fabricated MEDA biochip and simulation results highlight the effectiveness of the proposed sample-preparation method.
Axial anomaly at finite temperature and finite density
International Nuclear Information System (INIS)
Qian Zhixin; Su Rukeng; Yu, P.K.N.
1994-01-01
The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)
Koplenig, Alexander; Müller-Spitzer, Carolin
2016-01-01
In order to demonstrate why it is important to correctly account for the (serial dependent) structure of temporal data, we document an apparently spectacular relationship between population size and lexical diversity: for five out of seven investigated languages, there is a strong relationship between population size and lexical diversity of the primary language in this country. We show that this relationship is the result of a misspecified model that does not consider the temporal aspect of the data by presenting a similar but nonsensical relationship between the global annual mean sea level and lexical diversity. Given the fact that in the recent past, several studies were published that present surprising links between different economic, cultural, political and (socio-)demographical variables on the one hand and cultural or linguistic characteristics on the other hand, but seem to suffer from exactly this problem, we explain the cause of the misspecification and show that it has profound consequences. We demonstrate how simple transformation of the time series can often solve problems of this type and argue that the evaluation of the plausibility of a relationship is important in this context. We hope that our paper will help both researchers and reviewers to understand why it is important to use special models for the analysis of data with a natural temporal ordering.
Bueeler, Michael; Mrochen, Michael
2005-01-01
The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.
A new trajectory correction technique for linacs
International Nuclear Information System (INIS)
Raubenheimer, T.O.; Ruth, R.D.
1990-06-01
In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs
Logarithmic corrections to scaling in the XY2-model
International Nuclear Information System (INIS)
Kenna, R.; Irving, A.C.
1995-01-01
We study the distribution of partition function zeroes for the XY-model in two dimensions. In particular we find the scaling behaviour of the end of the distribution of zeroes in the complex external magnetic field plane in the thermodynamic limit (the Yang-Lee edge) and the form for the density of these zeroes. Assuming that finite-size scaling holds, we show that there have to exist logarithmic corrections to the leading scaling behaviour of thermodynamic quantities in this model. These logarithmic corrections are also manifest in the finite-size scaling formulae and we identify them numerically. The method presented here can be used to check the compatibility of scaling behaviour of odd and even thermodynamic functions in other models too. ((orig.))
Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar
2011-04-07
We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.
Photon propagators at finite temperature
International Nuclear Information System (INIS)
Yee, J.H.
1982-07-01
We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)
Sound radiation from finite surfaces
DEFF Research Database (Denmark)
Brunskog, Jonas
2013-01-01
A method to account for the effect of finite size in acoustic power radiation problem of planar surfaces using spatial windowing is developed. Cremer and Heckl presents a very useful formula for the power radiating from a structure using the spatially Fourier transformed velocity, which combined...... with spatially windowing of a plane waves can be used to take into account the finite size. In the present paper, this is developed by means of a radiation impedance for finite surfaces, that is used instead of the radiation impedance for infinite surfaces. In this way, the spatial windowing is included...
Ferrari, Ulisse
2016-08-01
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Correctness of concurrent processes
E.R. Olderog (Ernst-Rüdiger)
1989-01-01
textabstractA new notion of correctness for concurrent processes is introduced and investigated. It is a relationship P sat S between process terms P built up from operators of CCS [Mi 80], CSP [Ho 85] and COSY [LTS 79] and logical formulas S specifying sets of finite communication sequences as in
Lindquist Liljeqvist, Moritz; Hultgren, Rebecka; Siika, Antti; Gasser, T Christian; Roy, Joy
2017-04-01
Finite element analysis (FEA) has been suggested to be superior to maximal diameter measurements in predicting rupture of abdominal aortic aneurysms (AAAs). Our objective was to investigate to what extent previously described rupture risk factors were associated with FEA-estimated rupture risk. One hundred forty-six patients with an asymptomatic AAA of a 40- to 60-mm diameter were retrospectively identified and consecutively included. The patients' computed tomography angiograms were analyzed by FEA without (neutral) and with (specific) input of patient-specific mean arterial pressure (MAP), gender, family history, and age. The maximal wall stress/wall strength ratio was described as a rupture risk equivalent diameter (RRED), which translated this ratio into an average aneurysm diameter of corresponding rupture risk. In multivariate linear regression, RRED neutral increased with female gender (3.7 mm; 95% confidence interval [CI], 0.13-7.3) and correlated with patient height (0.27 mm/cm; 95% CI, 0.11-0.43) and body surface area (BSA, 16 mm/m 2 ; 95% CI, 8.3-24) and inversely with body mass index (BMI, -0.40 mm/kg m -2 ; 95% CI, -0.75 to -0.054) in a wall stress-dependent manner. Wall stress-adjusted RRED neutral was raised if the patient was currently smoking (1.1 mm; 95% CI, 0.21-1.9). Age, MAP, family history, and patient weight were unrelated to RRED neutral . In specific FEA, RRED specific increased with female gender, MAP, family history positive for AAA, height, and BSA, whereas it was inversely related to BMI. All results were independent of aneurysm diameter. Peak wall stress and RRED correlated with aneurysm diameter and lumen volume. Female gender, current smoking, increased patient height and BSA, and low BMI were found to increase the mechanical rupture risk of AAAs. Previously described rupture risk factors may in part be explained by patient characteristic-dependent variations in aneurysm biomechanics. Copyright © 2016 Society for Vascular
On the modification of the Efimov spectrum in a finite cubic box
International Nuclear Information System (INIS)
Kreuzer, S.; Hammer, H.W.
2010-01-01
Three particles with large scattering length display a universal spectrum of three-body bound states called ''Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. Previous calculations for positive scattering length that were perturbative in the finite-volume energy shift are extended to arbitrarily large shifts and negative scattering lengths. The renormalization of the effective field theory in the finite volume is explicitly verified. We investigate the effects of partial-wave mixing and study the behavior of shallow trimers near the dimer energy. Moreover, we provide numerical evidence for universal scaling of the finite-volume corrections. (orig.)
International Nuclear Information System (INIS)
Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan
2015-01-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α 2 ≃ 2α 1
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2015-09-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Yulia, M.; Suhandy, D.
2018-03-01
NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.
Diffusion to finite-size traps
International Nuclear Information System (INIS)
Richards, P.M.
1986-01-01
The survival probability of a random-walking particle is derived for hopping in a random distribution of traps of arbitrary radius and concentration. The single-center approximation is shown to be valid for times of physical interest even when the fraction of volume occupied by traps approaches unity. The theory is based on computation of the number of different potential trap regions sampled in a random walk and is confirmed by simulations on a simple-cubic lattice
Automated Traffic and the Finite Size Resonance
Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.
2009-10-01
We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.
Local field in finite-size metamaterials
DEFF Research Database (Denmark)
Bordo, Vladimir
2018-01-01
The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads...
Energy Technology Data Exchange (ETDEWEB)
Deniz, V C [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires
1965-07-01
This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B{sup 6} term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [French] Ce rapport presente une theorie generale, par methode integrale du transport, pour determiner la constante de decroissance de la densite neutronique dans un reseau non-multiplicateur de dimensions finies. La theorie est appliquee pour obtenir l'expression du coefficient de diffusion. Le cas d'un milieu homogene avec absorption en 1/v et de dimensions finies dans toutes les directions est etudie en detail, en admettant une loi de choc isotrope. La constante de decroissance est obtenue jusqu'au terme en B{sup 6}. Les expressions pour le coefficient de diffusion et pour le coefficient de refroidissement par diffusion sont les memes que celles obtenues pour une geometrie 'plaque' par NELKIN qui utilise le developpement en harmoniques spheriques de la transformee de Fourier dans la variable d'espace. De plus, on obtient les
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Locally Finite Root Supersystems
Yousofzadeh, Malihe
2013-01-01
We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.
Calculating modes of quantum wire systems using a finite difference technique
Directory of Open Access Journals (Sweden)
T Mardani
2013-03-01
Full Text Available In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
Charm mass corrections to the bottomonium mass spectrum
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R. N.; Galkin, V. O.
2002-01-01
The one-loop corrections to the bottomonium mass spectrum due to the finite charm mass are evaluated in the framework of the relativistic quark model. The obtained corrections are compared with the results of perturbative QCD
DEFF Research Database (Denmark)
Turcot, Valérie; Lu, Yingchang; Highland, Heather M
2018-01-01
In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.......In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article....
DEFF Research Database (Denmark)
Grundle, D S; Löscher, C R; Krahmann, G
2018-01-01
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....
Exact combinatorial approach to finite coagulating systems
Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr
2018-02-01
This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.
Statistical mechanics of error-correcting codes
Kabashima, Y.; Saad, D.
1999-01-01
We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.
Local defect correction for boundary integral equation methods
Kakuba, G.; Anthonissen, M.J.H.
2014-01-01
The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume
International Nuclear Information System (INIS)
Acharya, B.S.; Douglas, M.R.
2006-06-01
We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)
Nilpotent -local finite groups
Cantarero, José; Scherer, Jérôme; Viruel, Antonio
2014-10-01
We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
NLO corrections to the photon impact factor: Combining real and virtual corrections
International Nuclear Information System (INIS)
Bartels, J.; Colferai, D.; Kyrieleis, A.; Gieseke, S.
2002-08-01
In this third part of our calculation of the QCD NLO corrections to the photon impact factor we combine our previous results for the real corrections with the singular pieces of the virtual corrections and present finite analytic expressions for the quark-antiquark-gluon intermediate state inside the photon impact factor. We begin with a list of the infrared singular pieces of the virtual correction, obtained in the first step of our program. We then list the complete results for the real corrections (longitudinal and transverse photon polarization). In the next step we defined, for the real corrections, the collinear and soft singular regions and calculate their contributions to the impact factor. We then subtract the contribution due to the central region. Finally, we combine the real corrections with the singular pieces of the virtual corrections and obtain our finite results. (orig.)
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Corrections to the Banks-Casher relation with Wilson quarks
Necco, S
2013-01-01
The Banks-Casher relation links the spectral density of the Dirac operator with the existence of a chiral condensate and spontaneous breaking of chiral symmetry. This relation receives corrections from a finite value of the quark mass, a finite space-time volume and, if evaluated on a discrete lattice, from the finite value of the lattice spacing a. We present a status report of a determination of these corrections for Wilson quarks.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
SLIC: an interactive mesh generator for finite element and finite difference application programs
International Nuclear Information System (INIS)
Gerhard, M.A.; Greenlaw, R.C.
1979-01-01
Computers with extended memory, such as the CDC STAR 100 and the CRAY 1 with mega-word capacities, are greatly enlarging the size of finite element problems which can be solved. The cost of developing and testing large meshes can be prohibitive unless one uses a computer program for mesh generation and plotting. SLIC is an interactive mesh program which builds and plots 2- and 3-D continuum meshes from interactive terminal or disc input. The user inputs coordinates for certain key points and enters commands which complete the description of the geometry. Entire surfaces and volumes are then generated from the geometric skeleton. SLIC allows the user to correct input errors and saves the corrected command list for later reuse. The mesh can be plotted on a video display at any stage of development to evaluate the work in progress. Output is in the form of an input file to a user-selected computer code. Among the available output types are ADINA, SAP4, and NIKE2D. 11 figures
Finite volume spectrum of 2D field theories from Hirota dynamics
International Nuclear Information System (INIS)
Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Univ. do Porto
2008-12-01
We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)
DEFF Research Database (Denmark)
Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan
2018-01-01
The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...
DEFF Research Database (Denmark)
Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana
2018-01-01
The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....
DEFF Research Database (Denmark)
Roehle, Robert; Wieske, Viktoria; Schuetz, Georg M
2018-01-01
The original version of this article, published on 19 March 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The names of the authors Philipp A. Kaufmann, Ronny Ralf Buechel and Bernhard A. Herzog were presented incorrectly....
Self-correcting quantum computers
International Nuclear Information System (INIS)
Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A
2013-01-01
Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)
International Nuclear Information System (INIS)
Hayashi, Hiroaki; Nishihara, Sadamitsu; Taniuchi, Shou; Kamiya, Naotaka
2012-01-01
A visual image of the scattered X-ray distributions gives us useful information for beginners to study radiation physics. A pin-hole camera for X-rays can be made by use of simple materials as well as a two-dimensional X-ray detector (imaging plate: IP). In contrast with a pin-hole camera for the visible radiations, a pin-hole camera for X-rays uses a collimator, having a sufficient thickness to reduce X-rays. This design causes the following problem: in the case in which the X-rays are incident to the collimator from the diagonal direction, the some X-rays are absorbed by the wall of the collimator. Namely, the images in the surrounding part of the IP are underrepresented. The aim of this study is to suggest a correction method of the underrepresentation. We used a pin-hole camera (320 mm(long)×270 mm(wide)×300 mm(depth)) by means of the clinically applied IP (10×12 inch). In order to determine proper conditions for a size of collimators (pin-hole), experiments using medical X-ray equipments were carried out. The efficiencies and resolutions were experimentally determined for the collimator sizes of 2 to 8 mm φ . Then, images of scattered X-ray distributions were measured by the irradiation of a head phantom, and considerations were taken for a practical use of the pin-hole camera. Moreover, an exponential absorption of X-rays in the phantom was visualized by our camera in order to indicate a potential of quantitative analysis based on the image of scattered X-ray distributions. (author)
Finite-volume and partial quenching effects in the magnetic polarizability of the neutron
Hall, J. M. M.; Leinweber, D. B.; Young, R. D.
2014-03-01
There has been much progress in the experimental measurement of the electric and magnetic polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects is required prior to an extrapolation in quark mass to the physical point. These dependencies are described using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the infinite-volume result at the physical pion mass. A variety of extrapolations are shown at different box sizes, providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A relatively precise value for the physical magnetic polarizability of the neutron is presented, βn=1.93(11)stat(11)sys×10-4 fm3, which is in agreement with current experimental results.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Supersymmetric theories and finiteness
International Nuclear Information System (INIS)
Helayel-Neto, J.A.
1989-01-01
We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)
Alabdulmohsin, Ibrahim M.
2018-03-07
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Alabdulmohsin, Ibrahim M.
2018-01-01
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
International Nuclear Information System (INIS)
Beenakker, W.J.P.
1989-01-01
The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes
Chiral crossover transition in a finite volume
Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi
2018-02-01
Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)
Finite-volume effects due to spatially non-local operators arXiv
Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.
Spatially non-local matrix elements are useful lattice-QCD observables in a variety of contexts, for example in determining hadron structure. To quote credible estimates of the systematic uncertainties in these calculations, one must understand, among other things, the size of the finite-volume effects when such matrix elements are extracted from numerical lattice calculations. In this work, we estimate finite-volume effects for matrix elements of non-local operators, composed of two currents displaced in a spatial direction by a distance $\\xi$. We find that the finite-volume corrections depend on the details of the matrix element. If the external state is the lightest degree of freedom in the theory, e.g.~the pion in QCD, then the volume corrections scale as $ e^{-m_\\pi (L- \\xi)} $, where $m_\\pi$ is the mass of the light state. For heavier external states the usual $e^{- m_\\pi L}$ form is recovered, but with a polynomial prefactor of the form $L^m/|L - \\xi|^n$ that can lead to enhanced volume effects. These ...
The Finite Heisenberg-Weyl Groups in Radar and Communications
Directory of Open Access Journals (Sweden)
Calderbank AR
2006-01-01
Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.
Multichannel 1 → 2 transition amplitudes in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hansen, Maxwell T. [Univ. of Washington, Seattle, WA (United States); Walker-Loud, Andre [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2015-02-03
We perform a model-independent, non-perturbative investigation of two-point and three-point finite-volume correlation functions in the energy regime where two-particle states can go on-shell. We study three-point functions involving a single incoming particle and an outgoing two-particle state, relevant, for example, for studies of meson decays (e.g., B⁰ → K*l⁺l⁻) or meson photo production (e.g., πγ* → ππ). We observe that, while the spectrum solely depends upon the on-shell scattering amplitude, the correlation functions also depend upon off-shell amplitudes. The main result of this work is a non-perturbative generalization of the Lellouch-Luscher formula relating matrix elements of currents in finite and infinite spatial volumes. We extend that work by considering a theory with multiple, strongly-coupled channels and by accommodating external currents which inject arbitrary four-momentum as well as arbitrary angular-momentum. The result is exact up to exponentially suppressed corrections governed by the pion mass times the box size. We also apply our master equation to various examples, including two processes mentioned above as well as examples where the final state is an admixture of two open channels.
Effect of Hall Current and Finite Larmor Radius Corrections on ...
Indian Academy of Sciences (India)
clumpy interstellar medium, globular clusters and galaxy formation, and many ... plasma taking radiative cooling function and two-fluid theory into account. .... Suffix '0' represents the initial equilibrium state, which is independent of space and.
Finite temperature susy GUT phase transitions determined by radiative corrections
International Nuclear Information System (INIS)
Kripfganz, J.; Perlt, H.
1983-01-01
Studying the 2-loop perturbative contribution to the free energy of supersymmetric grand unified theories, SU(3)xSU(2)xU(1) is found to be the prefered low temperature phase. The transition temperature is still within the weak coupling regime. (author)
Finite temperature susy GUT phase transitions determined by radiative corrections
International Nuclear Information System (INIS)
Kripfganz, J.; Perlt, H.
1983-02-01
Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Thermal quench at finite 't Hooft coupling
Directory of Open Access Journals (Sweden)
H. Ebrahim
2016-03-01
Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.
Stretching and jamming of finite automata
Beijer, de N.; Kourie, D.G.; Watson, B.W.; Cleophas, L.G.W.A.; Watson, B.W.
2004-01-01
In this paper we present two transformations on automata, called stretching and jamming. These transformations will, under certain conditions, reduce the size of the transition table, and under other conditions reduce the string processing time. Given a finite automaton, we can stretch it by
Behavior of supersymmetry at finite temperature
International Nuclear Information System (INIS)
Midorikawa, Shoichi.
1984-11-01
Supersymmetry breaking at finite temperature is investigated by using the real-time formalism. We derive the Ward-Takahashi identities of the composite fields by using the path integral formalism. We also calculate the one-loop correction to fermion and boson masses, and discuss the connection of the perturbative result with that obtained from the effective potential. Our result shows that supersymmetry is broken explicitly even in the real-time formalism. (author)
Finite volume QCD at fixed topological charge
Aoki, Sinya; Fukaya, Hidenori; Hashimoto, Shoji; Onogi, Tetsuya
2007-01-01
In finite volume the partition function of QCD with a given $\\theta$ is a sum of different topological sectors with a weight primarily determined by the topological susceptibility. If a physical observable is evaluated only in a fixed topological sector, the result deviates from the true expectation value by an amount proportional to the inverse space-time volume 1/V. Using the saddle point expansion, we derive formulas to express the correction due to the fixed topological charge in terms of...
Energy Technology Data Exchange (ETDEWEB)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Zhang, Shuzeng; Li, Xiongbing [School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075 (China); Barnard, Dan [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50010 (United States)
2015-09-15
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1983-01-01
Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)
Compton scattering at finite temperature: thermal field dynamics approach
International Nuclear Information System (INIS)
Juraev, F.I.
2006-01-01
Full text: Compton scattering is a classical problem of quantum electrodynamics and has been studied in its early beginnings. Perturbation theory and Feynman diagram technique enables comprehensive analysis of this problem on the basis of which famous Klein-Nishina formula is obtained [1, 2]. In this work this problem is extended to the case of finite temperature. Finite-temperature effects in Compton scattering is of practical importance for various processes in relativistic thermal plasmas in astrophysics. Recently Compton effect have been explored using closed-time path formalism with temperature corrections estimated [3]. It was found that the thermal cross section can be larger than that for zero-temperature by several orders of magnitude for the high temperature realistic in astrophysics [3]. In our work we use a main tool to account finite-temperature effects, a real-time finite-temperature quantum field theory, so-called thermofield dynamics [4, 5]. Thermofield dynamics is a canonical formalism to explore field-theoretical processes at finite temperature. It consists of two steps, doubling of Fock space and Bogolyubov transformations. Doubling leads to appearing additional degrees of freedom, called tilded operators which together with usual field operators create so-called thermal doublet. Bogolyubov transformations make field operators temperature-dependent. Using this formalism we treat Compton scattering at finite temperature via replacing in transition amplitude zero-temperature propagators by finite-temperature ones. As a result finite-temperature extension of the Klein-Nishina formula is obtained in which differential cross section is represented as a sum of zero-temperature cross section and finite-temperature correction. The obtained result could be useful in quantum electrodynamics of lasers and for relativistic thermal plasma processes in astrophysics where correct account of finite-temperature effects is important. (author)
Olber's Paradox Revisited in a Static and Finite Universe
Couture, Gilles
2012-01-01
Building a Universe populated by stars identical to our Sun and taking into consideration the wave-particle duality of light, the biological limits of the human eye, the finite size of stars and the finiteness of our Universe, we conclude that the sky could very well be dark at night. Besides the human eye, the dominant parameter is the finite…
Desu, M M
2012-01-01
One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria
Multigrid and defect correction for the steady Navier-Stokes equations : application to aerodynamics
Koren, B.
1991-01-01
Theoretical and expcrimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible NavierStokes equations. lterative defect correction is introduced for circumventing the difficulty in
Multigrid and defect correction for the steady Navier-Stokes equations
Koren, B.
1990-01-01
Theoretical and experimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible Navier-Stokes equations. Iterative defect correction is introduced for circumventing the difficulty in
Stochastic delocalization of finite populations
International Nuclear Information System (INIS)
Geyrhofer, Lukas; Hallatschek, Oskar
2013-01-01
The localization of populations of replicating bacteria, viruses or autocatalytic chemicals arises in various contexts, such as ecology, evolution, medicine or chemistry. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. It has been repeatedly found that populations remain localized unless the bias exceeds a critical threshold value, and that close to the transition the population is characterized by a diverging length scale. These results, however, have been obtained upon ignoring number fluctuations (‘genetic drift’), which are inevitable given the discreteness of the replicating entities. Here, we study the localization/delocalization of a finite population in the presence of genetic drift. The population is modeled by a linear chain of subpopulations, or demes, which exchange migrants at a constant rate. Individuals in one particular deme, called ‘oasis’, receive a growth rate benefit, and the total population is regulated to have constant size N. In this ecological setting, we find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. Nevertheless, the qualitative behavior of the
Multiple-scattering corrections to the Beer-Lambert law
International Nuclear Information System (INIS)
Zardecki, A.
1983-01-01
The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scattering effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Maximum likelihood estimation of finite mixture model for economic data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
Altieri, Ada
2018-01-01
In view of the results achieved in a previously related work [A. Altieri, S. Franz, and G. Parisi, J. Stat. Mech. (2016) 093301], 10.1088/1742-5468/2016/09/093301, regarding a Plefka-like expansion of the free energy up to the second order in the perceptron model, we improve the computation here focusing on the role of third-order corrections. The perceptron model is a simple example of constraint satisfaction problem, falling in the same universality class as hard spheres near jamming and hence allowing us to get exact results in high dimensions for more complex settings. Our method enables to define an effective potential (or Thouless-Anderson-Palmer free energy), namely a coarse-grained functional, which depends on the generalized forces and the effective gaps between particles. The analysis of the third-order corrections to the effective potential reveals that, albeit irrelevant in a mean-field framework in the thermodynamic limit, they might instead play a fundamental role in considering finite-size effects. We also study the typical behavior of generalized forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. We nevertheless show that third-order corrections in the perturbative expansion vanish in the jamming limit both for the potential and the generalized forces, in agreement with the isostaticity argument proposed by Wyart and coworkers. Finally, we analyze the relevant scaling solutions emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.
Topological quantum error correction in the Kitaev honeycomb model
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
International Nuclear Information System (INIS)
Wachspress, E.
2009-01-01
Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)
Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability
Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard
2001-06-01
We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.; Zoupanos, G.
1993-01-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.
1993-01-01
It is shown how to obtain phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. A very interesting feature of the models with three families is that they predict the top quark mass to be around 178 GeV. 16 refs
Czech Academy of Sciences Publication Activity Database
Šorel, Michal; Šíma, Jiří
2004-01-01
Roč. 62, - (2004), s. 93-110 ISSN 0925-2312 R&D Projects: GA AV ČR IAB2030007; GA MŠk LN00A056 Keywords : radial basis function * neural network * finite automaton * Boolean circuit * computational power Subject RIV: BA - General Mathematics Impact factor: 0.641, year: 2004
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
GQ corrections in the circuit theory of quantum transport
Campagnano, G.; Nazarov, Y.V.
2006-01-01
We develop a finite-element technique that allows one to evaluate correction of the order of GQ to various transport characteristics of arbitrary nanostructures. Common examples of such corrections are the weak-localization effect on conductance and universal conductance fluctuations. Our approach,
Corrected Fourier series and its application to function approximation
Directory of Open Access Journals (Sweden)
Qing-Hua Zhang
2005-01-01
Full Text Available Any quasismooth function f(x in a finite interval [0,x0], which has only a finite number of finite discontinuities and has only a finite number of extremes, can be approximated by a uniformly convergent Fourier series and a correction function. The correction function consists of algebraic polynomials and Heaviside step functions and is required by the aperiodicity at the endpoints (i.e., f(0≠f(x0 and the finite discontinuities in between. The uniformly convergent Fourier series and the correction function are collectively referred to as the corrected Fourier series. We prove that in order for the mth derivative of the Fourier series to be uniformly convergent, the order of the polynomial need not exceed (m+1. In other words, including the no-more-than-(m+1 polynomial has eliminated the Gibbs phenomenon of the Fourier series until its mth derivative. The corrected Fourier series is then applied to function approximation; the procedures to determine the coefficients of the corrected Fourier series are illustrated in detail using examples.
Lattice study of finite volume effect in HVP for muon g-2
Directory of Open Access Journals (Sweden)
Izubuchi Taku
2018-01-01
Full Text Available We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp,in lattice QCD by comparison with two different volumes, L4 = (5.44 and (8.14 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a−1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
Lattice study of finite volume effect in HVP for muon g-2
Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo
2018-03-01
We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
Fast and accurate determination of modularity and its effect size
International Nuclear Information System (INIS)
Treviño, Santiago III; Nyberg, Amy; Bassler, Kevin E; Del Genio, Charo I
2015-01-01
We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively study the modularity distribution in ensembles of Erdős–Rényi networks, producing theoretical predictions for means and variances inclusive of finite-size corrections. Our work provides a way to accurately estimate the effect size of modularity, providing a z-score measure of it and enabling a more informative comparison of networks with different numbers of nodes and links. (paper)
Effect of finite β on stellarator transport
International Nuclear Information System (INIS)
Mynick, H.E.
1984-04-01
A theory of the modification of stellarator transport due to the presence of finite plasma pressure is developed, and applied to a range of stellarator configurations. For many configurations of interest, plasma transport can change by more than an order of magnitude in the progression from zero pressure to the equilibrium β limit of the device. Thus, a stellarator with transport-optimized vacuum fields can have poor confinement at the desired operating β. Without an external compensating field, increasing β tends to degrade confinement, unless the initial field structure is very carefully chosen. The theory permits one to correctly determine this vacuum structure, in terms of the desired structure of the field at a prescribed operating β. With a compensating external field, the deleterious effect of finite β on transport can be partially eliminated
Strong interaction at finite temperature
Indian Academy of Sciences (India)
Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.
Robust weak measurements on finite samples
International Nuclear Information System (INIS)
Tollaksen, Jeff
2007-01-01
A new weak measurement procedure is introduced for finite samples which yields accurate weak values that are outside the range of eigenvalues and which do not require an exponentially rare ensemble. This procedure provides a unique advantage in the amplification of small nonrandom signals by minimizing uncertainties in determining the weak value and by minimizing sample size. This procedure can also extend the strength of the coupling between the system and measuring device to a new regime
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Oliveira, M.W. de.
1986-01-01
The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...
Finite density aspects of leptogenesis
International Nuclear Information System (INIS)
Hohenegger, Andreas
2010-01-01
Leptogenesis takes place in the early universe at high temperatures and densities and a deviation from equilibrium in the decay of heavy Majorana neutrinos is a fundamental requirement for the generation of the asymmetry. The equations, commonly used for its description, are largely based on classical Boltzmann equations (BEs) while the source of CP-violation is a quantum interference phenomenon. In view of this clash, it is desirable to study such processes in terms of non-equilibrium quantum field theory. On the other hand, it is simpler to solve BEs rather than the corresponding quantum field theoretical ones. Therefore, we derive modified BEs from first principles in the Kadanoff-Baym (KB) formalism. The results, found for a simple toy model, can be applied to popular phenomenological scenarios by analogy. This approach uncovers structural differences of the corrected equations and leads to different results for the form of the finite density contributions to the CP-violating parameter. In the case of degenerate heavy neutrino masses, corresponding to the popular scenario of resonant leptogenesis, it allows to explicitly distinguish between regimes where BEs are applicable or inapplicable.
Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory
Groff, Tyler Dean; Kasdin, N.; Carlotti, A.
2011-01-01
Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.
Environmental corrections of a dual-induction logging while drilling tool in vertical wells
Kang, Zhengming; Ke, Shizhen; Jiang, Ming; Yin, Chengfang; Li, Anzong; Li, Junjian
2018-04-01
With the development of Logging While Drilling (LWD) technology, dual-induction LWD logging is not only widely applied in deviated wells and horizontal wells, but it is used commonly in vertical wells. Accordingly, it is necessary to simulate the response of LWD tools in vertical wells for logging interpretation. In this paper, the investigation characteristics, the effects of the tool structure, skin effect and drilling environment of a dual-induction LWD tool are simulated by the three-dimensional (3D) finite element method (FEM). In order to closely simulate the actual situation, real structure of the tool is taking into account. The results demonstrate that the influence of the background value of the tool structure can be eliminated. The values of deducting the background of a tool structure and analytical solution have a quantitative agreement in homogeneous formations. The effect of measurement frequency could be effectively eliminated by chart of skin effect correction. In addition, the measurement environment, borehole size, mud resistivity, shoulder bed, layer thickness and invasion, have an effect on the true resistivity. To eliminate these effects, borehole correction charts, shoulder bed correction charts and tornado charts are computed based on real tool structure. Based on correction charts, well logging data can be corrected automatically by a suitable interpolation method, which is convenient and fast. Verified with actual logging data in vertical wells, this method could obtain the true resistivity of formation.
Finite volume at two-loops in chiral perturbation theory
International Nuclear Information System (INIS)
Bijnens, Johan; Rössler, Thomas
2015-01-01
We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.
Modelling Convergence of Finite Element Analysis of Cantilever Beam
African Journals Online (AJOL)
Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...
A finite difference method for free boundary problems
Fornberg, Bengt
2010-01-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax
Evidence for infrared-finite coupling in Sudakov resummation
International Nuclear Information System (INIS)
Grunberg, Georges
2006-01-01
New arguments are presented in favor of the infrared-finite coupling approach to power corrections in the context of Sudakov resummation. The more regular infrared behavior of some peculiar combinations of Sudakov anomalous dimensions, free of Landau singularities at large N f , is pointed out. A general conflict between the infrared-finite coupling and infrared renormalon approaches to power corrections is explained, and a possible resolution is proposed, which makes use of the arbitrariness of the choice of constant terms in the Sudakov exponent. Evidence for an infrared-finite perturbative effective coupling in the Drell-Yan process at large N f (albeit at odds with the infrared renormalon argument) is found within the framework of Sudakov resummation for eikonal cross sections of Laenen, Sterman and Vogelsang
Discontinuities of Green functions in field theory at finite temperature and density
International Nuclear Information System (INIS)
Kobes, R.L.; Semenoff, G.W.
1985-01-01
We derive systematic rules for calculating the imaginary parts of Minkowski space Green functions in quantum field theory at finite temperature and density. Self-energy corrections are used as an example of the application of these rules. (orig.)
From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size
Directory of Open Access Journals (Sweden)
Sylvain Mogliacci
2018-01-01
Full Text Available In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.
Finite volume form factors in the presence of integrable defects
International Nuclear Information System (INIS)
Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.
2014-01-01
We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found
Linearized holographic isotropization at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Finite element simulation of internal flows with heat transfer using a ...
Indian Academy of Sciences (India)
Unknown
Velocity correction method; finite element simulation; turbulent .... CFD, developments in turbulence modeling have been only evolutionary and ...... variables are made dimensionless using appropriate combinations of Uav, H, ...... Srinivas M 1994 Finite element analysis of internal flows with heat transfer Ph D thesis, Indian.
Ultraviolet finiteness of N = 8 supergravity, spontaneously broken by dimensional reduction
International Nuclear Information System (INIS)
Sezgin, E.; Nieuwenhuizen, P. van
1982-06-01
The one-loop corrections to scalar-scalar scattering in N = 8 supergravity with 4 masses from dimensional reduction, are finite. We discuss various mechanisms that cancel the cosmological constant and infra-red divergences due to finite but non-vanishing tadpoles. (author)
Optical Finite Element Processor
Casasent, David; Taylor, Bradley K.
1986-01-01
A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.
Anderson, Ian
2011-01-01
Coherent treatment provides comprehensive view of basic methods and results of the combinatorial study of finite set systems. The Clements-Lindstrom extension of the Kruskal-Katona theorem to multisets is explored, as is the Greene-Kleitman result concerning k-saturated chain partitions of general partially ordered sets. Connections with Dilworth's theorem, the marriage problem, and probability are also discussed. Each chapter ends with a helpful series of exercises and outline solutions appear at the end. ""An excellent text for a topics course in discrete mathematics."" - Bulletin of the Ame
Finite key analysis in quantum cryptography
International Nuclear Information System (INIS)
Meyer, T.
2007-01-01
finite number of input signals, without making any approximations. As an application, we investigate the so-called ''Tomographic Protocol'', which is based on the Six-State Protocol and where Alice and Bob can obtain the additional information which quantum state they share after the distribution step of the protocol. We calculate the obtainable secret key rate under the assumption that the eavesdropper only conducts collective attacks and give a detailed analysis of the dependence of the key rate on various parameters: The number of input signals (the block size), the error rate in the sifted key (the QBER), and the security parameter. Furthermore, we study the influence of multi-photon events which naturally occur in a realistic implementation (orig.)
Mechanical and chemical spinodal instabilities in finite quantum systems
International Nuclear Information System (INIS)
Colonna, M.; Chomaz, Ph.; Ayik, S.
2001-01-01
Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears reduced by finite size effects. The role of surface and volume instabilities is discussed. Important chemical effects are associated with mechanical disruption and may lead to isospin fractionation. (authors)
Size-dependent homogenized diffusion parameters for a finite lattice
International Nuclear Information System (INIS)
Premuda, F.
1980-01-01
A numerical technique is reported for solving the transcendental equation for unknown Ysub(n+1). The solution is expressed in terms of quantities related to Ysub(n). This is an iterative reversion technique which has already been proven to converge rapidly in the homogeneous slab problem considered herein. (author)
Addendum to "Finite-size effects on multibody neutrino exchange"
Abada, A; Rodríguez-Quintero, J
1999-01-01
The interaction energy of the neutrons due to massless neutrino exchange in a neutron star has recently been proved, using an effective theory, to be extremely small and infrared-safe. Our comment here is of conceptual order: two approaches to compute the total interaction energy density have recently been proposed. Here, we study the connection between these two approaches. From CP invariance, we argue that the resulting interaction energy has to be even in the parameter $b=-G_F n_n /\\sqrt{2}$, which expresses the static neutrino potential created by a neutron medium of density $n_n$.
Effects of finite size on spin glass dynamics
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Dynamic response in a finite size composite multiferroic thin film
Energy Technology Data Exchange (ETDEWEB)
Wang, Zidong, E-mail: Zidong.Wang@auckland.ac.nz; Grimson, Malcolm J. [Department of Physics, The University of Auckland, Auckland 1010 (New Zealand)
2016-03-28
Composite multiferroics, heterostructures of ferromagnetic and ferroelectric materials, are characterized by a remarkable magnetoelectric effect at the interface. Previous work has supported the ferromagnetic structure with magnetic spins and the ferroelectric with pseudospins which act as electric dipoles in a microscopic model, coupled with a magnetoelectric interaction [Wang and Grimson, J. Appl. Phys. 118, 124109 (2015)]. In this work, by solving the stochastic Landau-Lifshitz-Gilbert equation, the electric-field-induced magnetization switching in a twisted boundary condition has been studied, and a behavior of domain wall in the ferromagnetic structure is discussed.
The Z decay width in the SMEFT: y{sub t} and λ corrections at one loop
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Christine [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Shepherd, William [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institut für Physik, Johannes-Gutenberg-Universität Mainz,Staudingerweg 7, D-55128 Mainz (Germany); Trott, Michael [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2017-03-10
We calculate one loop y{sub t} and λ dependent corrections to Γ̄{sub Z},R̄{sub f}{sup 0} and the partial Z widths due to dimension six operators in the Standard Model Effective Field Theory (SMEFT), including finite terms. We assume CP symmetry and a U(3){sup 5} symmetry in the UV matching onto the dimension six operators, dominantly broken by the Standard Model Yukawa matrices. Corrections to these observables are predicted using the input parameters {α̂_e_w,M̂_Z,Ĝ_F,m̂_t,m̂_h} extracted with one loop corrections in the same limit. We show that at one loop the number of SMEFT parameters contributing to the precise LEPI pseudo-observables exceeds the number of measurements. As a result the SMEFT parameters contributing to LEP data are formally unbounded when the size of loop corrections are reached until other data is considered in a global analysis. The size of these loop effects is generically a correction of order ∼% to leading effects in the SMEFT, but we find multiple large numerical coefficients in our calculation at this order. We use a (MS)-bar scheme, modified for the SMEFT, for renormalization. Some subtleties involving novel evanescent scheme dependence present in this result are explained.
Self-correcting quantum memory in a thermal environment
International Nuclear Information System (INIS)
Chesi, Stefano; Roethlisberger, Beat; Loss, Daniel
2010-01-01
The ability to store information is of fundamental importance to any computer, be it classical or quantum. To identify systems for quantum memories, which rely, analogously to classical memories, on passive error protection (''self-correction''), is of greatest interest in quantum information science. While systems with topological ground states have been considered to be promising candidates, a large class of them was recently proven unstable against thermal fluctuations. Here, we propose two-dimensional (2D) spin models unaffected by this result. Specifically, we introduce repulsive long-range interactions in the toric code and establish a memory lifetime polynomially increasing with the system size. This remarkable stability is shown to originate directly from the repulsive long-range nature of the interactions. We study the time dynamics of the quantum memory in terms of diffusing anyons and support our analytical results with extensive numerical simulations. Our findings demonstrate that self-correcting quantum memories can exist in 2D at finite temperatures.
Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu
2018-04-01
Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.
Field emission from finite barrier quantum structures
Energy Technology Data Exchange (ETDEWEB)
Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)
2014-10-01
We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.
Correcting slightly less simple movements
Directory of Open Access Journals (Sweden)
M.P. Aivar
2005-01-01
Full Text Available Many studies have analysed how goal directed movements are corrected in response to changes in the properties of the target. However, only simple movements to single targets have been used in those studies, so little is known about movement corrections under more complex situations. Evidence from studies that ask for movements to several targets in sequence suggests that whole sequences of movements are planned together. Planning related segments of a movement together makes it possible to optimise the whole sequence, but it means that some parts are planned quite long in advance, so that it is likely that they will have to be modified. In the present study we examined how people respond to changes that occur while they are moving to the first target of a sequence. Subjects moved a stylus across a digitising tablet. They moved from a specified starting point to two targets in succession. The first of these targets was always at the same position but it could have one of two sizes. The second target could be in one of two different positions and its size was different in each case. On some trials the first target changed size, and on some others the second target changed size and position, as soon as the subject started to move. When the size of the first target changed the subjects slowed down the first segment of their movements. Even the peak velocity, which was only about 150 ms after the change in size, was lower. Beside this fast response to the change itself, the dwell time at the first target was also affected: its duration increased after the change. Changing the size and position of the second target did not influence the first segment of the movement, but also increased the dwell time. The dwell time was much longer for a small target, irrespective of its initial size. If subjects knew in advance which target could change, they moved faster than if they did not know which could change. Taken together, these
Thermoelectric properties of finite graphene antidot lattices
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...... properties converge fast toward the bulk limit with increasing length of the lattice: only a few repetitions (≃6) of the fundamental unit cell are required to recover the electronic band gap of the infinite lattice as a transport gap for the finite lattice. We investigate how different antidot shapes...... and sizes affect the thermoelectric properties. The resulting thermoelectric figure of merit, ZT, can exceed 0.25, and it is highly sensitive to the atomic arrangement of the antidot edges. Specifically, hexagonal holes with pure armchair edges lead to an order-of-magnitude larger ZT as compared to pure...
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2002-01-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature
Tearing mode saturation with finite pressure
International Nuclear Information System (INIS)
Lee, J.K.
1988-01-01
With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)
Finite element analysis of ARPS structures
International Nuclear Information System (INIS)
Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.
1998-01-01
Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S
2002-03-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
International Nuclear Information System (INIS)
Yamamoto, Naoki; Kanazawa, Takuya
2009-01-01
We study the properties of QCD at high baryon density in a finite volume where color superconductivity occurs. We derive exact sum rules for complex eigenvalues of the Dirac operator at a finite chemical potential, and show that the Dirac spectrum is directly related to the color superconducting gap Δ. Also, we find a characteristic signature of color superconductivity: an X-shaped spectrum of partition function zeros in the complex quark mass plane near the origin, reflecting the Z(2) L xZ(2) R symmetry of the diquark pairing. Our results are universal in the domain Δ -1 π -1 where L is the linear size of the system and m π is the pion mass at high density.
The effectiveness of correcting codes in reception in the whole in additive normal white noise
Shtarkov, Y. M.
1974-01-01
Some possible criteria for estimating the effectiveness of correcting codes are presented, and the energy effectiveness of correcting codes is studied for symbol-by-symbol reception. Expressions for the energetic effectiveness of binary correcting codes for reception in the whole are produced. Asymptotic energetic effectiveness and finite signal/noise ratio cases are considered.
The Determining Finite Automata Process
Directory of Open Access Journals (Sweden)
M. S. Vinogradova
2017-01-01
Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.
The principle of finiteness – a guideline for physical laws
International Nuclear Information System (INIS)
Sternlieb, Abraham
2013-01-01
I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.
Numerical investigation of finite-volume effects for the HVP
Boyle, Peter; Gülpers, Vera; Harrison, James; Jüttner, Andreas; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
It is important to correct for finite-volume (FV) effects in the presence of QED, since these effects are typically large due to the long range of the electromagnetic interaction. We recently made the first lattice calculation of electromagnetic corrections to the hadronic vacuum polarisation (HVP). For the HVP, an analytical derivation of FV corrections involves a two-loop calculation which has not yet been carried out. We instead calculate the universal FV corrections numerically, using lattice scalar QED as an effective theory. We show that this method gives agreement with known analytical results for scalar mass FV effects, before applying it to calculate FV corrections for the HVP. This method for numerical calculation of FV effects is also widely applicable to quantities beyond the HVP.
Numerical investigation of finite-volume effects for the HVP
Directory of Open Access Journals (Sweden)
Boyle Peter
2018-01-01
Full Text Available It is important to correct for finite-volume (FV effects in the presence of QED, since these effects are typically large due to the long range of the electromagnetic interaction. We recently made the first lattice calculation of electromagnetic corrections to the hadronic vacuum polarisation (HVP. For the HVP, an analytical derivation of FV corrections involves a two-loop calculation which has not yet been carried out. We instead calculate the universal FV corrections numerically, using lattice scalar QED as an effective theory. We show that this method gives agreement with known analytical results for scalar mass FV effects, before applying it to calculate FV corrections for the HVP. This method for numerical calculation of FV effects is also widely applicable to quantities beyond the HVP.
Finite energy electroweak dyon
Energy Technology Data Exchange (ETDEWEB)
Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)
2015-02-01
The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)
Probabilistic fracture finite elements
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
International Nuclear Information System (INIS)
Hutula, D.N.; Wiancko, B.E.
1980-03-01
ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports
Generalized subspace correction methods
Energy Technology Data Exchange (ETDEWEB)
Kolm, P. [Royal Institute of Technology, Stockholm (Sweden); Arbenz, P.; Gander, W. [Eidgenoessiche Technische Hochschule, Zuerich (Switzerland)
1996-12-31
A fundamental problem in scientific computing is the solution of large sparse systems of linear equations. Often these systems arise from the discretization of differential equations by finite difference, finite volume or finite element methods. Iterative methods exploiting these sparse structures have proven to be very effective on conventional computers for a wide area of applications. Due to the rapid development and increasing demand for the large computing powers of parallel computers, it has become important to design iterative methods specialized for these new architectures.
NWS Corrections to Observations
National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...
Full Text Available ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ...
Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities The information provided here is not intended as a substitute ...
Pressure correction schemes for compressible flows
International Nuclear Information System (INIS)
Kheriji, W.
2011-01-01
This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)
Feasibility of self-correcting quantum memory and thermal stability of topological order
International Nuclear Information System (INIS)
Yoshida, Beni
2011-01-01
Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that the model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: → We define a class of physically realizable quantum codes. → We determine their coding and physical properties completely. → We establish the connection between topological order and self-correcting memory. → We find they do not work as self-correcting quantum memory. → We find they do not have thermally stable topological order.
Modelling of Size Effect with Regularised Continua
Directory of Open Access Journals (Sweden)
H. Askes
2004-01-01
Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature.
Topics in quantum field theories at finite temperature
International Nuclear Information System (INIS)
Kao, Y.C.
1985-01-01
Studies on four topics in quantum field theories at finite temperature are presented in this thesis. In Chapter 1, it is shown that the chiral anomaly has no finite temperature corrections by Fujikawa's path integral approach. Chapter 2 deals with the chiral condensate in the finite temperature Schwinger model. The cluster decomposition property is employed to find . No finite critical temperature is found and the chiral condensate vanishes only at infinite temperature. In Chapter 3, the finite temperature behavior of the fermion-number breaking (Rubakov-Callan) condensate around a 't Hooft-Polyakov monopole is studied. It is found that the Rubakov-Callan condensate is suppressed exponentially from the monopole core at high temperature. The limitation of the techniques is understanding the behavior of the condensate for all temperature is also discussed. Chapter 4 is on the topological mass terms in (2 + 1)-dimensional gauge theories. The authors finds that if the gauge bosons have no topological mass at tree level, no topological mass induced radiatively up to two-loop order in either Abelian or non-Abelian theories with massive fermions. The Pauli-Villars regularization is used for fermion loops. The one-loop contributions to the topological mass terms at finite temperature are calculated and the quantization constraints in this case are discussed
Axial anomaly at finite temperature
International Nuclear Information System (INIS)
Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.
1985-01-01
The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)
Relativistic finite-temperature Thomas-Fermi model
Faussurier, Gérald
2017-11-01
We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.
Finite flavour groups of fermions
International Nuclear Information System (INIS)
Grimus, Walter; Ludl, Patrick Otto
2012-01-01
We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)