WorldWideScience

Sample records for finite simple groups

  1. Which finite simple groups are unit groups?

    DEFF Research Database (Denmark)

    Davis, Christopher James; Occhipinti, Tommy

    2014-01-01

    We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2^k −1 for some k; or (c) a projective special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur a...

  2. Quasirecognition by prime graph of finite simple groups ${}^2D_n(3$

    Directory of Open Access Journals (Sweden)

    Behrooz Khosravi

    2014-12-01

    Full Text Available Let $G$ be a finite group. In [Ghasemabadi et al., characterizations of the simple group ${}^2D_n(3$ by prime graph and spectrum, Monatsh Math., 2011] it is proved that if $n$ is odd, then ${}^2D _n(3$ is recognizable by prime graph and also by element orders. In this paper we prove that if $n$ is even, then $D={}^2D_{n}(3$ is quasirecognizable by prime graph, i.e. every finite group $G$ with $Gamma(G=Gamma(D$ has a unique nonabelian composition factor and this factor is isomorphic to $D$.

  3. The classification of finite simple groups groups of characteristic 2 type

    CERN Document Server

    Aschbacher, Michael; Smith, Stephen D; Solomon, Ronald

    2011-01-01

    The book provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the "even case", where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of "noncharacteristic 2 type". However, this book provides much more. Chapter 0 is a modern overview of the logical structure of the entire classification. Chapter 1 is a concise but complete outline of the "odd case" with updated references, while Chapter 2 sets the stage for the remainder of the book with a similar outline of the "even case". The remaining six chapters describe in detail the fundamental results whose union completes the proof of the classification theorem. Several important subsidiary results are also discussed. In addition, there is a comprehensive listing of the large number of papers referenced from the literature. Appendices provide a brief but ...

  4. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  5. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  6. The classification of the finite simple groups, number 7 part III, chapters 7-11 the generic case, stages 3b and 4a

    CERN Document Server

    Gorenstein, Daniel; Solomon, Ronald

    2018-01-01

    The classification of finite simple groups is a landmark result of modern mathematics. The multipart series of monographs which is being published by the AMS (Volume 40.1-40.7 and future volumes) represents the culmination of a century-long project involving the efforts of scores of mathematicians published in hundreds of journal articles, books, and doctoral theses, totaling an estimated 15,000 pages. This part 7 of the series is the middle of a trilogy (Volume 40.5, Volume 40.7, and forthcoming Volume 40.8) treating the Generic Case, i.e., the identification of the alternating groups of degree at least 13 and most of the finite simple groups of Lie type and Lie rank at least 4. Moreover, Volumes 40.4-40.8 of this series will provide a complete treatment of the simple groups of odd type, i.e., the alternating groups (with two exceptions) and the groups of Lie type defined over a finite field of odd order, as well as some of the sporadic simple groups. In particular, this volume completes the construction, be...

  7. Expansion in finite simple groups of Lie type

    CERN Document Server

    Tao, Terence

    2015-01-01

    Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

  8. Unipotent and nilpotent classes in simple algebraic groups and lie algebras

    CERN Document Server

    Liebeck, Martin W

    2012-01-01

    This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...

  9. Biderivations of finite dimensional complex simple Lie algebras

    OpenAIRE

    Tang, Xiaomin

    2016-01-01

    In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.

  10. A case study in finite groups

    International Nuclear Information System (INIS)

    Bauer, M.; Itzykson, C.

    1990-01-01

    Recent investigations on the classification of rational conformal theories have suggested relations with finite groups. It is not known at present if this is more than a happy coincidence in simple cases or possibly some more profound link exploiting the analogy between fusion rules and decompositions of tensor products of group representations or even in a more abstract context q-deformations of Lie algebras for roots of unity. Although finite group theory is a very elaborate subject the authors review on a slightly non-trivial example some of its numerous aspects, in particular those related to rings of invariants. The hope was to grasp, if possible, some properties which stand a chance of being related to conformal theories. Subgroups of SU(2) were found to be related to the A-D-E classification of Wess-Zumino-Witten models based on the corresponding affine Lie algebra. Extending the investigations to SU(3) the authors have picked one of its classical subgroups as a candidate of interest

  11. Blocks of finite groups and their invariants

    CERN Document Server

    Sambale, Benjamin

    2014-01-01

    Providing a nearly complete selection of up-to-date methods and results on block invariants with respect to their defect groups, this book covers the classical theory pioneered by Brauer, the modern theory of fusion systems introduced by Puig, the geometry of numbers developed by Minkowski, the classification of finite simple groups, and various computer assisted methods. In a powerful combination, these tools are applied to solve many special cases of famous open conjectures in the representation theory of finite groups. Most of the material is drawn from peer-reviewed journal articles, but there are also new previously unpublished results. In order to make the text self-contained, detailed proofs are given whenever possible. Several tables add to the text's usefulness as a reference. The book is aimed at experts in group theory or representation theory who may wish to make use of the presented ideas in their research.

  12. Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, M [Departement de Mathematiques et Statistique, Universite de Montreal, 2920 chemin de la Tour, Montreal, Quebec H3T 1J4 (Canada); Lemire, F W [Department of Mathematics, University of Windsor, Windsor, Ontario (Canada); Patera, J, E-mail: larouche@dms.umontreal.ca, E-mail: lemire@uwindsor.ca, E-mail: patera@crm.umontreal.ca [Centre de Recherches Mathematiques, Universite de Montreal, CP 6128-Centre ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-14

    In this paper, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. The centralizer is either a direct product of finite cyclic groups, a continuous group of rank 1, or a product, not necessarily direct, of a continuous group of rank 1 with a finite cyclic group. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given. (paper)

  13. Nilpotent -local finite groups

    Science.gov (United States)

    Cantarero, José; Scherer, Jérôme; Viruel, Antonio

    2014-10-01

    We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

  14. Finite flavour groups of fermions

    International Nuclear Information System (INIS)

    Grimus, Walter; Ludl, Patrick Otto

    2012-01-01

    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)

  15. Simple Lie groups without the approximation property

    DEFF Research Database (Denmark)

    Haagerup, Uffe; de Laat, Tim

    2013-01-01

    For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...

  16. A simple finite element method for linear hyperbolic problems

    International Nuclear Information System (INIS)

    Mu, Lin; Ye, Xiu

    2017-01-01

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  17. Finite p′-nilpotent groups. I

    Directory of Open Access Journals (Sweden)

    S. Srinivasan

    1987-01-01

    Full Text Available In this paper we consider finite p′-nilpotent groups which is a generalization of finite p-nilpotent groups. This generalization leads us to consider the various special subgroups such as the Frattini subgroup, Fitting subgroup, and the hypercenter in this generalized setting. The paper also considers the conditions under which product of p′-nilpotent groups will be a p′-nilpotent group.

  18. A course in finite group representation theory

    CERN Document Server

    Webb, Peter

    2016-01-01

    This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

  19. Finite p′-nilpotent groups. II

    Directory of Open Access Journals (Sweden)

    S. Srinivasan

    1987-01-01

    Full Text Available In this paper we continue the study of finite p′-nilpotent groups that was started in the first part of this paper. Here we give a complete characterization of all finite groups that are not p′-nilpotent but all of whose proper subgroups are p′-nilpotent.

  20. Heterogeneous Two-group Diffusion Theory for a Finite Cylindrical Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf; Naeslund, Goeran

    1961-06-15

    The source and sink method given by Feinberg and Galanin is extended to a finite cylindrical reactor. The two-group diffusion theory formulation is chosen primarily because of the relatively simple formulae emerging. A machine programme, calculating the criticality constant thermal utilization and the relative number of thermal absorptions in fuel rods, has been developed for the Ferranti-Mercury Computer.

  1. ∗-supplemented subgroups of finite groups

    Indian Academy of Sciences (India)

    A subgroup H of a group G is said to be M∗-supplemented in G if ... normal subgroups and determined the structure of finite groups by using some ...... [12] Monakhov V S and Shnyparkov A V, On the p-supersolubility of a finite group with a.

  2. Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups

    International Nuclear Information System (INIS)

    El-Hussein, K.

    1991-08-01

    Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation ρ. Let G=V x p K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs

  3. On characters of finite groups

    CERN Document Server

    Broué, Michel

    2017-01-01

    This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).

  4. On discretization of tori of compact simple Lie groups: II

    International Nuclear Information System (INIS)

    Hrivnák, Jiří; Motlochová, Lenka; Patera, Jiří

    2012-01-01

    The discrete orthogonality of special function families, called C- and S-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnák and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the results of Hrivnák and Patera are extended to two additional recently discovered families of special functions, called S s - and S l -functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments F s M and F l M of a lattice in any dimension n ⩾ 2 and of any density controlled by M, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots. (paper)

  5. Global solvability of the differential operators non-invariants on semi-simple Lie groups

    International Nuclear Information System (INIS)

    El Hussein, K.

    1991-09-01

    Let G be a connected semi-simple Lie group with finite centre and let G=KAN be the Iwasawa decomposition of G. Let P be a differential operator on G, which is right invariant by the sub-group AN and left invariant by the sub-group K. In this paper, we give a necessary and sufficient condition for the global solvability of P on G. (author). 5 refs

  6. Group foliation of finite difference equations

    Science.gov (United States)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  7. On polynormality in finite solvable groups

    CERN Document Server

    Mamadou-Sadialiou-Bah

    2003-01-01

    In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal.

  8. On polynormality in finite solvable groups

    International Nuclear Information System (INIS)

    Mamadou Sadialiou Bah

    2003-05-01

    In the study of the arrangement of intermediate subgroups a wide use has been made of certain properties describing the way conjugacy classes of subgroups are embedded in the groups: abnormality, pronormality, paranormality, and their weak analogues. It was proved that pronormality and abnormality coincide with their weak analogues for solvable groups. This was a generalisation of known results of Peng and Taunt for finite solvable groups. In this paper we prove a conjecture of Borevich asserting a similar result for paranormality and polynormality (which is a sort of weak paranormality). Further we show that we get a stronger result when the given subgroup is nilpotent: In a finite solvable group any nilpotent polynormal subgroup is pronormal. (author)

  9. Biset functors for finite groups

    CERN Document Server

    Bouc, Serge

    2010-01-01

    This volume exposes the theory of biset functors for finite groups, which yields a unified framework for operations of induction, restriction, inflation, deflation and transport by isomorphism. The first part recalls the basics on biset categories and biset functors. The second part is concerned with the Burnside functor and the functor of complex characters, together with semisimplicity issues and an overview of Green biset functors. The last part is devoted to biset functors defined over p-groups for a fixed prime number p. This includes the structure of the functor of rational representations and rational p-biset functors. The last two chapters expose three applications of biset functors to long-standing open problems, in particular the structure of the Dade group of an arbitrary finite p-group.This book is intended both to students and researchers, as it gives a didactic exposition of the basics and a rewriting of advanced results in the area, with some new ideas and proofs.

  10. Finite groups with three conjugacy class sizes of some elements

    Indian Academy of Sciences (India)

    Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.

  11. A Note on TI-Subgroups of Finite Groups

    Indian Academy of Sciences (India)

    A subgroup of a finite group is called a TI-subgroup if H ∩ H x = 1 or for any x ∈ G . In this short note, the finite groups all of whose nonabelian subgroups are TI-subgroups are classified. Author Affiliations. Jiakuan Lu1 Linna Pang1. Department of Mathematics, Guangxi Normal University, Guangxi, Guilin 541004, ...

  12. A Finite Abelian Group of Two-Letter Inversions

    Directory of Open Access Journals (Sweden)

    Sherwin E. Balbuena

    2015-11-01

    Full Text Available In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete representations. This study presents a finite abelian group of inversions of two letter symbols with vertical and horizontal axes of symmetry and whose binary operation is established through motions like alternation, rotation, reflection, and a combination of two or all motions.

  13. A SIMPLE DERIVATION OF FINITE-TEMPERATURE CFT CORRELATORS FROM THE BTZ BLACK HOLE

    Directory of Open Access Journals (Sweden)

    Satoshi Ohya

    2014-04-01

    Full Text Available We present a simple Lie-algebraic approach to momentum-space two-point functions of two-dimensional conformal field theory at finite temperature dual to the BTZ black hole. Making use of the real-time prescription of AdS/CFT correspondence and ladder equations of the Lie algebra so(2,2 ∼= sl(2,RL⊕sl(2,RR, we show that the finite-temperature two-point functions in momentum space satisfy linear recurrence relations with respect to the left and right momenta. These recurrence relations are exactly solvable and completely determine the momentum-dependence of retarded and advanced two-point functions of finite-temperature conformal field theory.

  14. Mapping Spaces, Centralizers, and p-Local Finite Groups of Lie Type

    DEFF Research Database (Denmark)

    Laude, Isabelle

    We study the space of maps from the classifying space of a finite p-group to theBorel construction of a finite group of Lie type G in characteristic p acting on itsbuilding. The first main result is a description of the homology with Fp-coefficients,showing that the mapping space, up to p...... between a finite p-group and theuncompleted classifying space of the p-local finite group coming from a finite groupof Lie type in characteristic p, providing some of the first results in this uncompletedsetting.......-completion, is a disjoint union indexedover the group homomorphism up to conjugation of classifying spaces of centralizersof p-subgroups in the underlying group G. We complement this description bydetermining the actual homotopy groups of the mapping space. These resultstranslate to descriptions of the space of maps...

  15. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  16. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

    DEFF Research Database (Denmark)

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

    2012-01-01

    Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

  17. Sporadic simple groups and quotient singularities

    International Nuclear Information System (INIS)

    Cheltsov, I A; Shramov, C A

    2013-01-01

    We show that if a faithful irreducible representation of a central extension of a sporadic simple group with centre contained in the commutator subgroup gives rise to an exceptional (resp. weakly exceptional but not exceptional) quotient singularity, then that simple group is the Hall-Janko group (resp. the Suzuki group)

  18. The Finite Lamplighter Groups: A Guided Tour

    Science.gov (United States)

    Siehler, Jacob A.

    2012-01-01

    In this article, we present a family of finite groups, which provide excellent examples of the basic concepts of group theory. To work out the center, conjuagacy classes, and commutators of these groups, all that's required is a bit of linear algebra.

  19. n-th Roots in finite polyhedral and centro-polyhedral groups

    Indian Academy of Sciences (India)

    The probability that a randomly chosen element in a non-abelian finite group has a square root, has been investigated by certain authors in recent years. In this paper, this probability will be generalized for the -th roots when ≥ 2 and it will be computed for every finite polyhedral group and all of the finite ...

  20. Finite groups and quantum physics

    International Nuclear Information System (INIS)

    Kornyak, V. V.

    2013-01-01

    Concepts of quantum theory are considered from the constructive “finite” point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution—only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers—a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories—in particular, within the Standard Model.

  1. Finite Groups with Given Quantitative Non-Nilpotent Subgroups II

    DEFF Research Database (Denmark)

    Shi, Jiangtao; Zhang, Cui

    2014-01-01

    As an extension of Shi and Zhang's 2011 article [4], we prove that any finite group having at most 23 non-normal non-nilpotent proper subgroups is solvable except for G ≅ A 5 or SL(2, 5), and any finite group having at most three conjugacy classes of non-normal non-nilpotent proper subgroups is s...

  2. The Fibonacci-Padovan sequences in finite groups

    Directory of Open Access Journals (Sweden)

    Sait Tas

    2014-11-01

    Full Text Available The Fibonacci-Padovan sequence modulo m was studied. Also, the Fibonacci-Padovan orbits of -generator finite groups such that was examined. The Fibonacci-Padovan lengths of the groups , and for , where Z is integer, were then obtained.

  3. On the growth of rank for subgroups of finitely generated groups

    International Nuclear Information System (INIS)

    Osin, D V

    1999-01-01

    In [1] and [2] the functions of rank growth were independently introduced and investigated for subgroups of a finitely generated free group. In the present paper the concept of growth of rank is extended to subgroups of an arbitrary finitely generated group G, and the dependence of the asymptotic behaviour of the above functions on the choice of a finite generating set in G is studied. For a broad class of groups (which includes, in particular, the free polynilpotent groups) estimates for the growth of rank for subgroups are obtained that generalize the wellknown Baumslag-Eidel'kind result on finitely generated normal subgroups. Some problems related to the realization of arbitrary functions as functions of rank growth for subgroups of soluble groups are treated

  4. Renormalization group and finite size effects in scalar lattice field theories

    International Nuclear Information System (INIS)

    Bernreuther, W.; Goeckeler, M.

    1988-01-01

    Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)

  5. On the structure of finite-sheeted coverings of compact connected groups

    OpenAIRE

    Grigorian, S. A.; Gumerov, R. N.

    2004-01-01

    Finite-sheeted covering mappings onto compact connected groups are studied. It is shown that a finite-sheeted covering mapping from a connected Hausdorff topological space onto a compact connected abelian group G must be a homeomorphism provided that the character group of G admits division by the degree of given covering mapping. Using this result, we obtain criteria of triviality for finite coverings of G in terms of its character group and means on G. In order to establish these facts, for...

  6. On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2017-10-15

    A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)

  7. n-th Roots in finite polyhedral and centro-polyhedral groups

    Indian Academy of Sciences (India)

    Probability in finite groups; roots of elements; polyhedral groups; centro- polyhedral groups. 2010 Mathematics ... An element g of a finite group G is said to have an n-th root if there exists an element h ∈ G such that g = hn (n is a ..... For the proof of the fourth part, we must consider two cases: (i) m is odd and 4|d,. (ii) m, d are ...

  8. Finite groups with the set of the number of subgroups of possible ...

    Indian Academy of Sciences (India)

    Finite group; the number of subgroups of possible order. 1. Introduction. Throughout this paper, groups mentioned are finite and p is a prime. An important topic in the group theory is to investigate the number of subgroups of possible order, and con- versely it is also an important subject to determine the structure of a finite ...

  9. Group-invariant finite Fourier transforms

    International Nuclear Information System (INIS)

    Shenefelt, M.H.

    1988-01-01

    The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible

  10. The Finite Heisenberg-Weyl Groups in Radar and Communications

    Directory of Open Access Journals (Sweden)

    Calderbank AR

    2006-01-01

    Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

  11. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  12. Introduction to Sporadic Groups

    Directory of Open Access Journals (Sweden)

    Luis J. Boya

    2011-01-01

    Full Text Available This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasing complexity, plus the six isolated ''pariah'' groups. The (old five Mathieu groups make up the first, smallest order level. The seven groups related to the Leech lattice, including the three Conway groups, constitute the second level. The third and highest level contains the Monster group M, plus seven other related groups. Next a brief mention is made of the remaining six pariah groups, thus completing the 5+7+8+6=26 sporadic groups. The review ends up with a brief discussion of a few of physical applications of finite groups in physics, including a couple of recent examples which use sporadic groups.

  13. Introduction to orthogonal, symplectic and unitary representations of finite groups

    CERN Document Server

    Riehm, Carl R

    2011-01-01

    Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea

  14. A family of dominant Fitting classes of finite soluble groups

    OpenAIRE

    Ballester-Bolinches, A; Martínez Pastor, Ana; Pérez-Ramos, M.D.

    1998-01-01

    In this paper a large family of dominant Fitting classes of finite soluble groups and the description of the corresponding injectors are obtained. Classical constructions of nilpotent and Lockett injectors as well as p-nilpotent injectors arise as particular cases. DGICYT, Ministerio de Educacion y Ciencia of Spain [ Proyecto PB 94-0965] Ballester-Bolinches, A.; Martínez Pastor, A.; Pérez-Ramos, M. (1998). A family of dominant Fitting classes of finite soluble groups. Journal of t...

  15. Use of simple finite elements for mechanical systems impact analysis based on stereomechanics, stress wave propagation, and energy method approaches

    International Nuclear Information System (INIS)

    McCoy, Michael L.; Moradi, Rasoul; Lankarani, Hamid M.

    2011-01-01

    This paper examines the effectiveness of analyzing impact events in mechanical systems for design purposes using simple or low ordered finite elements. Traditional impact dynamics analyses of mechanical systems namely stereomechanics, energy method, stress-wave propagation and contact mechanics approaches are limited to very simplified geometries and provide basic analyses in making predictions and understanding the dominant features of the impact in a mechanical system. In engineering practice, impacted systems present a complexity of geometry, stiffness, mass distributions, contact areas and impact angles that are impossible to analyze and design with the traditional impact dynamics methods. In real cases, the effective tool is the finite element (FE) method. The high-end FEA codes though may be not available for typical engineer/designer. This paper provides information on whether impact events of mechanical systems can be successfully modeled using simple or low-order finite elements. FEA models using simple elements are benchmarked against theoretical impact problems and published experimental impact results. As a case study, an FE model using simple plastic beam elements is further tested to predict stresses and deflections in an experimental structural impact

  16. A computational note on finite groups with two generators

    International Nuclear Information System (INIS)

    Saeed-ul-Islam, M.

    1983-12-01

    Finite groups with two independent generators attracted the attention of mathematicians during 1940-1959. These groups are subgroups of SU(n) and an interest is now being shown in these groups by particle physicists. In this note we give a brief history of these groups and announce some of the computations done by using a computer. (author)

  17. Central extensions of some Abelian finite gauge groups

    International Nuclear Information System (INIS)

    Combe, Ph.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1981-01-01

    The authors describe central extensions of Abelian finite gauge groups on lattices which are permutation invariant. Moreover some remarks are made on the gauge models on lattice associated with these non-commutative central extensions. (Auth.)

  18. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi

    2016-01-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  19. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti

    2016-02-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  20. The Polytopic-k-Step Fibonacci Sequences in Finite Groups

    Directory of Open Access Journals (Sweden)

    Ömür Deveci

    2011-01-01

    Full Text Available We study the polytopic-k-step Fibonacci sequences, the polytopic-k-step Fibonacci sequences modulo m, and the polytopic-k-step Fibonacci sequences in finite groups. Also, we examine the periods of the polytopic-k-step Fibonacci sequences in semidihedral group SD2m.

  1. Pseudo-simple heteroclinic cycles in R4

    Science.gov (United States)

    Chossat, Pascal; Lohse, Alexander; Podvigina, Olga

    2018-06-01

    We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

  2. On the total character of finite groups

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Prajapati

    2014-09-01

    Full Text Available For a finite group $G$, we study the total character $tau_G$ afforded by the direct sum of all the non-isomorphic irreducible complex representations of $G$. We resolve for several classes of groups (the Camina $p$-groups, the generalized Camina $p$-groups, the groups which admit $(G,Z(G$ as a generalized Camina pair, the problem of existence of a polynomial $f(x in mathbb{Q}[x]$ such that $f(chi = tau_G$ for some irreducible character $chi$ of $G$. As a consequence, we completely determine the $p$-groups of order at most $p^5$ (with $p$ odd which admit such a polynomial. We deduce the characterization that these are the groups $G$ for which $Z(G$ is cyclic and $(G,Z(G$ is a generalized Camina pair and, we conjecture that this holds good for $p$-groups of any order.

  3. Irreducible quantum group modules with finite dimensional weight spaces

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    a finitely generated U q -module which has finite dimensional weight spaces and is a sum of those. Our approach follows the procedures used by S. Fernando and O. Mathieu to solve the corresponding problem for semisimple complex Lie algebra modules. To achieve this we have to overcome a number of obstacles...... not present in the classical case. In the process we also construct twisting functors rigerously for quantum group modules, study twisted Verma modules and show that these admit a Jantzen filtration with corresponding Jantzen sum formula....

  4. On framed simple Lie groups

    OpenAIRE

    MINAMI, Haruo

    2016-01-01

    For a compact simple Lie group $G$, we show that the element $[G, \\mathcal{L}] \\in \\pi^S_*(S^0)$ represented by the pair $(G, \\mathcal{L})$ is zero, where $\\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].

  5. Finite Heisenberg groups and Seiberg dualities in quiver gauge theories

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.

    2006-01-01

    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers

  6. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  7. Method for the determination of Clebsch-Gordan coefficients of finite magnetic groups

    NARCIS (Netherlands)

    van den Broek, P.M.; Horowitz, L.P.; Ne'eman, Y.

    1980-01-01

    A recent method for the determination of Clebsch-Gordan coefficients of finite magnetic groups is generalised to magnetic groups. Discussion is restricted to unitary-anti-unitary representations of type I.

  8. Group C∗-algebras without the completely bounded approximation property

    DEFF Research Database (Denmark)

    Haagerup, U.

    2016-01-01

    It is proved that: (1) The Fourier algebra A(G) of a simple Lie group G of real rank at least 2 with finite center does not have a multiplier bounded approximate unit. (2) The reduced C∗-algebra C∗ r of any lattice in a non-compact simple Lie group of real rank at least 2 with finite center does...... not have the completely bounded approximation property. Hence, the results obtained by de Canniere and the author for SOe (n, 1), n ≥ 2, and by Cowling for SU(n, 1) do not generalize to simple Lie groups of real rank at least 2. © 2016 Heldermann Verlag....

  9. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  10. WORK GROUP DEVELOPMENT MODELS – THE EVOLUTION FROM SIMPLE GROUP TO EFFECTIVE TEAM

    Directory of Open Access Journals (Sweden)

    Raluca ZOLTAN

    2016-02-01

    Full Text Available Currently, work teams are increasingly studied by virtue of the advantages they have compared to the work groups. But a true team does not appear overnight but must complete several steps to overcome the initial stage of its existence as a group. The question that arises is at what point a simple group is turning into an effective team. Even though the development process of group into a team is not a linear process, the models found in the literature provides a rich framework for analyzing and identifying the features which group acquires over time till it become a team in the true sense of word. Thus, in this article we propose an analysis of the main models of group development in order to point out, even in a relative manner, the stage when the simple work group becomes an effective work team.

  11. Simple product-form bounds for queueing networks with finite clusters

    NARCIS (Netherlands)

    van Dijk, N.M.; van der Sluis, E.

    2001-01-01

    Queueing networks are studied with finite capacity constraints for clusters of stations. First, by an instructive tandem cluster example it is shown how a product-form modification method for networks with finite stations can be extended to networks with finite clusters. Next, a general result is

  12. Composite Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  13. Composite Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  14. Magma Proof of Strict Inequalities for Minimal Degrees of Finite Groups

    OpenAIRE

    Murray, Scott H.; Saunders, Neil

    2009-01-01

    The minimal faithful permutation degree of a finite group $G$, denote by $\\mu(G)$ is the least non-negative integer $n$ such that $G$ embeds inside the symmetric group $\\Sym(n)$. In this paper, we outline a Magma proof that 10 is the smallest degree for which there are groups $G$ and $H$ such that $\\mu(G \\times H) < \\mu(G)+ \\mu(H)$.

  15. A diagram approach to character formulae for finite and compact groups

    International Nuclear Information System (INIS)

    Kibler, M.; Elbaz, E.

    1978-06-01

    Some basic relations for the representation theory and the Wigner-Racah algebra of a finite or compact continuous group are discussed and transcribed in terms of diagrams. Special emphasis is placed on the case of a simply reducible group and all the diagrams are applicable to SU 2 without any change

  16. A generalized Frattini subgroup of a finite group

    Directory of Open Access Journals (Sweden)

    Prabir Bhattacharya

    1989-01-01

    Full Text Available For a finite group G and an arbitrary prime p, let SP(G denote the intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we set SP(G = G. Some properties of G are considered involving SP(G. In particular, we obtain a characterization of G when each M in the definition of SP(G is nilpotent.

  17. Improved simple graphical solution for the eigenvalues of the finite square well potential

    International Nuclear Information System (INIS)

    Burge, E.J.

    1985-01-01

    The three principal graphical methods for obtaining the energy eigenvalues of the finite square well potential are presented. The forms of the wavefunctions within the well, and the corresponding linear probability densities, are derived directly from the method. A simple extension of the method allows the energy level spectrum to be obtained directly on a linear energy scale. The variations of the energy eigenvalues with well depth and width are separately and jointly displayed, and explicit corresponding functional relationships are derived. Two universal graphs are deduced which allow the rapid appreciation and calculation of the dependence of the energy levels on the depth and width of the well and on the mass of the particle. (author)

  18. Finite groups all of whose minimal subgroups are NE-subgroups

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... In this article, we investigate the structure of under the assumption that subgroups of prime order are *-subgroups of . The finite groups, all of whose minimal subgroups of the generalized Fitting subgroup are *-subgroups are classified.

  19. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  20. Signed Young Modules and Simple Specht Modules

    OpenAIRE

    Danz, Susanne; Lim, Kay Jin

    2015-01-01

    By a result of Hemmer, every simple Specht module of a finite symmetric group over a field of odd characteristic is a signed Young module. While Specht modules are parametrized by partitions, indecomposable signed Young modules are parametrized by certain pairs of partitions. The main result of this article establishes the signed Young module labels of simple Specht modules. Along the way we prove a number of results concerning indecomposable signed Young modules that are of independent inter...

  1. Solution of the diffusion equations for several groups by the finite elements method

    International Nuclear Information System (INIS)

    Arredondo S, C.

    1975-01-01

    The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)

  2. Graded associative conformal algebras of finite type

    OpenAIRE

    Kolesnikov, Pavel

    2011-01-01

    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  3. Toward finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  4. Differential calculus on quantized simple Lie groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)

  5. On Non-Frattini Chief Factors and Solvability of Finite Groups

    Indian Academy of Sciences (India)

    A subgroup of a group is said to be a semi C A P ∗ -subgroup of if there is a chief series 1 = G 0 < G 1 < ⋯ < G m = G of such that for every non-Frattini chief factor G i / G i − 1 , H either covers G i / G i − 1 or avoids G i / G i − 1 . In this paper, some sufficient conditions for a normal subgroup of a finite group to be ...

  6. On the labeling and symmetry adaptation of the solvable finite groups representations

    International Nuclear Information System (INIS)

    Caride, A.O.; Zanette, S.I.; Nogueira, S.R.A.

    1987-01-01

    We propose a method to simultaneously perform a symmetry adaptation and a labeling of the bases of the irreducible representations of the solvable finite groups. It is performed by difining a self-adjoint operator with ligenvalues which evidence the descent in symmetry of the group-subgroups sequences. We also prove two theorems on the canonicity of the cpomposition series of the solvable groups. (author) [pt

  7. Differential calculus on quantized simple Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).

  8. Simple derivation of magnetic space groups

    International Nuclear Information System (INIS)

    Bertaut, E.F.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    The magnetic translation lattices can be described by invariant wave vectors k. Advantages of the wave vector notation over the notations used by Belov et al. and Opechowski et al. are pointed out. In a one-dimensional real representation a space group element (α/tau(1)) has either the character +1 (symmetry element) or -1 (antisymmetry element). Thus the square of any space group operation must have the character +1 in a one-dimensional real representation. This simple ''square criterion'' is used to limit the admissible k-vectors and to derive the family of magnetic space groups, i.e. the set of all possible magnetic space groups, belonging to the same crystallographic space group. In the discussion some useful side results are obtained. Not only the real one-dimensional representations of point groups are connected to real one-dimensional representations of space groups, but a direct connection is shown to exist between one-dimensional complex representations of the point groups 3, 4 and 6 and one-dimensional real representations, belonging to P[001/2]=Psub(2c)(Psub(c))-lattices with screw axes 3 1 , 3 2 , 4 2 , 6 2 and 6 4 . Rules are derived for finding the Belov symbol when the Opechowski-Guccione symbol of the magnetic space group is known and this opportunity is used for correcting errors in the Opechowski-Guccione tables [fr

  9. Some applications of the representation theory of finite groups. A partial reduction methof

    NARCIS (Netherlands)

    Zanten, Arend Jan van

    1972-01-01

    In this thesis we study the representation theory of finite groups and more specifically some aspects of the theory of characters. The technique of symmetrization and/or antisymmetrization of Kronecker powers of representations, which is well-known for the general linear group is applied here to

  10. Numerical renormalization group method for entanglement negativity at finite temperature

    Science.gov (United States)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  11. Finite element calculation of the interaction energy of shape memory alloy

    International Nuclear Information System (INIS)

    Yang, Seung Yong

    2004-01-01

    Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for

  12. Theory of finite periodic systems - I: General expressions and various simple and illustrative examples

    International Nuclear Information System (INIS)

    Pereyra, Pedro; Castillo, Edith

    2001-09-01

    A comprehensive presentation of a new approach to finite periodic systems is given. The novel and general expressions obtained here, allow simple and precise calculations of various physical quantities characteristic of crystalline systems. Transmission amplitudes through n-cell multichannel quantum systems are rigorously derived. General expressions for several physical quantities are entirely expressed in terms of single-cell amplitudes and a new class of polynomials p N,n . Besides the general expressions, we study some superlattice properties as the band structure and its relation with the phase coherence phenomena, the level density and the Kronig-Penney model as its continuous espectrum limit. Bandstructure tailoring, optical multilayer systems, resonant energies and functions and channel-mixing effects in multichannel transport process are also analysed in the light of the new approach. (author)

  13. A bound for the Schur index of irreducible representations of finite groups

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, D D [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field Q{sub p}. Bibliography: 7 titles.

  14. On finite groups whose every proper normal subgroup is a union of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    ... and |N|(|N| − 1) divides |G| and in particular, |G| is even. Shi [14] proved some deep results about finite group G of order paqb containing a 2- decomposable normal subgroup N. He proved that for such a group |N| = 2, 3, 2 b1 or. 2 a1 +1, where 2b1 −1 is a Mersenne prime and 2a1 +1 is a Fermat prime. Moreover, we have.

  15. Numerical solution of recirculating flow by a simple finite element recursion relation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E

    1980-01-01

    A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.

  16. On the Steinhaus and Bergman properties for infinite products of finite groups

    Czech Academy of Sciences Publication Activity Database

    Thomas, S.; Zapletal, Jindřich

    2012-01-01

    Roč. 4, č. 2 (2012), s. 1250002 ISSN 1793-7442 R&D Projects: GA AV ČR IAA100190902 Institutional research plan: CEZ:AV0Z10190503 Keywords : ultrafilters * products of finite groups * automatic continuity Subject RIV: BA - General Mathematics http://www.worldscientific.com/doi/abs/10.1142/S1793744212500028

  17. Counting Semisimple Orbits of Finite Lie Algebras by Genus

    OpenAIRE

    Fulman, Jason

    1999-01-01

    The adjoint action of a finite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of split semisimple orbits of a given genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of card shuffling.

  18. Solution of multi-group diffusion equation in x-y-z geometry by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    The multi-group diffusion equation in three-dimensional x-y-z geometry is solved by finite Fourier transformation. Applying the Fourier transformation to a finite region with constant nuclear cross sections, the fluxes and currents at the material boundaries are obtained in terms of the Fourier series. Truncating the series after the first term, and assuming that the source term is piecewise linear within each mesh box, a set of coupled equations is obtained in the form of three-point equations for each coordinate. These equations can be easily solved by the alternative direction implicit method. Thus a practical procedure is established that could be applied to replace the currently used difference equation. This equation is used to solve the multi-group diffusion equation by means of the source iteration method; and sample calculations for thermal and fast reactors show that the present method yields accurate results with a smaller number of mesh points than the usual finite difference equations. (auth.)

  19. Simple one-dimensional finite element algorithm with multi-dimensional capabilities

    International Nuclear Information System (INIS)

    Pepper, D.W.; Baker, A.J.

    1978-01-01

    The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain

  20. Fourier transform and the Verlinde formula for the quantum double of a finite group

    NARCIS (Netherlands)

    Koornwinder, T.H.; Schroers, B.J.; Slingerland, J.K.; Bais, F.A.

    1999-01-01

    We define a Fourier transform $S$ for the quantum double $D(G)$ of a finite group $G$. Acting on characters of $D(G)$, $S$ and the central ribbon element of $D(G)$ generate a unitary matrix representation of the group $SL(2,Z)$. The characters form a ring over the integers under both the algebra

  1. Simple Fully Automated Group Classification on Brain fMRI

    International Nuclear Information System (INIS)

    Honorio, J.; Goldstein, R.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-01-01

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  2. Simple Fully Automated Group Classification on Brain fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Honorio, J.; Goldstein, R.; Honorio, J.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-04-14

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  3. Special Semigroup Classes Over Some Monoid Constructions and a New Example of a Finitely Presented Monoid with a Non-Finitely Generated Group of Units

    Directory of Open Access Journals (Sweden)

    Seda OĞUZ ÜNAL

    2016-10-01

    Full Text Available Abstract. In this paper, necessary and sufficient conditions are studied for Bruck-Reilly and gener- alized Bruck-Reilly ∗-extensions of direct product of k monoids to be regular, unit regular, completely regular and orthodox. Moreover, we give an example of a finitely presented monoid (generalized Bruck-Reilly ∗-extension of Bruck-Reilly extension of a free group with infinite rank, the group of units of which is not finitely generated.2010 Mathematics Subject Classification: 16S15; 20E06; 20E22.Keywords and Phrases: Generalized Bruck-Reilly ∗-extension, finite generation, finite presentability. Özet.  Bu makalede k tane monoidin direkt çarpımının Bruck-Reilly ve genelleştirilmiş Bruck-Reilly *- genişlemelerinin, regüler, terslenebilir regüler, tamamen regüler ve orthodox olabilmesi için gerek ve yeter koşullar çalışılmıştır.  Ayrıca, biz terslenebilir elemanlarının grubu sonlu üreteçli olmayan sonlu sunumlu bir monoid (sonsuz ranklı bir serbest grubun Bruck-Reilly genişlemesinin genelleştirilmiş Bruck-Reilly *-genişlemesi örneği verdik. Anahtar Kelimeler: Genelleştirilmiş Bruck-Reilly *-genişlemesi, sonlu üreteçlilik, sonlu sunumluluk.

  4. A low-memory algorithm for finding short product representations in finite groups

    NARCIS (Netherlands)

    Bisson, G.; Sutherland, A.V.

    2012-01-01

    We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-¿ approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence S

  5. A low-memory algorithm for finding short product representations in finite groups

    NARCIS (Netherlands)

    Bisson, G.; Sutherland, A.V.

    2011-01-01

    We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-rho approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence

  6. Universal conditions for finite renormalizable quantum field theories

    International Nuclear Information System (INIS)

    Kranner, G.

    1990-10-01

    Analyzing general renormalization constants in covariant gauge and minimal subtraction, we consider universal conditions for cancelling UV-divergences in renormalizable field theories with simple gauge groups, and give constructive methods for finding nonsupersymmetric finite models. The divergent parts of the renormalization constants for fields explicitly depend on the gauge parameter ξ. Finite theories simply need finite couplings. We show that respective FinitenessConditions imply a hierarchy, the center of which are the FCs for the gauge coupling g and the Yukawa couplings of the massless theory. To gain more information about F we analyze the Yukawa-FC in greater detail. Doing so algebraically, we find out and fix all inner symmetries. Additionally, Yuakawa-couplings must be invariant under gauge transformation. Then it becomes extremely difficult to obey a FC, yield rational numbers for F ∼ 1, and satisfy the factorization-condition, unless F = 1. The particular structure of the F = 1-system allows for a most general ansatz. We figure out the simplest case, getting precisely just couplings and particle content of a general N=1-supersymmetric theory. We list a class of roughly 4000 types of theories, containing all supersymmetric, completely finite, and many more finite theories as well. (Author, shortened by Quittner) 11 figs., 54 refs

  7. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.

  8. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.

  9. Irreducible almost simple subgroups of classical algebraic groups

    CERN Document Server

    Burness, Timothy C; Marion, Claude; Testerman, Donna M

    2015-01-01

    Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p\\geq 0 with natural module W. Let H be a closed subgroup of G and let V be a nontrivial p-restricted irreducible tensor indecomposable rational KG-module such that the restriction of V to H is irreducible. In this paper the authors classify the triples (G,H,V) of this form, where V \

  10. Finite Element Analysis of Simple Rectangular Microstrip Sensor for Determination Moisture Content of Hevea Rubber Latex

    Science.gov (United States)

    Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.

    2018-04-01

    The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.

  11. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  12. Finite Size Scaling of Perceptron

    OpenAIRE

    Korutcheva, Elka; Tonchev, N.

    2000-01-01

    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  13. Groups and Geometries : Siena Conference

    CERN Document Server

    Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria

    1998-01-01

    On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi­ tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...

  14. On E-discretization of tori of compact simple Lie groups. II

    Science.gov (United States)

    Hrivnák, Jiří; Juránek, Michal

    2017-10-01

    Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

  15. Dynamical renormalization group resummation of finite temperature infrared divergences

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Boyanovsky, D.; Simionato, M.; Holman, R.; Simionato, M.

    1999-01-01

    We introduce the method of dynamical renormalization group to study relaxation and damping out of equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse photons and leads to anomalous logarithmic relaxation of the form e -αampersandhthinsp;Tampersandhthinsp;tampersandhthinsp;ln[t/t 0 ] for hard momentum charged excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorporated consistently into the dynamical renormalization group yielding a picture of relaxation and damping phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and other types of resummation schemes. copyright 1999 The American Physical Society

  16. On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups

    DEFF Research Database (Denmark)

    Shi, Jiangtao; Zhang, Cui

    2013-01-01

    Let G be a finite group and (G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13)....

  17. Renormalization group analysis of a simple hierarchical fermion model

    International Nuclear Information System (INIS)

    Dorlas, T.C.

    1991-01-01

    A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)

  18. Simple 2-representations and Classification of Categorifications

    DEFF Research Database (Denmark)

    Agerholm, Troels

    We consider selfadjoint functors defined on categories of modules over finite dimensional algebras and classify those that satisfy some simple relations. In particular we classify self- adjoint idempotents and selfadjoint squareroots of a multiple of the identity functor. This is related to the t......We consider selfadjoint functors defined on categories of modules over finite dimensional algebras and classify those that satisfy some simple relations. In particular we classify self- adjoint idempotents and selfadjoint squareroots of a multiple of the identity functor. This is related...

  19. Property ($T$) for groups graded by root systems

    CERN Document Server

    Ershov, Mikhail; Kassabov, Martin

    2017-01-01

    The authors introduce and study the class of groups graded by root systems. They prove that if \\Phi is an irreducible classical root system of rank \\geq 2 and G is a group graded by \\Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \\Phi of rank \\geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\\mathrm St}_{\\Phi}(R) and the elementary Chevalley group \\mathbb E_{\\Phi}(R) have property (T). They also show that there exists a group with property (T) which maps onto all finite simple groups of Lie type and rank \\geq 2, thereby providing a "unified" proof of expansion in these groups.

  20. On classification of finite groups with four generators, three of which having orders p,p,q (p

    International Nuclear Information System (INIS)

    Yacoub, K.R.

    1984-03-01

    Finite groups with two independent generators attracted the attention of authors for several years. The author, having started on such groups in his PhD Thesis in 1953, discussed later on the existence and the structure of finite groups with three generators, one being of arbitrary order and the other two having given orders [Pub. Math. Debrecen, 11, 32-38(1964), 13, 9-16(1966)] and others. Recently, the author started the problem of finite groups with four generators a,b,c and d when b,c and d have the same odd prime order p. It is the object of the present paper to deal with a similar problem when the given orders are p, p and q with p q together with the particular case when m is an element of set containing p,q will be kept to a further discussion. The present paper consists actually of two main parts, the first deals with the case p does not divide q-1 while the second deals with the case p divides q-1. (author)

  1. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    Science.gov (United States)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  2. Exact solubility of Chern-Simons theory with compact simple gauge group

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    1993-01-01

    We show that vacuum expectation values of Wilson loop operators in (2+1)-dimensional Chern-Simons theory satisfy algebraic equations. Interestingly enough, vacuum expectation values for unknotted Wilson loop operators in any representation of any compact and simple group are exactly computed by solving the equations. So-called 'skein relations', which give us algebraic equations among vacuum expectation values of different Wilson loop operators, are constructed. In our formalism, quantum group symmetry appears naturally. (orig.)

  3. A simple finite-difference scheme for handling topography with the first-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.; Huiskes, M.J.

    2017-01-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the

  4. The finite element analysis program MSC Marc/Mentat a first introduction

    CERN Document Server

    Öchsner, Andreas

    2016-01-01

    Based on simple examples, this book offers a short introduction to the general-purpose finite element program MSC Marc, a specialized program for non-linear problems (implicit solver) distributed by the MSC Software Corporation, which is commonly used in academia and industry. Today the documentation of all finite element programs includes a variety of step-by-step examples of differing complexity, and in addition, all software companies offer professional workshops on different topics. As such, rather than competing with these, the book focuses on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. This makes it an ideal companion book to classical introductory courses on the finite element method.

  5. A finite capacity queue with Markovian arrivals and two servers with group services

    Directory of Open Access Journals (Sweden)

    S. Chakravarthy

    1994-01-01

    Full Text Available In this paper we consider a finite capacity queuing system in which arrivals are governed by a Markovian arrival process. The system is attended by two exponential servers, who offer services in groups of varying sizes. The service rates may depend on the number of customers in service. Using Markov theory, we study this finite capacity queuing model in detail by obtaining numerically stable expressions for (a the steady-state queue length densities at arrivals and at arbitrary time points; (b the Laplace-Stieltjes transform of the stationary waiting time distribution of an admitted customer at points of arrivals. The stationary waiting time distribution is shown to be of phase type when the interarrival times are of phase type. Efficient algorithmic procedures for computing the steady-state queue length densities and other system performance measures are discussed. A conjecture on the nature of the mean waiting time is proposed. Some illustrative numerical examples are presented.

  6. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  7. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

    Science.gov (United States)

    Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.

    2018-05-01

    The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.

  8. A simple finite-difference scheme for handling topography with the second-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.

    2017-01-01

    The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free

  9. A particle finite element method for machining simulations

    Science.gov (United States)

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  10. Finite element analysis of adanced composite structures containing mechanically fastened joints

    International Nuclear Information System (INIS)

    Baumann, E.

    1982-01-01

    Although the usual engineering practice is to ignore joint effects in finite element models of overall structures, there are times when the inclusion of fastener effects in a model is necessary for accurate analysis. This paper describes some simple but accurate methods for accommodating this modeling requirement. The approach involves correlation of test results from a few composite mechanically fastened joints with finite element analyses of joints. It is assumed that if the fastener actions in the test articles can be properly predicted by simple finite element techniques, then these same techniques can be applied to large overall structure models. During the course of this test-analysis effort it was determined that it is possible to obtain correct results for overall structure-joint analyses by using simple modeling concepts provided special care is employed. Also, some emphasis is given in this paper to the importance of properly reducing test data in order to obtain meaningful correlations with finite element analysis. Finally, for those interested, the appendix contains brief descriptions of the test results and failure modes explored in the test program. (orig.)

  11. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    International Nuclear Information System (INIS)

    Kilian, W.; Rainwater, D.

    2006-09-01

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  12. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rainwater, D. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  13. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  14. A summary of maintenance policies for a finite interval

    International Nuclear Information System (INIS)

    Nakagawa, T.; Mizutani, S.

    2009-01-01

    It would be an important problem to consider practically some maintenance policies for a finite time span, because the working times of most units are finite in actual fields. This paper converts the usual maintenance models to finite maintenance models. It is more difficult to study theoretically optimal policies for a finite time span than those for an infinite time span. Three usual models of periodic replacement with minimal repair, block replacement and simple replacement are transformed to finite replacement models. Further, optimal periodic and sequential policies for an imperfect preventive maintenance and an inspection model for a finite time span are considered. Optimal policies for each model are analytically derived and are numerically computed

  15. Overgroups of root groups in classical groups

    CERN Document Server

    Aschbacher, Michael

    2016-01-01

    The author extends results of McLaughlin and Kantor on overgroups of long root subgroups and long root elements in finite classical groups. In particular he determines the maximal subgroups of this form. He also determines the maximal overgroups of short root subgroups in finite classical groups and the maximal overgroups in finite orthogonal groups of c-root subgroups.

  16. Structure of some relative relation modules of finite p-groups

    International Nuclear Information System (INIS)

    Yamin, M.

    1990-06-01

    Let G be a finite p-group generated by (g i , 1 ≤ i ≤ d), G i the cyclic subgroup generated by g i , E the free product of the G i , 1 ≤ i ≤ d, and S the kernel of the natural epimorphism of E onto G. The largest elementary abelian p-quotient S-circumflex = S/S'S p , regarded as an IF p G-module via conjugation in E, is called a relative relation module of G. If d is the minimum number of generaters for G, the author has proved that S-circumflex is nonprojective and indecomposable. The aim of this paper is to give an alternative proof for the indecomposability of S-circumflex; the proof here is more informative as it deals with Loewy structure and generating sets of S-circumflex and other associated modules. (author). 9 refs

  17. Observations on finite quantum mechanics

    International Nuclear Information System (INIS)

    Balian, R.; Itzykson, C.

    1986-01-01

    We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr

  18. Finiteness of Lorentzian 10j symbols and partition functions

    International Nuclear Information System (INIS)

    Christensen, J Daniel

    2006-01-01

    We give a short and simple proof that the Lorentzian 10j symbol, which forms a key part of the Barrett-Crane model of Lorentzian quantum gravity, is finite. The argument is very general, and applies to other integrals. For example, we show that the Lorentzian and Riemannian causal 10j symbols are finite, despite their singularities. Moreover, we show that integrals that arise in Cherrington's work are finite. Cherrington has shown that this implies that the Lorentzian partition function for a single triangulation is finite, even for degenerate triangulations. Finally, we also show how to use these methods to prove finiteness of integrals based on other graphs and other homogeneous domains

  19. Cyltran: finite element programs for flow and mass transport under cylindrically symmetric conditions

    International Nuclear Information System (INIS)

    Noy, D.J.

    1984-11-01

    A group of finite element programs are described which may be used for the analysis of complex single borehole hydraulic and tracer experiments in porous media. An outline is given of the theoretical development of the model and the computational procedures used. The equations are solved with the aid of routines specifically designed for efficient operation on vector processing machines. Finally, two simple examples of output generated by the programs are given. (author)

  20. Finite cluster renormalization and new two step renormalization group for Ising model

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.

    1989-09-01

    New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs

  1. Precise magnetostatic field using the finite element method

    International Nuclear Information System (INIS)

    Nascimento, Francisco Rogerio Teixeira do

    2013-01-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  2. Evaluation of Concrete Cylinder Tests Using Finite Elements

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1984-01-01

    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....

  3. Thermal operator representation of finite temperature graphs

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana

    2005-01-01

    Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed

  4. Finite size effects for giant magnons on physical strings

    International Nuclear Information System (INIS)

    Minahan, J.A.; Ohlsson Sax, O.

    2008-01-01

    Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges

  5. Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators

    Science.gov (United States)

    Siudzińska, Katarzyna; Chruściński, Dariusz

    2018-03-01

    In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.

  6. Excitations of Bose-Einstein condensates at finite temperatures

    International Nuclear Information System (INIS)

    Rusch, M.

    2000-01-01

    Recent experimental observations of collective excitations of Bose condensed atomic vapours have stimulated interest in the microscopic description of the dynamics of a Bose-Einstein condensate confined in an external potential. We present a finite temperature field theory for collective excitations of trapped Bose-Einstein condensates and use a finite-temperature linear response formalism, which goes beyond the simple mean-field approximation of the Gross-Pitaevskii equation. The effect of the non-condensed thermal atoms we include using perturbation theory in a quasiparticle basis. This presents a simple scheme to understand the interaction between condensate and non-condensed atoms and enables us to include the effect the condensate has on collision dynamics. At first we limit our treatment to the case of a spatially homogeneous Bose gas. We include the effect of pair and triplet anomalous averages and thus obtain a gapless theory for the excitations of a weakly interacting system, which we can link to well known results for Landau and Beliaev damping rates. A gapless theory for trapped systems with a static thermal component follows straightforwardly. We then investigate finite temperature excitations of a condensate in a spherically symmetric harmonic trap. We avoid approximations to the density of states and thus emphasise finite size aspects of the problem. We show that excitations couple strongly to a restricted number of modes, giving rise to resonance structure in their frequency spectra. Where possible we derive energy shifts and lifetimes of excitations. For one particular mode, the breathing mode, the effects of the discreteness of the system are sufficiently pronounced that the simple picture of an energy shift and width fails. Experiments in spherical traps have recently become feasible and should be able to test our detailed quantitative predictions. (author)

  7. An algorithm for the basis of the finite Fourier transform

    Science.gov (United States)

    Santhanam, Thalanayar S.

    1995-01-01

    The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.

  8. The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Himpel, Benjamin

    2012-01-01

    We identify the leading order term of the asymptotic expansion of the Witten–Reshetikhin–Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemeister torsion is used as a density on the moduli...... space of flat connections and the leading order term is identified with the integral over this moduli space of this density weighted by a certain phase for each component of the moduli space. We also identify this phase in terms of classical invariants such as Chern–Simons invariants, eta invariants...

  9. Finite size scaling and phenomenological renormalization

    International Nuclear Information System (INIS)

    Derrida, B.; Seze, L. de; Vannimenus, J.

    1981-05-01

    The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems

  10. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-01-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax

  11. The Wigner distribution function for the su(2) finite oscillator and Dyck paths

    International Nuclear Information System (INIS)

    Oste, Roy; Jeugt, Joris Van der

    2014-01-01

    Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix (or rather, the pre-Wigner matrix, which is related to the Wigner matrix by a simple matrix multiplication) for the case of the su(2) finite oscillator. The first expression for the matrix elements involves sums over squares of Krawtchouk polynomials, and follows from standard techniques. We also manage to present a second solution, where the matrix elements are evaluations of Dyck polynomials. These Dyck polynomials are defined in terms of the well-known Dyck paths. This combinatorial expression of the pre-Wigner matrix elements turns out to be particularly simple. (paper)

  12. IR finite one-loop box scalar integral with massless internal lines

    International Nuclear Information System (INIS)

    Duplancic, G.; Nizic, B.

    2002-01-01

    The IR finite one-loop box scalar integral with massless internal lines has been recalculated. The result is very compact, simple and valid for arbitrary values of the relevant kinematic variables. It is given in terms of only two dilogarithms and a few logarithms, all of very simple arguments. (orig.)

  13. Measures with locally finite support and spectrum.

    Science.gov (United States)

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  14. Molecular implementation of simple logic programs.

    Science.gov (United States)

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-10-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  15. Finite element transport methods for criticality calculations - current status and potential applications

    International Nuclear Information System (INIS)

    Oliveira, C.R.E. de; Goddard, A.

    1991-01-01

    In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)

  16. A simple method to impose rotations and concentrated moments on ANC beams

    International Nuclear Information System (INIS)

    Romero, Ignacio; Arribas, Juan J.

    2009-01-01

    Recently introduced ANC beam elements furnish a simple formulation that allows to solve nonlinear problems of beams, including those with large displacements and strains, as well as complex nonlinear (inelastic) materials. The success and simplicity of these finite elements is mainly due to the fact that the only nodal degrees of freedom that they employ are displacements, and rotations are thus completely avoided. This in turn makes it very difficult to apply concentrated moments or to impose rotations at specific nodes of a finite element mesh. In this article, we present a simple enhancement to this beam formulation that allows to apply these two types of boundary conditions in a simple manner, making ANC beam elements more versatile for both multibody and structural applications

  17. Dynamical correlations in finite nuclei: A simple method to study tensor effects

    International Nuclear Information System (INIS)

    Dellagiacoma, F.; Orlandini, G.; Traini, M.

    1983-01-01

    Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)

  18. A simple proof of renormalization group equation in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.

    1989-04-01

    We give a simple combinatorial proof of the renormalization group equation in the minimal subtraction scheme. Being mathematically rigorous, the proof avoids both the notorious complexity of techniques using parametric representations of Feynman diagrams and heuristic arguments of usual ''proofs'' calling up bare fields living in the space-time of complex dimension. It also copes easily with the general case of Green functions of arbitrary number of composite fields. (author). 24 refs

  19. Stress analysis for shells with double curvature by finite element method

    International Nuclear Information System (INIS)

    Mueller, A.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, simple shape functions of second and third degree were used. An implicit penalty method allows one to solve thin shell problems since the Kirchoff-Love hypothesis are automatically satisfied. (Author) [pt

  20. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  1. Is cooperation viable in mobile organisms? Simple Walk Away rule favors the evolution of cooperation in groups

    Science.gov (United States)

    Aktipis, C. Athena

    2011-01-01

    The evolution of cooperation through partner choice mechanisms is often thought to involve relatively complex cognitive abilities. Using agent-based simulations I model a simple partner choice rule, the ‘Walk Away’ rule, where individuals stay in groups that provide higher returns (by virtue of having more cooperators), and ‘Walk Away’ from groups providing low returns. Implementing this conditional movement rule in a public goods game leads to a number of interesting findings: 1) cooperators have a selective advantage when thresholds are high, corresponding to low tolerance for defectors, 2) high thresholds lead to high initial rates of movement and low final rates of movement (after selection), and 3) as cooperation is selected, the population undergoes a spatial transition from high migration (and a many small and ephemeral groups) to low migration (and large and stable groups). These results suggest that the very simple ‘Walk Away’ rule of leaving uncooperative groups can favor the evolution of cooperation, and that cooperation can evolve in populations in which individuals are able to move in response to local social conditions. A diverse array of organisms are able to leave degraded physical or social environments. The ubiquitous nature of conditional movement suggests that ‘Walk Away’ dynamics may play an important role in the evolution of social behavior in both cognitively complex and cognitively simple organisms. PMID:21666771

  2. On integral and finite Fourier transforms of continuous q-Hermite polynomials

    International Nuclear Information System (INIS)

    Atakishiyeva, M. K.; Atakishiyev, N. M.

    2009-01-01

    We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.

  3. Wild bootstrapping in finite populations with auxiliary information

    NARCIS (Netherlands)

    R. Helmers (Roelof); M.H. Wegkamp

    1995-01-01

    textabstractConsider a finite population $u$, which can be viewed as a realization of a superpopulation model. A simple ratio model (linear regression, without intercept) with heteroscedastic errors is supposed to have generated u. A random sample is drawn without replacement from $u$. In this

  4. Sojourn times in finite-capacity processor-sharing queues

    NARCIS (Netherlands)

    Borst, S.C.; Boxma, O.J.; Hegde, N.

    2005-01-01

    Motivated by the need to develop simple parsimonious models for evaluating the performance of wireless data systems, we consider finite-capacity processor-sharing systems. For such systems, we analyze the sojourn time distribution, which presents a useful measure for the transfer delay of documents

  5. A simple finite-difference scheme for handling topography with the first-order wave equation

    Science.gov (United States)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  6. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  7. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  8. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  9. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

    Science.gov (United States)

    Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui

    2016-09-01

    In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

  10. A Min-max Relation for Monotone Path Systems in Simple Regions

    DEFF Research Database (Denmark)

    Cameron, Kathleen

    1996-01-01

    A monotone path system (MPS) is a finite set of pairwise disjointpaths (polygonal arcs) in the plane such that every horizontal line intersectseach of the paths in at most one point. We consider a simple polygon in thexy-plane which bounds the simple polygonal (closed) region D. Let T and B betwo...

  11. Simple renormalization group method for calculating geometrical and other equations of states

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwaccheim, G.; Coniglio, A.

    1984-01-01

    A real space renormalization group procedure to calculate geometrical and thermal equations of states for the entire range of values of the external parameters is described. Its use is as simple as a Mean Field Approximation; however, it yields non trivial results and can be systematically improved. Such a procedure is illustrated by calculating, for all bond concentrations, the site mass density for the complete and the backbone percolating infinite clusters in square lattice: the results are quite satisfactory. (Author) [pt

  12. Analytic Coarse-Mesh Finite-Difference Method Generalized for Heterogeneous Multidimensional Two-Group Diffusion Calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Aragones, Jose M.; Ahnert, Carol

    2003-01-01

    In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations

  13. Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2008-02-01

    Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.

  14. Solution of the neutron diffusion equation at two groups of energy by method of triangular finite elements

    International Nuclear Information System (INIS)

    Correia Filho, A.

    1981-04-01

    The Neutron Diffusion Equation at two groups of energy is solved with the use of the Finite - Element Method with first order triangular elements. The program EFTDN (Triangular Finite Elements on Neutron Diffusion) was developed using the language FORTRAN IV. The discrete formulation of the Diffusion Equation is obtained with the application of the Galerkin's Method. In order to solve the eigenvalue - problem, the Method of the Power is applied and, with the purpose of the convergence of the results, Chebshev's polynomial expressions are applied. On the solution of the systems of equations Gauss' Method is applied, divided in two different parts: triangularization of the matrix of coeficients and retrosubstitution taking in account the sparsity of the system. Several test - problems are solved, among then two P.W.R. type reactors, the ZION-1 with 1300 MWe and the 2D-IAEA - Benchmark. Comparision of results with standard solutions show the validity of application of the EFM and precision of the results. (Author) [pt

  15. Finite difference order doubling in two dimensions

    International Nuclear Information System (INIS)

    Killingbeck, John P; Jolicard, Georges

    2008-01-01

    An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process

  16. Finite groups all of whose minimal subgroups are NE∗ -subgroups

    Indian Academy of Sciences (India)

    subgroup of G if there exists a subnormal subgroup T of G such that G = HT and H ∩ T is a. NE-subgroup of G. In this article, we investigate the structure of G under the assump- tion that subgroups of prime order are NE∗-subgroups of G. The finite ...

  17. Optimization of Finite-Differencing Kernels for Numerical Relativity Applications

    Directory of Open Access Journals (Sweden)

    Roberto Alfieri

    2018-05-01

    Full Text Available A simple optimization strategy for the computation of 3D finite-differencing kernels on many-cores architectures is proposed. The 3D finite-differencing computation is split direction-by-direction and exploits two level of parallelism: in-core vectorization and multi-threads shared-memory parallelization. The main application of this method is to accelerate the high-order stencil computations in numerical relativity codes. Our proposed method provides substantial speedup in computations involving tensor contractions and 3D stencil calculations on different processor microarchitectures, including Intel Knight Landing.

  18. Modern mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional

  19. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  20. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  1. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  2. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  3. A cohesive finite element formulation for modelling fracture and ...

    Indian Academy of Sciences (India)

    cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.

  4. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-03

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  5. Results in finite temperature quantum electrodynamics

    International Nuclear Information System (INIS)

    Down, D.M.

    1985-01-01

    First, three quantities of physical interest are calculated. The first two quantities are the self energy of the electron at order α and the self mass of the electron at order α 2 due to its interaction with a thermal bath of photons. The third quantity of physical interest is the thermal contribution to the self mass of the axion. Second, some formal developments are presented. First among these is the proof of an extension to the familiar optical theorem to cover processes taking place at finite temperature. Then an example of the application of the theorem is given for a simple field theory involving two types of scalar particles. The example illustrates that the relationship between the forward scattering amplitude and the total cross section is more complex at finite temperature than at zero temperature. Third, a method for calculating the wave function renormalization constant at finite temperature for an electron in a thermal bath of photons is presented. This method is compared with methods invented by other authors

  6. (1 + 1) Newton-Hooke group for the simple and damped harmonic oscillator

    Science.gov (United States)

    Brzykcy, Przemysław

    2018-03-01

    It is demonstrated that, in the framework of the orbit method, a simple and damped harmonic oscillator is indistinguishable at the level of an abstract Lie algebra. This opens a possibility for treating the dissipative systems within the orbit method. An in-depth analysis of the coadjoint orbits of the (1 + 1) dimensional Newton-Hooke group is presented. Furthermore, it is argued that the physical interpretation is carried by a specific realisation of the Lie algebra of smooth functions on a phase space rather than by an abstract Lie algebra.

  7. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  8. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  9. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

    International Nuclear Information System (INIS)

    Baker, A.R.

    1982-07-01

    A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

  10. Finite-Time Synchronizing Control for Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2014-01-01

    Full Text Available This paper addresses the finite-time synchronizing problem for a class of chaotic neural networks. In a real communication network, parameters of the master system may be time-varying and the system may be perturbed by external disturbances. A simple high-gain observer is designed to track all the nonlinearities, unknown system functions, and disturbances. Then, a dynamic active compensatory controller is proposed and by using the singular perturbation theory, the control method can guarantee the finite-time stability of the error system between the master system and the slave system. Finally, two illustrative examples are provided to show the effectiveness and applicability of the proposed scheme.

  11. Finite element approximation to the even-parity transport equation

    International Nuclear Information System (INIS)

    Lewis, E.E.

    1981-01-01

    This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions

  12. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays

    Science.gov (United States)

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don’t include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results. PMID:28931066

  13. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    Science.gov (United States)

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  14. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    Full Text Available Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs with both discrete delay and distributed delay (mixed delays. By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  15. Wigner functions for a class of semi-direct product groups

    International Nuclear Information System (INIS)

    Krasowska, Anna E; Ali, S Twareque

    2003-01-01

    Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups. The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. A large number of examples, with potential use in image analysis, is worked out

  16. The dilute random field Ising model by finite cluster approximation

    International Nuclear Information System (INIS)

    Benyoussef, A.; Saber, M.

    1987-09-01

    Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs

  17. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  18. Multicomplementary operators via finite Fourier transform

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Sanchez-Soto, Luis L; Guise, Hubert de

    2005-01-01

    A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail

  19. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    Science.gov (United States)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  20. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    International Nuclear Information System (INIS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-01-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix

  1. New mixed finite-element methods

    International Nuclear Information System (INIS)

    Franca, L.P.

    1987-01-01

    New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates

  2. Generating Lie Point Symmetry Groups of (2+1)-Dimensional Broer-Kaup Equation via a Simple Direct Method

    International Nuclear Information System (INIS)

    Ma Hongcai

    2005-01-01

    Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.

  3. Two-dimensional multigroup finite element calculation of fast reactor in diffusion approximation

    International Nuclear Information System (INIS)

    Schmid, J.

    1986-06-01

    When a linear element of triangular shape is used the actual finite element calculation is relatively simple. Extensive programs for mesh generation were written for easy inputting the configuration of reactors. A number of other programs were written for plotting neutron flux fields in individual groups, the power distribution, spatial plotting of fields, etc. The operation of selected programs, data preparation and operating instructions are described and examples given of data and results. All programs are written in GIER ALGOL. The used method and the developed programs have demonstrated that they are a useful instrument for the calculation of criticality and the distribution of neutron flux and power of both fast and thermal reactors. (J.B.)

  4. Category O for quantum groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Mazorchuk, Volodymyr

    2015-01-01

    We study the BGG-categories O_q associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition...... for simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan–Lusztig conjectures for O and for finite-dimensional U_q-modules we are able to determine all irreducible characters as well as the characters of all indecomposable tilting modules in O_q . As a consequence......, we also recover the known result that the generic quantum case behaves like the classical category O....

  5. Clifford algebra in finite quantum field theories

    International Nuclear Information System (INIS)

    Moser, M.

    1997-12-01

    We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)

  6. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  7. Discrete finite nilpotent Lie analogs: New models for unified gauge field theory

    International Nuclear Information System (INIS)

    Kornacker, K.

    1978-01-01

    To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors

  8. Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydroturbine Governing System

    Directory of Open Access Journals (Sweden)

    Fengjiao Wu

    2016-01-01

    Full Text Available The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the designed controller has good robustness which could resist external random disturbances. Numerical simulations are employed to verify the effectiveness and superiority of the designed finite-time sliding mode control scheme. The approach proposed in this paper is simple and also provides a reference for relevant hydropower systems.

  9. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  10. Finite field-energy of a point charge in QED

    International Nuclear Information System (INIS)

    Costa, Caio V; Gitman, Dmitry M; Shabad, Anatoly E

    2015-01-01

    We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical electrodynamics, to show that it possesses a regularizing ability sufficient to make the field energy of a point charge finite. The model is exactly solved in the class of static central-symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total field energy of a point elementary charge about twice the electron mass. The proof of the finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED in powers of the field strength. (paper)

  11. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  12. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control

    Science.gov (United States)

    Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin

    2018-06-01

    This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  13. Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks

    Science.gov (United States)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui

    2018-06-01

    This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.

  14. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  15. Finite Element Analysis of Circular Plate using SolidWorks

    International Nuclear Information System (INIS)

    Kang, Yeo Jin; Jhung, Myung Jo

    2011-01-01

    Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts

  16. Numerical simulation of subwoofer array congurations using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xavier Banyuls-Juan

    2017-08-01

    Full Text Available Teaching in the Master of Acoustic Engineering includes contents that require the modeling of acoustic systems of two types: simple systems through analytical theory and complex models using simulation techniques. In the present work, we describe an example of complex acoustic sources modeling using the finite element method: subwoofer sound radiation in different configurations. Numerical simulations in the frequency domain can calculate the radiation pattern of systems that do not have a simple analytical solution.

  17. Finite-size-scaling analysis of subsystem data in the dilute Ising model

    International Nuclear Information System (INIS)

    Hennecke, M.

    1993-01-01

    Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated

  18. Complete three-dimensional photonic bandgap in a simple cubic structure

    International Nuclear Information System (INIS)

    Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin; Sigalas, M. M.; Biswas, R.; Ho, K. M.

    2001-01-01

    The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap

  19. On defining and computing fuzzy kernels on L-valued simple graphs

    International Nuclear Information System (INIS)

    Bisdorff, R.; Roubens, M.

    1996-01-01

    In this paper we introduce the concept of fuzzy kernels defined on valued-finite simple graphs in a sense close to fuzzy preference modelling. First we recall the classic concept of kernel associated with a crisp binary relation defined on a finite set. In a second part, we introduce fuzzy binary relations. In a third part, we generalize the crisp kernel concept to such fuzzy binary relations and in a last part, we present an application to fuzzy choice functions on fuzzy outranking relations

  20. The structure of the Hamiltonian in a finite-dimensional formalism based on Weyl's quantum mechanics

    International Nuclear Information System (INIS)

    Santhanam, T.S.; Madivanane, S.

    1982-01-01

    Any discussion on finite-dimensional formulation of quantum mechanics involves the Sylvester matrix (finite Fourier transform). In the usual formulation, a remarkable relation exists that gives the Fourier transform as the exponential of the Hamiltonian of a simple harmonic oscillator. In this paper, assuming that such a relation holds also in the finite dimensional case, we extract the logarithm of the Sylvester matrix and in some cases this can be interpreted as the Hamiltonian of the truncated oscillator. We calculate the Hamiltonian matrix explicitly for some special cases of n = 3,4. (author)

  1. Spontaneous magnetization of quantum XY-chain from finite chain form-factor

    International Nuclear Information System (INIS)

    Iorgov, N.Z.

    2010-01-01

    Using the explicit factorized formulas for matrix elements (form-factors) of the spin operators between vectors of the Hamiltonian of a finite quantum XY-chain in a transverse field, the spontaneous magnetization for σ x and σ y is re-derived in a simple way.

  2. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-04-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.

  3. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving {mathfrak {su}}(2,2)

    Science.gov (United States)

    Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.

    2014-09-01

    Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.

  4. Normal forms of invariant vector fields under a finite group action

    International Nuclear Information System (INIS)

    Sanchez Bringas, F.

    1992-07-01

    Let Γ be a finite subgroup of GL(n,C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in C n . We prove a theorem of invariant conjugation to a normal form and linearization for the subspace of invariant elements and we give a description of these normal forms in dimension n=2. (author)

  5. Finite N=1 SUSY gauge field theories

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1986-01-01

    The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established

  6. Main formulations of the finite element method for the problems of structural mechanics. Part 3

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2015-01-01

    Full Text Available In this paper the author offers is the classification of the formulae of Finite Element Method. This classification help to orient in a huge number of published articles, as well as those to be published, which are dedicated to the problem of enhancing the efficiency of the most commonly used method. The third part of the article considers the variation formulations of FEM and the energy principles lying in the basis of it. If compared to the direct method, which is applied only to finite elements of a simple geometrical type, the variation formulations of FEM are applicable to the elements of any type. All the variation methods can be conventionally divided into two groups. The methods of the first group are based on the principle of energy functional stationarity - a potential system energy, additional energy or on the basis of these energies, which means the full energy. The methods of the second group are based on the variants of mathematical methods of weighted residuals for solving the differential equations, which in some cases can be handled according to the principle of possible displacements or extreme energy principles. The most widely used and multipurpose is the approach based on the use of energy principles coming from the energy conservation law: principle of possible changes in stress state, principle of possible change in stress-strain state.

  7. Irreversibility and dissipation in finite-state automata

    International Nuclear Information System (INIS)

    Ganesh, Natesh; Anderson, Neal G.

    2013-01-01

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  8. A study on the improvement of shape optimization associated with the modification of a finite element

    International Nuclear Information System (INIS)

    Sung, Jin Il; Yoo, Jeong Hoon

    2002-01-01

    In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results

  9. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  10. Simple bounds and monotonicity results for finite multi-server exponential tandem queues

    NARCIS (Netherlands)

    Dijk, van N.M.; Wal, van der J.

    1989-01-01

    Simple and computationally attractive lower and upper bounds are presented for the call congestion such as those representing multi-server loss or delay stations. Numerical computations indicate a potential usefulness of the bounds for quick engineering purposes. The bounds correspond to

  11. Finite-time synchronization of Lorenz chaotic systems: theory and circuits

    International Nuclear Information System (INIS)

    Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel

    2013-01-01

    This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)

  12. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    Science.gov (United States)

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  13. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  14. On some homological functors of Bieberbach group of dimension four with dihedral point group of order eight

    Science.gov (United States)

    Mohammad, Siti Afiqah; Ali, Nor Muhainiah Mohd; Sarmin, Nor Haniza; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah

    2014-06-01

    A Bieberbach group is a torsion free crystallographic group, which is an extension of a free abelian group of finite rank by a finite point group, while homological functors of a group include nonabelian tensor square, exterior square and Schur Multiplier. In this paper, some homological functors of a Bieberbach group of dimension four with dihedral point group of order eight are computed.

  15. Finite element computation of natural convection in enclosures

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    1982-01-01

    Compared to U-V-P-T formulation and stream-vorticity temperature formulation, penalty function formulation is simple and computationally competitive. Incremental New-Raphons method employed in this study is effective and efficient. From this study it is established that very fine mesh is not required for a low Rayleigh number considered in this study. The upwinding finite element may be necessary to avoid oscillations for higher Rayleigh numbers. (author)

  16. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    Science.gov (United States)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  17. Design and Optimisation of a Simple Filter Group for Reactive Power Distribution

    Directory of Open Access Journals (Sweden)

    Ryszard Klempka

    2016-01-01

    Full Text Available Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.

  18. A simple spatiotemporal chaotic Lotka-Volterra model

    International Nuclear Information System (INIS)

    Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef

    2005-01-01

    A mathematically simple example of a high-dimensional (many-species) Lotka-Volterra model that exhibits spatiotemporal chaos in one spatial dimension is described. The model consists of a closed ring of identical agents, each competing for fixed finite resources with two of its four nearest neighbors. The model is prototypical of more complicated models in its quasiperiodic route to chaos (including attracting 3-tori), bifurcations, spontaneous symmetry breaking, and spatial pattern formation

  19. SPORTS - a simple non-linear thermalhydraulic stability code

    International Nuclear Information System (INIS)

    Chatoorgoon, V.

    1986-01-01

    A simple code, called SPORTS, has been developed for two-phase stability studies. A novel method of solution of the finite difference equations was deviced and incorporated, and many of the approximations that are common in other stability codes are avoided. SPORTS is believed to be accurate and efficient, as small and large time-steps are permitted, and hence suitable for micro-computers. (orig.)

  20. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  1. An embedded crack in a constant strain triangle utilizing extended finite element concepts

    DEFF Research Database (Denmark)

    Olesen, J.F.; Poulsen, P.N.

    2013-01-01

    This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi-brittle m......This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi......-element discontinuity of displacements. The formulation is based on a variational principle of virtual work involving only the interpolation of displacements. The good performance of the element is demonstrated through the comparison with three benchmark tests in which a single crack is propagated: The center cracked...

  2. Universal model of finite Reynolds number turbulent flow in channels and pipes

    NARCIS (Netherlands)

    L'vov, V.S.; Procaccia, I.; Rudenko, O.

    2008-01-01

    In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order

  3. Finite perturbation studies of magnetic susceptibility and shielding with GIAO

    International Nuclear Information System (INIS)

    Zaucer, M.; Pumpernik, D.; Hladnik, M.; Azman, A.

    1977-01-01

    The magnetic susceptibility tensor and proton and fluorine magnetic shielding tensors are calculated for F 2 and (FHF) - using an ab initio finite perturbation method with gauge-invariant atomic orbitals (GIAO). The discussion of the basis set deficiency shows that the calculated values for the susceptibilities are reliable. Simple additivity (Pascal rule) for the susceptibility is confirmed. (orig.) [de

  4. Simple Motion Pursuit and Evasion Differential Games with Many Pursuers on Manifolds with Euclidean Metric

    Directory of Open Access Journals (Sweden)

    Atamurat Kuchkarov

    2016-01-01

    Full Text Available We consider pursuit and evasion differential games of a group of m pursuers and one evader on manifolds with Euclidean metric. The motions of all players are simple, and maximal speeds of all players are equal. If the state of a pursuer coincides with that of the evader at some time, we say that pursuit is completed. We establish that each of the differential games (pursuit or evasion is equivalent to a differential game of m groups of countably many pursuers and one group of countably many evaders in Euclidean space. All the players in any of these groups are controlled by one controlled parameter. We find a condition under which pursuit can be completed, and if this condition is not satisfied, then evasion is possible. We construct strategies for the pursuers in pursuit game which ensure completion the game for a finite time and give a formula for this time. In the case of evasion game, we construct a strategy for the evader.

  5. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  6. Construction d'enquête et définition des groupes sociaux

    Directory of Open Access Journals (Sweden)

    Cyprien Tasset

    2010-09-01

    Full Text Available Dans ce texte, nous abordons le livre de Jerrold Seigel à travers le problème du rapport entre la construction de l'objet et celle de l'enquête. En effet, comment peut-on étudier méthodiquement un groupe tel que la bohème littéraire ? À partir d'une discussion quant à la pertinence, dans ce cas, de recourir à la méthode de la définition provisoire, nous nous interrogerons sur le genre de collectif constitué, au xixe siècle, par la bohème littéraire. À l'heure où le travail symbolique accompli au xixe siècle pour faire de la bohème un lieu social largement visible est réactivé par plusieurs entrepreneurs de groupes sociaux, cette réflexion méthodologique aura également l'intérêt de porter, indirectement, sur des efforts de regroupement contemporains.Inquiry’s construction and definition of social grouping. Reflexions from Bohemian Paris by Jerrold SeigelIn this paper, we study Jerrold Seigel's book through the prism of the issue of the relation between the way the author constructs his object and that of the inquiry. As a matter of fact, how is it possible to study methodologically a group such as literary bohemia ? After discussing the relevance, in this case, of the provisional definition method, we will ask ourselves which kind of collective literary bohemia constituted in the 19th century. At a time when several entrepreneurs of social grouping are re-activating the symbolical work carried in the 19th century to turn bohemia into a visible social area, the interest of such methodological exploration also lies in its bearing, indirectly, on contemporary grouping efforts.Construcción de la investigación y definición de grupo social. Reflexión a partir deBohemian Paris de Jerrold SeigelEn este artículo, abordamos el libro de Jerrold Seigel enfocando la relación entre la manera cómo el autor construye su objeto y la manera cómo dirige su investigación. ¿De hecho, de qué modo se puede estudiar con m

  7. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)

  8. Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation

    Science.gov (United States)

    Pan, Huihui; Jing, Xingjian; Sun, Weichao

    2017-05-01

    This paper focuses on the finite-time tracking control with external disturbance for active suspension systems. In order to compensate unknown disturbance efficiently, a disturbance compensator with finite-time convergence property is studied. By analyzing the discontinuous phenomenon of classical disturbance compensation techniques, this study presents a simple approach to construct a continuous compensator satisfying the finite-time disturbance rejection performance. According to the finite-time separation principle, the design procedures of the nominal controller for the suspension system without disturbance and the disturbance compensator can be implemented in a completely independent manner. Therefore, the overall control law for the closed-loop system is continuous, which offers some distinct advantages over the existing discontinuous ones. From the perspective of practical implementation, the continuous controller can avoid effectively the unexpected chattering in active suspension control. Comparative experimental results are presented and discussed to illustrate the advantage and effectiveness of the proposed control strategy.

  9. Finite-element-analysis of fields radiated from ICRF antenna

    International Nuclear Information System (INIS)

    Yamanaka, Kaoru; Sugihara, Ryo.

    1984-04-01

    In several simple geometries, electromagnetic fields radiated from a loop antenna, on which a current oscillately flows across the static magnetic field B-vector 0 , are calculated by the finite element method (FEM) as well as by analytic methods in a cross section of a plasma cylinder. A finite wave number along B-vector 0 is assumed. Good agreement between FEM and the analytic solutions is obtained, which indicates the accuracy of FEM solutions. The method is applied to calculations of fields from a half-turn antenna and reasonable results are obtained. It is found that a straightforward application of FEM to problems in an anisotropic medium may bring about erroneous results and that an appropriate coordinate transformation is needed for FEM to become applicable. (author)

  10. An alternative procedure for estimating the population mean in simple random sampling

    Directory of Open Access Journals (Sweden)

    Housila P. Singh

    2012-03-01

    Full Text Available This paper deals with the problem of estimating the finite population mean using auxiliary information in simple random sampling. Firstly we have suggested a correction to the mean squared error of the estimator proposed by Gupta and Shabbir [On improvement in estimating the population mean in simple random sampling. Jour. Appl. Statist. 35(5 (2008, pp. 559-566]. Later we have proposed a ratio type estimator and its properties are studied in simple random sampling. Numerically we have shown that the proposed class of estimators is more efficient than different known estimators including Gupta and Shabbir (2008 estimator.

  11. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  12. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  13. Simple unification

    International Nuclear Information System (INIS)

    Ponce, W.A.; Zepeda, A.

    1987-08-01

    We present the results obtained from our systematic search of a simple Lie group that unifies weak and electromagnetic interactions in a single truly unified theory. We work with fractionally charged quarks, and allow for particles and antiparticles to belong to the same irreducible representation. We found that models based on SU(6), SU(7), SU(8) and SU(10) are viable candidates for simple unification. (author). 23 refs

  14. A Nonmonotone Trust Region Method for Nonlinear Programming with Simple Bound Constraints

    International Nuclear Information System (INIS)

    Chen, Z.-W.; Han, J.-Y.; Xu, D.-C.

    2001-01-01

    In this paper we propose a nonmonotone trust region algorithm for optimization with simple bound constraints. Under mild conditions, we prove the global convergence of the algorithm. For the monotone case it is also proved that the correct active set can be identified in a finite number of iterations if the strict complementarity slackness condition holds, and so the proposed algorithm reduces finally to an unconstrained minimization method in a finite number of iterations, allowing a fast asymptotic rate of convergence. Numerical experiments show that the method is efficient

  15. Simple group password-based authenticated key agreements for the integrated EPR information system.

    Science.gov (United States)

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  16. Remarks on finite W algebras

    International Nuclear Information System (INIS)

    Barbarin, F.; Sorba, P.; Ragoucy, E.

    1996-01-01

    The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)

  17. Structure of the vertex function in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1975-01-01

    We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap

  18. On the finite line source problem in diffusion theory

    International Nuclear Information System (INIS)

    Mikkelsen, T.; Troen, I.; Larsen, S.E.

    1981-09-01

    A simple formula for calculating dispersion from a continuous finite line source, placed at right angles to the mean wind direction, is derived on the basis of statistical theory. Comparison is made with the virtual source concept usually used and this is shown to be correct only in the limit where the virtual time lag Tsub(v) is small compared to the timescale of the turbulence tsub(l). (Auth.)

  19. Finite and profinite quantum systems

    CERN Document Server

    Vourdas, Apostolos

    2017-01-01

    This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...

  20. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  1. Solving hyperbolic equations with finite volume methods

    CERN Document Server

    Vázquez-Cendón, M Elena

    2015-01-01

    Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields. The selection of content is based on the author’s experience giving PhD and master courses in different universities. In the book the introduction of new concepts and numerical methods go together with simple exercises, examples and applications that contribute to reinforce them. In addition, some of them involve the execution of MATLAB codes. The author promotes an understanding of common terminology with a balance between mathematical rigor and physical intuition that characterizes the origin of the methods. This book aims to be a first contact with finite volume methods. Once readers have studied it, they will be able to follow more specific bibliographical references and use commercial programs or open source software withi...

  2. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  3. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  4. Gauge invariance and anomalous theories at finite fermionic density

    International Nuclear Information System (INIS)

    Roberge, A.

    1990-01-01

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well

  5. A simple 1D model with thermomechanical coupling for superelastic SMAs

    International Nuclear Information System (INIS)

    Zaki, W; Morin, C; Moumni, Z

    2010-01-01

    This paper presents an outline for a new uniaxial model for shape memory alloys that accounts for thermomechanical coupling. The coupling provides an explanation of the dependence of SMA behavior on the loading rate. 1D simulations are carried in Matlab using simple finite-difference discretization of the mechanical and thermal equations.

  6. FINELM: a multigroup finite element diffusion code

    International Nuclear Information System (INIS)

    Higgs, C.E.; Davierwalla, D.M.

    1981-06-01

    FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)

  7. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov

    2008-04-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  8. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.

    2008-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids

  9. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  10. The forced sound transmission of finite single leaf walls using a variational technique.

    Science.gov (United States)

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  11. The forced sound transmission of finite single leaf walls using a variational technique

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size......, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound...... insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements...

  12. Solution of the multigroup diffusion equation for two-dimensional triangular regions by finite Fourier transformation

    International Nuclear Information System (INIS)

    Takeshi, Y.; Keisuke, K.

    1983-01-01

    The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method

  13. A simple branching model that reproduces language family and language population distributions

    Science.gov (United States)

    Schwämmle, Veit; de Oliveira, Paulo Murilo Castro

    2009-07-01

    Human history leaves fingerprints in human languages. Little is known about language evolution and its study is of great importance. Here we construct a simple stochastic model and compare its results to statistical data of real languages. The model is based on the recent finding that language changes occur independently of the population size. We find agreement with the data additionally assuming that languages may be distinguished by having at least one among a finite, small number of different features. This finite set is also used in order to define the distance between two languages, similarly to linguistics tradition since Swadesh.

  14. A finite range pairing force for density functional theory in superfluid nuclei

    International Nuclear Information System (INIS)

    Tian, Y.; Ma, Z.Y.; Ring, P.

    2009-01-01

    The problem of pairing in the 1 S 0 channel of finite nuclei is revisited. In nuclear matter forces of separable form can be adjusted to the bare nuclear force, to any phenomenological pairing interaction such as the Gogny force or to exact solutions of the gap equation. In finite nuclei, because of translational invariance, such forces are no longer separable. Using well-known techniques of Talmi and Moshinsky we expand the matrix elements in a series of separable terms, which converges quickly preserving translational invariance and finite range. In this way the complicated problem of a cut-off at large momenta or energies inherent in other separable or zero range pairing forces is avoided. Applications in the framework of the relativistic Hartree-Bogoliubov approach show that the pairing properties are depicted on almost the same footing as by the original pairing interaction not only in nuclear matter, but also in finite nuclei. This simple separable force can be easily applied for the investigation of pairing properties in nuclei far from stability as well as for further investigations going beyond mean field theory.

  15. A Framework of Finite-model Kalman Filter with Case Study: MVDP-FMKF Algorithm%A Framework of Finite-model Kalman Filter with Case Study:MVDP-FMKF Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Bo; MA Hong-Bin; FU Meng-Yin; WANG Shun-Ting

    2013-01-01

    Kalman filtering techniques have been widely used in many applications,however,standard Kalman filters for linear Gaussian systems usually cannot work well or even diverge in the presence of large model uncertainty.In practical applications,it is expensive to have large number of high-cost experiments or even impossible to obtain an exact system model.Motivated by our previous pioneering work on finite-model adaptive control,a framework of finite-model Kalman filtering is introduced in this paper.This framework presumes that large model uncertainty may be restricted by a finite set of known models which can be very different from each other.Moreover,the number of known models in the set can be flexibly chosen so that the uncertain model may always be approximated by one of the known models,in other words,the large model uncertainty is "covered" by the "convex hull" of the known models.Within the presented framework according to the idea of adaptive switching via the minimizing vector distance principle,a simple finite-model Kalman filter,MVDP-FMKF,is mathematically formulated and illustrated by extensive simulations.An experiment of MEMS gyroscope drift has verified the effectiveness of the proposed algorithm,indicating that the mechanism of finite-model Kalman filter is useful and efficient in practical applications of Kalman filters,especially in inertial navigation systems.

  16. Simple Numerical Schemes for the Korteweg-deVries Equation

    International Nuclear Information System (INIS)

    McKinstrie, C. J.; Kozlov, M.V.

    2000-01-01

    Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves

  17. Simple Numerical Schemes for the Korteweg-deVries Equation

    Energy Technology Data Exchange (ETDEWEB)

    C. J. McKinstrie; M. V. Kozlov

    2000-12-01

    Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves.

  18. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  19. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    Science.gov (United States)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  20. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  1. A finite element solution method for quadrics parallel computer

    International Nuclear Information System (INIS)

    Zucchini, A.

    1996-08-01

    A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem

  2. COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS

    International Nuclear Information System (INIS)

    WALTZ, R.E.; CANDY, J.; ROSENBLUTH, M.N.

    2002-01-01

    OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D ρ*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm

  3. Is simple nephrectomy truly simple? Comparison with the radical alternative.

    Science.gov (United States)

    Connolly, S S; O'Brien, M Frank; Kunni, I M; Phelan, E; Conroy, R; Thornhill, J A; Grainger, R

    2011-03-01

    The Oxford English dictionary defines the term "simple" as "easily done" and "uncomplicated". We tested the validity of this terminology in relation to open nephrectomy surgery. Retrospective review of 215 patients undergoing open, simple (n = 89) or radical (n = 126) nephrectomy in a single university-affiliated institution between 1998 and 2002. Operative time (OT), estimated blood loss (EBL), operative complications (OC) and length of stay in hospital (LOS) were analysed. Statistical analysis employed Fisher's exact test and Stata Release 8.2. Simple nephrectomy was associated with shorter OT (mean 126 vs. 144 min; p = 0.002), reduced EBL (mean 729 vs. 859 cc; p = 0.472), lower OC (9 vs. 17%; 0.087), and more brief LOS (mean 6 vs. 8 days; p < 0.001). All parameters suggest favourable outcome for the simple nephrectomy group, supporting the use of this terminology. This implies "simple" nephrectomies are truly easier to perform with less complication than their radical counterpart.

  4. Signal detection without finite-energy limits to quantum resolution

    OpenAIRE

    Luis Aina, Alfredo

    2013-01-01

    We show that there are extremely simple signal detection schemes where the finiteness of energy resources places no limit on the resolution. On the contrary, larger resolution can be obtained with lower energy. To this end the generator of the signal-dependent transformation encoding the signal information on the probe state must be different from the energy. We show that the larger the deviation of the probe state from being the minimum-uncertainty state, the better the resolution.

  5. An Exact Implementation Of The Hoek–Brown Criterion For Elasto-Plastic Finite Element Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2007-01-01

    A simple stress update algorithm for generalised Hoek-Brown plasticity is presented. It is intended for use in elasto-plastic finite element computations and utilises the return mapping concept for computing the stress increment belonging to a given increment in strain at a material point. In the...

  6. An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group

    International Nuclear Information System (INIS)

    Wang, S.J.

    1993-04-01

    An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)

  7. Finite Range Decomposition of Gaussian Processes

    CERN Document Server

    Brydges, C D; Mitter, P K

    2003-01-01

    Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0group on the lattice.

  8. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  9. Learning Extended Finite State Machines

    Science.gov (United States)

    Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard

    2014-01-01

    We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

  10. Profinite graphs and groups

    CERN Document Server

    Ribes, Luis

    2017-01-01

    This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...

  11. Finite Unification: Theory, Models and Predictions

    CERN Document Server

    Heinemeyer, S; Zoupanos, G

    2011-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...

  12. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....

  13. A novel QC-LDPC code based on the finite field multiplicative group for optical communications

    Science.gov (United States)

    Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen

    2013-09-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.

  14. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  15. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  16. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah

    2014-09-01

    Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  17. Detailed balance principle and finite-difference stochastic equation in a field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation

  18. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    Science.gov (United States)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  19. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  20. A remark on the unitary group of a tensor product of n finite ...

    Indian Academy of Sciences (India)

    By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...

  1. Finite element predictions of active buckling control of stiffened panels

    Science.gov (United States)

    Thompson, Danniella M.; Griffin, O. H., Jr.

    1993-04-01

    Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.

  2. Principle of detailed balance and the finite-difference stochastic equation in field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation

  3. On the relationship between some nodal schemes and the finite element method in static diffusion calculations

    International Nuclear Information System (INIS)

    Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.

    1983-03-01

    An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results

  4. Probabilistic simple sticker systems

    Science.gov (United States)

    Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod

    2017-04-01

    A model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, was introduced by by L. Kari, G. Paun, G. Rozenberg, A. Salomaa, and S. Yu in the paper entitled DNA computing, sticker systems and universality from the journal of Acta Informatica vol. 35, pp. 401-420 in the year 1998. A sticker system uses the Watson-Crick complementary feature of DNA molecules: starting from the incomplete double stranded sequences, and iteratively using sticking operations until a complete double stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rules generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of sticker systems. Recently, a variant of restricted sticker systems, called probabilistic sticker systems, has been introduced [4]. In this variant, the probabilities are initially associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the computation of the string. Strings for the language are selected according to some probabilistic requirements. In this paper, we study fundamental properties of probabilistic simple sticker systems. We prove that the probabilistic enhancement increases the computational power of simple sticker systems.

  5. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)

    2012-06-04

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  6. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    International Nuclear Information System (INIS)

    Sergyeyev, Artur

    2012-01-01

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  7. a constructive approach to the finite wavelet frames over prime fields

    Indian Academy of Sciences (India)

    6

    The motivation of this paper is to establish an alternative constructive formulation for the wavelet coefficients of finite ... is a |G|-dimensional vector space with complex vector entries indexed by elements in the finite group G. The inner product of x,y ∈ CG is defined by .... Construction of Wavelet Frames over Prime Fields.

  8. A mean field theory of study of lattice gauge theory with finite temperature and with finite fermion density

    International Nuclear Information System (INIS)

    Naik, S.

    1990-01-01

    We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)

  9. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  10. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  11. Finite element analysis of convective heat transfer problems with change of phase

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1978-01-01

    A simple approximate method for treating fluid/solid change of phase problems within a finite-element framework is presented. Though still in the initial development stages, the method has proved capable of computing the motion of phase boundaries for various types of fluid flows and geometries. Further investigation of the method is needed to establish its accuracy and stability characteristics as well as its general reliability

  12. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  13. Ring tests on high density polyethylene: Full investigation assisted by finite element modeling

    International Nuclear Information System (INIS)

    Laiarinandrasana, L.; Devilliers, C.; Oberti, S.; Gaudichet, E.; Fayolle, B.; Lucatelli, J.M.

    2011-01-01

    In order to characterize the mechanical behavior of HDPE pipes, the ASTM D 2290-04 standard recommends carrying out tensile tests on notched rings, cut out from the pipe. This very simple test is also utilized to investigate the aging effect of the pipe by determining the strain at failure. Comparison between full ring and notched ring mechanical responses are discussed. Constitutive modeling including strain rate effects was performed by finite element analysis. This allowed a better understanding of the stress state in the cross section perpendicular to the loading direction. Additionally, the influence of a thin layer of oxidized HDPE in the inner wall of the ring was studied in the light of the finite element results.

  14. A novel construction method of QC-LDPC codes based on the subgroup of the finite field multiplicative group for optical transmission systems

    Science.gov (United States)

    Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-01-01

    According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.

  15. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  16. Simple simulation of diffusion bridges with application to likelihood inference for diffusions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Sørensen, Michael

    2014-01-01

    the accuracy and efficiency of the approximate method and compare it to exact simulation methods. In the study, our method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to statistical inference. To illustrate the usefulness......With a view to statistical inference for discretely observed diffusion models, we propose simple methods of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamental role in likelihood and Bayesian inference for diffusion processes. First a simple......-dimensional diffusions and is applicable to all one-dimensional diffusion processes with finite speed-measure. One advantage of the new approach is that simple simulation methods like the Milstein scheme can be applied to bridge simulation. Another advantage over previous bridge simulation methods is that the proposed...

  17. Lattice QCD at finite density. An introductory review

    International Nuclear Information System (INIS)

    Muroya, Shin; Nakamura, Atushi; Nonaka, Chiho; Takaishi, Tetsuya

    2003-01-01

    This is a pedagogical review of the lattice study of finite density QCD. It is intended to provide the minimum necessary content, so that it may be used as an introduction for newcomers to the field and also for those working in nonlattice areas. After a brief introduction in which we discuss the reasons that finite density QCD is an active and important subject, we present the fundamental formulae that are necessary for the treatment given in the following sections. Next, we survey lattice QCD simulational studies of system with small chemical potentials, of which there have been several prominent works reported recently. Then, two-color QCD calculations are discussed, where we are free from the notorious phase problem and have a chance to consider many new features of finite density QCD. Of special note is the result of recent simulations indicating quark pair condensation and the in-medium effect. Tables of SU(3) and SU(2) lattice simulations at finite baryon density are given. In the next section, we survey several related works that may represent a starting point of future development, although some of these works have not attracted much attention yet. This material is described in a pedagogical manner. Starting from a simple 2-d model, we briefly discuss a lattice analysis of the NJL model. We describe a non-perturbative analytic approach, i.e., the strong coupling approximation method and some results. The canonical ensemble approach, instead of the usual canonical ensemble may be another route to reach high density. We examine the density of state method and show that this old idea includes the recently proposed factorization method. An alternative method, the complex Langevin equation, and an interesting model, the finite isospin model, are also discussed. We give brief comments on a partial sum with respect to Z 3 symmetry and the meron-cluster algorithm, which might solve the sign problem partially or completely. In the Appendix, we discuss several

  18. Precise magnetostatic field using the finite element method; Calculo de campos magnetostaticos com precisao utilizando o metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco Rogerio Teixeira do

    2013-07-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  19. Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems

    DEFF Research Database (Denmark)

    Clausen, Johan

    -Coulomb yield criterion and the corresponding plastic potential possess corners and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to these problems is presented in this thesis. The solution is based on a transformation into principal stress space and is valid for all...... linear isotropic plasticity models in which corners and apexes are encountered. The validity and merits of the proposed solution are examined in relation to the Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed method compares well with existing methods......-Brown material. The efficiency and validity are demonstrated by comparing the finite-element results with well-known solutions for simple geometries. A common geotechnical problem is the assessment of slope stability. For slopes with simple geometries and consisting of a linear Mohr-Coulomb material, this can...

  20. A note on TI-subgroups of finite groups

    Indian Academy of Sciences (India)

    A kernel and a complement of a quasi-Frobenius group G are the preimages of a kernel and a complement of the Frobenius group G/Z(G), respectively. Lemma 1.2 [1]. A group G is quasi-Frobenius if and only if G possesses a noncentral subgroup H such that H ∩ Hg ≤ Z(G) for all g ∈ G − H. In this case, H is a comple-.

  1. Axial anomaly at finite temperature and finite density

    International Nuclear Information System (INIS)

    Qian Zhixin; Su Rukeng; Yu, P.K.N.

    1994-01-01

    The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)

  2. Differential geometry of group lattices

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2003-01-01

    In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained

  3. q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity

    NARCIS (Netherlands)

    Atakishiyeva, M.K.; Atakishiyev, N.M.; Koornwinder, T.H.

    2009-01-01

    It is shown that the continuous q-Hermite polynomials for q, a root of unity, have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.

  4. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  5. Global and Local Mechanical Responses for Necking of Rectangular Bars Using Updated and Total Lagrangian Finite Element Formulations

    Directory of Open Access Journals (Sweden)

    Claudio A. Careglio

    2016-01-01

    Full Text Available In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.

  6. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    Science.gov (United States)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  7. Burnside structures of finite subgroups

    International Nuclear Information System (INIS)

    Lysenok, I G

    2007-01-01

    We establish conditions guaranteeing that a group B possesses the following property: there is a number l such that if elements w, x -1 wx,...,x -l+1 wx l-1 of B generate a finite subgroup G then x lies in the normalizer of G. These conditions are of a quite special form. They hold for groups with relations of the form x n =1 which appear as approximating groups for the free Burnside groups B(m,n) of sufficiently large even exponent n. We extract an algebraic assertion which plays an important role in all known approaches to substantial results on the groups B(m,n) of large even exponent, in particular, to proving their infiniteness. The main theorem asserts that when n is divisible by 16, B has the above property with l=6

  8. A complete classification of minimal non-PS-groups

    Indian Academy of Sciences (India)

    Abstract. Let G be a finite group. A subgroup H of G is called s-permutable in G if it permutes with every Sylow subgroup of G, and G is called a PS-group if all minimal subgroups and cyclic subgroups with order 4 of G are s-permutable in G. In this paper, we give a complete classification of finite groups which are not ...

  9. Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates

    Science.gov (United States)

    Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di

    2018-06-01

    This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.

  10. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  11. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  12. No-neighbours recurrence schemes for space-time Green's functions on a 3D simple cubic lattice

    NARCIS (Netherlands)

    De Hon, Bastiaan P.; Floris, Sander J.; Arnold, John M.

    2018-01-01

    Application of multivariate creative telescoping to a finite triple sum representation of the discrete space-time Green's function for an arbitrary numeric (non-symbolic) lattice point on a 3D simple cubic lattice produces a fast, no-neighbours, seventh-order, eighteenth-degree, discrete-time

  13. Necessity of Antibiotics following Simple Exodontia

    Directory of Open Access Journals (Sweden)

    Waqas Yousuf

    2016-01-01

    Full Text Available Introduction. The aim of our study is to assess the need for postoperative antibiotics following simple exodontia and determine its role in minimizing patient discomfort and postoperative complications. Material and Methods. All the patients undergoing simple extractions were grouped into two categories: Group 1, patients receiving antibiotics, and Group 2, patients receiving no antibiotics. Patients were recalled on the sixth day to assess postoperative complications. On recall, patients were evaluated for signs of persistent inflammation and signs of dry socket. Presence of persistent inflammation and/or suppuration on the 6th day was considered as wound infection. Results. A total of 146 patients were included in this study. Out of the total sample, 134 (91.8% presented with no postoperative complications and 12 (8.2% had postoperative complications, out of which 11 (7.5% patients presented with dry socket (alveolar osteitis, 5 (3.4% in the antibiotic group and 6 (4.1% in the nonantibiotic group. Only 1 patient (0.7% was reported with infection of the extraction socket in the nonantibiotic group, whereas no case of infection was found in the antibiotic group. Conclusion. Antibiotics are not required after simple extractions in patients who are not medically comprised nor do they have any role in preventing postoperative complications.

  14. Derived equivalences for group rings

    CERN Document Server

    König, Steffen

    1998-01-01

    A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Broué's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure". The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications.

  15. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  16. Representation theory of finite monoids

    CERN Document Server

    Steinberg, Benjamin

    2016-01-01

    This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional ...

  17. Non-perturbative analysis of some simple field theories on a momentum space lattice

    International Nuclear Information System (INIS)

    Brooks, E.D. III.

    1984-01-01

    In this work, a new technique is developed for the numerical study of quantum field theory. The procedure, borrowed from nonrelativistic quantum mechanics, is that of finding the eigenvalues of a finite Hamiltonian matrix. The matrix is created by evaluating the matrix elements of the Hamiltonian operator on a finite basis of states. The eigenvalues and eigenvectors of the finite dimensional matrix become an accurate approximation to those of the physical system as the finite basis of states is extended to become more complete. A model of scalars coupled to fermions in 0 + 1 dimensions as a simple field theory is studied to consider in the course of developing the technique. Having developed the numerical and analytical techniques, a Fermi field coupled to a Bose field in 1 + 1 dimensions with the Yukawa coupling lambda anti-psi phi psi is considered. The large coupling limit basis of the 0 + 1 dimensional model is extended to this case using a Bogoliubov transformation on the fermions. It provides a handle on the behavior of the system in the large coupling limit. The effects of renormalization and the generation of bound states are considered

  18. Groups, combinatorics and geometry

    CERN Document Server

    Ivanov, A A; Saxl, J

    2003-01-01

    Over the past 20 years, the theory of groups in particular simplegroups, finite and algebraic has influenced a number of diverseareas of mathematics. Such areas include topics where groups have beentraditionally applied, such as algebraic combinatorics, finitegeometries, Galois theory and permutation groups, as well as severalmore recent developments.

  19. Effects of traditional grammar teaching on standard six learners’ performance in understanding and using simple present tense, simple past tense, pronouns, and articles

    Directory of Open Access Journals (Sweden)

    Thulasimani Munohsamy

    2014-03-01

    Full Text Available This study sought to investigate whether there is any effect of the traditional grammar teaching on Standard Six learners’ performance in understanding and using simple present tense, simple past tense, pronouns and articles in writing. The sample for the study consisted of 40 Standard Six students of SK Tansau, Putatan, Kota Kinabalu, Sabah who was divided equally into two groups which were the treatment group and the control groups. Tests of understanding and of using the simple present tense, simple past tense, pronouns and articles were used as the instruments of the study. The data was collected through the administration of the pre-test and post-test. To analyze the collected data, the SPSS (Statistical Packages for Social Sciences version 11.5 was used. T-test was used to see if there was a significant difference in the mean of gain score. The Pearson Correlation was used on both tests between treatment group and control group to establish the relationship between scores on understanding and scores on using the grammatical features investigated. The study found that there was no significant difference in the mean of gain score in simple present tense, simple past tense and pronouns of the understanding test as well as writing test between the treatment and control groups. The results also indicated that there was no correlation between scores on test of understanding and test of using simple present tense, simple past tense, pronouns and articles on writing in the treatment group. There have been research studies in the past that lend clear cut support to the teaching of grammar as a mean of improving writing, however the results of this research clearly show that the implementation of Traditional Grammar Teaching has no effects on the students’ writing.

  20. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  1. LandScape: a simple method to aggregate p--Values and other stochastic variables without a priori grouping

    DEFF Research Database (Denmark)

    Wiuf, Carsten; Pallesen, Jonatan; Foldager, Leslie

    2016-01-01

    variables without assuming a priori defined groups. We provide different ways to evaluate the significance of the aggregated variables based on theoretical considerations and resampling techniques, and show that under certain assumptions the FWER is controlled in the strong sense. Validity of the method...... and the results might depend on the chosen criteria. Methods that summarize, or aggregate, test statistics or p-values, without relying on a priori criteria, are therefore desirable. We present a simple method to aggregate a sequence of stochastic variables, such as test statistics or p-values, into fewer...

  2. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. On some homological functors of a Bieberbach group with symmetric point group

    Science.gov (United States)

    Ting, Tan Yee; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah; Ladi, Nor Fadzilah Abdul

    2017-05-01

    Bieberbach groups with symmetric point group are polycyclic. The properties of the groups can be explored by computing their homological functors. In this paper, some homological functors of a Bieberbach group with symmetric point group, such as the Schur multiplier and the G-trivial subgroup of the nonabelian tensor square, are generalized up to finite dimension and are represented in the form of direct product of cyclic groups.

  4. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  5. Groebner Finite Path Algebras

    OpenAIRE

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  6. Height in splittings of hyperbolic groups

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of G. We choose a finite symmetric generating set for H and extend it to a finite ...... [10] Bonahon F, Geodesic currents on negatively curved groups, in: Arboreal ... [14] Canary R D, Epstein D B A and Green P, Notes on notes of Thurston, in: ...

  7. Simple expression for the quantum Fisher information matrix

    Science.gov (United States)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  8. Automorphisms of free groups with boundaries

    DEFF Research Database (Denmark)

    A. Jensen, Craig; Wahl, Nathalie

    2004-01-01

    The automorphisms of free groups with boundaries form a family of groups A_{n,k} closely related to mapping class groups, with the standard automorphisms of free groups as A_{n,0} and (essentially) the symmetric automorphisms of free groups as A_{0,k}. We construct a contractible space L_{n,k} on......The automorphisms of free groups with boundaries form a family of groups A_{n,k} closely related to mapping class groups, with the standard automorphisms of free groups as A_{n,0} and (essentially) the symmetric automorphisms of free groups as A_{0,k}. We construct a contractible space L......_{n,k} on which A_{n,k} acts with finite stabilizers and finite quotient space and deduce a range for the virtual cohomological dimension of A_{n,k}. We also give a presentation of the groups and calculate their first homology group....

  9. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  10. Finite volume form factors in the presence of integrable defects

    International Nuclear Information System (INIS)

    Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.

    2014-01-01

    We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found

  11. Gluon and ghost correlation functions of 2-color QCD at finite density

    Science.gov (United States)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  12. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  13. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  14. Finite element analysis of the axisymmetric electromagnetic oscillations in the PHERMEX machine

    International Nuclear Information System (INIS)

    Fugelso, E.; Cook, W.A.

    1977-01-01

    The calculation of the electromagnetic field, characteristic frequency, and loss factors for the TM 010 mode of operation of the PHERMEX machine, a three-cavity, linear electron accelerator, were carried out using the finite element method. Perturbations from the simple, closed cylindrical shape cause changes in the electromagnetic field distribution and in the fundamental frequency, which will affect the electron-beam dynamics and the energy transfer to the beam. Cavity loss factors are essentially unaltered

  15. Preisach hysteresis implementation in reluctance network method, comparison with finite element method

    OpenAIRE

    Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.

    2008-01-01

    International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...

  16. The Determining Finite Automata Process

    Directory of Open Access Journals (Sweden)

    M. S. Vinogradova

    2017-01-01

    Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.

  17. Finite Volume Methods for Incompressible Navier-Stokes Equations on Collocated Grids with Nonconformal Interfaces

    DEFF Research Database (Denmark)

    Kolmogorov, Dmitry

    turbine computations, collocated grid-based SIMPLE-like algorithms are developed for computations on block-structured grids with nonconformal interfaces. A technique to enhance both the convergence speed and the solution accuracy of the SIMPLE-like algorithms is presented. The erroneous behavior, which...... versions of the SIMPLE algorithm. The new technique is implemented in an existing conservative 2nd order finite-volume scheme flow solver (EllipSys), which is extended to cope with grids with nonconformal interfaces. The behavior of the discrete Navier-Stokes equations is discussed in detail...... Block LU relaxation scheme is shown to possess several optimal conditions, which enables to preserve high efficiency of the multigrid solver on both conformal and nonconformal grids. The developments are done using a parallel MPI algorithm, which can handle multiple numbers of interfaces with multiple...

  18. Radiation transport benchmarks for simple geometries with void regions using the spherical harmonics method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    2009-01-01

    In 2001, an international cooperation on the 3D radiation transport benchmarks for simple geometries with void region was performed under the leadership of E. Sartori of OECD/NEA. There were contributions from eight institutions, where 6 contributions were by the discrete ordinate method and only two were by the spherical harmonics method. The 3D spherical harmonics program FFT3 by the finite Fourier transformation method has been improved for this presentation, and benchmark solutions for the 2D and 3D simple geometries with void region by the FFT2 and FFT3 are given showing fairly good accuracy. (authors)

  19. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  20. Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements

    Directory of Open Access Journals (Sweden)

    James H. Haido

    2014-08-01

    Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.

  1. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.

    1990-01-01

    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  2. A simple argument for confinement in the large N limit of SU(N)

    International Nuclear Information System (INIS)

    Durhuus, B.; Olesen, P.

    1981-03-01

    Using rather general assumptions it is shown that the QCD vacuum consists of a condensate of color magnetic vortices in the large N limit of the SU(N) gauge group. In this argument it is important that the gauge group has a non-trivial center. Some observations are also made on the finite N case in the strong coupling lattice gauge theory, and it is shown that there is much similarity between N=infinity and N finite. (Auth.)

  3. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.

    Science.gov (United States)

    Keegan, Lindsay; Dushoff, Jonathan

    2014-05-01

    The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.

  4. A multigrid algorithm for the cell-centered finite difference scheme

    Science.gov (United States)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  5. The Use of Finite Fields and Rings to Compute Convolutions

    Science.gov (United States)

    1975-06-06

    showed in Ref. 1 that the convolution of two finite sequences of integers (a, ) and (b, ) for k = 1, 2, . . ., d can be obtained as the inverse transform of...since the T.’S are all distinct. Thus T~ exists and (7) can be solved as a = T A the inverse " transform .𔃻 Next let us impose on (7) the...the inverse transform d-1 Cn= (d) I Cka k=0 If an a can be found so that multiplications by powers of a are simple in hardware, the

  6. Architects of symmetry in finite nonabelian groups

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Somer, L.

    2010-01-01

    Roč. 21, č. 4 (2010), s. 307-319 ISSN 0865-4824 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : Abel Prize * sporadic groups * monster Subject RIV: BA - General Mathematics

  7. A simple model for the pressure field from a distribution of hotspots

    International Nuclear Information System (INIS)

    Lambourn, B D; Lacy, H J; Handley, C A; James, H R

    2014-01-01

    At the APS SCCM in 2009, Hill, Zimmermann and Nichols showed that assuming burn fronts propagate at constant speed from individual point hotspots distributed randomly in a volume, the reaction rate history could be determined. In this paper a simple analytic approximation is found for the time history of the pressure in the volume. Using acoustic theory, the time history of the pressure field for burning from a single spherical, isolated hotspot of finite radius is developed. Then at any point in the volume, the overall pressure history is determined from the sum of the pressure fields from all the individual hotspots. The results are shown to be in qualitative agreement with 1D mesoscale hydrocode calculations of the reaction and burning from a finite size spherical hotspot.

  8. Finite element analysis of the neutron transport equation in spherical geometry

    International Nuclear Information System (INIS)

    Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong

    1992-01-01

    The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)

  9. A finite landscape?

    International Nuclear Information System (INIS)

    Acharya, B.S.; Douglas, M.R.

    2006-06-01

    We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)

  10. Fractional finite Fourier transform.

    Science.gov (United States)

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  11. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  12. Eigenvalue solutions in finite element thermal transient problems

    International Nuclear Information System (INIS)

    Stoker, J.R.

    1975-01-01

    The eigenvalue economiser concept can be useful in solving large finite element transient heat flow problems in which the boundary heat transfer coefficients are constant. The usual economiser theory is equivalent to applying a unit thermal 'force' to each of a small sub-set of nodes on the finite element mesh, and then calculating sets of resulting steady state temperatures. Subsequently it is assumed that the required transient temperature distributions can be approximated by a linear combination of this comparatively small set of master temperatures. The accuracy of a reduced eigenvalue calculation depends upon a good choice of master nodes, which presupposes at least a little knowledge about what sort of shape is expected in the unknown temperature distributions. There are some instances, however, where a reasonably good idea exists of the required shapes, permitting a modification to the economiser process which leads to greater economy in the number of master temperatures. The suggested new approach is to use manually prescribed temperature distributions as the master distributions, rather than using temperatures resulting from unit thermal forces. Thus, with a little pre-knowledge one may write down a set of master distributions which, as a linear combination, can represent the required solution over the range of interest to a reasonable engineering accuracy, and using the minimum number of variables. The proposed modified eigenvalue economiser technique then uses the master distributions in an automatic way to arrive at the required solution. The technique is illustrated by some simple finite element examples

  13. On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity

    OpenAIRE

    Atakishiyeva, Mesuma K.; Atakishiyev, Natig M.; Koornwinder, Tom H.

    2008-01-01

    It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.

  14. A non-reflecting boundary for use in a finite element beam model of a railway track

    Science.gov (United States)

    Yang, Jiannan; Thompson, David J.

    2015-02-01

    Some beam-like structures such as a railway track are effectively infinite in nature. Analytical solutions exist for simple structures but numerical methods like the finite element (FE) method are often employed to study more complicated problems. However, when the FE method is used for structures of infinite extent it is essential to introduce artificial boundaries to limit the area of computation. Here, a non-reflecting boundary is developed using a damped tapered tip for application in a finite element model representing an infinite supported beam. The FE model of the tapered tip is validated against an analytical model based on Bessel functions. The reflection characteristics of the FE tapered tip are quantified using a wave/FE superposition method. It is shown that the damped tapered tip is much more effective than its constant counterpart and achieves reduction of the model size. The damped tapered tip is applied to a simple FE railway track model and good agreement is found when its point mobility is compared with an analytical infinite track model.

  15. Groups acting on CAT(0) cube complexes

    OpenAIRE

    Niblo, Graham A.; Reeves, Lawrence

    1997-01-01

    We show that groups satisfying Kazhdan's property (T) have no unbounded actions on finite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(-1) Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally CAT(0) cube complex.

  16. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  17. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  18. A note on conjugacy classes of finite groups

    Indian Academy of Sciences (India)

    A group G is called a rational group if every element x of G is conjugate to xm, where m is a natural number coprime to |x|. By Re(G) we denote the set of all real elements of G and by (G) we denote the set of all the primes dividing the order of G. By F(G) we denote the fitting subgroup of G and Op(G) denotes the unique ...

  19. Discrete memory schemes for finite strain thermoplasticity and application to shape memory alloys

    International Nuclear Information System (INIS)

    Favier, D.; Guelin, P.; Pegon, P.; Nowacki, W.K.

    1987-01-01

    A theory of finite strain plasticity has been proposed: The scheme of pure hysteresis with mixed transport has been extended to the case of non-rotational kinematics. Secondly, the simple shear case has been studied, taking into account Drucker's recent analysis regarding the 'appropriate simple idealizations for finite plasticity'. Illustrations are provided for general stress/strain paths. Also a new theory of isotropic hyperelasticity has been proposed. The 'reversible' relative Cauchy stress tensor (of type (1,1) and weight one) is defined in the dragged along coordinates as a tensorial isotropic function of the Almansi tensor and of its invariants (through the partial derivatives of the actual scalar density of elastic energy per unit extent of dragged along coordinates). The correspondance between strain and stress paths is then defined in a general form which is particularly convenient for the study of first order effects, limit behaviours, coupling and second order effects. Illustrations are provided. The addition of the pure hysteresis stress contribution σ a and of the reversible contribution σ rev leads to a scheme of 'superelasticity' departure to obtain a provisional scheme of shape memory effects. Some remarks are given regarding some of the possible generalizations of the scheme. (orig./GL)

  20. Finite rotation shells basic equations and finite elements for Reissner kinematics

    CERN Document Server

    Wisniewski, K

    2010-01-01

    This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.

  1. Exact ground state of finite Bose-Einstein condensates on a ring

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2005-01-01

    The exact ground state of the many-body Schroedinger equation for N bosons on a one-dimensional ring interacting via a pairwise δ-function interaction is presented for up to 50 particles. The solutions are obtained by solving Lieb and Liniger's system of coupled transcendental equations numerically for finite N. The ground-state energies for repulsive and attractive interactions are shown to be smoothly connected at the point of zero interaction strength, implying that the Bethe ansatz can be used also for attractive interactions for all cases studied. For repulsive interactions the exact energies are compared to (i) Lieb and Liniger's thermodynamic limit solution and (ii) the Tonks-Girardeau gas limit. It is found that the energy of the thermodynamic limit solution can differ substantially from that of the exact solution for finite N when the interaction is weak or when N is small. A simple relation between the Tonks-Girardeau gas limit and the solution for finite interaction strength is revealed. For attractive interactions we find that the true ground-state energy is given to a good approximation by the energy of the system of N attractive bosons on an infinite line, provided the interaction is stronger than the critical interaction strength of mean-field theory

  2. Fluid boundary of a viscoplastic Bingham flow for finite solid deformations

    OpenAIRE

    Thual , Olivier; Lacaze , Laurent

    2010-01-01

    International audience; The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a "plastic rule function" often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deform...

  3. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  4. Finite element formulation for fluid-structure interaction in three-dimensional space

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading

  5. Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation

    Science.gov (United States)

    Fanto, P.

    2017-11-01

    The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.

  6. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  7. Finite element analysis on the electromagnetic fields of active magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, S; Liu, J [School of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110168 (China); Bian, C [Institute of Information Science and Engineering, Northeastern University, Shenyang, 110004 (China)], E-mail: renshy@sina.com

    2008-02-15

    To increase the carrying capacity and reduce the weight and size of AMBs, it is necessary to use a ferromagnetic material with high magnetic flux density, which can make AMBs run in the nonlinear region. The simple linear model before is not gratifying, so some more precise analysis methods are demanded, the finite element method(shorted as FEM) is one of such methods. In this paper, the mathematic model and the simplified calculation of AMB rotor are introduced, and the finite elemental model and its boundary condition are produced. Then, the coupling phenomena of the magnetic fields and the effects of different parameters on the magnetic fields of AMB with a non-homocentric rotor are simulated using the FEM analysis software of ANSYS. The distributions of 2D magnetic lines of force and the flux density in rotor and stator are given. The conclusions are of instructed meaning for the design of AMBs.

  8. Finite element analysis on the electromagnetic fields of active magnetic bearing

    International Nuclear Information System (INIS)

    Ren, S; Liu, J; Bian, C

    2008-01-01

    To increase the carrying capacity and reduce the weight and size of AMBs, it is necessary to use a ferromagnetic material with high magnetic flux density, which can make AMBs run in the nonlinear region. The simple linear model before is not gratifying, so some more precise analysis methods are demanded, the finite element method(shorted as FEM) is one of such methods. In this paper, the mathematic model and the simplified calculation of AMB rotor are introduced, and the finite elemental model and its boundary condition are produced. Then, the coupling phenomena of the magnetic fields and the effects of different parameters on the magnetic fields of AMB with a non-homocentric rotor are simulated using the FEM analysis software of ANSYS. The distributions of 2D magnetic lines of force and the flux density in rotor and stator are given. The conclusions are of instructed meaning for the design of AMBs

  9. Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions

    International Nuclear Information System (INIS)

    Carpenter, D.C.

    1997-01-01

    Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions

  10. Ancestral Relationships Using Metafounders: Finite Ancestral Populations and Across Population Relationships.

    Science.gov (United States)

    Legarra, Andres; Christensen, Ole F; Vitezica, Zulma G; Aguilar, Ignacio; Misztal, Ignacy

    2015-06-01

    Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a "metafounder," a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group." Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. Copyright © 2015 by the Genetics Society of America.

  11. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  12. Development of a partitioned finite volume-finite element fluid-structure interaction scheme for strongly-coupled problems

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2012-07-01

    Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...

  13. Hypercontractivity in group Von Neumann algebras

    CERN Document Server

    Junge, Marius; Parcet, Javier

    2017-01-01

    In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \\to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \\to L_q hypercontrativity for 1 < p \\le q < \\infty via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part-which varies from one group to another-is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) L_p \\to L_q hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a condit...

  14. On derived groups of division rings II

    International Nuclear Information System (INIS)

    Mahdavi Hezavehi, M.; Akbari Feyzaabaadi, S.; Mehraabaadi, M.; Hajie Abolhassan, H.

    1995-05-01

    Let D be a division ring with centre F and denote by D' the derived group (commutator subgroup) of D * = D - {0}. It is shown that if each element of D' is algebraic over F, then D is algebraic over F. It is also proved that each finite separable extension of F in D is of the form F(c) for some element c in the derived group D'. Using these results, it is shown that if each element of the derived group D' is of bounded degree over F, then D is finite dimensional over F. (author). 5 refs

  15. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  16. RATIO ESTIMATORS FOR THE CO-EFFICIENT OF VARIATION IN A FINITE POPULATION

    Directory of Open Access Journals (Sweden)

    Archana V

    2011-04-01

    Full Text Available The Co-efficient of variation (C.V is a relative measure of dispersion and is free from unit of measurement. Hence it is widely used by the scientists in the disciplines of agriculture, biology, economics and environmental science. Although a lot of work has been reported in the past for the estimation of population C.V in infinite population models, they are not directly applicable for the finite populations. In this paper we have proposed six new estimators of the population C.V in finite population using ratio and product type estimators. The bias and mean square error of these estimators are derived for the simple random sampling design. The performance of the estimators is compared using a real life dataset. The ratio estimator using the information on the population C.V of the auxiliary variable emerges as the best estimator

  17. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    Science.gov (United States)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  18. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    Directory of Open Access Journals (Sweden)

    Szafran J.

    2017-02-01

    Full Text Available The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  19. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    Science.gov (United States)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-03-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  20. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-01-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  1. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan; MI Dong

    2004-01-01

    In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.

  2. Comprehensive gyrokinetic simulation of tokamak turbulence at finite relative gyroradius

    International Nuclear Information System (INIS)

    Waltz, R.E.; Candy, J.; Rosenbluth, M.N.

    2003-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization effects which break gyro Bohm scaling. The code operates in a cyclic flux tube limit which allows only gyro Bohm scaling and a noncylic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyro Bohm scaling paradigm of Garbet and Waltz [Phys. Plasmas 3, 1898 (1996)]. Since broken gyro Bohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D ρ*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm. (author)

  3. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  4. Finite fields and applications

    CERN Document Server

    Mullen, Gary L

    2007-01-01

    This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...

  5. On finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  6. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  7. The adjoint string at finite temperature

    International Nuclear Information System (INIS)

    Damgaard, P.H.

    1986-10-01

    Expectations for the behavior of the adjoint string at finite temperature are presented. In the Migdal-Kadanoff approximation a real-space renormalization group study of the effective Polyakov like action predicts a deconfinement-like crossover for adjoint sources at a temperature slightly below the deconfinement temperature of fundamental sources. This prediction is compared with a Monte Carlo simulation of SU(2) lattice gauge theory on an 8 3 x2 lattice. (orig.)

  8. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  9. Locally Simple Models Construction: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    I. A. Kazakov

    2017-12-01

    Full Text Available One of the most notable trends associated with the Fourth industrial revolution is a significant strengthening of the role played by semantic methods. They are engaged in artificial intelligence means, knowledge mining in huge flows of big data, robotization, and in the internet of things. Smart contracts also can be mentioned here, although the ’intelligence’ of smart contracts still needs to be seriously elaborated. These trends should inevitably lead to an increased role of logical methods working with semantics, and significantly expand the scope of their application in practice. However, there are a number of problems that hinder this process. We are developing an approach, which makes the application of logical modeling efficient in some important areas. The approach is based on the concept of locally simple models and is primarily focused on solving tasks in the management of enterprises, organizations, governing bodies. The most important feature of locally simple models is their ability to replace software systems. Replacement of programming by modeling gives huge advantages, for instance, it dramatically reduces development and support costs. Modeling, unlike programming, preserves the explicit semantics of models allowing integration with artificial intelligence and robots. In addition, models are much more understandable to general people than programs. In this paper we propose the implementation of the concept of locally simple modeling on the basis of so-called document models, which has been developed by us earlier. It is shown that locally simple modeling is realized through document models with finite submodel coverages. In the second part of the paper an example of using document models for solving a management problem of real complexity is demonstrated.

  10. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2009-07-21

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  11. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    International Nuclear Information System (INIS)

    Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel

    2009-01-01

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  12. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  13. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  14. Simple mathematical models of symmetry breaking. Application to particle physics

    International Nuclear Information System (INIS)

    Michel, L.

    1976-01-01

    Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)

  15. Sutura simples e âncora em quadris de coelhos Simple suture and anchor in rabbit hips

    Directory of Open Access Journals (Sweden)

    Fernando Cal Garcia Filho

    2012-01-01

    Full Text Available OBJETIVO: Por meio de ensaios biomecânicos, comparar as capsulorrafias com sutura simples e com âncoras, em quadris de coelhos. MÉTODO: Foram utilizados 13 coelhos, 26 quadris, todos machos da raça Nova Zelândia albinos (Oryctolaguscuniculus. Inicialmente, realizamos um projeto piloto em três coelhos (seis quadris. Este experimento constou de 10 coelhos, divididos em 2 grupos: o Grupo 1 submetido à capsulorrafia (quadris direito e esquerdo com sutura simples utilizando fio absorvível de ácido poliglicólico e o Grupo 2 submetido a capsulorrafia (quadris direito e esquerdo com âncora de titânio. Após o período de quatro semanas de operados, todos animais foram submetidos à eutanásia e seus quadris congelados. Após um descongelamento prévio das peças, no mesmo dia das análises biomecânicas, foram avaliados os parâmetros de rigidez, força máxima, deformidade máxima e energia. RESULTADOS: Não houve diferença estatisticamente significante em relação à força no limite de proporcionalidade, rigidez e força máxima entre os grupos com sutura simples e com âncora. CONCLUSÃO: Por meio dos ensaios biomecânicos, tendo como parâmetro a rigidez, a força máxima, a deformidade máxima e a energia, ficou demonstrado que as capsulorrafias em quadris de coelhos com sutura simples e com âncora são semelhantes entre si. Nível de Evidência II, Estudo Prospectivo Comparativo.OBJECTIVE: Using biomechanical studies, this research aims to compare hip capsulorrhaphy in rabbits, carried out with two different techniques: capsulorrhaphy with simple sutures and with anchors. METHOD: Thirteen New Zealand Albino (Oryctolaguscuniculus male rabbits, twenty-six hip joints, were used. First, a pilot project was performed with three rabbits (six hip joints. This experiment consisted of ten rabbits divided into two groups: group 1 underwent capsulorrhaphy on both right and left hips with simple suture using polyglycolic acid absorbable thread

  16. Employing finite-state machines in data integrity problems

    Directory of Open Access Journals (Sweden)

    Malikov Andrey

    2016-01-01

    Full Text Available This paper explores the issue of group integrity of tuple subsets regarding corporate integrity constraints in relational databases. A solution may be found by applying the finite-state machine theory to guarantee group integrity of data. We present a practical guide to coding such an automaton. After creating SQL queries to manipulate data and control its integrity for real data domains, we study the issue of query performance, determine the level of transaction isolation, and generate query plans.

  17. Linear deformations of discrete groups and constructions of multivalued groups

    International Nuclear Information System (INIS)

    Yagodovskii, Petr V

    2000-01-01

    We construct deformations of discrete multivalued groups described as special deformations of their group algebras in the class of finite-dimensional associative algebras. We show that the deformations of ordinary groups producing multivalued groups are defined by cocycles with coefficients in the group algebra of the original group and obtain classification theorems on these deformations. We indicate a connection between the linear deformations of discrete groups introduced in this paper and the well-known constructions of multivalued groups. We describe the manifold of three-dimensional associative commutative algebras with identity element, fixed basis, and a constant number of values. The group algebras of n-valued groups of order three (three-dimensional n-group algebras) form a discrete set in this manifold

  18. Finiteness Marking in Boys with Fragile X Syndrome

    Science.gov (United States)

    Sterling, Audra M.; Rice, Mabel L.; Warren, Steven F.

    2012-01-01

    Purpose: The current study investigated finiteness marking (e.g., he walk "s", he walk "ed") in boys with fragile X syndrome (FXS); the boys were grouped based on receptive vocabulary (i.e., borderline, impaired). Method: Twenty-one boys with the full mutation of fragile X, between the ages of 8 and 16 years participated. The…

  19. Some aspects of the quality assurance of personnel carrying out finite element analysis

    International Nuclear Information System (INIS)

    Dickenson, P.W.

    1990-01-01

    In this paper, the need to assess the competence of personnel carrying out finite element analysis is emphasised. In carrying out its regulatory role on behalf of the Health and Safety Executive, the Nuclear Installations Inspectorate (NII) must be satisfied that appropriate standards are developed and maintained by the licensee. Since finite element methods have an important bearing on the acceptance of a safety case, it follows that relevant codes should be adequately validated and the personnel applying the code should be competent. Attention is drawn to the work of the Quality Assurance Working Group of the National Agency for Finite Element Methods and Standards (NAFEMS) who are active in this area. The paper also considers the methods that are available to assess the competence of personnel engaged in finite element methods. (author)

  20. A matrix S for all simple current extensions

    International Nuclear Information System (INIS)

    Fuchs, J.; Schellekens, A.N.; Schweigert, C.

    1996-01-01

    A formula is presented for the modular transformation matrix S for any simple current extension of the chiral algebra of a conformal field theory. This provides in particular an algorithm for resolving arbitrary simple current fixed points, in such a way that the matrix S we obtain is unitary and symmetric and furnishes a modular group representation. The formalism works in principle for any conformal field theory. A crucial ingredient is a set of matrices S ab J , where J is a simple current and a and b are fixed points of J. We expect that these input matrices realize the modular group for the torus one-point functions of the simple currents. In the case of WZW-models these matrices can be identified with the S-matrices of the orbit Lie algebras that were introduced recently. As a special case of our conjecture we obtain the modular matrix S for WZW-theories based on group manifolds that are not simply connected, as well as for most coset models. (orig.)

  1. Simple Solutions for Dry Eye

    Science.gov (United States)

    Patient Education Sheet Simple Solutions for Dry Eye The SSF thanks J. Daniel Nelson, MD, Associate Medical Director, Specialty Care HealthPartners Medical Group & Clinics, and Professor of Ophthalmology, University of ...

  2. Real-time finite-temperature correlators from AdS/CFT

    International Nuclear Information System (INIS)

    Barnes, Edwin; Vaman, Diana; Wu Chaolun; Arnold, Peter

    2010-01-01

    In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N=4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green's correlator. We then note that this particular prescription amounts to adapting the finite-temperature analog of Veltman's circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger identities, the largest time equation, and the zero-temperature limit. When specializing to a particular retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity, since the retarded n-point functions are obtained by analytic continuation from the imaginary-time Green's function, and based on causality considerations.

  3. A simple method for one-loop renormalization in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@uis.no [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2013-08-01

    We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.

  4. Finite-dimensional calculus

    International Nuclear Information System (INIS)

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  5. Application of the finite element method to neutronics problems with inhomogeneous boundray conditions

    International Nuclear Information System (INIS)

    Yoo, K.J.

    1982-01-01

    The albedo boundary conditions are incorporated into the finite element method using bicubic Hermite element functions in order to reduce the computer memory and computation time in two-group diffusion calculations by excluding the reflector regions in computation space. The basis functions at the core-reflector interfaces are newly established to satisfy the albedo boundary conditions, and then the ''weak'' form of two-group diffusion equations is discretized using the principle of the weighted residual method in combination with the Galerkin approximation. The discretized two-group diffusion equation is then solved by the Gaussian elimination method with the scaled column pivoting algorithm in one-dimensional problem and Gauss-Seidel method in two-dimensional problem. Prior to the application of the method to two-group diffusion problems, the same method is applied to the one-speed neutron transport equation in a bare slab reactor with the vacuum boundary condition to confirm its usefulness in the diffusion calculations. To investigate the applicability of our diffusion method, several numerical calculations are performed: two-dimensional IAEA benchmark problem and two-dimensional ZION problem. The results are compared with the available results from the conventional finite difference and other finite element methods. If the albedo values are appropriately adjusted, our results of the two-dimensional IAEA benchmark problem are agreed within 0.002% of ksub(eff) with the fine mesh PDQ results. Comparing with CITATION results, one-eighth of core memory and one-fifteenth of computing time are required to obtain the same accuracy even though no acceleration technique is used in the present case. Also, it is found that the results are comparable with the other finite element results. However, no significant saving is obtained in computation time comparing with the other finite element results, where the reflector regions are explicity included. This mainly comes from

  6. An outgoing energy flux boundary condition for finite difference ICRP antenna models

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.

    1992-11-01

    For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods

  7. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material.

    Science.gov (United States)

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa

    2014-11-01

    Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.

  8. Review of the modified finite particle method and application to incompressible solids

    Directory of Open Access Journals (Sweden)

    D Asprone

    2016-10-01

    Full Text Available This paper focuses on the application of the Modified Finite Particle Method (MFPM on incompressibile elasticity problems. MFPM belongs to the class of meshless methods, nowadays widely investigated due to their characteristics of being totally free of any kind of grid or mesh. This characteristic makes meshless methods potentially useful for the study of large deformations problems and fluid dynamics. In particular, the aim of the work is to compare the results obtained with a simple displacement-based formulation, in the limit of incompressibility, and some formulations proposed in the literature for full incompressibility, where the typical divergence-free constraint is replaced by a different equation, the so-called Pressure Poisson Equation. The obtained results show that the MFPM achieves the expected second-order accuracy on formulation where the equations imposed as constraint satisfies also the original incompressibility equation. Other formulations, differently, do not satisfy the incompressibility constraint, and thus, they are not successfully applicable with the Modified Finite Particle Method.

  9. Finite element analysis of beam-to-column joints in steel frames under cyclic loading

    Directory of Open Access Journals (Sweden)

    Elsayed Mashaly

    2011-03-01

    Full Text Available The aim of this paper is to present a simple and accurate three-dimensional (3D finite element model (FE capable of predicting the actual behavior of beam-to-column joints in steel frames subjected to lateral loads. The software package ANSYS is used to model the joint. The bolted extended-end-plate connection was chosen as an important type of beam–column joints. The extended-end-plate connection is chosen for its complexity in the analysis and behavior due to the number of connection components and their inheritable non-linear behavior. Two experimental tests in the literature were chosen to verify the finite element model. The results of both the experimental and the proposed finite element were compared. One of these tests was monotonically loaded, whereas the second was cyclically loaded. The finite element model is improved to enhance the defects of the finite element model used. These defects are; the long time need for the analysis and the inability of the contact element type to follow the behavior of moment–rotation curve under cyclic loading. As a contact element, the surface-to-surface element is used instead of node-to-node element to enhance the model. The FE results show good correlation with the experimental one. An attempt to improve a new technique for modeling bolts is conducted. The results show that this technique is supposed to avoid the defects above, give much less elements number and less solution time than the other modeling techniques.

  10. The unit group of group algebra $F_qSL(2;Z_3$

    Directory of Open Access Journals (Sweden)

    Swati Maheshwari

    2016-01-01

    Full Text Available Let $\\F_q$ be a finite field of characteristic $p$ having $q$ elements, where $q = p^k$ and $p\\ge 5$. Let $ SL(2,\\Z_3$ be the special linear group of $2\\times2$ matrices with determinant $1$ over $\\Z_3$. In this note we establish the structure of the unit group of $\\F_q SL(2,\\Z_3$.

  11. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and Nc with P(article) D(ata) G(roup) values

    International Nuclear Information System (INIS)

    Yadav, Vikas; Sil, Karunava; Misra, Aalok

    2017-01-01

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N c = number of D5(D5)-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi:10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large-N suppressed decrease in vector meson mass with increase of temperature. (orig.)

  12. An accurate approximate solution of optimal sequential age replacement policy for a finite-time horizon

    International Nuclear Information System (INIS)

    Jiang, R.

    2009-01-01

    It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.

  13. Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods

    OpenAIRE

    Laadhari , Aymen; Saramito , Pierre; Misbah , Chaouqi

    2014-01-01

    International audience; The numerical simulation of the deformation of vesicle membranes under simple shear external fluid flow is considered in this paper. A new saddle-point approach is proposed for the imposition of the fluid incompressibility and the membrane inextensibility constraints, through Lagrange multipliers defined in the fluid and on the membrane respectively. Using a level set formulation, the problem is approximated by mixed finite elements combined with an automatic adaptive ...

  14. Computations of finite temperature QCD with the pseudofermion method

    International Nuclear Information System (INIS)

    Fucito, F.; Solomon, S.

    1985-01-01

    The authors discuss the phase diagram of finite temperature QCD as it is obtained including the effects of dynamical quarks by the pseudofermion method. They compare their results with the results obtained by other groups and comment on the actual state of the art for these kind of computations

  15. Finite-strain analysis of Metavolcano-sedimentary rocks at Gabel El Mayet area, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2010-09-01

    Finite strain was estimated in the metavolcano-sedimentary rocks, which surround by serpentinites of Gabel El Mayet area. Finite strain shows a relationship to nappe contacts between the metavolcano-sedimentary rocks and serpentinite and sheds light on the nature of the subhorizontal foliation typical for the Gable Mayet shear zone. We used the Rf/ ϕ and Fry methods on feldspar porphyroclasts and mafic grains from 10 metasedimentary and six metavolcanic samples in Gabel El Mayet region. Our finite-strain data show that the metavolcano-sedimentary rocks were moderately deformed and axial ratios in the XZ section range from 1.9 to 3.9. The long axes of the finite-strain ellipsoids trend W/WNW in the north and W/WSW in the south of the Gabel El Mayet shear zone. Furthermore, the short axes are subvertical to a subhorizontal foliation. The strain magnitudes increase towards the tectonic contacts between the metavolcano-sedimentary rocks and serpentinite. The data indicate oblate strain symmetry in the metavolcano-sedimentary rocks. Hence, our strain data also indicate flattening strain. We assume that the metasedimentary and metavolcanics rocks have similar deformation behaviour. The fact that finite strain accumulated during the metamorphism indicates that the nappe contacts formed during the accumulation of finite strain and thus during thrusting. We conclude that the nappe contacts formed during progressive thrusting under brittle to semi-brittle deformation conditions by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gabel El Mayet shear zone.

  16. How to use the Fast Fourier Transform in Large Finite Fields

    OpenAIRE

    Petersen, Petur Birgir

    2011-01-01

    The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.

  17. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    Directory of Open Access Journals (Sweden)

    Maziar Heidari

    2018-03-01

    Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

  18. Group theory I essentials

    CERN Document Server

    Milewski, Emil G

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Group Theory I includes sets and mapping, groupoids and semi-groups, groups, isomorphisms and homomorphisms, cyclic groups, the Sylow theorems, and finite p-groups.

  19. simple sequence repeat (SSR)

    African Journals Online (AJOL)

    In the present study, 78 mapped simple sequence repeat (SSR) markers representing 11 linkage groups of adzuki bean were evaluated for transferability to mungbean and related Vigna spp. 41 markers amplified characteristic bands in at least one Vigna species. The transferability percentage across the genotypes ranged ...

  20. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  1. Finite GUE Distribution with Cut-Off at a Shock

    Science.gov (United States)

    Ferrari, P. L.

    2018-03-01

    We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unlike in previous papers, we describe the correlation in space-time without employing the mapping to the last passage percolation, which fails to exists already for the partially asymmetric model. We then consider a special case, where the asymptotic distribution is a cut-off of the distribution of the largest eigenvalue of a finite GUE matrix. Finally we discuss the strength of the probabilistic and physically motivated approach and compare it with the mathematical difficulties of a direct computation.

  2. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  3. On conjugacy growth of linear groups

    OpenAIRE

    Breuillard, Emmanuel; de Cornulier, Yves; Lubotzky, Alexander; Meiri, Chen

    2011-01-01

    We investigate the conjugacy growth of finitely generated linear groups. We show that finitely generated non-virtually-solvable subgroups of GL_d have uniform exponential conjugacy growth and in fact that the number of distinct polynomials arising as characteristic polynomials of the elements of the ball of radius n for the word metric has exponential growth rate bounded away from 0 in terms of the dimension d only.

  4. QCD and instantons at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Pisarski, R.D.; Yaffe, L.G.

    1981-01-01

    The current understanding of the behavior of quantum chromodynamics at finite temperature is presented. Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks down. The topological classification of finite-energy, periodic fields is presented and the classical solutions which minimize the action in each topological sector are examined. These include periodic instantons and magnetic monopoles. At sufficiently high temperature only fields with integral topological charge can contribute to the functional integral. Electric screening completely suppresses the contribution of fields with nonintegral topological charge. Consequently the theta dependence of the free energy at high temperature is dominated by the contribution of instantons. The complete temperature dependence of the instanton density is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low temperature, and to estimate the transition temperature

  5. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  6. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    Science.gov (United States)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  7. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANGDian-Fu; SONGHe-Shan; MIDong

    2004-01-01

    In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.

  8. New construction of quantum error-avoiding codes via group representation of quantum stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hailin [Wenzhou University, College of Physics and Electronic Information Engineering, Wenzhou (China); Southeast University, National Mobile Communications Research Laboratory, Nanjing (China); Guilin University of Electronic Technology, Ministry of Education, Key Laboratory of Cognitive Radio and Information Processing, Guilin (China); Zhang, Zhongshan [University of Science and Technology Beijing, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Beijing (China); Chronopoulos, Anthony Theodore [University of Texas at San Antonio, Department of Computer Science, San Antonio, TX (United States)

    2017-10-15

    In quantum computing, nice error bases as generalization of the Pauli basis were introduced by Knill. These bases are known to be projective representations of finite groups. In this paper, we propose a group representation approach to the study of quantum stabilizer codes. We utilize this approach to define decoherence-free subspaces (DFSs). Unlike previous studies of DFSs, this type of DFSs does not involve any spatial symmetry assumptions on the system-environment interaction. Thus, it can be used to construct quantum error-avoiding codes (QEACs) that are fault tolerant automatically. We also propose a new simple construction of QEACs and subsequently develop several classes of QEACs. Finally, we present numerical simulation results encoding the logical error rate over physical error rate on the fidelity performance of these QEACs. Our study demonstrates that DFSs-based QEACs are capable of providing a generalized and unified framework for error-avoiding methods. (orig.)

  9. Partial Actions, Paradoxicality and Topological full Groups

    DEFF Research Database (Denmark)

    Scarparo, Eduardo

    uniform Roe algebra is finite. In Article C, we analyze the C*-algebra generated by the Koopman representation of a topological full group, showing, in particular, that it is not AF andhas real rank zero. We also prove that if G is a finitely generated, elementary amenable group, and C*(G) has real rank......We study how paradoxicality properties affect the way groups partially acton topological spaces and C*-algebras. We also investigate the real rank zero and AF properties for certain classes of group C*-algebras. Specifically, in article A, we characterize supramenable groups in terms of existence...... of invariant probability measures for partial actions on compact Hausdorff spaces and existence of tracial states on partial crossed products. These characterizations show that, in general, one cannot decompose a partial crossed product of a C*-algebra by a semidirect product of groups as two iterated...

  10. Generalizations of the BMS group and results

    International Nuclear Information System (INIS)

    Melas, E

    2006-01-01

    The ordinary Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all radiating, asymptotically flat, Lorentzian space-times. As such, B is the best candidate for the universal symmetry group of General Relativity. However, in studying quantum gravity, space-times with signatures other than the usual Lorentzian one, and complex space-times, are frequently considered. Generalisations of B appropriate to these other signatures have been defined earlier. In particular, the generalization B(2, 2) appropriate to the ultrahyperbolic signature (+, +, -, -) has been described in detail, and the study of its irreducible unitary representations (IRs) has been initiated. The infinite little groups of B(2, 2) have been given explicitly but its finite little groups have only been partially described. All the information needed in order to construct the finite little groups is given. Possible connections with gravitational instantons are being put forward

  11. Extending the range of real time density matrix renormalization group simulations

    Science.gov (United States)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  12. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  13. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  14. Computing nilpotent quotients in finitely presented Lie rings

    Directory of Open Access Journals (Sweden)

    Csaba Schneider

    1997-12-01

    Full Text Available A nilpotent quotient algorithm for finitely presented Lie rings over Z (and Q is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed by generators. Using that presentation the word problem is decidable in L. Provided that the Lie ring L is graded, it is possible to determine the canonical presentation for a lower central factor of L. Complexity is studied and it is shown that optimising the presentation is NP-hard. Computational details are provided with examples, timing and some structure theorems obtained from computations. Implementation in C and GAP interface are available.

  15. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  16. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  17. Summary Report of Working Group 2: Computation

    International Nuclear Information System (INIS)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-01

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.

  18. A mixed Fourier–Galerkin–finite-volume method to solve the fluid dynamics equations in cylindrical geometries

    International Nuclear Information System (INIS)

    Núñez, Jóse; Ramos, Eduardo; Lopez, Juan M

    2012-01-01

    We describe a hybrid method based on the combined use of the Fourier Galerkin and finite-volume techniques to solve the fluid dynamics equations in cylindrical geometries. A Fourier expansion is used in the angular direction, partially translating the problem to the Fourier space and then solving the resulting equations using a finite-volume technique. We also describe an algorithm required to solve the coupled mass and momentum conservation equations similar to a pressure-correction SIMPLE method that is adapted for the present formulation. Using the Fourier–Galerkin method for the azimuthal direction has two advantages. Firstly, it has a high-order approximation of the partial derivatives in the angular direction, and secondly, it naturally satisfies the azimuthal periodic boundary conditions. Also, using the finite-volume method in the r and z directions allows one to handle boundary conditions with discontinuities in those directions. It is important to remark that with this method, the resulting linear system of equations are band-diagonal, leading to fast and efficient solvers. The benefits of the mixed method are illustrated with example problems. (paper)

  19. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  20. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  1. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  2. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  3. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and N_c with P(article) D(ata) G(roup) values

    Science.gov (United States)

    Yadav, Vikas; Misra, Aalok; Sil, Karunava

    2017-10-01

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large- N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N_c = number of D5(\\overline{D5})-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi: 10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi: 10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large- N suppressed decrease in vector meson mass with increase of temperature.

  4. Laparoscopic repair of perforated peptic ulcer: patch versus simple closure.

    Science.gov (United States)

    Abd Ellatif, M E; Salama, A F; Elezaby, A F; El-Kaffas, H F; Hassan, A; Magdy, A; Abdallah, E; El-Morsy, G

    2013-01-01

    Laparoscopic correction of perforated peptic ulcer (PPU) has become an accepted way of management. Patch omentoplasty stayed for decades the main method of repair. The goal of the present study was to evaluate whether laparoscopic simple repair of PPU is as safe as patch omentoplasty. Since June 2005, 179 consecutive patients of PPU were treated by laparoscopic repair at our centers. We conducted a retrospective chart review in December 2012. Group I (patch group) included patients who were treated with standard patch omentoplasty. Group II (non-patch group) included patients who received simple repair without patch. From June 2007 to Dec. 2012, 179 consecutive patients of PPU who were treated by laparoscopic repair at our centers were enrolled in this multi-center retrospective study. 108 patients belong to patch group. While 71 patients were treated with laparoscopic simple repair. Operative time was significantly shorter in group II (non patch) (p = 0.01). No patient was converted to laparotomy. There was no difference in age, gender, ASA score, surgical risk (Boey's) score, and incidence of co-morbidities. Both groups were comparable in terms of hospital stay, time to resume oral intake, postoperative complications and surgical outcomes. Laparoscopic simple repair of PPU is a safe procedure compared with the traditional patch omentoplasty in presence of certain selection criteria. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    Science.gov (United States)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  6. Evolution of topological features in finite antiferromagnetic Heisenberg chains

    International Nuclear Information System (INIS)

    Chen Changfeng

    2003-01-01

    We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed

  7. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.

    1977-01-01

    The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis

  8. Graphs of groups on surfaces interactions and models

    CERN Document Server

    White, AT

    2001-01-01

    The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English

  9. Ultrafilters and topologies on groups

    CERN Document Server

    Zelenyuk, Yevhen

    2011-01-01

    This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results aboutultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in to

  10. A study of the consistent and the lumped source approximations in finite element neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Azgener, H.A.

    1991-01-01

    In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)

  11. Convergence analysis of the rebalance methods in multiplying finite slab having periodic boundary conditions

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Young Ouk; Song, Jae Seung

    2009-01-01

    This paper analyzes the convergence of the rebalance iteration methods for the discrete ordinates transport equation in the multiplying finite slab problem. The finite slab is assumed to be homogeneous and it has the periodic boundary conditions. A general formulation is used to include three well-known rebalance methods of the linearized form in a unified way. The rebalance iteration methods considered in this paper are the CMR (Coarse-Mesh Rebalance), the CMFD (Coarse-Mesh Finite Difference), and p-CMFD (Partial Current-Based Coarse Mesh Finite Difference) methods which have been popularly used in the reactor physics. The convergence analysis is performed with the well-known Fourier analysis through a linearization. The analyses are applied for one-group problems. The theoretical analysis shows that there are one fundamental mode and N-1 Eigen-modes which determine the convergence if the finite slab is divided into N uniform meshes. The numerical tests show that the Fourier convergence analysis provides the reasonable estimate of the numerical spectral radii for the model problems and the spectral radius for the finite slab approaches the one for the infinite slab as the thickness of the slab increases. (author)

  12. Creep buckling: an experiment, an 'exact' solution and some simple thoughts

    International Nuclear Information System (INIS)

    Heller, P.; Anderson, R.G.

    1986-01-01

    The paper presents attempts to analyse and understand a carefully conducted creep buckling experiment. The analysis was conducted using the ABAQUS Finite Element Code coupled to a number of plausible creep laws. The results show good agreement between ABAQUS runs and experimental deflections but it is difficult to reproduce the early loads. A simple model of buckling analysis for n-power creep laws is derived as an aid to understanding the development of the deflections for non-linear creep laws. In particular, the model suggests why deflections develop so rapidly and how the creep deflection development relates to the elastic behaviour. (author)

  13. A non-perturbative analysis in finite volume gauge theory

    International Nuclear Information System (INIS)

    Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook

    1988-01-01

    We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)

  14. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  15. Use of the Fox derivatives in the solution of the word problem for groups

    International Nuclear Information System (INIS)

    Majumdar, S.

    1988-09-01

    Applying Fox's free partial derivative, the word problem of a finitely presented group has been reduced to the problem of finding an algorithm for determining the existence of a root of a system of linear equations over the integral group ring. The solubility of the word problem for torsion-free one-relator groups and torsion-free polycyclic-by-finite groups has been deduced. (author). 10 refs

  16. Guessing lexicon entries using finite-state methods

    OpenAIRE

    Koskenniemi, Kimmo Matti

    2018-01-01

    A practical method for interactive guessing of LEXC lexicon entries is presented. The method is based on describing groups of similarly inflected words using regular expressions. The patterns are compiled into a finite-state transducer (FST) which maps any word form into the possible LEXC lexicon entries which could generate it. The same FST can be used (1) for converting conventional headword lists into LEXC entries, (2) for interactive guessing of entries, (3) for corpus-assisted interactiv...

  17. Three-level system driven by delayed pulses of finite duration

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2002-01-01

    We find the exact solution to the three-state problem for a class of intuitive and counterintuitive sequences of delayed pulses of finite duration in terms of the Clausen's generalized hypergeometric function, which reduces to simple analytic expressions, involving elementary functions only, for final occupation probabilities. These analytic results show that the sequence of delayed pulses, independently of the pulse order and applied detunings, can completely remove the population from the initially populated state (thus creating a quantum superposition of two other involved states). This conclusion extends the original result of Vitanov and Stenholm [Phys. Rev. A 55, 648 (1997)], to the case of nonzero two-photon detuning and more general pulse shapes

  18. Supersymmetric theories and finiteness

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.

    1989-01-01

    We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)

  19. A first course in finite elements

    CERN Document Server

    Fish, Jacob

    2007-01-01

    Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations.  Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts

  20. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  1. Verification of the coupled space-angle adaptivity algorithm for the finite element-spherical harmonics method via the method of manufactured solutions

    International Nuclear Information System (INIS)

    Park, H.; De Oliveira, C. R. E.

    2007-01-01

    This paper describes the verification of the recently developed space-angle self-adaptive algorithm for the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and interfaces very well with the underlying second-order, even-parity transport formulation. Simple analytic solutions in both spatial and angular variables are manufactured to assess the theoretical performance of the a posteriori error estimates. The numerical results confirm reliability of the developed space-angle error indicators. (authors)

  2. Barcelona Conference on Algebraic Topology

    CERN Document Server

    Castellet, Manuel; Cohen, Frederick

    1992-01-01

    The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.

  3. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Makoto Ito

    2015-11-01

    Full Text Available Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS, the dorsomedial striatum (DMS, and the ventral striatum (VS identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  4. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Science.gov (United States)

    Ito, Makoto; Doya, Kenji

    2015-11-01

    Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  5. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    Science.gov (United States)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  6. The modelisation of constrained damping layer treatments using the finite element method: spatial model and viscoelastic behaviour

    OpenAIRE

    Rui Moreira; José Dias Rodrigues

    2002-01-01

    Surface and integrated damping treatments with viscoelastic layers play an important position among the passive damping treatments for light and flexible structures under vibration. Application simplicity, low cost, reduced structural modification and reduced additional mass, along with an inherent high efficiency, are the main reasons of it successful usage.However, the design process of these treatments is not simple and requires a reliable tool for adequate designing and analysis.The finit...

  7. A simple proof of orientability in colored group field theory.

    Science.gov (United States)

    Caravelli, Francesco

    2012-01-01

    Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.

  8. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  9. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation.

    Science.gov (United States)

    Liu, Qingshan; Dang, Chuangyin; Cao, Jinde

    2010-07-01

    In this paper, based on a one-neuron recurrent neural network, a novel k-winners-take-all ( k -WTA) network is proposed. Finite time convergence of the proposed neural network is proved using the Lyapunov method. The k-WTA operation is first converted equivalently into a linear programming problem. Then, a one-neuron recurrent neural network is proposed to get the kth or (k+1)th largest inputs of the k-WTA problem. Furthermore, a k-WTA network is designed based on the proposed neural network to perform the k-WTA operation. Compared with the existing k-WTA networks, the proposed network has simple structure and finite time convergence. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed k-WTA network.

  10. The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    Science.gov (United States)

    Wu, Xinen; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition.

  11. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.

    2013-01-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  12. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali

    2013-03-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  13. Introduction to quantum groups

    International Nuclear Information System (INIS)

    Monteiro, Marco A.R.

    1994-01-01

    An elementary introduction to quantum groups is presented. The example of Universal Enveloping Algebra of deformed SU(2) is analysed in detail. It is also discussed systems made up of bosonic q-oscillators at finite temperature within the formalism of Thermo-Field Dynamics. (author). 39 refs

  14. Wild kernels for higher K-theory of division and semi-simple algebras

    International Nuclear Information System (INIS)

    Quo Xuejun; Kuku, Aderemi

    2003-06-01

    Let Σ be a semi-simple algebra over a number field F. In this paper, we prove that for all n ≥ 0, the wild kernel WK n (Σ):Ker(K n (Σ) → Π finiteυ K n (Σ υ )) is contained in the torsion part of the image of the natural homomorphism K n (Λ) → K n (Σ), where Λ is a maximal order in Σ. In particular, WK n (Σ) is finite. In the process, we prove that if Λ is a maximal order in a central division algebra D over F, then the kernel of the reduction map K 2n-1 (Λ) → π υ Π finiteυ K 2n-1 (d υ ) is finite. In paragraph 3 we investigate the connections between WK n (D) and div(K n (D)) and prove that divK 2 (Σ) is a subset of WK 2 (Σ); if the index of D is square free, then div(K 2 (D)) ≅ div(K 2 (F)), WK 2 (F) ≅ WK 2 (D) and vertical bar WK 2 (D)/div(K 2 (D)) vertical bar ≤ 2. Finally we prove that if D is a central division algebra over F with [D : F] = m 2 , then (1) div(K n (D)) l = WK n (D) l for all odd primes I and n ≤ 2; (2) if I does not divide m, then div(K 3 (D)) l = WK 3 (D) l = 0; (3) if F = Q and I does not divide m, then div(K n (D)) l is a subset of WK n (D) l for all n. (author)

  15. Symmetry an introduction to group theory and its applications

    CERN Document Server

    McWeeny, Roy

    2002-01-01

    Well-organized volume develops ideas of group and representation theory in progressive fashion. Emphasis on finite groups describing symmetry of regular polyhedra and of repeating patterns, plus geometric illustrations.

  16. The Effect of Finite Thickness Extent on Estimating Depth to Basement from Aeromagnetic Data

    Science.gov (United States)

    Blakely, R. J.; Salem, A.; Green, C. M.; Fairhead, D.; Ravat, D.

    2014-12-01

    Depth to basement estimation methods using various components of the spectral content of magnetic anomalies are in common use by geophysicists. Examples of these are the Tilt-Depth and SPI methods. These methods use simple models having the base of the magnetic body at infinity. Recent publications have shown that this 'infinite depth' assumption causes underestimation of the depth to the top of sources, especially in areas where the bottom of the magnetic layer is shallow, as would occur in high heat-flow regions. This error has been demonstrated in both model studies and using real data with seismic or well control. To overcome the limitation of infinite depth this contribution presents the mathematics for a finite depth contact body in the Tilt depth and SPI methods and applies it to the central Red Sea where the Curie isotherm and Moho are shallow. The difference in the depth estimation between the infinite and finite contacts is such a case is significant and can exceed 200%.

  17. Finiteness of quantum field theories and supersymmetry

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  18. On the Brauer group

    International Nuclear Information System (INIS)

    Tankeev, Sergei G

    2000-01-01

    For an arithmetic model X of a Fermat surface or a hyperkahler variety with Betti number b 2 (V otimes k-bar)>3 over a purely imaginary number field k, we prove the finiteness of the l-components of Br'(X) for all primes l>>0. This yields a variant of a conjecture of M. Artin. If V is a smooth projective irregular surface over a number field k and V(k)≠ nothing, then the l-primary component of Br(V)/Br(k) is an infinite group for every prime l. Let A 1 →M 1 be the universal family of elliptic curves with a Jacobian structure of level N>=3 over a number field k supset of Q(e 2πi/N ). Assume that M 1 (k) ≠ nothing. If V is a smooth projective compactification of the surface A 1 , then the l-primary component of Br(V)/Br(M-bar 1 ) is a finite group for each sufficiently large prime l

  19. Automatic Construction of Finite Algebras

    Institute of Scientific and Technical Information of China (English)

    张健

    1995-01-01

    This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

  20. Finite groups in which some particular subgroups are TI-subgroups

    DEFF Research Database (Denmark)

    Shi, Jiangtao; Zhang, Cui

    2013-01-01

    We prove that G is a group in which all noncyclic subgroups are TI-subgroups if and only if all noncyclic subgroups of G are normal in G. Moreover, we classify groups in which all subgroups of even order are TI-subgroups....