Precision of quantization of the hall conductivity in a finite-size sample: Power law
International Nuclear Information System (INIS)
Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.
2006-01-01
A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples
International Nuclear Information System (INIS)
Rittenberg, V.
1983-01-01
Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given
Energy Technology Data Exchange (ETDEWEB)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan); Zhang, Xu [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); Shang, Fulin [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources and pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.
Desu, M M
2012-01-01
One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria
Fung, Tak; Keenan, Kevin
2014-01-01
The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Directory of Open Access Journals (Sweden)
Tak Fung
Full Text Available The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%, a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L., occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Finite Size Scaling of Perceptron
Korutcheva, Elka; Tonchev, N.
2000-01-01
We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.
Robust weak measurements on finite samples
International Nuclear Information System (INIS)
Tollaksen, Jeff
2007-01-01
A new weak measurement procedure is introduced for finite samples which yields accurate weak values that are outside the range of eigenvalues and which do not require an exponentially rare ensemble. This procedure provides a unique advantage in the amplification of small nonrandom signals by minimizing uncertainties in determining the weak value and by minimizing sample size. This procedure can also extend the strength of the coupling between the system and measuring device to a new regime
Characterization of resonances using finite size effects
International Nuclear Information System (INIS)
Pozsgay, B.; Takacs, G.
2006-01-01
We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra
Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?
Sayar, Mehmet
2005-03-01
Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Stochastic synchronization in finite size spiking networks
Doiron, Brent; Rinzel, John; Reyes, Alex
2006-09-01
We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.
Quark bag coupling to finite size pions
International Nuclear Information System (INIS)
De Kam, J.; Pirner, H.J.
1982-01-01
A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)
Finite size scaling and spectral density studies
International Nuclear Information System (INIS)
Berg, B.A.
1991-01-01
Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)
Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
Finite groups with three conjugacy class sizes of some elements
Indian Academy of Sciences (India)
Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.
Ferrari, Ulisse
2016-08-01
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Sample size determination and power
Ryan, Thomas P, Jr
2013-01-01
THOMAS P. RYAN, PhD, teaches online advanced statistics courses for Northwestern University and The Institute for Statistics Education in sample size determination, design of experiments, engineering statistics, and regression analysis.
The large sample size fallacy.
Lantz, Björn
2013-06-01
Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.
Concepts in sample size determination
Directory of Open Access Journals (Sweden)
Umadevi K Rao
2012-01-01
Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.
Finite-size scaling of survival probability in branching processes
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro
2014-01-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Finite-State Complexity and the Size of Transducers
Directory of Open Access Journals (Sweden)
Cristian Calude
2010-08-01
Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.
Finite size effects for giant magnons on physical strings
International Nuclear Information System (INIS)
Minahan, J.A.; Ohlsson Sax, O.
2008-01-01
Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges
Dynamic properties of epidemic spreading on finite size complex networks
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects
International Nuclear Information System (INIS)
Yan, D; Yang, C; Nguyen, N-T; Huang, X
2006-01-01
In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices
Diffusion to finite-size traps
International Nuclear Information System (INIS)
Richards, P.M.
1986-01-01
The survival probability of a random-walking particle is derived for hopping in a random distribution of traps of arbitrary radius and concentration. The single-center approximation is shown to be valid for times of physical interest even when the fraction of volume occupied by traps approaches unity. The theory is based on computation of the number of different potential trap regions sampled in a random walk and is confirmed by simulations on a simple-cubic lattice
Finite-size scaling of survival probability in branching processes.
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
Finite-size scaling a collection of reprints
1988-01-01
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
How Sample Size Affects a Sampling Distribution
Mulekar, Madhuri S.; Siegel, Murray H.
2009-01-01
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Distribution of quantum states in enclosures of finite size I
International Nuclear Information System (INIS)
Souto, J.H.; Chaba, A.N.
1989-01-01
The expression for the density of states of a particle in a three-dimensional rectangular box of finite size can be obtained directly by Poissons's Summation formula. The expression for the case of an enclosure in the form of an infinite rectangular slab is derived. (A.C.A.S.) [pt
Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections
van Enter, Aernout C. D.; Hulshof, Tim
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections
Enter, van A.C.D.; Hulshof, T.
2007-01-01
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Finite-Size Effects for Some Bootstrap Percolation Models
Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.
The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling
Finite size effects in quark-gluon plasma formation
International Nuclear Information System (INIS)
Gopie, Andy; Ogilvie, Michael C.
1999-01-01
Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c
Finite size effects in simulations of protein aggregation.
Directory of Open Access Journals (Sweden)
Amol Pawar
Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.
Chiral anomaly and anomalous finite-size conductivity in graphene
Shen, Shun-Qing; Li, Chang-An; Niu, Qian
2017-09-01
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.
Finite-size modifications of the magnetic properties of clusters
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker
1993-01-01
relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...
Finite-size polyelectrolyte bundles at thermodynamic equilibrium
Sayar, M.; Holm, C.
2007-01-01
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Finite size effects on hydrogen bonds in confined water
International Nuclear Information System (INIS)
Musat, R.; Renault, J.P.; Le Caer, S.; Pommeret, S.; Candelaresi, M.; Palmer, D.J.; Righini, R.
2008-01-01
Femtosecond IR spectroscopy was used to study water confined in 1-50 nm pores. The results show that even large pores induce significant changes (for example excited-state lifetimes) to the hydrogen-bond network, which are independent of pore diameter between 1 and 50 nm. Thus, the changes are not surface-induced but rather finite size effects, and suggest a confinement-induced enhancement of the acidic character of water. (authors)
Interpolating and sampling sequences in finite Riemann surfaces
Ortega-Cerda, Joaquim
2007-01-01
We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.
fB from finite size effects in lattice QCD
International Nuclear Information System (INIS)
Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.
2003-01-01
We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD
Finite-size scaling in two-dimensional superfluids
International Nuclear Information System (INIS)
Schultka, N.; Manousakis, E.
1994-01-01
Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments
Sample size in qualitative interview studies
DEFF Research Database (Denmark)
Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit Kristiane
2016-01-01
Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is “saturation.” Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose...... the concept “information power” to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power...... and during data collection of a qualitative study is discussed....
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
Asymmetric fluid criticality. II. Finite-size scaling for simulations.
Kim, Young C; Fisher, Michael E
2003-10-01
The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.
Priour, D. J.
2014-01-01
The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.
Finite-size effects on multibody neutrino exchange
Abada, A; Rodríguez-Quintero, J; Abada, As
1998-01-01
The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
2017-06-01
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.
Choosing a suitable sample size in descriptive sampling
International Nuclear Information System (INIS)
Lee, Yong Kyun; Choi, Dong Hoon; Cha, Kyung Joon
2010-01-01
Descriptive sampling (DS) is an alternative to crude Monte Carlo sampling (CMCS) in finding solutions to structural reliability problems. It is known to be an effective sampling method in approximating the distribution of a random variable because it uses the deterministic selection of sample values and their random permutation,. However, because this method is difficult to apply to complex simulations, the sample size is occasionally determined without thorough consideration. Input sample variability may cause the sample size to change between runs, leading to poor simulation results. This paper proposes a numerical method for choosing a suitable sample size for use in DS. Using this method, one can estimate a more accurate probability of failure in a reliability problem while running a minimal number of simulations. The method is then applied to several examples and compared with CMCS and conventional DS to validate its usefulness and efficiency
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria; Chapman, S. Jonathan
2013-01-01
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
Finite-size effects on current correlation functions
Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong
2014-02-01
We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.
Finite-size corrections in simulation of dipolar fluids
Belloni, Luc; Puibasset, Joël
2017-12-01
Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.
Decision Support on Small size Passive Samples
Directory of Open Access Journals (Sweden)
Vladimir Popukaylo
2018-05-01
Full Text Available A construction technique of adequate mathematical models for small size passive samples, in conditions when classical probabilistic-statis\\-tical methods do not allow obtaining valid conclusions was developed.
The King model for electrons in a finite-size ultracold plasma
Energy Technology Data Exchange (ETDEWEB)
Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2008-10-24
A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.
Experimental determination of size distributions: analyzing proper sample sizes
International Nuclear Information System (INIS)
Buffo, A; Alopaeus, V
2016-01-01
The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used. (paper)
Estimating Sample Size for Usability Testing
Directory of Open Access Journals (Sweden)
Alex Cazañas
2017-02-01
Full Text Available One strategy used to assure that an interface meets user requirements is to conduct usability testing. When conducting such testing one of the unknowns is sample size. Since extensive testing is costly, minimizing the number of participants can contribute greatly to successful resource management of a project. Even though a significant number of models have been proposed to estimate sample size in usability testing, there is still not consensus on the optimal size. Several studies claim that 3 to 5 users suffice to uncover 80% of problems in a software interface. However, many other studies challenge this assertion. This study analyzed data collected from the user testing of a web application to verify the rule of thumb, commonly known as the “magic number 5”. The outcomes of the analysis showed that the 5-user rule significantly underestimates the required sample size to achieve reasonable levels of problem detection.
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Sample size calculation in metabolic phenotyping studies.
Billoir, Elise; Navratil, Vincent; Blaise, Benjamin J
2015-09-01
The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Holographic relaxation of finite size isolated quantum systems
International Nuclear Information System (INIS)
Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
Energy Technology Data Exchange (ETDEWEB)
Tsai, W-F.
2010-04-06
We report the results of exact diagonalization studies of Hubbard models on a 4 x 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals t and t{prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion U and doped hole concentration, x. We present evidence that superconductivity is strongest for U of order the bandwidth, and intermediate inhomogeneity, 0 < t{prime} < t. The maximum value of the 'pair-binding energy' we have found with purely repulsive interactions is {Delta}{sub pb} = 0.32t for the checkerboard Hubbard model with U = 8t and t{prime} = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.
Finite size scaling analysis of disordered electron systems
International Nuclear Information System (INIS)
Markos, P.
2012-01-01
We demonstrated the application of the finite size scaling method to the analysis of the transition of the disordered system from the metallic to the insulating regime. The method enables us to calculate the critical point and the critical exponent which determines the divergence of the correlation length in the vicinity of the critical point. The universality of the metal-insulator transition was verified by numerical analysis of various physical parameters and the critical exponent was calculated with high accuracy for different disordered models. Numerically obtained value of the critical exponent for the three dimensional disordered model (1) has been recently supported by the semi-analytical work and verified by experimental optical measurements equivalent to the three dimensional disordered model (1). Another unsolved problem of the localization is the disagreement between numerical results and predictions of the analytical theories. At present, no analytical theory confirms numerically obtained values of critical exponents. The reason for this disagreement lies in the statistical character of the process of localization. The theory must consider all possible scattering processes on randomly distributed impurities. All physical variables are statistical quantities with broad probability distributions. It is in general not know how to calculate analytically their mean values. We believe that detailed numerical analysis of various disordered systems bring inspiration for the formulation of analytical theory. (authors)
Finite size effects in the intermittency analysis of the fragment-size correlations
International Nuclear Information System (INIS)
Bozek, P.; Ploszajczak, M.; Tucholski, A.
1991-01-01
An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs
Finite size effects in lattice QCD with dynamical Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Orth, B.
2004-06-01
Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass
Improved sample size determination for attributes and variables sampling
International Nuclear Information System (INIS)
Stirpe, D.; Picard, R.R.
1985-01-01
Earlier INMM papers have addressed the attributes/variables problem and, under conservative/limiting approximations, have reported analytical solutions for the attributes and variables sample sizes. Through computer simulation of this problem, we have calculated attributes and variables sample sizes as a function of falsification, measurement uncertainties, and required detection probability without using approximations. Using realistic assumptions for uncertainty parameters of measurement, the simulation results support the conclusions: (1) previously used conservative approximations can be expensive because they lead to larger sample sizes than needed; and (2) the optimal verification strategy, as well as the falsification strategy, are highly dependent on the underlying uncertainty parameters of the measurement instruments. 1 ref., 3 figs
Directory of Open Access Journals (Sweden)
Atta Ullah
2014-01-01
Full Text Available In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size nh is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.
Predicting sample size required for classification performance
Directory of Open Access Journals (Sweden)
Figueroa Rosa L
2012-02-01
Full Text Available Abstract Background Supervised learning methods need annotated data in order to generate efficient models. Annotated data, however, is a relatively scarce resource and can be expensive to obtain. For both passive and active learning methods, there is a need to estimate the size of the annotated sample required to reach a performance target. Methods We designed and implemented a method that fits an inverse power law model to points of a given learning curve created using a small annotated training set. Fitting is carried out using nonlinear weighted least squares optimization. The fitted model is then used to predict the classifier's performance and confidence interval for larger sample sizes. For evaluation, the nonlinear weighted curve fitting method was applied to a set of learning curves generated using clinical text and waveform classification tasks with active and passive sampling methods, and predictions were validated using standard goodness of fit measures. As control we used an un-weighted fitting method. Results A total of 568 models were fitted and the model predictions were compared with the observed performances. Depending on the data set and sampling method, it took between 80 to 560 annotated samples to achieve mean average and root mean squared error below 0.01. Results also show that our weighted fitting method outperformed the baseline un-weighted method (p Conclusions This paper describes a simple and effective sample size prediction algorithm that conducts weighted fitting of learning curves. The algorithm outperformed an un-weighted algorithm described in previous literature. It can help researchers determine annotation sample size for supervised machine learning.
The finite-size effect in thin liquid crystal systems
Śliwa, I.
2018-05-01
Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.
Sample size for morphological traits of pigeonpea
Directory of Open Access Journals (Sweden)
Giovani Facco
2015-12-01
Full Text Available The objectives of this study were to determine the sample size (i.e., number of plants required to accurately estimate the average of morphological traits of pigeonpea (Cajanus cajan L. and to check for variability in sample size between evaluation periods and seasons. Two uniformity trials (i.e., experiments without treatment were conducted for two growing seasons. In the first season (2011/2012, the seeds were sown by broadcast seeding, and in the second season (2012/2013, the seeds were sown in rows spaced 0.50 m apart. The ground area in each experiment was 1,848 m2, and 360 plants were marked in the central area, in a 2 m × 2 m grid. Three morphological traits (e.g., number of nodes, plant height and stem diameter were evaluated 13 times during the first season and 22 times in the second season. Measurements for all three morphological traits were normally distributed and confirmed through the Kolmogorov-Smirnov test. Randomness was confirmed using the Run Test, and the descriptive statistics were calculated. For each trait, the sample size (n was calculated for the semiamplitudes of the confidence interval (i.e., estimation error equal to 2, 4, 6, ..., 20% of the estimated mean with a confidence coefficient (1-? of 95%. Subsequently, n was fixed at 360 plants, and the estimation error of the estimated percentage of the average for each trait was calculated. Variability of the sample size for the pigeonpea culture was observed between the morphological traits evaluated, among the evaluation periods and between seasons. Therefore, to assess with an accuracy of 6% of the estimated average, at least 136 plants must be evaluated throughout the pigeonpea crop cycle to determine the sample size for the traits (e.g., number of nodes, plant height and stem diameter in the different evaluation periods and between seasons.
Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation
International Nuclear Information System (INIS)
Kar, Soumitra; Biswas, Subhajit; Chaudhuri, Subhadra; Nambissan, P.M.G.
2005-01-01
Quantum confinement effects in nanocrystalline CdS were studied using positrons as spectroscopic probes to explore the defect characteristics. The lifetime of positrons annihilating at the vacancy clusters on nanocrystalline grain surfaces increased remarkably consequent to the onset of such finite-size effects. The Doppler broadened line shape was also found to reflect rather sensitively such distinct changes in the electron momentum redistribution scanned by the positrons, owing to the widening of the band gap. The nanocrystalline sizes of the samples used were confirmed from x-ray diffraction and high resolution transmission electron microscopy and the optical absorption results supported the quantum size effects. Positron annihilation results indicated distinct qualitative changes between CdS nanorods and the bulk sample, notwithstanding the identical x-ray diffraction pattern and close resemblance of the optical absorption spectra. The results are promising in the event of positron annihilation being proved to be a very successful tool for the study of such finite-size effects in semiconductor nanoparticles
Layout Optimization of Structures with Finite-size Features using Multiresolution Analysis
DEFF Research Database (Denmark)
Chellappa, S.; Diaz, A. R.; Bendsøe, Martin P.
2004-01-01
A scheme for layout optimization in structures with multiple finite-sized heterogeneities is presented. Multiresolution analysis is used to compute reduced operators (stiffness matrices) representing the elastic behavior of material distributions with heterogeneities of sizes that are comparable...
Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography
International Nuclear Information System (INIS)
Javaherian, Ashkan; Moeller, Knut; Soleimani, Manuchehr
2015-01-01
This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT. (paper)
Sample size allocation in multiregional equivalence studies.
Liao, Jason J Z; Yu, Ziji; Li, Yulan
2018-06-17
With the increasing globalization of drug development, the multiregional clinical trial (MRCT) has gained extensive use. The data from MRCTs could be accepted by regulatory authorities across regions and countries as the primary sources of evidence to support global marketing drug approval simultaneously. The MRCT can speed up patient enrollment and drug approval, and it makes the effective therapies available to patients all over the world simultaneously. However, there are many challenges both operationally and scientifically in conducting a drug development globally. One of many important questions to answer for the design of a multiregional study is how to partition sample size into each individual region. In this paper, two systematic approaches are proposed for the sample size allocation in a multiregional equivalence trial. A numerical evaluation and a biosimilar trial are used to illustrate the characteristics of the proposed approaches. Copyright © 2018 John Wiley & Sons, Ltd.
Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution
Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong
2017-10-01
We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.
Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1988-01-01
Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model
Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model
International Nuclear Information System (INIS)
Hamer, C.J.; Barber, M.N.
1979-01-01
Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ
International Nuclear Information System (INIS)
Su, Guozhen; Chen, Liwei; Chen, Jincan
2014-01-01
Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions
Theory of critical phenomena in finite-size systems scaling and quantum effects
Brankov, Jordan G; Tonchev, Nicholai S
2000-01-01
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals
Finite size effects and chiral symmetry breaking in quenched three-dimensional QED
International Nuclear Information System (INIS)
Hands, S.; Kogut, J.B.
1990-01-01
Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)
Compressive Sampling of EEG Signals with Finite Rate of Innovation
Directory of Open Access Journals (Sweden)
Poh Kok-Kiong
2010-01-01
Full Text Available Analyses of electroencephalographic signals and subsequent diagnoses can only be done effectively on long term recordings that preserve the signals' morphologies. Currently, electroencephalographic signals are obtained at Nyquist rate or higher, thus introducing redundancies. Existing compression methods remove these redundancies, thereby achieving compression. We propose an alternative compression scheme based on a sampling theory developed for signals with a finite rate of innovation (FRI which compresses electroencephalographic signals during acquisition. We model the signals as FRI signals and then sample them at their rate of innovation. The signals are thus effectively represented by a small set of Fourier coefficients corresponding to the signals' rate of innovation. Using the FRI theory, original signals can be reconstructed using this set of coefficients. Seventy-two hours of electroencephalographic recording are tested and results based on metrices used in compression literature and morphological similarities of electroencephalographic signals are presented. The proposed method achieves results comparable to that of wavelet compression methods, achieving low reconstruction errors while preserving the morphologiies of the signals. More importantly, it introduces a new framework to acquire electroencephalographic signals at their rate of innovation, thus entailing a less costly low-rate sampling device that does not waste precious computational resources.
The finite horizon economic lot sizing problem in job shops : the multiple cycle approach
Ouenniche, J.; Bertrand, J.W.M.
2001-01-01
This paper addresses the multi-product, finite horizon, static demand, sequencing, lot sizing and scheduling problem in a job shop environment where the planning horizon length is finite and fixed by management. The objective pursued is to minimize the sum of setup costs, and work-in-process and
Finite-size scaling for quantum chains with an oscillatory energy gap
International Nuclear Information System (INIS)
Hoeger, C.; Gehlen, G. von; Rittenberg, V.
1984-07-01
We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)
International Nuclear Information System (INIS)
Iglói, Ferenc; Lin, Yu-Cheng
2008-01-01
Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
Finite-size effects in the three-state quantum asymmetric clock model
International Nuclear Information System (INIS)
Gehlen, G. v.; Rittenberg, V.
1983-04-01
The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)
Sample size estimation and sampling techniques for selecting a representative sample
Directory of Open Access Journals (Sweden)
Aamir Omair
2014-01-01
Full Text Available Introduction: The purpose of this article is to provide a general understanding of the concepts of sampling as applied to health-related research. Sample Size Estimation: It is important to select a representative sample in quantitative research in order to be able to generalize the results to the target population. The sample should be of the required sample size and must be selected using an appropriate probability sampling technique. There are many hidden biases which can adversely affect the outcome of the study. Important factors to consider for estimating the sample size include the size of the study population, confidence level, expected proportion of the outcome variable (for categorical variables/standard deviation of the outcome variable (for numerical variables, and the required precision (margin of accuracy from the study. The more the precision required, the greater is the required sample size. Sampling Techniques: The probability sampling techniques applied for health related research include simple random sampling, systematic random sampling, stratified random sampling, cluster sampling, and multistage sampling. These are more recommended than the nonprobability sampling techniques, because the results of the study can be generalized to the target population.
Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes
International Nuclear Information System (INIS)
Liu, M; Bassler, K E
2011-01-01
Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.
Density functional approach for pairing in finite size systems
International Nuclear Information System (INIS)
Hupin, G.
2011-09-01
The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)
Discrete and mesoscopic regimes of finite-size wave turbulence
International Nuclear Information System (INIS)
L'vov, V. S.; Nazarenko, S.
2010-01-01
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
An improved Landauer principle with finite-size corrections
International Nuclear Information System (INIS)
Reeb, David; Wolf, Michael M
2014-01-01
Landauer's principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauer's principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauer's principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauer's bound that depend on the effective size of the thermal reservoir and reduce to Landauer's bound only for infinite-sized reservoirs. (paper)
Finite size melting of spherical solid-liquid aluminium interfaces
DEFF Research Database (Denmark)
Chang, J.; Johnson, Erik; Sakai, T.
2009-01-01
We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...
Huh, Joonsuk; Yung, Man-Hong
2017-08-07
Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.
Finite mixture models for the computation of isotope ratios in mixed isotopic samples
Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas
2013-04-01
Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control
Pyroelectric properties of finite size ferroelectric thin films with structural transition zones
International Nuclear Information System (INIS)
Zhou Jing; Lue Tianquan; Sun Punan; Xie Wenguang; Cao Wenwu
2009-01-01
A Fermi-type Green's function is used to study pyroelectric properties of the thin film with finite sizes in three dimensions based on a modified transverse Ising model. The results demonstrate that a decrease in the lateral size of the film has a disadvantageous influence on the pyroelectric coefficient of the thin film.
Point source atom interferometry with a cloud of finite size
Energy Technology Data Exchange (ETDEWEB)
Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)
2016-08-15
We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.
Geometric measures of multipartite entanglement in finite-size spin chains
Energy Technology Data Exchange (ETDEWEB)
Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2010-09-01
We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.
Geometric measures of multipartite entanglement in finite-size spin chains
International Nuclear Information System (INIS)
Blasone, M; Dell'Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F
2010-01-01
We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.
Effects of finite size on spin glass dynamics
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Coulomb systems seen as critical systems: Finite-size effects in two dimensions
International Nuclear Information System (INIS)
Jancovici, B.; Manificat, G.; Pisani, C.
1994-01-01
It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects
Simulation of the electron acoustic instability for a finite-size electron beam system
International Nuclear Information System (INIS)
Lin, C.S.; Winske, D.
1987-01-01
Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation
Preeminence and prerequisites of sample size calculations in clinical trials
Richa Singhal; Rakesh Rana
2015-01-01
The key components while planning a clinical study are the study design, study duration, and sample size. These features are an integral part of planning a clinical trial efficiently, ethically, and cost-effectively. This article describes some of the prerequisites for sample size calculation. It also explains that sample size calculation is different for different study designs. The article in detail describes the sample size calculation for a randomized controlled trial when the primary out...
A stochastic-field description of finite-size spiking neural networks.
Dumont, Grégory; Payeur, Alexandre; Longtin, André
2017-08-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.
DEFF Research Database (Denmark)
Veraart, Almut
and present a new estimator for the asymptotic ‘variance’ of the centered realised variance in the presence of jumps. Next, we compare the finite sample performance of the various estimators by means of detailed Monte Carlo studies where we study the impact of the jump activity, the jump size of the jumps......This paper studies the impact of jumps on volatility estimation and inference based on various realised variation measures such as realised variance, realised multipower variation and truncated realised multipower variation. We review the asymptotic theory of those realised variation measures...... in the price and the presence of additional independent or dependent jumps in the volatility on the finite sample performance of the various estimators. We find that the finite sample performance of realised variance, and in particular of the log–transformed realised variance, is generally good, whereas...
Finite size and dynamical effects in pair production by an external field
International Nuclear Information System (INIS)
Martin, C.; Vautherin, D.
1988-12-01
We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei
Three-point correlation functions of giant magnons with finite size
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, Plamen
2011-01-01
We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.
Decision-making and sampling size effect
Ismariah Ahmad; Rohana Abd Rahman; Roda Jean-Marc; Lim Hin Fui; Mohd Parid Mamat
2010-01-01
Sound decision-making requires quality information. Poor information does not help in decision making. Among the sources of low quality information, an important cause is inadequate and inappropriate sampling. In this paper we illustrate the case of information collected on timber prices.
Finite-size-scaling analysis of subsystem data in the dilute Ising model
International Nuclear Information System (INIS)
Hennecke, M.
1993-01-01
Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated
Finite-size corrections to the free energies of crystalline solids
Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.
2000-01-01
We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free
Lancellotti, V.; Tijhuis, A.G.
2012-01-01
The calculation of electromagnetic (EM) fields and waves inside finite-sized structures comprised of different media can benefit from a diakoptics method such as linear embedding via Green's operators (LEGO). Unlike scattering problems, the excitation of EM waves within the bulk dielectric requires
A finite size scaling test of an SU(2) gauge-spin system
International Nuclear Information System (INIS)
Tomiya, M.; Hattori, T.
1984-01-01
We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)
Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report
International Nuclear Information System (INIS)
Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.
2002-01-01
We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques
Finite size effects in the evaporation rate of 3He clusters
International Nuclear Information System (INIS)
Guirao, A.; Pi, M.; Barranco, M.
1991-01-01
We have computed the density of states and the evaporation rate of 3 He clusters, paying special attention to finite size effects which modify the 3 He level density parameter and chemical potential from their bulk values. Ready-to-use liquid-drop expansions of these quantities are given. (orig.)
Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces
Calzavarini, Enrico; Volk, Romain; Bourgoin, Mickael; Leveque, Emmanuel; Pinton, Jean-Francois; Toschi, Federico
2008-01-01
International audience; The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These ...
Energy Technology Data Exchange (ETDEWEB)
Castellano, M.; Cianchi, A.; Verzilov, V.A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Orlandi, G. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)]|[Rome Univ., Tor Vergata, Rome (Italy)
1999-07-01
Effects of diffraction and the size of the target on TR in the context of CTR-based bunch length measurements are studied on the basis of Kirchhoff diffraction theory. Spectra of TR from the finite-size target for several schemes of measurements are calculated in the far-infrared region showing strong distortion at low frequencies. Influence of the effect on the accuracy of bunch length measurements is estimated.
Effects of sample size on the second magnetization peak in ...
Indian Academy of Sciences (India)
the sample size decreases – a result that could be interpreted as a size effect in the order– disorder vortex matter phase transition. However, local magnetic measurements trace this effect to metastable disordered vortex states, revealing the same order–disorder transition induction in samples of different size. Keywords.
Sample size determination in clinical trials with multiple endpoints
Sozu, Takashi; Hamasaki, Toshimitsu; Evans, Scott R
2015-01-01
This book integrates recent methodological developments for calculating the sample size and power in trials with more than one endpoint considered as multiple primary or co-primary, offering an important reference work for statisticians working in this area. The determination of sample size and the evaluation of power are fundamental and critical elements in the design of clinical trials. If the sample size is too small, important effects may go unnoticed; if the sample size is too large, it represents a waste of resources and unethically puts more participants at risk than necessary. Recently many clinical trials have been designed with more than one endpoint considered as multiple primary or co-primary, creating a need for new approaches to the design and analysis of these clinical trials. The book focuses on the evaluation of power and sample size determination when comparing the effects of two interventions in superiority clinical trials with multiple endpoints. Methods for sample size calculation in clin...
Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions
Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin
2017-06-01
We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.
Sample size calculations for case-control studies
This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.
Finite size effects on the helical edge states on the Lieb lattice
International Nuclear Information System (INIS)
Chen Rui; Zhou Bin
2016-01-01
For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)
Preeminence and prerequisites of sample size calculations in clinical trials
Directory of Open Access Journals (Sweden)
Richa Singhal
2015-01-01
Full Text Available The key components while planning a clinical study are the study design, study duration, and sample size. These features are an integral part of planning a clinical trial efficiently, ethically, and cost-effectively. This article describes some of the prerequisites for sample size calculation. It also explains that sample size calculation is different for different study designs. The article in detail describes the sample size calculation for a randomized controlled trial when the primary outcome is a continuous variable and when it is a proportion or a qualitative variable.
Estimation of sample size and testing power (Part 4).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-01-01
Sample size estimation is necessary for any experimental or survey research. An appropriate estimation of sample size based on known information and statistical knowledge is of great significance. This article introduces methods of sample size estimation of difference test for data with the design of one factor with two levels, including sample size estimation formulas and realization based on the formulas and the POWER procedure of SAS software for quantitative data and qualitative data with the design of one factor with two levels. In addition, this article presents examples for analysis, which will play a leading role for researchers to implement the repetition principle during the research design phase.
Sample size determination for mediation analysis of longitudinal data.
Pan, Haitao; Liu, Suyu; Miao, Danmin; Yuan, Ying
2018-03-27
Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
Finite-key-size effect in a commercial plug-and-play QKD system
Chaiwongkhot, Poompong; Sajeed, Shihan; Lydersen, Lars; Makarov, Vadim
2017-12-01
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturer’s software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357
A design-based approximation to the Bayes Information Criterion in finite population sampling
Directory of Open Access Journals (Sweden)
Enrico Fabrizi
2014-05-01
Full Text Available In this article, various issues related to the implementation of the usual Bayesian Information Criterion (BIC are critically examined in the context of modelling a finite population. A suitable design-based approximation to the BIC is proposed in order to avoid the derivation of the exact likelihood of the sample which is often very complex in a finite population sampling. The approximation is justified using a theoretical argument and a Monte Carlo simulation study.
40 CFR 80.127 - Sample size guidelines.
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Sample size guidelines. 80.127 Section 80.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Attest Engagements § 80.127 Sample size guidelines. In performing the...
International Nuclear Information System (INIS)
Andrianov, I.V.; Danishevsky, V.V.
1994-01-01
Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions
Many-body localization in disorder-free systems: The importance of finite-size constraints
Energy Technology Data Exchange (ETDEWEB)
Papić, Z., E-mail: zpapic@perimeterinstitute.ca [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Stoudenmire, E. Miles [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Abanin, Dmitry A. [Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva (Switzerland); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)
2015-11-15
Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Exchange bias in finite sized NiO nanoparticles with Ni clusters
Energy Technology Data Exchange (ETDEWEB)
Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw
2017-02-15
Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Exchange bias in finite sized NiO nanoparticles with Ni clusters
International Nuclear Information System (INIS)
Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace
2017-01-01
Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Sample Size in Qualitative Interview Studies: Guided by Information Power.
Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit
2015-11-27
Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is "saturation." Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose the concept "information power" to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power depends on (a) the aim of the study, (b) sample specificity, (c) use of established theory, (d) quality of dialogue, and (e) analysis strategy. We present a model where these elements of information and their relevant dimensions are related to information power. Application of this model in the planning and during data collection of a qualitative study is discussed. © The Author(s) 2015.
[Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].
Suzukawa, Yumi; Toyoda, Hideki
2012-04-01
This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.
Dednam, W.; Botha, A. E.
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution
International Nuclear Information System (INIS)
Dednam, W; Botha, A E
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution
Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R
2017-09-14
While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.
Sampling strategies for estimating brook trout effective population size
Andrew R. Whiteley; Jason A. Coombs; Mark Hudy; Zachary Robinson; Keith H. Nislow; Benjamin H. Letcher
2012-01-01
The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from...
Sample sizes and model comparison metrics for species distribution models
B.B. Hanberry; H.S. He; D.C. Dey
2012-01-01
Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....
Estimation of sample size and testing power (part 5).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-02-01
Estimation of sample size and testing power is an important component of research design. This article introduced methods for sample size and testing power estimation of difference test for quantitative and qualitative data with the single-group design, the paired design or the crossover design. To be specific, this article introduced formulas for sample size and testing power estimation of difference test for quantitative and qualitative data with the above three designs, the realization based on the formulas and the POWER procedure of SAS software and elaborated it with examples, which will benefit researchers for implementing the repetition principle.
Determination of the optimal sample size for a clinical trial accounting for the population size.
Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin
2017-07-01
The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuromuscular dose-response studies: determining sample size.
Kopman, A F; Lien, C A; Naguib, M
2011-02-01
Investigators planning dose-response studies of neuromuscular blockers have rarely used a priori power analysis to determine the minimal sample size their protocols require. Institutional Review Boards and peer-reviewed journals now generally ask for this information. This study outlines a proposed method for meeting these requirements. The slopes of the dose-response relationships of eight neuromuscular blocking agents were determined using regression analysis. These values were substituted for γ in the Hill equation. When this is done, the coefficient of variation (COV) around the mean value of the ED₅₀ for each drug is easily calculated. Using these values, we performed an a priori one-sample two-tailed t-test of the means to determine the required sample size when the allowable error in the ED₅₀ was varied from ±10-20%. The COV averaged 22% (range 15-27%). We used a COV value of 25% in determining the sample size. If the allowable error in finding the mean ED₅₀ is ±15%, a sample size of 24 is needed to achieve a power of 80%. Increasing 'accuracy' beyond this point requires increasing greater sample sizes (e.g. an 'n' of 37 for a ±12% error). On the basis of the results of this retrospective analysis, a total sample size of not less than 24 subjects should be adequate for determining a neuromuscular blocking drug's clinical potency with a reasonable degree of assurance.
Finite-size effects on two-particle production in continuous and discrete spectrum
Lednicky, R
2005-01-01
The effect of a finite space-time extent of particle production region on the lifetime measurement of hadronic atoms produced by a high energy beam in a thin target is discussed. Particularly, it is found that the neglect of this effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation on the level of the expected 10% statistical error. It is argued that the data on correlations of identical particles obtained in the same experimental conditions, together with transport code simulation, allow to diminish the systematic error in the extracted lifetime to an acceptable level. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair c.m.s., the space-time coherence and the residual charge are shown to be negligible.
Pairing mechanism in Bi-O superconductors: A finite-size chain calculation
International Nuclear Information System (INIS)
Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.
1989-01-01
We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic
Sample size optimization in nuclear material control. 1
International Nuclear Information System (INIS)
Gladitz, J.
1982-01-01
Equations have been derived and exemplified which allow the determination of the minimum variables sample size for given false alarm and detection probabilities of nuclear material losses and diversions, respectively. (author)
Sample size calculation for comparing two negative binomial rates.
Zhu, Haiyuan; Lakkis, Hassan
2014-02-10
Negative binomial model has been increasingly used to model the count data in recent clinical trials. It is frequently chosen over Poisson model in cases of overdispersed count data that are commonly seen in clinical trials. One of the challenges of applying negative binomial model in clinical trial design is the sample size estimation. In practice, simulation methods have been frequently used for sample size estimation. In this paper, an explicit formula is developed to calculate sample size based on the negative binomial model. Depending on different approaches to estimate the variance under null hypothesis, three variations of the sample size formula are proposed and discussed. Important characteristics of the formula include its accuracy and its ability to explicitly incorporate dispersion parameter and exposure time. The performance of the formula with each variation is assessed using simulations. Copyright © 2013 John Wiley & Sons, Ltd.
[Practical aspects regarding sample size in clinical research].
Vega Ramos, B; Peraza Yanes, O; Herrera Correa, G; Saldívar Toraya, S
1996-01-01
The knowledge of the right sample size let us to be sure if the published results in medical papers had a suitable design and a proper conclusion according to the statistics analysis. To estimate the sample size we must consider the type I error, type II error, variance, the size of the effect, significance and power of the test. To decide what kind of mathematics formula will be used, we must define what kind of study we have, it means if its a prevalence study, a means values one or a comparative one. In this paper we explain some basic topics of statistics and we describe four simple samples of estimation of sample size.
Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.
You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary
2011-02-01
The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure
Effects of sample size on the second magnetization peak in ...
Indian Academy of Sciences (India)
8+ crystals are observed at low temperatures, above the temperature where the SMP totally disappears. In particular, the onset of the SMP shifts to lower fields as the sample size decreases - a result that could be interpreted as a size effect in ...
Sample size computation for association studies using case–parents ...
Indian Academy of Sciences (India)
ple size needed to reach a given power (Knapp 1999; Schaid. 1999; Chen and Deng 2001; Brown 2004). In their seminal paper, Risch and Merikangas (1996) showed that for a mul- tiplicative mode of inheritance (MOI) for the susceptibility gene, sample size depends on two parameters: the frequency of the risk allele at the ...
International Nuclear Information System (INIS)
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing
2015-01-01
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
Sample size determination for equivalence assessment with multiple endpoints.
Sun, Anna; Dong, Xiaoyu; Tsong, Yi
2014-01-01
Equivalence assessment between a reference and test treatment is often conducted by two one-sided tests (TOST). The corresponding power function and sample size determination can be derived from a joint distribution of the sample mean and sample variance. When an equivalence trial is designed with multiple endpoints, it often involves several sets of two one-sided tests. A naive approach for sample size determination in this case would select the largest sample size required for each endpoint. However, such a method ignores the correlation among endpoints. With the objective to reject all endpoints and when the endpoints are uncorrelated, the power function is the production of all power functions for individual endpoints. With correlated endpoints, the sample size and power should be adjusted for such a correlation. In this article, we propose the exact power function for the equivalence test with multiple endpoints adjusted for correlation under both crossover and parallel designs. We further discuss the differences in sample size for the naive method without and with correlation adjusted methods and illustrate with an in vivo bioequivalence crossover study with area under the curve (AUC) and maximum concentration (Cmax) as the two endpoints.
Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride
International Nuclear Information System (INIS)
Thomas, Siby; Ajith, K M; Valsakumar, M C
2016-01-01
Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)
Finite-size effect and the components of multifractality in financial volatility
International Nuclear Information System (INIS)
Zhou Weixing
2012-01-01
Highlights: ► The apparent multifractality can be decomposed quantitatively. ► There is a marked finite-size effect in the detection of multifractality. ► The effective multifractality can be further decomposed into two components. ► A time series exhibits effective multifractality only if it possesses nonlinearity. ► The daily DJIA volatility is analyzed as an example. - Abstract: Many financial variables are found to exhibit multifractal nature, which is usually attributed to the influence of temporal correlations and fat-tailedness in the probability distribution (PDF). Based on the partition function approach of multifractal analysis, we show that there is a marked finite-size effect in the detection of multifractality, and the effective multifractality is the apparent multifractality after removing the finite-size effect. We find that the effective multifractality can be further decomposed into two components, the PDF component and the nonlinearity component. Referring to the normal distribution, we can determine the PDF component by comparing the effective multifractality of the original time series and the surrogate data that have a normal distribution and keep the same linear and nonlinear correlations as the original data. We demonstrate our method by taking the daily volatility data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. Extensive numerical experiments show that a time series exhibits effective multifractality only if it possesses nonlinearity and the PDF has an impact on the effective multifractality only when the time series possesses nonlinearity. Our method can also be applied to judge the presence of multifractality and determine its components of multifractal time series in other complex systems.
DEFF Research Database (Denmark)
Nielsen, Morten Ø.; Frederiksen, Per Houmann
2005-01-01
In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The es...... the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.......In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods....... The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all...
Frictional behaviour of sandstone: A sample-size dependent triaxial investigation
Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus
2017-01-01
Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.
Fermi surface of the one-dimensional Hubbard model. Finite-size effects
Energy Technology Data Exchange (ETDEWEB)
Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))
1989-12-01
The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).
Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study
Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.
2004-05-01
The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.
Finite-size effects and switching times for Moran process with mutation.
DeVille, Lee; Galiardi, Meghan
2017-04-01
We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.
A flexible method for multi-level sample size determination
International Nuclear Information System (INIS)
Lu, Ming-Shih; Sanborn, J.B.; Teichmann, T.
1997-01-01
This paper gives a flexible method to determine sample sizes for both systematic and random error models (this pertains to sampling problems in nuclear safeguard questions). In addition, the method allows different attribute rejection limits. The new method could assist achieving a higher detection probability and enhance inspection effectiveness
Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.
Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua
2016-09-05
In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.
Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.
Morgan, Timothy M; Case, L Douglas
2013-07-05
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.
Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele
2016-12-01
Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.
Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).
Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R
2017-10-04
A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence
Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef
2015-09-01
Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.
Leading order finite size effects with spins for inspiralling compact binaries
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-06-10
The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.
The square lattice Ising model on the rectangle II: finite-size scaling limit
Hucht, Alfred
2017-06-01
Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.
Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram
International Nuclear Information System (INIS)
Moretto, L.G.; Elliott, J.B.; Phair, L.
2003-01-01
In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
Charge and finite size corrections for virtual photon spectra in second order Born approximation
International Nuclear Information System (INIS)
Durgapal, P.
1982-01-01
The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations
Finite-size anomalies of the Drude weight: Role of symmetries and ensembles
Sánchez, R. J.; Varma, V. K.
2017-12-01
We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N magnetic flux not only breaks spin-inversion in the zero magnetization sector but also lifts the loop-algebra degeneracies in all symmetry sectors—this effect is more pertinent at smaller Δ due to the larger contributions to D coming from the low-magnetization sectors which are more sensitive to the system's symmetries. Thus we generically find a finite D for fluxed rings and arbitrary 0 lifted.
Directory of Open Access Journals (Sweden)
R. Eric Heidel
2016-01-01
Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.
Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions
Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul
2018-05-01
We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Sample Size Determination for One- and Two-Sample Trimmed Mean Tests
Luh, Wei-Ming; Olejnik, Stephen; Guo, Jiin-Huarng
2008-01-01
Formulas to determine the necessary sample sizes for parametric tests of group comparisons are available from several sources and appropriate when population distributions are normal. However, in the context of nonnormal population distributions, researchers recommend Yuen's trimmed mean test, but formulas to determine sample sizes have not been…
Revisiting sample size: are big trials the answer?
Lurati Buse, Giovanna A L; Botto, Fernando; Devereaux, P J
2012-07-18
The superiority of the evidence generated in randomized controlled trials over observational data is not only conditional to randomization. Randomized controlled trials require proper design and implementation to provide a reliable effect estimate. Adequate random sequence generation, allocation implementation, analyses based on the intention-to-treat principle, and sufficient power are crucial to the quality of a randomized controlled trial. Power, or the probability of the trial to detect a difference when a real difference between treatments exists, strongly depends on sample size. The quality of orthopaedic randomized controlled trials is frequently threatened by a limited sample size. This paper reviews basic concepts and pitfalls in sample-size estimation and focuses on the importance of large trials in the generation of valid evidence.
Sample size in psychological research over the past 30 years.
Marszalek, Jacob M; Barber, Carolyn; Kohlhart, Julie; Holmes, Cooper B
2011-04-01
The American Psychological Association (APA) Task Force on Statistical Inference was formed in 1996 in response to a growing body of research demonstrating methodological issues that threatened the credibility of psychological research, and made recommendations to address them. One issue was the small, even dramatically inadequate, size of samples used in studies published by leading journals. The present study assessed the progress made since the Task Force's final report in 1999. Sample sizes reported in four leading APA journals in 1955, 1977, 1995, and 2006 were compared using nonparametric statistics, while data from the last two waves were fit to a hierarchical generalized linear growth model for more in-depth analysis. Overall, results indicate that the recommendations for increasing sample sizes have not been integrated in core psychological research, although results slightly vary by field. This and other implications are discussed in the context of current methodological critique and practice.
Impact of shoe size in a sample of elderly individuals
Directory of Open Access Journals (Sweden)
Daniel López-López
Full Text Available Summary Introduction: The use of an improper shoe size is common in older people and is believed to have a detrimental effect on the quality of life related to foot health. The objective is to describe and compare, in a sample of participants, the impact of shoes that fit properly or improperly, as well as analyze the scores related to foot health and health overall. Method: A sample of 64 participants, with a mean age of 75.3±7.9 years, attended an outpatient center where self-report data was recorded, the measurements of the size of the feet and footwear were determined and the scores compared between the group that wears the correct size of shoes and another group of individuals who do not wear the correct size of shoes, using the Spanish version of the Foot Health Status Questionnaire. Results: The group wearing an improper shoe size showed poorer quality of life regarding overall health and specifically foot health. Differences between groups were evaluated using a t-test for independent samples resulting statistically significant (p<0.05 for the dimension of pain, function, footwear, overall foot health, and social function. Conclusion: Inadequate shoe size has a significant negative impact on quality of life related to foot health. The degree of negative impact seems to be associated with age, sex, and body mass index (BMI.
DEFF Research Database (Denmark)
Huber, Martin; Lechner, Michael; Mellace, Giovanni
Using a comprehensive simulation study based on empirical data, this paper investigates the finite sample properties of different classes of parametric and semi-parametric estimators of (natural) direct and indirect causal effects used in mediation analysis under sequential conditional independence...
DEFF Research Database (Denmark)
Huber, Martin; Lechner, Michael; Mellace, Giovanni
2016-01-01
Using a comprehensive simulation study based on empirical data, this paper investigates the finite sample properties of different classes of parametric and semi-parametric estimators of (natural) direct and indirect causal effects used in mediation analysis under sequential conditional independen...... of the methods often (but not always) varies with the features of the data generating process....
Finite-sample instrumental variables inference using an asymptotically pivotal statistic
Bekker, P; Kleibergen, F
2003-01-01
We consider the K-statistic, Kleibergen's (2002, Econometrica 70, 1781-1803) adaptation of the Anderson-Rubin (AR) statistic in instrumental variables regression. Whereas Kleibergen (2002) especially analyzes the asymptotic behavior of the statistic, we focus on finite-sample properties in, a
International Nuclear Information System (INIS)
Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A.
2004-01-01
We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample
Energy Technology Data Exchange (ETDEWEB)
Vindigni, A. E-mail: alessandro.vindigni@unifi.it; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A
2004-05-01
We investigate the relaxation time, {tau}, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of {tau}, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample.
Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.
2004-05-01
We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.
International Nuclear Information System (INIS)
Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de
2008-01-01
The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices
Optimal sample size for probability of detection curves
International Nuclear Information System (INIS)
Annis, Charles; Gandossi, Luca; Martin, Oliver
2013-01-01
Highlights: • We investigate sample size requirement to develop probability of detection curves. • We develop simulations to determine effective inspection target sizes, number and distribution. • We summarize these findings and provide guidelines for the NDE practitioner. -- Abstract: The use of probability of detection curves to quantify the reliability of non-destructive examination (NDE) systems is common in the aeronautical industry, but relatively less so in the nuclear industry, at least in European countries. Due to the nature of the components being inspected, sample sizes tend to be much lower. This makes the manufacturing of test pieces with representative flaws, in sufficient numbers, so to draw statistical conclusions on the reliability of the NDT system under investigation, quite costly. The European Network for Inspection and Qualification (ENIQ) has developed an inspection qualification methodology, referred to as the ENIQ Methodology. It has become widely used in many European countries and provides assurance on the reliability of NDE systems, but only qualitatively. The need to quantify the output of inspection qualification has become more important as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. A measure of the NDE reliability is necessary to quantify risk reduction after inspection and probability of detection (POD) curves provide such a metric. The Joint Research Centre, Petten, The Netherlands supported ENIQ by investigating the question of the sample size required to determine a reliable POD curve. As mentioned earlier manufacturing of test pieces with defects that are typically found in nuclear power plants (NPPs) is usually quite expensive. Thus there is a tendency to reduce sample sizes, which in turn increases the uncertainty associated with the resulting POD curve. The main question in conjunction with POS curves is the appropriate sample size. Not
A proof of the Woodward-Lawson sampling method for a finite linear array
Somers, Gary A.
1993-01-01
An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between
Shaw, Simon C.; Goldstein, Michael
2017-01-01
We explore the effect of finite population sampling in design problems with many variables cross-classified in many ways. In particular, we investigate designs where we wish to sample individuals belonging to different groups for which the underlying covariance matrices are separable between groups and variables. We exploit the generalised conditional independence structure of the model to show how the analysis of the full model can be reduced to an interpretable series of lower dimensional p...
Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes
International Nuclear Information System (INIS)
Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.
2006-01-01
A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field
Determining sample size for assessing species composition in ...
African Journals Online (AJOL)
Species composition is measured in grasslands for a variety of reasons. Commonly, observations are made using the wheel-point apparatus, but the problem of determining optimum sample size has not yet been satisfactorily resolved. In this study the wheel-point apparatus was used to record 2 000 observations in each of ...
Research Note Pilot survey to assess sample size for herbaceous ...
African Journals Online (AJOL)
A pilot survey to determine sub-sample size (number of point observations per plot) for herbaceous species composition assessments, using a wheel-point apparatus applying the nearest-plant method, was conducted. Three plots differing in species composition on the Zululand coastal plain were selected, and on each plot ...
Test of a sample container for shipment of small size plutonium samples with PAT-2
International Nuclear Information System (INIS)
Kuhn, E.; Aigner, H.; Deron, S.
1981-11-01
A light-weight container for the air transport of plutonium, to be designated PAT-2, has been developed in the USA and is presently undergoing licensing. The very limited effective space for bearing plutonium required the design of small size sample canisters to meet the needs of international safeguards for the shipment of plutonium samples. The applicability of a small canister for the sampling of small size powder and solution samples has been tested in an intralaboratory experiment. The results of the experiment, based on the concept of pre-weighed samples, show that the tested canister can successfully be used for the sampling of small size PuO 2 -powder samples of homogeneous source material, as well as for dried aliquands of plutonium nitrate solutions. (author)
Mechanisms of self-organization and finite size effects in a minimal agent based model
International Nuclear Information System (INIS)
Alfi, V; Cristelli, M; Pietronero, L; Zaccaria, A
2009-01-01
We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity
Neutron density decay constant in a non-multiplying lattice of finite size
International Nuclear Information System (INIS)
Deniz, V.C.
1965-01-01
This report presents a general theory, using the integral transport method, for obtaining the neutron density decay constant in a finite non-multiplying lattice. The theory is applied to obtain the expression for the diffusion coefficient. The case of a homogeneous medium with 1/v absorption and of finite size in all directions is treated in detail, assuming an isotropic scattering law. The decay constant is obtained up to the B 6 term. The expressions for the diffusion coefficient and for the diffusion cooling coefficient are the same as those obtained for a slab geometry by Nelkin, using the expansion in spherical harmonics of the Fourier transform in the spatial variable. Furthermore, explicit forms are obtained for the flux and the current. It is shown that the deviation of the actual flux from a Maxwellian is the flux generated in the medium, extended to infinity and deprived of its absorbing power, by various sources, each of which has a zero integral over all velocities. The study of the current permits the generalization of Fick's law. An independent integral method, valid for homogeneous media, is also presented. (author) [fr
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.
2013-09-01
Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2015-01-01
shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates......The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained...... an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation....
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
Finite-size effects in the spectrum of the OSp (3 | 2) superspin chain
Frahm, Holger; Martins, Márcio J.
2015-05-01
The low energy spectrum of a spin chain with OSp (3 | 2) supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z = 1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O (N) sigma model for N = 1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp (3 | 2). The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Finite-size effects in the spectrum of the OSp(3|2 superspin chain
Directory of Open Access Journals (Sweden)
Holger Frahm
2015-05-01
Full Text Available The low energy spectrum of a spin chain with OSp(3|2 supergroup symmetry is studied based on the Bethe ansatz solution of the related vertex model. This model is a lattice realization of intersecting loops in two dimensions with loop fugacity z=1 which provides a framework to study the critical properties of the unusual low temperature Goldstone phase of the O(N sigma model for N=1 in the context of an integrable model. Our finite-size analysis provides strong evidence for the existence of continua of scaling dimensions, the lowest of them starting at the ground state. Based on our data we conjecture that the so-called watermelon correlation functions decay logarithmically with exponents related to the quadratic Casimir operator of OSp(3|2. The presence of a continuous spectrum is not affected by a change to the boundary conditions although the density of states in the continua appears to be modified.
Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states
de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.
2015-12-01
Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.
Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point
Energy Technology Data Exchange (ETDEWEB)
Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)
2016-12-15
We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
Rock sampling. [method for controlling particle size distribution
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
Development of sample size allocation program using hypergeometric distribution
International Nuclear Information System (INIS)
Kim, Hyun Tae; Kwack, Eun Ho; Park, Wan Soo; Min, Kyung Soo; Park, Chan Sik
1996-01-01
The objective of this research is the development of sample allocation program using hypergeometric distribution with objected-oriented method. When IAEA(International Atomic Energy Agency) performs inspection, it simply applies a standard binomial distribution which describes sampling with replacement instead of a hypergeometric distribution which describes sampling without replacement in sample allocation to up to three verification methods. The objective of the IAEA inspection is the timely detection of diversion of significant quantities of nuclear material, therefore game theory is applied to its sampling plan. It is necessary to use hypergeometric distribution directly or approximate distribution to secure statistical accuracy. Improved binomial approximation developed by Mr. J. L. Jaech and correctly applied binomial approximation are more closer to hypergeometric distribution in sample size calculation than the simply applied binomial approximation of the IAEA. Object-oriented programs of 1. sample approximate-allocation with correctly applied standard binomial approximation, 2. sample approximate-allocation with improved binomial approximation, and 3. sample approximate-allocation with hypergeometric distribution were developed with Visual C ++ and corresponding programs were developed with EXCEL(using Visual Basic for Application). 8 tabs., 15 refs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)
2013-08-15
Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.
Estimation of sample size and testing power (Part 3).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2011-12-01
This article introduces the definition and sample size estimation of three special tests (namely, non-inferiority test, equivalence test and superiority test) for qualitative data with the design of one factor with two levels having a binary response variable. Non-inferiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is not clinically inferior to that of the positive control drug. Equivalence test refers to the research design of which the objective is to verify that the experimental drug and the control drug have clinically equivalent efficacy. Superiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is clinically superior to that of the control drug. By specific examples, this article introduces formulas of sample size estimation for the three special tests, and their SAS realization in detail.
Sample Size Calculation for Controlling False Discovery Proportion
Directory of Open Access Journals (Sweden)
Shulian Shang
2012-01-01
Full Text Available The false discovery proportion (FDP, the proportion of incorrect rejections among all rejections, is a direct measure of abundance of false positive findings in multiple testing. Many methods have been proposed to control FDP, but they are too conservative to be useful for power analysis. Study designs for controlling the mean of FDP, which is false discovery rate, have been commonly used. However, there has been little attempt to design study with direct FDP control to achieve certain level of efficiency. We provide a sample size calculation method using the variance formula of the FDP under weak-dependence assumptions to achieve the desired overall power. The relationship between design parameters and sample size is explored. The adequacy of the procedure is assessed by simulation. We illustrate the method using estimated correlations from a prostate cancer dataset.
An integrated approach for multi-level sample size determination
International Nuclear Information System (INIS)
Lu, M.S.; Teichmann, T.; Sanborn, J.B.
1997-01-01
Inspection procedures involving the sampling of items in a population often require steps of increasingly sensitive measurements, with correspondingly smaller sample sizes; these are referred to as multilevel sampling schemes. In the case of nuclear safeguards inspections verifying that there has been no diversion of Special Nuclear Material (SNM), these procedures have been examined often and increasingly complex algorithms have been developed to implement them. The aim in this paper is to provide an integrated approach, and, in so doing, to describe a systematic, consistent method that proceeds logically from level to level with increasing accuracy. The authors emphasize that the methods discussed are generally consistent with those presented in the references mentioned, and yield comparable results when the error models are the same. However, because of its systematic, integrated approach the proposed method elucidates the conceptual understanding of what goes on, and, in many cases, simplifies the calculations. In nuclear safeguards inspections, an important aspect of verifying nuclear items to detect any possible diversion of nuclear fissile materials is the sampling of such items at various levels of sensitivity. The first step usually is sampling by ''attributes'' involving measurements of relatively low accuracy, followed by further levels of sampling involving greater accuracy. This process is discussed in some detail in the references given; also, the nomenclature is described. Here, the authors outline a coordinated step-by-step procedure for achieving such multilevel sampling, and they develop the relationships between the accuracy of measurement and the sample size required at each stage, i.e., at the various levels. The logic of the underlying procedures is carefully elucidated; the calculations involved and their implications, are clearly described, and the process is put in a form that allows systematic generalization
Estimation of sample size and testing power (part 6).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-03-01
The design of one factor with k levels (k ≥ 3) refers to the research that only involves one experimental factor with k levels (k ≥ 3), and there is no arrangement for other important non-experimental factors. This paper introduces the estimation of sample size and testing power for quantitative data and qualitative data having a binary response variable with the design of one factor with k levels (k ≥ 3).
High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data
Morelli, Eugene A.
1997-01-01
Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Modeling of finite-size droplets and particles in multiphase flows
Directory of Open Access Journals (Sweden)
Prashant Khare
2015-08-01
Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.
Sample size of the reference sample in a case-augmented study.
Ghosh, Palash; Dewanji, Anup
2017-05-01
The case-augmented study, in which a case sample is augmented with a reference (random) sample from the source population with only covariates information known, is becoming popular in different areas of applied science such as pharmacovigilance, ecology, and econometrics. In general, the case sample is available from some source (for example, hospital database, case registry, etc.); however, the reference sample is required to be drawn from the corresponding source population. The required minimum size of the reference sample is an important issue in this regard. In this work, we address the minimum sample size calculation and discuss related issues. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Finite-size giant magnons on η-deformed AdS{sub 5}×S{sup 5}
Energy Technology Data Exchange (ETDEWEB)
Ahn, Changrim, E-mail: ahn@ewha.ac.kr; Bozhilov, Plamen, E-mail: bozhilov@inrne.bas.bg
2014-10-07
We consider strings moving in the R{sub t}×S{sub η}{sup 3} subspace of the η-deformed AdS{sub 5}×S{sup 5} and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.
Finite-size giant magnons on η-deformed AdS5×S5
Directory of Open Access Journals (Sweden)
Changrim Ahn
2014-10-01
Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.
Finite-size scaling method for the Berezinskii–Kosterlitz–Thouless transition
International Nuclear Information System (INIS)
Hsieh, Yun-Da; Kao, Ying-Jer; Sandvik, Anders W
2013-01-01
We test an improved finite-size scaling method for reliably extracting the critical temperature T BKT of a Berezinskii–Kosterlitz–Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness ρ s at T BKT in combination with the Kosterlitz–Nelson relation between the transition temperature and the stiffness, ρ s (T BKT ) = 2T BKT /π, we define a size-dependent transition temperature T BKT (L 1 ,L 2 ) based on a pair of system sizes L 1 ,L 2 , e.g., L 2 = 2L 1 . We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T BKT (L 1 ,L 2 ). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T BKT ≈ 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions. (paper)
Sample size for monitoring sirex populations and their natural enemies
Directory of Open Access Journals (Sweden)
Susete do Rocio Chiarello Penteado
2016-09-01
Full Text Available The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae was introduced in Brazil in 1988 and became the main pest in pine plantations. It has spread to about 1.000.000 ha, at different population levels, in the states of Rio Grande do Sul, Santa Catarina, Paraná, São Paulo and Minas Gerais. Control is done mainly by using a nematode, Deladenus siricidicola Bedding (Nematoda: Neothylenchidae. The evaluation of the efficiency of natural enemies has been difficult because there are no appropriate sampling systems. This study tested a hierarchical sampling system to define the sample size to monitor the S. noctilio population and the efficiency of their natural enemies, which was found to be perfectly adequate.
Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization
Trevelin, Leonardo Carreira; Novaes, Roberto Leonan Morim; Colas-Rosas, Paul François; Benathar, Thayse Cristhina Melo; Peres, Carlos A.
2017-01-01
The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the co...
Optimal Sample Size for Probability of Detection Curves
International Nuclear Information System (INIS)
Annis, Charles; Gandossi, Luca; Martin, Oliver
2012-01-01
The use of Probability of Detection (POD) curves to quantify NDT reliability is common in the aeronautical industry, but relatively less so in the nuclear industry. The European Network for Inspection Qualification's (ENIQ) Inspection Qualification Methodology is based on the concept of Technical Justification, a document assembling all the evidence to assure that the NDT system in focus is indeed capable of finding the flaws for which it was designed. This methodology has become widely used in many countries, but the assurance it provides is usually of qualitative nature. The need to quantify the output of inspection qualification has become more important, especially as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. To credit the inspections in structural reliability evaluations, a measure of the NDT reliability is necessary. A POD curve provides such metric. In 2010 ENIQ developed a technical report on POD curves, reviewing the statistical models used to quantify inspection reliability. Further work was subsequently carried out to investigate the issue of optimal sample size for deriving a POD curve, so that adequate guidance could be given to the practitioners of inspection reliability. Manufacturing of test pieces with cracks that are representative of real defects found in nuclear power plants (NPP) can be very expensive. Thus there is a tendency to reduce sample sizes and in turn reduce the conservatism associated with the POD curve derived. Not much guidance on the correct sample size can be found in the published literature, where often qualitative statements are given with no further justification. The aim of this paper is to summarise the findings of such work. (author)
Shih, Hong-Yan; Goldenfeld, Nigel
Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.
Finite nuclear size and Lamb shift of p-wave atomic states
International Nuclear Information System (INIS)
Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.
2003-01-01
We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small
Length and temperature dependence of the mechanical properties of finite-size carbyne
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element.
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role.
An exact solution to the extended Hubbard model in 2D for finite size system
Harir, S.; Bennai, M.; Boughaleb, Y.
2008-08-01
An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.
Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model
Pan, Xue; Zhang, Yanhua; Chen, Lizhu; Xu, Mingmei; Wu, Yuanfang
2018-01-01
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class. Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)
Directory of Open Access Journals (Sweden)
Simone Benella
2017-07-01
Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent
2016-04-01
Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.
Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems
van den Brink, J.; Sawatzky, G.A.
2000-01-01
We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and
Kok, de A.G.
2003-01-01
In this paper, we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin
Kok, de A.G.
2003-01-01
In this paper we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin probabilities
Directory of Open Access Journals (Sweden)
Maziar Heidari
2018-03-01
Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
Effect of sample size on bias correction performance
Reiter, Philipp; Gutjahr, Oliver; Schefczyk, Lukas; Heinemann, Günther; Casper, Markus C.
2014-05-01
The output of climate models often shows a bias when compared to observed data, so that a preprocessing is necessary before using it as climate forcing in impact modeling (e.g. hydrology, species distribution). A common bias correction method is the quantile matching approach, which adapts the cumulative distribution function of the model output to the one of the observed data by means of a transfer function. Especially for precipitation we expect the bias correction performance to strongly depend on sample size, i.e. the length of the period used for calibration of the transfer function. We carry out experiments using the precipitation output of ten regional climate model (RCM) hindcast runs from the EU-ENSEMBLES project and the E-OBS observational dataset for the period 1961 to 2000. The 40 years are split into a 30 year calibration period and a 10 year validation period. In the first step, for each RCM transfer functions are set up cell-by-cell, using the complete 30 year calibration period. The derived transfer functions are applied to the validation period of the respective RCM precipitation output and the mean absolute errors in reference to the observational dataset are calculated. These values are treated as "best fit" for the respective RCM. In the next step, this procedure is redone using subperiods out of the 30 year calibration period. The lengths of these subperiods are reduced from 29 years down to a minimum of 1 year, only considering subperiods of consecutive years. This leads to an increasing number of repetitions for smaller sample sizes (e.g. 2 for a length of 29 years). In the last step, the mean absolute errors are statistically tested against the "best fit" of the respective RCM to compare the performances. In order to analyze if the intensity of the effect of sample size depends on the chosen correction method, four variations of the quantile matching approach (PTF, QUANT/eQM, gQM, GQM) are applied in this study. The experiments are further
On sample size and different interpretations of snow stability datasets
Schirmer, M.; Mitterer, C.; Schweizer, J.
2009-04-01
Interpretations of snow stability variations need an assessment of the stability itself, independent of the scale investigated in the study. Studies on stability variations at a regional scale have often chosen stability tests such as the Rutschblock test or combinations of various tests in order to detect differences in aspect and elevation. The question arose: ‘how capable are such stability interpretations in drawing conclusions'. There are at least three possible errors sources: (i) the variance of the stability test itself; (ii) the stability variance at an underlying slope scale, and (iii) that the stability interpretation might not be directly related to the probability of skier triggering. Various stability interpretations have been proposed in the past that provide partly different results. We compared a subjective one based on expert knowledge with a more objective one based on a measure derived from comparing skier-triggered slopes vs. slopes that have been skied but not triggered. In this study, the uncertainties are discussed and their effects on regional scale stability variations will be quantified in a pragmatic way. An existing dataset with very large sample sizes was revisited. This dataset contained the variance of stability at a regional scale for several situations. The stability in this dataset was determined using the subjective interpretation scheme based on expert knowledge. The question to be answered was how many measurements were needed to obtain similar results (mainly stability differences in aspect or elevation) as with the complete dataset. The optimal sample size was obtained in several ways: (i) assuming a nominal data scale the sample size was determined with a given test, significance level and power, and by calculating the mean and standard deviation of the complete dataset. With this method it can also be determined if the complete dataset consists of an appropriate sample size. (ii) Smaller subsets were created with similar
Finite sample performance of the E-M algorithm for ranks data modelling
Directory of Open Access Journals (Sweden)
Angela D'Elia
2007-10-01
Full Text Available We check the finite sample performance of the maximum likelihood estimators of the parameters of a mixture distribution recently introduced for modelling ranks/preference data. The estimates are derived by the E-M algorithm and the performance is evaluated both from an univariate and bivariate points of view. While the results are generally acceptable as far as it concerns the bias, the Monte Carlo experiment shows a different behaviour of the estimators efficiency for the two parameters of the mixture, mainly depending upon their location in the admissible parametric space. Some operative suggestions conclude the paer.
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
4/2010, č. 3 (2010), s. 236-250 ISSN 1802-4696 R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310 Institutional research plan: CEZ:AV0Z10750506 Keywords : rescaled range analysis * detrended fluctuation analysis * Hurst exponent * long-range dependence Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-rescaled range analysis and detrended fluctuation analysis finite sample properties and confidence intervals.pdf
Analysis of time series and size of equivalent sample
International Nuclear Information System (INIS)
Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge
2004-01-01
In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh
Energy Technology Data Exchange (ETDEWEB)
Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)
2017-04-15
We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)
Finite size effects in liquid-gas phase transition of asymmetric nuclear matter
International Nuclear Information System (INIS)
Pawlowski, P.
2001-01-01
Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb
Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.
2017-10-01
Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.
International Nuclear Information System (INIS)
Guigou, Marine
2009-01-01
This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)
2017-06-15
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
International Nuclear Information System (INIS)
Suslov, I. M.
2006-01-01
An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data
Sample Size of One: Operational Qualitative Analysis in the Classroom
Directory of Open Access Journals (Sweden)
John Hoven
2015-10-01
Full Text Available Qualitative analysis has two extraordinary capabilities: first, finding answers to questions we are too clueless to ask; and second, causal inference – hypothesis testing and assessment – within a single unique context (sample size of one. These capabilities are broadly useful, and they are critically important in village-level civil-military operations. Company commanders need to learn quickly, "What are the problems and possibilities here and now, in this specific village? What happens if we do A, B, and C?" – and that is an ill-defined, one-of-a-kind problem. The U.S. Army's Eighty-Third Civil Affairs Battalion is our "first user" innovation partner in a new project to adapt qualitative research methods to an operational tempo and purpose. Our aim is to develop a simple, low-cost methodology and training program for local civil-military operations conducted by non-specialist conventional forces. Complementary to that, this paper focuses on some essential basics that can be implemented by college professors without significant cost, effort, or disruption.
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Finite element simulation of the T-shaped ECAP processing of round samples
Shaban Ghazani, Mehdi; Fardi-Ilkhchy, Ali; Binesh, Behzad
2018-05-01
Grain refinement is the only mechanism that increases the yield strength and toughness of the materials simultaneously. Severe plastic deformation is one of the promising methods to refine the microstructure of materials. Among different severe plastic deformation processes, the T-shaped equal channel angular pressing (T-ECAP) is a relatively new technique. In the present study, finite element analysis was conducted to evaluate the deformation behavior of metals during T-ECAP process. The study was focused mainly on flow characteristics, plastic strain distribution and its homogeneity, damage development, and pressing force which are among the most important factors governing the sound and successful processing of nanostructured materials by severe plastic deformation techniques. The results showed that plastic strain is localized in the bottom side of sample and uniform deformation cannot be possible using T-ECAP processing. Friction coefficient between sample and die channel wall has a little effect on strain distributions in mirror plane and transverse plane of deformed sample. Also, damage analysis showed that superficial cracks may be initiated from bottom side of sample and their propagation will be limited due to the compressive state of stress. It was demonstrated that the V shaped deformation zone are existed in T-ECAP process and the pressing load needed for execution of deformation process is increased with friction.
DEFF Research Database (Denmark)
Veraart, Almut
2011-01-01
and present a new estimator for the asymptotic "variance" of the centered realised variance in the presence of jumps. Next, we compare the finite sample performance of the various estimators by means of detailed Monte Carlo studies. Here we study the impact of the jump activity, of the jump size of the jumps......This paper studies the impact of jumps on volatility estimation and inference based on various realised variation measures such as realised variance, realised multipower variation and truncated realised multipower variation. We review the asymptotic theory of those realised variation measures...... in the price and of the presence of additional independent or dependent jumps in the volatility. We find that the finite sample performance of realised variance and, in particular, of log--transformed realised variance is generally good, whereas the jump--robust statistics tend to struggle in the presence...
Akdogan, E. K.; Safari, A.
2007-03-01
We compute the intrinsic dielectric and piezoelectric properties of single domain, mechanically free, and surface charge compensated PbTiO3 nanocrystals (n-Pt) with no depolarization fields, undergoing a finite size induced first order tetragonal→cubic ferrodistortive phase transition. By using a Landau-Devonshire type free energy functional, in which Landau coefficients are a function of nanoparticle size, we demonstrate substantial deviations from bulk properties in the range <150 nm. We find a decrease in dielectric susceptibility at the transition temperature with decreasing particle size, which we verify to be in conformity with predictions of lattice dynamics considerations. We also find an anomalous increase in piezocharge coefficients near ˜15 nm , the critical size for n-Pt.
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin
2014-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the
14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices
Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet
2017-12-01
Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.
Guo, Jiin-Huarng; Luh, Wei-Ming
2009-05-01
When planning a study, sample size determination is one of the most important tasks facing the researcher. The size will depend on the purpose of the study, the cost limitations, and the nature of the data. By specifying the standard deviation ratio and/or the sample size ratio, the present study considers the problem of heterogeneous variances and non-normality for Yuen's two-group test and develops sample size formulas to minimize the total cost or maximize the power of the test. For a given power, the sample size allocation ratio can be manipulated so that the proposed formulas can minimize the total cost, the total sample size, or the sum of total sample size and total cost. On the other hand, for a given total cost, the optimum sample size allocation ratio can maximize the statistical power of the test. After the sample size is determined, the present simulation applies Yuen's test to the sample generated, and then the procedure is validated in terms of Type I errors and power. Simulation results show that the proposed formulas can control Type I errors and achieve the desired power under the various conditions specified. Finally, the implications for determining sample sizes in experimental studies and future research are discussed.
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
International Nuclear Information System (INIS)
Park, Moon Shik; Suh, Yeong Sung; Song, Seung
2011-01-01
An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers
Comparing Server Energy Use and Efficiency Using Small Sample Sizes
Energy Technology Data Exchange (ETDEWEB)
Coles, Henry C.; Qin, Yong; Price, Phillip N.
2014-11-01
This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel and one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a
International Nuclear Information System (INIS)
Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa
2016-01-01
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Energy Technology Data Exchange (ETDEWEB)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)
2016-08-07
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Shieh, Gwowen
2013-01-01
The a priori determination of a proper sample size necessary to achieve some specified power is an important problem encountered frequently in practical studies. To establish the needed sample size for a two-sample "t" test, researchers may conduct the power analysis by specifying scientifically important values as the underlying population means…
Directory of Open Access Journals (Sweden)
Alexandre Bambina
2018-01-01
Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
A contemporary decennial global sample of changing agricultural field sizes
White, E.; Roy, D. P.
2011-12-01
In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.
Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.
Algina, James; Olejnik, Stephen
2000-01-01
Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)
DEFF Research Database (Denmark)
Marodi, M.; D'ovidio, Francesco; Vicsek, T.
2002-01-01
of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.
2017-11-01
Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Xie, Yang; Ying, Jinyong; Xie, Dexuan
2017-03-30
SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Model-based estimation of finite population total in stratified sampling
African Journals Online (AJOL)
The work presented in this paper concerns the estimation of finite population total under model – based framework. Nonparametric regression approach as a method of estimating finite population total is explored. The asymptotic properties of the estimators based on nonparametric regression are also developed under ...
Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, P.
2009-01-01
We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-12-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.
The exact solution and the finite-size behaviour of the Osp(1vertical stroke 2)-invariant spin chain
International Nuclear Information System (INIS)
Martins, M.J.
1995-01-01
We have solved exactly the Osp(1vertical stroke 2) spin chain by the Bethe ansatz approach. Our solution is based on an equivalence between the Osp(1vertical stroke 2) chain and a certain special limit of the Izergin-Korepin vertex model. The completeness of the Bethe ansatz equations is discussed for a system with four sites and the appearance of special string structures is noted. The Bethe ansatz presents an important phase factor which distinguishes the even and odd sectors of the theory. The finite-size properties are governed by a conformal field theory with central charge c=1. (orig.)
Suppression of bottomonia states in finite size quark gluon plasma in PbPb collisions at LHC
International Nuclear Information System (INIS)
Shukla, P.; Abdulsalam, Abdulla; Kumar, Vineet
2012-01-01
The paper estimated the suppression of bottomonium states in an expanding QGP of finite lifetime and size with the conditions relevant for PbPb collisions at LHC. The recent results on the properties of ϒ states have been used as ingredient in the study. The nuclear modification factor and the ratios of yields of ϒ states are then obtained as a function of transverse momentum and centrality. The study has compared the calculations with the bottomonia yields measured in Pb+Pb collisions at √S NN = 2.76 TeV
Finite size giant magnons in the SU(2) x SU(2) sector of AdS4 x CP3
International Nuclear Information System (INIS)
Lukowski, Tomasz; Sax, Olof Ohlsson
2008-01-01
We use the algebraic curve and Luescher's μ-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS 4 x CP 3 . We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.
Finite-size effect of η-deformed AdS5×S5 at strong coupling
Directory of Open Access Journals (Sweden)
Changrim Ahn
2017-04-01
Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.
Finite size effects in the thermodynamics of a free neutral scalar field
Parvan, A. S.
2018-04-01
The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.
Elastodynamic models for extending GTD to penumbra and finite size flaws
International Nuclear Information System (INIS)
Djakou, A Kamta; Darmon, M; Potel, C
2016-01-01
The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)
Todoshchenko, I.
2018-04-01
We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt completely or grow to a large enough size.
Renormalization group and finite size effects in scalar lattice field theories
International Nuclear Information System (INIS)
Bernreuther, W.; Goeckeler, M.
1988-01-01
Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)
Phase transition in the rich-get-richer mechanism due to finite-size effects
International Nuclear Information System (INIS)
Bagrow, James P; Ben-Avraham, Daniel; Sun Jie
2008-01-01
The rich-get-richer mechanism (agents increase their 'wealth' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale-free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r<1/2, and a Pareto-like tail (on the positive side) and a novel stretched exponential decay (on the negative side) for r<1/2
Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam
International Nuclear Information System (INIS)
Thomas, V.A.
1989-01-01
The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989
DEFF Research Database (Denmark)
Carstensen, Josephine Voigt; Jomaas, Grunde; Pankaj, Pankaj
2013-01-01
to extend this approach for RC at elevated temperatures. Prior to the extension, the approach is investigated for associated modeling issues and a set of limits of application are formulated. The available models of the behavior of plain concrete at elevated temperatures were used to derive inherent......One of the accepted approaches for postpeak finite-element modeling of RC comprises combining plain concrete, reinforcement, and interaction behaviors. In these, the postpeak strain-softening behavior of plain concrete is incorporated by the use of fracture energy concepts. This study attempts...... fracture energy variation with temperature. It is found that the currently used tensile elevated temperature model assumes that the fracture energy decays with temperature. The existing models in compression also show significant decay of fracture energy at higher temperatures (>400°) and a considerable...
Estimation of individual reference intervals in small sample sizes
DEFF Research Database (Denmark)
Hansen, Ase Marie; Garde, Anne Helene; Eller, Nanna Hurwitz
2007-01-01
In occupational health studies, the study groups most often comprise healthy subjects performing their work. Sampling is often planned in the most practical way, e.g., sampling of blood in the morning at the work site just after the work starts. Optimal use of reference intervals requires...... from various variables such as gender, age, BMI, alcohol, smoking, and menopause. The reference intervals were compared to reference intervals calculated using IFCC recommendations. Where comparable, the IFCC calculated reference intervals had a wider range compared to the variance component models...
Shimamura, Miyuki K; Deguchi, Tetsuo
2002-05-01
Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.
Hong-Ghi Min
2011-01-01
Using Monte Carlo simulation of the Portfolio-balance model of the exchange rates, we report finite sample properties of the GMM estimator for testing over-identifying restrictions in the simultaneous equations model. F-form of Sargans statistic performs better than its chi-squared form while Hansens GMM statistic has the smallest bias.
7 CFR 52.775 - Sample unit size.
2010-01-01
... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... extraneous material—The total contents of each container in the sample. Factors of Quality ...
7 CFR 201.43 - Size of sample.
2010-01-01
... units. Coated seed for germination test only shall consist of at least 1,000 seed units. [10 FR 9950... of samples of agricultural seed, vegetable seed and screenings to be submitted for analysis, test, or..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT...
Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray
2015-04-01
The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc
The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance
International Nuclear Information System (INIS)
Alcaraz, F.C.
1986-01-01
Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt
International Nuclear Information System (INIS)
Suh, Yeong Sung; Kim, Yong Bae
2012-01-01
The strength of particle reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite element unit cell model. the proposed method is shown to be very effective by performing finite element strength analysis of SiC p /Al2124 T4 composites that included ductile in the matrix and particle matrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle reinforced metal matrix composites
Wang, Chong
2018-03-01
In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0 is also given.
International Nuclear Information System (INIS)
Stevenin, Mathilde
2016-01-01
Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr
International Nuclear Information System (INIS)
Arora, H.S.; Singh, H.; Dhindaw, B.K.
2012-01-01
Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.
Directory of Open Access Journals (Sweden)
Norapat Noilublao
2013-01-01
Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.
Sample size reduction in groundwater surveys via sparse data assimilation
Hussain, Z.
2013-04-01
In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.
Sample size reduction in groundwater surveys via sparse data assimilation
Hussain, Z.; Muhammad, A.
2013-01-01
In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.
Finite Size Effects in Chemical Bonding: From Small Clusters to Solids
DEFF Research Database (Denmark)
Kleis, Jesper; Greeley, Jeffrey Philip; Romero, N. A.
2011-01-01
We address the fundamental question of which size a metallic nano-particle needs to have before its surface chemical properties can be considered to be those of a solid, rather than those of a large molecule. Calculations of adsorption energies for carbon monoxide and oxygen on a series of gold...
Reflection of sound from finite-size plane and curved surfaces
DEFF Research Database (Denmark)
Rindel, Jens Holger
2005-01-01
of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...
Finite size effects in a model for platicity of amorphous composites
DEFF Research Database (Denmark)
Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt
2016-01-01
We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...
Two-dimensional quantum-corrected black hole in a finite size cavity
International Nuclear Information System (INIS)
Zaslavskii, O.B.
2004-01-01
We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability
Finite size effects in phase transformation kinetics in thin films and surface layers
International Nuclear Information System (INIS)
Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il
2004-01-01
In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively
Finite-size scaling functions for directed polymers confined between attracting walls
Energy Technology Data Exchange (ETDEWEB)
Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Rechnitzer, A [Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 (Canada)
2008-01-25
The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been recently calculated. The walks can be considered to model the polymer-induced steric stabilization and sensitized flocculation of colloidal dispersions. The large-width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: Can one interpolate between the single wall and two wall cases? In this paper, we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic {theta} functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-02-28
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.
Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank
2018-02-12
Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in
DEFF Research Database (Denmark)
Freltoft, T.; Kjems, Jørgen; Sinha, S. K.
1986-01-01
Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...
Reducing Data Size Inequality during Finite Element Model Separation into Superelements
Directory of Open Access Journals (Sweden)
Yu. V. Berchun
2015-01-01
Full Text Available The work considers two methods of automatic separation of final element model into super-elements to decrease computing resource demand when solving the linearly - elastic problems of solid mechanics. The first method represents an algorithm to separate a final element grid into simply connected sub-regions according to the set specific number of nodes in the super-element. The second method is based on the generation of a super-element with the set specific data size of the coefficient matrix of the system of equations of the internal nodes balance, which are eliminated during super-element transformation. Both methods are based on the theory of graphs. The data size of a matrix of coefficients is assessed on the assumption that the further solution of a task will use Holetsky’s method. Before assessment of data size, a KatkhillaMackey's (Cuthill-McKee algorithm renumbers the internal nodes of a super-element both to decrease a profile width of the appropriate matrix of the system of equations of balance and to reduce the number of nonzero elements. Test examples show work results of abovementioned methods compared in terms of inequality of generated super-element separation according to the number of nodes and data size of the coefficient matrix of the system of equations of the internal nodes balance. It is shown that the offered approach provides smaller inequality of data size of super-element matrixes, with slightly increasing inequality by the number of tops.
The attention-weighted sample-size model of visual short-term memory
DEFF Research Database (Denmark)
Smith, Philip L.; Lilburn, Simon D.; Corbett, Elaine A.
2016-01-01
exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items...
A review of finite size effects in quasi-zero dimensional superconductors.
Bose, Sangita; Ayyub, Pushan
2014-11-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size
A review of finite size effects in quasi-zero dimensional superconductors
International Nuclear Information System (INIS)
Bose, Sangita; Ayyub, Pushan
2014-01-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non
Soetaert, K.; Heip, C.H.R.
1990-01-01
Diversity indices, although designed for comparative purposes, often cannot be used as such, due to their sample-size dependence. It is argued here that this dependence is more pronounced in high diversity than in low diversity assemblages and that indices more sensitive to rarer species require larger sample sizes to estimate diversity with reasonable precision than indices which put more weight on commoner species. This was tested for Hill's diversity number N sub(0) to N sub( proportional ...
Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size
Energy Technology Data Exchange (ETDEWEB)
Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Kreider, W. [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105 (United States)
2015-10-28
Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.
Synchronization in scale-free networks: The role of finite-size effects
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
Sui, Xiaohong; Huang, Yu; Feng, Fuchen; Huang, Chenhui; Chan, Leanne Lai Hang; Wang, Guoxing
2015-05-01
A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm-1 was adopted as the activation threshold for RGCs. The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 µm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.
Sample size reassessment for a two-stage design controlling the false discovery rate.
Zehetmayer, Sonja; Graf, Alexandra C; Posch, Martin
2015-11-01
Sample size calculations for gene expression microarray and NGS-RNA-Seq experiments are challenging because the overall power depends on unknown quantities as the proportion of true null hypotheses and the distribution of the effect sizes under the alternative. We propose a two-stage design with an adaptive interim analysis where these quantities are estimated from the interim data. The second stage sample size is chosen based on these estimates to achieve a specific overall power. The proposed procedure controls the power in all considered scenarios except for very low first stage sample sizes. The false discovery rate (FDR) is controlled despite of the data dependent choice of sample size. The two-stage design can be a useful tool to determine the sample size of high-dimensional studies if in the planning phase there is high uncertainty regarding the expected effect sizes and variability.
Evaluation of design flood estimates with respect to sample size
Kobierska, Florian; Engeland, Kolbjorn
2016-04-01
Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.
Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.
2004-01-01
Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties
Finite-size effects on the vortex-glass transition in thin YBa2Cu3O7-δ films
International Nuclear Information System (INIS)
Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.
1995-01-01
Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa 2 Cu 3 O 7-δ films of a thickness t ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films (t≤400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities J, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low J by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature
Chen, Henian; Zhang, Nanhua; Lu, Xiaosun; Chen, Sophie
2013-08-01
The method used to determine choice of standard deviation (SD) is inadequately reported in clinical trials. Underestimations of the population SD may result in underpowered clinical trials. This study demonstrates how using the wrong method to determine population SD can lead to inaccurate sample sizes and underpowered studies, and offers recommendations to maximize the likelihood of achieving adequate statistical power. We review the practice of reporting sample size and its effect on the power of trials published in major journals. Simulated clinical trials were used to compare the effects of different methods of determining SD on power and sample size calculations. Prior to 1996, sample size calculations were reported in just 1%-42% of clinical trials. This proportion increased from 38% to 54% after the initial Consolidated Standards of Reporting Trials (CONSORT) was published in 1996, and from 64% to 95% after the revised CONSORT was published in 2001. Nevertheless, underpowered clinical trials are still common. Our simulated data showed that all minimal and 25th-percentile SDs fell below 44 (the population SD), regardless of sample size (from 5 to 50). For sample sizes 5 and 50, the minimum sample SDs underestimated the population SD by 90.7% and 29.3%, respectively. If only one sample was available, there was less than 50% chance that the actual power equaled or exceeded the planned power of 80% for detecting a median effect size (Cohen's d = 0.5) when using the sample SD to calculate the sample size. The proportions of studies with actual power of at least 80% were about 95%, 90%, 85%, and 80% when we used the larger SD, 80% upper confidence limit (UCL) of SD, 70% UCL of SD, and 60% UCL of SD to calculate the sample size, respectively. When more than one sample was available, the weighted average SD resulted in about 50% of trials being underpowered; the proportion of trials with power of 80% increased from 90% to 100% when the 75th percentile and the
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
International Nuclear Information System (INIS)
Eastham, P. R.; Littlewood, P. B.
2006-01-01
We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high-temperature and low-temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model
Taylor, Douglas J.; Muller, Keith E.
1995-01-01
The power of a test, the probability of rejecting the null hypothesis in favor of an alternative, may be computed using estimates of one or more distributional parameters. Statisticians frequently fix mean values and calculate power or sample size using a variance estimate from an existing study. Hence computed power becomes a random variable for a fixed sample size. Likewise, the sample size necessary to achieve a fixed power varies randomly. Standard statistical practice requires reporting ...
Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride
2015-08-01
ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2012-01-01
In this study a stochastic approach is conducted to obtain the horizontal and rotational stiffness of an offshore monopile foundation. A nonlinear stochastic p-y curve is integrated into a finite element scheme for calculation of the monopile response in over-consolidated clay having spatial...
Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim
2017-04-01
Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators.
Nishikawa, Isao; Tanaka, Gouhei; Aihara, Kazuyuki
2013-08-01
Universal scaling laws form one of the central issues in physics. A nonstandard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we found that a statistical quantity related to fluctuations follows a nonstandard scaling law with respect to the system size in a synchronized state of globally coupled nonidentical phase oscillators [I. Nishikawa et al., Chaos 22, 013133 (2012)]. However, it is still unclear how widely this nonstandard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems and validate the conditions by numerical simulations of several different models.
Energy Technology Data Exchange (ETDEWEB)
Bae, Keun Hyung; Jeon, Jun Young; Han, Jae Jun; Nam, Hyun Suk; Lee, Dae Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)
2016-08-15
In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness(J{sub IC}) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.
GIFFT: A Fast Solver for Modeling Sources in a Metamaterial Environment of Finite Size
International Nuclear Information System (INIS)
Capolino, F; Basilio, L; Fasenfest, B J; Wilton, D R
2006-01-01
Due to the recent explosion of interest in studying the electromagnetic behavior of large (truncated) periodic structures such as phased arrays, frequency-selective surfaces, and metamaterials, there has been a renewed interest in efficiently modeling such structures. Since straightforward numerical analyses of large, finite structures (i.e., explicitly meshing and computing interactions between all mesh elements of the entire structure) involve significant memory storage and computation times, much effort is currently being expended on developing techniques that minimize the high demand on computer resources. One such technique that belongs to the class of fast solvers for large periodic structures is the GIFFT algorithm (Green's function interpolation and FFT), which is first discussed in [1]. This method is a modification of the adaptive integral method (AIM) [2], a technique based on the projection of subdomain basis functions onto a rectangular grid. Like the methods presented in [3]-[4], the GIFFT algorithm is an extension of the AIM method in that it uses basis-function projections onto a rectangular grid through Lagrange interpolating polynomials. The use of a rectangular grid results in a matrix-vector product that is convolutional in form and can thus be evaluated using FFTs. Although our method differs from [3]-[6] in various respects, the primary differences between the AIM approach [2] and the GIFFT method [1] is the latter's use of interpolation to represent the Green's function (GF) and its specialization to periodic structures by taking into account the reusability properties of matrices that arise from interactions between identical cell elements. The present work extends the GIFFT algorithm to allow for a complete numerical analysis of a periodic structure excited by dipole source, as shown in Fig 1. Although GIFFT [1] was originally developed to handle strictly periodic structures, the technique has now been extended to efficiently handle a small
Breaking Free of Sample Size Dogma to Perform Innovative Translational Research
Bacchetti, Peter; Deeks, Steven G.; McCune, Joseph M.
2011-01-01
Innovative clinical and translational research is often delayed or prevented by reviewers’ expectations that any study performed in humans must be shown in advance to have high statistical power. This supposed requirement is not justifiable and is contradicted by the reality that increasing sample size produces diminishing marginal returns. Studies of new ideas often must start small (sometimes even with an N of 1) because of cost and feasibility concerns, and recent statistical work shows that small sample sizes for such research can produce more projected scientific value per dollar spent than larger sample sizes. Renouncing false dogma about sample size would remove a serious barrier to innovation and translation. PMID:21677197
Mayer, B; Muche, R
2013-01-01
Animal studies are highly relevant for basic medical research, although their usage is discussed controversially in public. Thus, an optimal sample size for these projects should be aimed at from a biometrical point of view. Statistical sample size calculation is usually the appropriate methodology in planning medical research projects. However, required information is often not valid or only available during the course of an animal experiment. This article critically discusses the validity of formal sample size calculation for animal studies. Within the discussion, some requirements are formulated to fundamentally regulate the process of sample size determination for animal experiments.
Sampling bee communities using pan traps: alternative methods increase sample size
Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...
Eisenberg, Sarita L.; Guo, Ling-Yu
2015-01-01
Purpose: The purpose of this study was to investigate whether a shorter language sample elicited with fewer pictures (i.e., 7) would yield a percent grammatical utterances (PGU) score similar to that computed from a longer language sample elicited with 15 pictures for 3-year-old children. Method: Language samples were elicited by asking forty…
Finite-size effects on the static properties of a single-chain magnet
Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.
2005-08-01
We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.
Random sequential adsorption with two components: asymptotic analysis and finite size effects
International Nuclear Information System (INIS)
Reeve, Louise; Wattis, Jonathan A D
2015-01-01
We consider the model of random sequential adsorption (RSA) in which two lengths of rod-like polymer compete for binding on a long straight rigid one-dimensional substrate. We take all lengths to be discrete, assume that binding is irreversible, and short or long polymers are chosen at random with some probability. We consider both the cases where the polymers have similar lengths and when the lengths are vastly different. We use a combination of numerical simulations, computation and asymptotic analysis to study the adsorption process, specifically, analysing how competition between the two polymer lengths affects the final coverage, and how the coverage depends on the relative sizes of the two species and their relative binding rates. We find that the final coverage is always higher than in the one-species RSA, and that the highest coverage is achieved when the rate of binding of the longer polymer is higher. We find that for many binding rates and relative lengths of binding species, the coverage due to the shorter species decreases with increasing substrate length, although there is a small region of parameter space in which all coverages increase with substrate length. (paper)
Does the Finite Size of Electrons Affect Quantum Noise in Electronic Devices?
International Nuclear Information System (INIS)
Colomés, E; Marian, D; Oriols, X
2015-01-01
Quantum transport is commonly studied with the use of quasi-particle infinite- extended states. This leads to a powerful formalism, the scattering-states theory, able to capture in compact formulas quantities of interest, such as average current, noise, etc.. However, when investigating the spatial size-dependence of quasi-particle wave packets in quantum noise with exchange and tunneling, unexpected new terms appear in the quantum noise expression. For this purpose, the two particle transmission and reflection probabilities for two initial one-particle wave packets (with opposite central momentums) spatially localized at each side of a potential barrier are studied. After the interaction, each wave packet splits into a transmitted and a reflected component. It can be shown that the probability of detecting two (identically injected) electrons at the same side of the barrier is different from zero in very common (single or double barrier) scenarios. This originates an increase of quantum noise which cannot be obtained through the scattering states formalism. (paper)
CT dose survey in adults: what sample size for what precision?
International Nuclear Information System (INIS)
Taylor, Stephen; Muylem, Alain van; Howarth, Nigel; Gevenois, Pierre Alain; Tack, Denis
2017-01-01
To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)
CT dose survey in adults: what sample size for what precision?
Energy Technology Data Exchange (ETDEWEB)
Taylor, Stephen [Hopital Ambroise Pare, Department of Radiology, Mons (Belgium); Muylem, Alain van [Hopital Erasme, Department of Pneumology, Brussels (Belgium); Howarth, Nigel [Clinique des Grangettes, Department of Radiology, Chene-Bougeries (Switzerland); Gevenois, Pierre Alain [Hopital Erasme, Department of Radiology, Brussels (Belgium); Tack, Denis [EpiCURA, Clinique Louis Caty, Department of Radiology, Baudour (Belgium)
2017-01-15
To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)
International Nuclear Information System (INIS)
Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray
2015-01-01
Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm 2 square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm 2 , where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a
Yuan, Chao; Chareyre, Bruno; Darve, Félix
2016-09-01
A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the
The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.
Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S
2016-10-01
The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.
Reliable calculation in probabilistic logic: Accounting for small sample size and model uncertainty
Energy Technology Data Exchange (ETDEWEB)
Ferson, S. [Applied Biomathematics, Setauket, NY (United States)
1996-12-31
A variety of practical computational problems arise in risk and safety assessments, forensic statistics and decision analyses in which the probability of some event or proposition E is to be estimated from the probabilities of a finite list of related subevents or propositions F,G,H,.... In practice, the analyst`s knowledge may be incomplete in two ways. First, the probabilities of the subevents may be imprecisely known from statistical estimations, perhaps based on very small sample sizes. Second, relationships among the subevents may be known imprecisely. For instance, there may be only limited information about their stochastic dependencies. Representing probability estimates as interval ranges on has been suggested as a way to address the first source of imprecision. A suite of AND, OR and NOT operators defined with reference to the classical Frochet inequalities permit these probability intervals to be used in calculations that address the second source of imprecision, in many cases, in a best possible way. Using statistical confidence intervals as inputs unravels the closure properties of this approach however, requiring that probability estimates be characterized by a nested stack of intervals for all possible levels of statistical confidence, from a point estimate (0% confidence) to the entire unit interval (100% confidence). The corresponding logical operations implied by convolutive application of the logical operators for every possible pair of confidence intervals reduces by symmetry to a manageably simple level-wise iteration. The resulting calculus can be implemented in software that allows users to compute comprehensive and often level-wise best possible bounds on probabilities for logical functions of events.
Energy Technology Data Exchange (ETDEWEB)
Abbas, M., E-mail: micheline.abbas@ensiacet.fr [Laboratoire de Génie Chimique, Université de Toulouse INPT-UPS, 31030, Toulouse (France); CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Magaud, P. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Gao, Y. [Institut Clément Ader, Université de Toulouse UPS-INSA-ISAE-Mines Albi, 31400, Toulouse (France); Geoffroy, S. [CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse (France); Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse (France); UPS, INSA, 31077, Toulouse (France)
2014-12-15
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.
International Nuclear Information System (INIS)
Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S.
2014-01-01
The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlled by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero colour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh
Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests
Directory of Open Access Journals (Sweden)
Bruno Giacomini Sari
2017-09-01
Full Text Available ABSTRACT: The aim of this study was to determine the required sample size for estimation of the Pearson coefficient of correlation between cherry tomato variables. Two uniformity tests were set up in a protected environment in the spring/summer of 2014. The observed variables in each plant were mean fruit length, mean fruit width, mean fruit weight, number of bunches, number of fruits per bunch, number of fruits, and total weight of fruits, with calculation of the Pearson correlation matrix between them. Sixty eight sample sizes were planned for one greenhouse and 48 for another, with the initial sample size of 10 plants, and the others were obtained by adding five plants. For each planned sample size, 3000 estimates of the Pearson correlation coefficient were obtained through bootstrap re-samplings with replacement. The sample size for each correlation coefficient was determined when the 95% confidence interval amplitude value was less than or equal to 0.4. Obtaining estimates of the Pearson correlation coefficient with high precision is difficult for parameters with a weak linear relation. Accordingly, a larger sample size is necessary to estimate them. Linear relations involving variables dealing with size and number of fruits per plant have less precision. To estimate the coefficient of correlation between productivity variables of cherry tomato, with a confidence interval of 95% equal to 0.4, it is necessary to sample 275 plants in a 250m² greenhouse, and 200 plants in a 200m² greenhouse.
Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander
2016-09-01
In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous
Directory of Open Access Journals (Sweden)
Elias Chaibub Neto
Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.
Hedt-Gauthier, Bethany L; Mitsunaga, Tisha; Hund, Lauren; Olives, Casey; Pagano, Marcello
2013-10-26
Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations.The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.
Novikov, I; Fund, N; Freedman, L S
2010-01-15
Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.
Effects of sample size on estimates of population growth rates calculated with matrix models.
Directory of Open Access Journals (Sweden)
Ian J Fiske
Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
The PowerAtlas: a power and sample size atlas for microarray experimental design and research
Directory of Open Access Journals (Sweden)
Wang Jelai
2006-02-01
Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.
Arnup, Sarah J; McKenzie, Joanne E; Pilcher, David; Bellomo, Rinaldo; Forbes, Andrew B
2018-06-01
The cluster randomised crossover (CRXO) design provides an opportunity to conduct randomised controlled trials to evaluate low risk interventions in the intensive care setting. Our aim is to provide a tutorial on how to perform a sample size calculation for a CRXO trial, focusing on the meaning of the elements required for the calculations, with application to intensive care trials. We use all-cause in-hospital mortality from the Australian and New Zealand Intensive Care Society Adult Patient Database clinical registry to illustrate the sample size calculations. We show sample size calculations for a two-intervention, two 12-month period, cross-sectional CRXO trial. We provide the formulae, and examples of their use, to determine the number of intensive care units required to detect a risk ratio (RR) with a designated level of power between two interventions for trials in which the elements required for sample size calculations remain constant across all ICUs (unstratified design); and in which there are distinct groups (strata) of ICUs that differ importantly in the elements required for sample size calculations (stratified design). The CRXO design markedly reduces the sample size requirement compared with the parallel-group, cluster randomised design for the example cases. The stratified design further reduces the sample size requirement compared with the unstratified design. The CRXO design enables the evaluation of routinely used interventions that can bring about small, but important, improvements in patient care in the intensive care setting.
Nomogram for sample size calculation on a straightforward basis for the kappa statistic.
Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo
2014-09-01
Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.
The Sample Size Influence in the Accuracy of the Image Classification of the Remote Sensing
Directory of Open Access Journals (Sweden)
Thomaz C. e C. da Costa
2004-12-01
Full Text Available Landuse/landcover maps produced by classification of remote sensing images incorporate uncertainty. This uncertainty is measured by accuracy indices using reference samples. The size of the reference sample is defined by approximation by a binomial function without the use of a pilot sample. This way the accuracy are not estimated, but fixed a priori. In case of divergency between the estimated and a priori accuracy the error of the sampling will deviate from the expected error. The size using pilot sample (theorically correct procedure justify when haven´t estimate of accuracy for work area, referent the product remote sensing utility.
Allen, John C; Thumboo, Julian; Lye, Weng Kit; Conaghan, Philip G; Chew, Li-Ching; Tan, York Kiat
2018-03-01
To determine whether novel methods of selecting joints through (i) ultrasonography (individualized-ultrasound [IUS] method), or (ii) ultrasonography and clinical examination (individualized-composite-ultrasound [ICUS] method) translate into smaller rheumatoid arthritis (RA) clinical trial sample sizes when compared to existing methods utilizing predetermined joint sites for ultrasonography. Cohen's effect size (ES) was estimated (ES^) and a 95% CI (ES^L, ES^U) calculated on a mean change in 3-month total inflammatory score for each method. Corresponding 95% CIs [nL(ES^U), nU(ES^L)] were obtained on a post hoc sample size reflecting the uncertainty in ES^. Sample size calculations were based on a one-sample t-test as the patient numbers needed to provide 80% power at α = 0.05 to reject a null hypothesis H 0 : ES = 0 versus alternative hypotheses H 1 : ES = ES^, ES = ES^L and ES = ES^U. We aimed to provide point and interval estimates on projected sample sizes for future studies reflecting the uncertainty in our study ES^S. Twenty-four treated RA patients were followed up for 3 months. Utilizing the 12-joint approach and existing methods, the post hoc sample size (95% CI) was 22 (10-245). Corresponding sample sizes using ICUS and IUS were 11 (7-40) and 11 (6-38), respectively. Utilizing a seven-joint approach, the corresponding sample sizes using ICUS and IUS methods were nine (6-24) and 11 (6-35), respectively. Our pilot study suggests that sample size for RA clinical trials with ultrasound endpoints may be reduced using the novel methods, providing justification for larger studies to confirm these observations. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
What is the optimum sample size for the study of peatland testate amoeba assemblages?
Mazei, Yuri A; Tsyganov, Andrey N; Esaulov, Anton S; Tychkov, Alexander Yu; Payne, Richard J
2017-10-01
Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as indicators of surface wetness. To ensure data are robust and comparable it is important to consider methodological factors which may affect results. One significant question which has not been directly addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) affects data quality. In three contrasting locations in a Russian peatland we extracted samples of differing size, analysed testate amoebae and calculated a number of widely-used indices: species richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function predictions of water table depth. We found that there was a trend for larger samples to contain more species across the range of commonly-used sample sizes in ecological studies. Smaller samples sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems likely that analyses based on samples of different sizes may not produce consistent data. Decisions about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the disturbance involved in sample extraction. For most common ecological applications we suggest that samples of more than eight Sphagnum stems are likely to be desirable. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sample Size and Saturation in PhD Studies Using Qualitative Interviews
Directory of Open Access Journals (Sweden)
Mark Mason
2010-08-01
Full Text Available A number of issues can affect sample size in qualitative research; however, the guiding principle should be the concept of saturation. This has been explored in detail by a number of authors but is still hotly debated, and some say little understood. A sample of PhD studies using qualitative approaches, and qualitative interviews as the method of data collection was taken from theses.com and contents analysed for their sample sizes. Five hundred and sixty studies were identified that fitted the inclusion criteria. Results showed that the mean sample size was 31; however, the distribution was non-random, with a statistically significant proportion of studies, presenting sample sizes that were multiples of ten. These results are discussed in relation to saturation. They suggest a pre-meditated approach that is not wholly congruent with the principles of qualitative research. URN: urn:nbn:de:0114-fqs100387
Lawson, Chris A
2014-07-01
Three experiments with 81 3-year-olds (M=3.62years) examined the conditions that enable young children to use the sample size principle (SSP) of induction-the inductive rule that facilitates generalizations from large rather than small samples of evidence. In Experiment 1, children exhibited the SSP when exemplars were presented sequentially but not when exemplars were presented simultaneously. Results from Experiment 3 suggest that the advantage of sequential presentation is not due to the additional time to process the available input from the two samples but instead may be linked to better memory for specific individuals in the large sample. In addition, findings from Experiments 1 and 2 suggest that adherence to the SSP is mediated by the disparity between presented samples. Overall, these results reveal that the SSP appears early in development and is guided by basic cognitive processes triggered during the acquisition of input. Copyright © 2013 Elsevier Inc. All rights reserved.
Rahman, N.; Alam, M. N.
2018-02-01
Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.
International Nuclear Information System (INIS)
Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng
2011-01-01
Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.
Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.
2018-02-01
Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
Energy Technology Data Exchange (ETDEWEB)
Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)
2016-06-15
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.
Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.
Youssef, Noha H; Elshahed, Mostafa S
2008-09-01
Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.
Test of methods for retrospective activity size distribution determination from filter samples
International Nuclear Information System (INIS)
Meisenberg, Oliver; Tschiersch, Jochen
2015-01-01
Determining the activity size distribution of radioactive aerosol particles requires sophisticated and heavy equipment, which makes measurements at large number of sites difficult and expensive. Therefore three methods for a retrospective determination of size distributions from aerosol filter samples in the laboratory were tested for their applicability. Extraction into a carrier liquid with subsequent nebulisation showed size distributions with a slight but correctable bias towards larger diameters compared with the original size distribution. Yields in the order of magnitude of 1% could be achieved. Sonication-assisted extraction into a carrier liquid caused a coagulation mode to appear in the size distribution. Sonication-assisted extraction into the air did not show acceptable results due to small yields. The method of extraction into a carrier liquid without sonication was applied to aerosol samples from Chernobyl in order to calculate inhalation dose coefficients for 137 Cs based on the individual size distribution. The effective dose coefficient is about half of that calculated with a default reference size distribution. - Highlights: • Activity size distributions can be recovered after aerosol sampling on filters. • Extraction into a carrier liquid and subsequent nebulisation is appropriate. • This facilitates the determination of activity size distributions for individuals. • Size distributions from this method can be used for individual dose coefficients. • Dose coefficients were calculated for the workers at the new Chernobyl shelter
Longford, Francis G. J.; Essex, Jonathan W.; Skylaris, Chris-Kriton; Frey, Jeremy G.
2018-06-01
We present an unexpected finite size effect affecting interfacial molecular simulations that is proportional to the width-to-surface-area ratio of the bulk phase Ll/A. This finite size effect has a significant impact on the variance of surface tension values calculated using the virial summation method. A theoretical derivation of the origin of the effect is proposed, giving a new insight into the importance of optimising system dimensions in interfacial simulations. We demonstrate the consequences of this finite size effect via a new way to estimate the surface energetic and entropic properties of simulated air-liquid interfaces. Our method is based on macroscopic thermodynamic theory and involves comparing the internal energies of systems with varying dimensions. We present the testing of these methods using simulations of the TIP4P/2005 water forcefield and a Lennard-Jones fluid model of argon. Finally, we provide suggestions of additional situations, in which this finite size effect is expected to be significant, as well as possible ways to avoid its impact.
Directory of Open Access Journals (Sweden)
Manzoor Khan
2014-01-01
Full Text Available This paper presents new classes of estimators in estimating the finite population mean under double sampling in the presence of nonresponse when using information on fractional raw moments. The expressions for mean square error of the proposed classes of estimators are derived up to the first degree of approximation. It is shown that a proposed class of estimators performs better than the usual mean estimator, ratio type estimators, and Singh and Kumar (2009 estimator. An empirical study is carried out to demonstrate the performance of a proposed class of estimators.
International Nuclear Information System (INIS)
Lisichkin, Yu.V.; Dovbenko, A.G.; Efimenko, B.A.; Novikov, A.G.; Smirenkina, L.D.; Tikhonova, S.I.
1979-01-01
Described is a method of taking account of finite sample dimensions in processing measurement results of double differential cross sections (DDCS) of slow neutron scattering. A necessity of corrective approach to the account taken of the effect of sample finite dimensions is shown, and, in particular, the necessity to conduct preliminary processing of DDCS, the account being taken of attenuation coefficients of single scattered neutrons (SSN) for measurements on the sample with a container, and on the container. Correction for multiple scattering (MS) calculated on the base of the dynamic model should be obtained, the account being taken of resolution effects. To minimize the effect of the dynamic model used in calculations it is preferred to make absolute measurements of DDCS and to use the subraction method. The above method was realized in the set of programs for the BESM-5 computer. The FISC program computes the coefficients of SSN attenuation and correction for MS. The DDS program serves to compute a model DDCS averaged as per the resolution function of an instrument. The SCATL program is intended to prepare initial information necessary for the FISC program, and permits to compute the scattering law for all materials. Presented are the results of using the above method while processing experimental data on measuring DDCS of water by the DIN-1M spectrometer
Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren
2016-09-01
We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Sensitivity of Mantel Haenszel Model and Rasch Model as Viewed From Sample Size
ALWI, IDRUS
2011-01-01
The aims of this research is to study the sensitivity comparison of Mantel Haenszel and Rasch Model for detection differential item functioning, observed from the sample size. These two differential item functioning (DIF) methods were compared using simulate binary item respon data sets of varying sample size, 200 and 400 examinees were used in the analyses, a detection method of differential item functioning (DIF) based on gender difference. These test conditions were replication 4 tim...
Bergtold, Jason S.; Yeager, Elizabeth A.; Featherstone, Allen M.
2011-01-01
The logistic regression models has been widely used in the social and natural sciences and results from studies using this model can have significant impact. Thus, confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. The purpose of this study is to examine the impact of sample size on the mean estimated bias and efficiency of parameter estimation and inference for the logistic regression model. A numbe...
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
Broberg, Per
2013-07-19
One major concern with adaptive designs, such as the sample size adjustable designs, has been the fear of inflating the type I error rate. In (Stat Med 23:1023-1038, 2004) it is however proven that when observations follow a normal distribution and the interim result show promise, meaning that the conditional power exceeds 50%, type I error rate is protected. This bound and the distributional assumptions may seem to impose undesirable restrictions on the use of these designs. In (Stat Med 30:3267-3284, 2011) the possibility of going below 50% is explored and a region that permits an increased sample size without inflation is defined in terms of the conditional power at the interim. A criterion which is implicit in (Stat Med 30:3267-3284, 2011) is derived by elementary methods and expressed in terms of the test statistic at the interim to simplify practical use. Mathematical and computational details concerning this criterion are exhibited. Under very general conditions the type I error rate is preserved under sample size adjustable schemes that permit a raise. The main result states that for normally distributed observations raising the sample size when the result looks promising, where the definition of promising depends on the amount of knowledge gathered so far, guarantees the protection of the type I error rate. Also, in the many situations where the test statistic approximately follows a normal law, the deviation from the main result remains negligible. This article provides details regarding the Weibull and binomial distributions and indicates how one may approach these distributions within the current setting. There is thus reason to consider such designs more often, since they offer a means of adjusting an important design feature at little or no cost in terms of error rate.
Sample size choices for XRCT scanning of highly unsaturated soil mixtures
Directory of Open Access Journals (Sweden)
Smith Jonathan C.
2016-01-01
Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.
The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.
Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J
2018-07-01
This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Sample Size for Tablet Compression and Capsule Filling Events During Process Validation.
Charoo, Naseem Ahmad; Durivage, Mark; Rahman, Ziyaur; Ayad, Mohamad Haitham
2017-12-01
During solid dosage form manufacturing, the uniformity of dosage units (UDU) is ensured by testing samples at 2 stages, that is, blend stage and tablet compression or capsule/powder filling stage. The aim of this work is to propose a sample size selection approach based on quality risk management principles for process performance qualification (PPQ) and continued process verification (CPV) stages by linking UDU to potential formulation and process risk factors. Bayes success run theorem appeared to be the most appropriate approach among various methods considered in this work for computing sample size for PPQ. The sample sizes for high-risk (reliability level of 99%), medium-risk (reliability level of 95%), and low-risk factors (reliability level of 90%) were estimated to be 299, 59, and 29, respectively. Risk-based assignment of reliability levels was supported by the fact that at low defect rate, the confidence to detect out-of-specification units would decrease which must be supplemented with an increase in sample size to enhance the confidence in estimation. Based on level of knowledge acquired during PPQ and the level of knowledge further required to comprehend process, sample size for CPV was calculated using Bayesian statistics to accomplish reduced sampling design for CPV. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A normative inference approach for optimal sample sizes in decisions from experience
Ostwald, Dirk; Starke, Ludger; Hertwig, Ralph
2015-01-01
“Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral decision making over the last decade. One of the major experimental paradigms employed to study experience-based choice is the “sampling paradigm,” which serves as a model of decision making under limited knowledge about the statistical structure of the world. In this paradigm respondents are presented with two payoff distributions, which, in contrast to standard approaches in behavioral economics, are specified not in terms of explicit outcome-probability information, but by the opportunity to sample outcomes from each distribution without economic consequences. Participants are encouraged to explore the distributions until they feel confident enough to decide from which they would prefer to draw from in a final trial involving real monetary payoffs. One commonly employed measure to characterize the behavior of participants in the sampling paradigm is the sample size, that is, the number of outcome draws which participants choose to obtain from each distribution prior to terminating sampling. A natural question that arises in this context concerns the “optimal” sample size, which could be used as a normative benchmark to evaluate human sampling behavior in DFE. In this theoretical study, we relate the DFE sampling paradigm to the classical statistical decision theoretic literature and, under a probabilistic inference assumption, evaluate optimal sample sizes for DFE. In our treatment we go beyond analytically established results by showing how the classical statistical decision theoretic framework can be used to derive optimal sample sizes under arbitrary, but numerically evaluable, constraints. Finally, we critically evaluate the value of deriving optimal sample sizes under this framework as testable predictions for the experimental study of sampling behavior in DFE. PMID:26441720
Winkler, A; Wilms, D; Virnau, P; Binder, K
2010-10-28
When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.
International Nuclear Information System (INIS)
Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio
2013-01-01
In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Rambo, Robert P
2017-01-01
The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.
Optimum sample size to estimate mean parasite abundance in fish parasite surveys
Directory of Open Access Journals (Sweden)
Shvydka S.
2018-03-01
Full Text Available To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI was based on the Bag of Little Bootstraps (BLB. The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates.
Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz
2014-07-01
Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
Generating Random Samples of a Given Size Using Social Security Numbers.
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
Page sample size in web accessibility testing: how many pages is enough?
Velleman, Eric Martin; van der Geest, Thea
2013-01-01
Various countries and organizations use a different sampling approach and sample size of web pages in accessibility conformance tests. We are conducting a systematic analysis to determine how many pages is enough for testing whether a website is compliant with standard accessibility guidelines. This
Norm Block Sample Sizes: A Review of 17 Individually Administered Intelligence Tests
Norfolk, Philip A.; Farmer, Ryan L.; Floyd, Randy G.; Woods, Isaac L.; Hawkins, Haley K.; Irby, Sarah M.
2015-01-01
The representativeness, recency, and size of norm samples strongly influence the accuracy of inferences drawn from their scores. Inadequate norm samples may lead to inflated or deflated scores for individuals and poorer prediction of developmental and academic outcomes. The purpose of this study was to apply Kranzler and Floyd's method for…
Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame
International Nuclear Information System (INIS)
Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.
2001-01-01
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution
Sample size calculation to externally validate scoring systems based on logistic regression models.
Directory of Open Access Journals (Sweden)
Antonio Palazón-Bru
Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.
Constrained statistical inference: sample-size tables for ANOVA and regression
Directory of Open Access Journals (Sweden)
Leonard eVanbrabant
2015-01-01
Full Text Available Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient beta1 is larger than beta2 and beta3. The corresponding hypothesis is H: beta1 > {beta2, beta3} and this is known as an (order constrained hypothesis. A major advantage of testing such a hypothesis is that power can be gained and inherently a smaller sample size is needed. This article discusses this gain in sample size reduction, when an increasing number of constraints is included into the hypothesis. The main goal is to present sample-size tables for constrained hypotheses. A sample-size table contains the necessary sample-size at a prespecified power (say, 0.80 for an increasing number of constraints. To obtain sample-size tables, two Monte Carlo simulations were performed, one for ANOVA and one for multiple regression. Three results are salient. First, in an ANOVA the needed sample-size decreases with 30% to 50% when complete ordering of the parameters is taken into account. Second, small deviations from the imposed order have only a minor impact on the power. Third, at the maximum number of constraints, the linear regression results are comparable with the ANOVA results. However, in the case of fewer constraints, ordering the parameters (e.g., beta1 > beta2 results in a higher power than assigning a positive or a negative sign to the parameters (e.g., beta1 > 0.
Directory of Open Access Journals (Sweden)
Stefanović Milena
2013-01-01
Full Text Available In studies of population variability, particular attention has to be paid to the selection of a representative sample. The aim of this study was to assess the size of the new representative sample on the basis of the variability of chemical content of the initial sample on the example of a whitebark pine population. Statistical analysis included the content of 19 characteristics (terpene hydrocarbons and their derivates of the initial sample of 10 elements (trees. It was determined that the new sample should contain 20 trees so that the mean value calculated from it represents a basic set with a probability higher than 95 %. Determination of the lower limit of the representative sample size that guarantees a satisfactory reliability of generalization proved to be very important in order to achieve cost efficiency of the research. [Projekat Ministarstva nauke Republike Srbije, br. OI-173011, br. TR-37002 i br. III-43007
Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei
2018-05-10
The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas
Directory of Open Access Journals (Sweden)
Francisco J. Ariza-López
2018-05-01
Full Text Available In recent years, new approaches aimed to increase the automation level of positional accuracy assessment processes for spatial data have been developed. However, in such cases, an aspect as significant as sample size has not yet been addressed. In this paper, we study the influence of sample size when estimating the planimetric positional accuracy of urban databases by means of an automatic assessment using polygon-based methodology. Our study is based on a simulation process, which extracts pairs of homologous polygons from the assessed and reference data sources and applies two buffer-based methods. The parameter used for determining the different sizes (which range from 5 km up to 100 km has been the length of the polygons’ perimeter, and for each sample size 1000 simulations were run. After completing the simulation process, the comparisons between the estimated distribution functions for each sample and population distribution function were carried out by means of the Kolmogorov–Smirnov test. Results show a significant reduction in the variability of estimations when sample size increased from 5 km to 100 km.
A simple nomogram for sample size for estimating sensitivity and specificity of medical tests
Directory of Open Access Journals (Sweden)
Malhotra Rajeev
2010-01-01
Full Text Available Sensitivity and specificity measure inherent validity of a diagnostic test against a gold standard. Researchers develop new diagnostic methods to reduce the cost, risk, invasiveness, and time. Adequate sample size is a must to precisely estimate the validity of a diagnostic test. In practice, researchers generally decide about the sample size arbitrarily either at their convenience, or from the previous literature. We have devised a simple nomogram that yields statistically valid sample size for anticipated sensitivity or anticipated specificity. MS Excel version 2007 was used to derive the values required to plot the nomogram using varying absolute precision, known prevalence of disease, and 95% confidence level using the formula already available in the literature. The nomogram plot was obtained by suitably arranging the lines and distances to conform to this formula. This nomogram could be easily used to determine the sample size for estimating the sensitivity or specificity of a diagnostic test with required precision and 95% confidence level. Sample size at 90% and 99% confidence level, respectively, can also be obtained by just multiplying 0.70 and 1.75 with the number obtained for the 95% confidence level. A nomogram instantly provides the required number of subjects by just moving the ruler and can be repeatedly used without redoing the calculations. This can also be applied for reverse calculations. This nomogram is not applicable for testing of the hypothesis set-up and is applicable only when both diagnostic test and gold standard results have a dichotomous category.
Effects of sample size on robustness and prediction accuracy of a prognostic gene signature
Directory of Open Access Journals (Sweden)
Kim Seon-Young
2009-05-01
Full Text Available Abstract Background Few overlap between independently developed gene signatures and poor inter-study applicability of gene signatures are two of major concerns raised in the development of microarray-based prognostic gene signatures. One recent study suggested that thousands of samples are needed to generate a robust prognostic gene signature. Results A data set of 1,372 samples was generated by combining eight breast cancer gene expression data sets produced using the same microarray platform and, using the data set, effects of varying samples sizes on a few performances of a prognostic gene signature were investigated. The overlap between independently developed gene signatures was increased linearly with more samples, attaining an average overlap of 16.56% with 600 samples. The concordance between predicted outcomes by different gene signatures also was increased with more samples up to 94.61% with 300 samples. The accuracy of outcome prediction also increased with more samples. Finally, analysis using only Estrogen Receptor-positive (ER+ patients attained higher prediction accuracy than using both patients, suggesting that sub-type specific analysis can lead to the development of better prognostic gene signatures Conclusion Increasing sample sizes generated a gene signature with better stability, better concordance in outcome prediction, and better prediction accuracy. However, the degree of performance improvement by the increased sample size was different between the degree of overlap and the degree of concordance in outcome prediction, suggesting that the sample size required for a study should be determined according to the specific aims of the study.
Effects of sample size and sampling frequency on studies of brown bear home ranges and habitat use
Arthur, Steve M.; Schwartz, Charles C.
1999-01-01
We equipped 9 brown bears (Ursus arctos) on the Kenai Peninsula, Alaska, with collars containing both conventional very-high-frequency (VHF) transmitters and global positioning system (GPS) receivers programmed to determine an animal's position at 5.75-hr intervals. We calculated minimum convex polygon (MCP) and fixed and adaptive kernel home ranges for randomly-selected subsets of the GPS data to examine the effects of sample size on accuracy and precision of home range estimates. We also compared results obtained by weekly aerial radiotracking versus more frequent GPS locations to test for biases in conventional radiotracking data. Home ranges based on the MCP were 20-606 km2 (x = 201) for aerial radiotracking data (n = 12-16 locations/bear) and 116-1,505 km2 (x = 522) for the complete GPS data sets (n = 245-466 locations/bear). Fixed kernel home ranges were 34-955 km2 (x = 224) for radiotracking data and 16-130 km2 (x = 60) for the GPS data. Differences between means for radiotracking and GPS data were due primarily to the larger samples provided by the GPS data. Means did not differ between radiotracking data and equivalent-sized subsets of GPS data (P > 0.10). For the MCP, home range area increased and variability decreased asymptotically with number of locations. For the kernel models, both area and variability decreased with increasing sample size. Simulations suggested that the MCP and kernel models required >60 and >80 locations, respectively, for estimates to be both accurate (change in area bears. Our results suggest that the usefulness of conventional radiotracking data may be limited by potential biases and variability due to small samples. Investigators that use home range estimates in statistical tests should consider the effects of variability of those estimates. Use of GPS-equipped collars can facilitate obtaining larger samples of unbiased data and improve accuracy and precision of home range estimates.
Stability of equilibrium states in finite samples of smectic C* liquid crystals
International Nuclear Information System (INIS)
Stewart, I W
2005-01-01
Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields
Stability of equilibrium states in finite samples of smectic C* liquid crystals
Energy Technology Data Exchange (ETDEWEB)
Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)
2005-03-04
Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields.
International Nuclear Information System (INIS)
Yang Yong; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) is an advanced form of radiation therapy and promises to improve dose conformation while reducing the irradiation to the sensitive structures. The modality is, however, more complicated than conventional treatment and requires much more stringent quality assurance (QA) to ensure what has been planned can be achieved accurately. One of the main QA tasks is the assurance of positioning accuracy of multileaf collimator (MLC) leaves during IMRT delivery. Currently, the routine quality assurance of MLC in most clinics is being done using radiographic films with specially designed MLC leaf sequences. Besides being time consuming, the results of film measurements are difficult to quantify and interpret. In this work, we propose a new and effective technique for routine MLC leaf positioning QA. The technique utilizes the fact that, when a finite-sized detector is placed under a leaf, the relative output of the detector will depend on the relative fractional volume irradiated. A small error in leaf positioning would change the fractional volume irradiated and lead to a deviation of the relative output from the normal reading. For a given MLC and detector system, the relation between the relative output and the leaf displacement can be easily established through experimental measurements and used subsequently as a quantitative means for detecting possible leaf positional errors. The method was tested using a linear accelerator with an 80-leaf MLC. Three different locations, including two locations on central plane (X1=X2=0) and one point on an off-central plane location (X1=-7.5, X=7.5), were studied. Our results indicated that the method could accurately detect a leaf positional change of ∼0.1 mm. The method was also used to monitor the stability of MLC leaf positioning for five consecutive weeks. In this test, we intentionally introduced two positional errors in the testing MLC leaf sequences: -0.2 mm and 1.2 mm. The technique
Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies
Directory of Open Access Journals (Sweden)
Mark Heckmann
2017-01-01
Full Text Available The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a discover all attribute categories relevant to the field and b yield a predefined minimal number of attributes per category. For most applied researchers who collect multiple repertory grid data, programming a numeric simulation to answer these questions is not feasible. The gridsampler software facilitates determining the required sample size by providing a GUI for conducting the necessary numerical simulations. Researchers can supply a set of parameters suitable for the specific research situation, determine the required sample size, and easily explore the effects of changes in the parameter set.
Threshold-dependent sample sizes for selenium assessment with stream fish tissue
Hitt, Nathaniel P.; Smith, David R.
2015-01-01
Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased
van Hassel, Daniël; van der Velden, Lud; de Bakker, Dinny; van der Hoek, Lucas; Batenburg, Ronald
2017-12-04
Our research is based on a technique for time sampling, an innovative method for measuring the working hours of Dutch general practitioners (GPs), which was deployed in an earlier study. In this study, 1051 GPs were questioned about their activities in real time by sending them one SMS text message every 3 h during 1 week. The required sample size for this study is important for health workforce planners to know if they want to apply this method to target groups who are hard to reach or if fewer resources are available. In this time-sampling method, however, standard power analyses is not sufficient for calculating the required sample size as this accounts only for sample fluctuation and not for the fluctuation of measurements taken from every participant. We investigated the impact of the number of participants and frequency of measurements per participant upon the confidence intervals (CIs) for the hours worked per week. Statistical analyses of the time-use data we obtained from GPs were performed. Ninety-five percent CIs were calculated, using equations and simulation techniques, for various different numbers of GPs included in the dataset and for various frequencies of measurements per participant. Our results showed that the one-tailed CI, including sample and measurement fluctuation, decreased from 21 until 3 h between one and 50 GPs. As a result of the formulas to calculate CIs, the increase of the precision continued and was lower with the same additional number of GPs. Likewise, the analyses showed how the number of participants required decreased if more measurements per participant were taken. For example, one measurement per 3-h time slot during the week requires 300 GPs to achieve a CI of 1 h, while one measurement per hour requires 100 GPs to obtain the same result. The sample size needed for time-use research based on a time-sampling technique depends on the design and aim of the study. In this paper, we showed how the precision of the
International Nuclear Information System (INIS)
Hanasaki, Itsuo; Kawano, Satoyuki
2013-01-01
Motility of bacteria is usually recognized in the trajectory data and compared with Brownian motion, but the diffusion coefficient is insufficient to evaluate it. In this paper, we propose a method based on the large deviation principle. We show that it can be used to evaluate the non-Gaussian characteristics of model Escherichia coli motions and to distinguish combinations of the mean running duration and running speed that lead to the same diffusion coefficient. Our proposed method does not require chemical stimuli to induce the chemotaxis in a specific direction, and it is applicable to various types of self-propelling motions for which no a priori information of, for example, threshold parameters for run and tumble or head/tail direction is available. We also address the issue of the finite-sample effect on the large deviation quantities, but we propose to make use of it to characterize the nature of motility. (paper)
Overestimation of test performance by ROC analysis: Effect of small sample size
International Nuclear Information System (INIS)
Seeley, G.W.; Borgstrom, M.C.; Patton, D.D.; Myers, K.J.; Barrett, H.H.
1984-01-01
New imaging systems are often observer-rated by ROC techniques. For practical reasons the number of different images, or sample size (SS), is kept small. Any systematic bias due to small SS would bias system evaluation. The authors set about to determine whether the area under the ROC curve (AUC) would be systematically biased by small SS. Monte Carlo techniques were used to simulate observer performance in distinguishing signal (SN) from noise (N) on a 6-point scale; P(SN) = P(N) = .5. Four sample sizes (15, 25, 50 and 100 each of SN and N), three ROC slopes (0.8, 1.0 and 1.25), and three intercepts (0.8, 1.0 and 1.25) were considered. In each of the 36 combinations of SS, slope and intercept, 2000 runs were simulated. Results showed a systematic bias: the observed AUC exceeded the expected AUC in every one of the 36 combinations for all sample sizes, with the smallest sample sizes having the largest bias. This suggests that evaluations of imaging systems using ROC curves based on small sample size systematically overestimate system performance. The effect is consistent but subtle (maximum 10% of AUC standard deviation), and is probably masked by the s.d. in most practical settings. Although there is a statistically significant effect (F = 33.34, P<0.0001) due to sample size, none was found for either the ROC curve slope or intercept. Overestimation of test performance by small SS seems to be an inherent characteristic of the ROC technique that has not previously been described
Predictors of Citation Rate in Psychology: Inconclusive Influence of Effect and Sample Size.
Hanel, Paul H P; Haase, Jennifer
2017-01-01
In the present article, we investigate predictors of how often a scientific article is cited. Specifically, we focus on the influence of two often neglected predictors of citation rate: effect size and sample size, using samples from two psychological topical areas. Both can be considered as indicators of the importance of an article and post hoc (or observed) statistical power, and should, especially in applied fields, predict citation rates. In Study 1, effect size did not have an influence on citation rates across a topical area, both with and without controlling for numerous variables that have been previously linked to citation rates. In contrast, sample size predicted citation rates, but only while controlling for other variables. In Study 2, sample and partly effect sizes predicted citation rates, indicating that the relations vary even between scientific topical areas. Statistically significant results had more citations in Study 2 but not in Study 1. The results indicate that the importance (or power) of scientific findings may not be as strongly related to citation rate as is generally assumed.
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order Î±(ZÎ±)5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude...
Bayesian sample size determination for cost-effectiveness studies with censored data.
Directory of Open Access Journals (Sweden)
Daniel P Beavers
Full Text Available Cost-effectiveness models are commonly utilized to determine the combined clinical and economic impact of one treatment compared to another. However, most methods for sample size determination of cost-effectiveness studies assume fully observed costs and effectiveness outcomes, which presents challenges for survival-based studies in which censoring exists. We propose a Bayesian method for the design and analysis of cost-effectiveness data in which costs and effectiveness may be censored, and the sample size is approximated for both power and assurance. We explore two parametric models and demonstrate the flexibility of the approach to accommodate a variety of modifications to study assumptions.
International Nuclear Information System (INIS)
Jaech, J.L.; Lemaire, R.J.
1986-11-01
Generalized procedures have been developed to determine sample sizes in connection with the planning of inspection activities. These procedures are based on different measurement methods. They are applied mainly to Bulk Handling Facilities and Physical Inventory Verifications. The present report attempts (i) to assign to appropriate statistical testers (viz. testers for gross, partial and small defects) the measurement methods to be used, and (ii) to associate the measurement uncertainties with the sample sizes required for verification. Working papers are also provided to assist in the application of the procedures. This volume contains the detailed explanations concerning the above mentioned procedures
Sample size for post-marketing safety studies based on historical controls.
Wu, Yu-te; Makuch, Robert W
2010-08-01
As part of a drug's entire life cycle, post-marketing studies are an important part in the identification of rare, serious adverse events. Recently, the US Food and Drug Administration (FDA) has begun to implement new post-marketing safety mandates as a consequence of increased emphasis on safety. The purpose of this research is to provide exact sample size formula for the proposed hybrid design, based on a two-group cohort study with incorporation of historical external data. Exact sample size formula based on the Poisson distribution is developed, because the detection of rare events is our outcome of interest. Performance of exact method is compared to its approximate large-sample theory counterpart. The proposed hybrid design requires a smaller sample size compared to the standard, two-group prospective study design. In addition, the exact method reduces the number of subjects required in the treatment group by up to 30% compared to the approximate method for the study scenarios examined. The proposed hybrid design satisfies the advantages and rationale of the two-group design with smaller sample sizes generally required. 2010 John Wiley & Sons, Ltd.
Finite size vertex correction to the strong decay of ηc and χc states and a determination of αs(mc)
International Nuclear Information System (INIS)
Ping Ronggang; Jiang Huanqing; Zou Bingsong
2002-01-01
In previous calculations of the strong decay of a charmonium, the first-order momentum dependence of the quark propagator is kept. It was found that the finite-size vertex correction to the Γ(J/ψ→3g) process is large. The authors calculate the two-gluon decay widths of η e , χ c0 and χ c2 by including the full momentum dependence of the quark propagator. Comparing to the zero-order calculation the authors find that the finite-size vertex correction factor to the two-gluon decay widths of η c is 1.32, and for the two-gluon decays of χ c0 and χ c2 , the vertex correction factors are 1.45 and 1.26, respectively. With the corrected decay widths Γ(η c →2g) authors extract the value as α s (m c ) = 0.28 +- 0.05 which agrees with that calculated from the Γ(J/ψ→3g) process with the same correction. The finite-size vertex correction to the process Γ(η c →3g) is not as large as that to the process Γ(J/ψ→3g)
International Nuclear Information System (INIS)
Bode, P.; Koster-Ammerlaan, M.J.J.
2018-01-01
Pragmatic rather than physical correction factors for neutron and gamma-ray shielding were studied for samples of intermediate size, i.e. up to the 10-100 gram range. It was found that for most biological and geological materials, the neutron self-shielding is less than 5 % and the gamma-ray self-attenuation can easily be estimated. A trueness control material of 1 kg size was made based on use of left-overs of materials, used in laboratory intercomparisons. A design study for a large sample pool-side facility, handling plate-type volumes, had to be stopped because of a reduction in human resources, available for this CRP. The large sample NAA facilities were made available to guest scientists from Greece and Brazil. The laboratory for neutron activation analysis participated in the world’s first laboratory intercomparison utilizing large samples. (author)
Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun
2014-12-19
In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different
Uncertainty budget in internal monostandard NAA for small and large size samples analysis
International Nuclear Information System (INIS)
Dasari, K.B.; Acharya, R.
2014-01-01
Total uncertainty budget evaluation on determined concentration value is important under quality assurance programme. Concentration calculation in NAA or carried out by relative NAA and k0 based internal monostandard NAA (IM-NAA) method. IM-NAA method has been used for small and large sample analysis of clay potteries. An attempt was made to identify the uncertainty components in IM-NAA and uncertainty budget for La in both small and large size samples has been evaluated and compared. (author)
Directory of Open Access Journals (Sweden)
Esther Wong
Full Text Available We have developed a modified FlowCAM procedure for efficiently quantifying the size distribution of zooplankton. The modified method offers the following new features: 1 prevents animals from settling and clogging with constant bubbling in the sample container; 2 prevents damage to sample animals and facilitates recycling by replacing the built-in peristaltic pump with an external syringe pump, in order to generate negative pressure, creates a steady flow by drawing air from the receiving conical flask (i.e. vacuum pump, and transfers plankton from the sample container toward the main flowcell of the imaging system and finally into the receiving flask; 3 aligns samples in advance of imaging and prevents clogging with an additional flowcell placed ahead of the main flowcell. These modifications were designed to overcome the difficulties applying the standard FlowCAM procedure to studies where the number of individuals per sample is small, and since the FlowCAM can only image a subset of a sample. Our effective recycling procedure allows users to pass the same sample through the FlowCAM many times (i.e. bootstrapping the sample in order to generate a good size distribution. Although more advanced FlowCAM models are equipped with syringe pump and Field of View (FOV flowcells which can image all particles passing through the flow field; we note that these advanced setups are very expensive, offer limited syringe and flowcell sizes, and do not guarantee recycling. In contrast, our modifications are inexpensive and flexible. Finally, we compared the biovolumes estimated by automated FlowCAM image analysis versus conventional manual measurements, and found that the size of an individual zooplankter can be estimated by the FlowCAM image system after ground truthing.
Sample Size Bounding and Context Ranking as Approaches to the Human Error Quantification Problem
Energy Technology Data Exchange (ETDEWEB)
Reer, B
2004-03-01
The paper describes a technique denoted as Sub-Sample-Size Bounding (SSSB), which is useable for the statistical derivation of context-specific probabilities from data available in existing reports on operating experience. Applications to human reliability analysis (HRA) are emphasised in the presentation of this technique. Exemplified by a sample of 180 abnormal event sequences, the manner in which SSSB can provide viable input for the quantification of errors of commission (EOCs) are outlined. (author)
Sample Size Bounding and Context Ranking as Approaches to the Human Error Quantification Problem
International Nuclear Information System (INIS)
Reer, B.
2004-01-01
The paper describes a technique denoted as Sub-Sample-Size Bounding (SSSB), which is useable for the statistical derivation of context-specific probabilities from data available in existing reports on operating experience. Applications to human reliability analysis (HRA) are emphasised in the presentation of this technique. Exemplified by a sample of 180 abnormal event sequences, the manner in which SSSB can provide viable input for the quantification of errors of commission (EOCs) are outlined. (author)
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Finite-size corrections for quantum strings on AdS_{4} x CP^{3}
DEFF Research Database (Denmark)
Astolfi, D.; Puletti, V.G.M.; Grignani, G.
2011-01-01
the one for light modes. With this prescription the strong-weak coupling interpolating function h(¿), entering the magnon dispersion relation, does not receive a one-loop correction, in agreement with the algebraic curve spectrum. However, the single magnon dispersion relation exhibits finite...
Re-estimating sample size in cluster randomized trials with active recruitment within clusters
van Schie, Sander; Moerbeek, Mirjam
2014-01-01
Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster
Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen
2017-01-01
Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.
Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies
McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.
2010-01-01
This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.
Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling
Czech Academy of Sciences Publication Activity Database
Zíková, Naděžda; Ondráček, Jakub; Ždímal, Vladimír
2015-01-01
Roč. 49, č. 4 (2015), s. 239-249 ISSN 0278-6826 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : filters * size-resolved penetration * atmospheric aerosol sampling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.953, year: 2015
Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions
Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.
2013-01-01
Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of
The Effects of Test Length and Sample Size on Item Parameters in Item Response Theory
Sahin, Alper; Anil, Duygu
2017-01-01
This study investigates the effects of sample size and test length on item-parameter estimation in test development utilizing three unidimensional dichotomous models of item response theory (IRT). For this purpose, a real language test comprised of 50 items was administered to 6,288 students. Data from this test was used to obtain data sets of…
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill
2017-01-01
Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...
Sample size determination for disease prevalence studies with partially validated data.
Qiu, Shi-Fang; Poon, Wai-Yin; Tang, Man-Lai
2016-02-01
Disease prevalence is an important topic in medical research, and its study is based on data that are obtained by classifying subjects according to whether a disease has been contracted. Classification can be conducted with high-cost gold standard tests or low-cost screening tests, but the latter are subject to the misclassification of subjects. As a compromise between the two, many research studies use partially validated datasets in which all data points are classified by fallible tests, and some of the data points are validated in the sense that they are also classified by the completely accurate gold-standard test. In this article, we investigate the determination of sample sizes for disease prevalence studies with partially validated data. We use two approaches. The first is to find sample sizes that can achieve a pre-specified power of a statistical test at a chosen significance level, and the second is to find sample sizes that can control the width of a confidence interval with a pre-specified confidence level. Empirical studies have been conducted to demonstrate the performance of various testing procedures with the proposed sample sizes. The applicability of the proposed methods are illustrated by a real-data example. © The Author(s) 2012.
B-graph sampling to estimate the size of a hidden population
Spreen, M.; Bogaerts, S.
2015-01-01
Link-tracing designs are often used to estimate the size of hidden populations by utilizing the relational links between their members. A major problem in studies of hidden populations is the lack of a convenient sampling frame. The most frequently applied design in studies of hidden populations is
Required sample size for monitoring stand dynamics in strict forest reserves: a case study
Diego Van Den Meersschaut; Bart De Cuyper; Kris Vandekerkhove; Noel Lust
2000-01-01
Stand dynamics in European strict forest reserves are commonly monitored using inventory densities of 5 to 15 percent of the total surface. The assumption that these densities guarantee a representative image of certain parameters is critically analyzed in a case study for the parameters basal area and stem number. The required sample sizes for different accuracy and...
A simple sample size formula for analysis of covariance in cluster randomized trials.
Teerenstra, S.; Eldridge, S.; Graff, M.J.; Hoop, E. de; Borm, G.F.
2012-01-01
For cluster randomized trials with a continuous outcome, the sample size is often calculated as if an analysis of the outcomes at the end of the treatment period (follow-up scores) would be performed. However, often a baseline measurement of the outcome is available or feasible to obtain. An
Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient
Krishnamoorthy, K.; Xia, Yanping
2008-01-01
The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…
Estimating sample size for a small-quadrat method of botanical ...
African Journals Online (AJOL)
Reports the results of a study conducted to determine an appropriate sample size for a small-quadrat method of botanical survey for application in the Mixed Bushveld of South Africa. Species density and grass density were measured using a small-quadrat method in eight plant communities in the Nylsvley Nature Reserve.
[Sample size calculation in clinical post-marketing evaluation of traditional Chinese medicine].
Fu, Yingkun; Xie, Yanming
2011-10-01
In recent years, as the Chinese government and people pay more attention on the post-marketing research of Chinese Medicine, part of traditional Chinese medicine breed has or is about to begin after the listing of post-marketing evaluation study. In the post-marketing evaluation design, sample size calculation plays a decisive role. It not only ensures the accuracy and reliability of post-marketing evaluation. but also assures that the intended trials will have a desired power for correctly detecting a clinically meaningful difference of different medicine under study if such a difference truly exists. Up to now, there is no systemic method of sample size calculation in view of the traditional Chinese medicine. In this paper, according to the basic method of sample size calculation and the characteristic of the traditional Chinese medicine clinical evaluation, the sample size calculation methods of the Chinese medicine efficacy and safety are discussed respectively. We hope the paper would be beneficial to medical researchers, and pharmaceutical scientists who are engaged in the areas of Chinese medicine research.
International Nuclear Information System (INIS)
Sampson, T.E.
1991-01-01
Recent advances in segmented gamma scanning have emphasized software corrections for gamma-ray self-adsorption in particulates or lumps of special nuclear material in the sample. another feature of this software is an attenuation correction factor formalism that explicitly accounts for differences in sample container size and composition between the calibration standards and the individual items being measured. Software without this container-size correction produces biases when the unknowns are not packaged in the same containers as the calibration standards. This new software allows the use of different size and composition containers for standards and unknowns, as enormous savings considering the expense of multiple calibration standard sets otherwise needed. This paper presents calculations of the bias resulting from not using this new formalism. These calculations may be used to estimate bias corrections for segmented gamma scanners that do not incorporate these advanced concepts
Collection of size fractionated particulate matter sample for neutron activation analysis in Japan
International Nuclear Information System (INIS)
Otoshi, Tsunehiko; Nakamatsu, Hiroaki; Oura, Yasuji; Ebihara, Mitsuru
2004-01-01
According to the decision of the 2001 Workshop on Utilization of Research Reactor (Neutron Activation Analysis (NAA) Section), size fractionated particulate matter collection for NAA was started from 2002 at two sites in Japan. The two monitoring sites, ''Tokyo'' and ''Sakata'', were classified into ''urban'' and ''rural''. In each site, two size fractions, namely PM 2-10 '' and PM 2 '' particles (aerodynamic particle size between 2 to 10 micrometer and less than 2 micrometer, respectively) were collected every month on polycarbonate membrane filters. Average concentrations of PM 10 (sum of PM 2-10 and PM 2 samples) during the common sampling period of August to November 2002 in each site were 0.031mg/m 3 in Tokyo, and 0.022mg/m 3 in Sakata. (author)
Support vector regression to predict porosity and permeability: Effect of sample size
Al-Anazi, A. F.; Gates, I. D.
2012-02-01
Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function
Sample-size effects in fast-neutron gamma-ray production measurements: solid-cylinder samples
International Nuclear Information System (INIS)
Smith, D.L.
1975-09-01
The effects of geometry, absorption and multiple scattering in (n,Xγ) reaction measurements with solid-cylinder samples are investigated. Both analytical and Monte-Carlo methods are employed in the analysis. Geometric effects are shown to be relatively insignificant except in definition of the scattering angles. However, absorption and multiple-scattering effects are quite important; accurate microscopic differential cross sections can be extracted from experimental data only after a careful determination of corrections for these processes. The results of measurements performed using several natural iron samples (covering a wide range of sizes) confirm validity of the correction procedures described herein. It is concluded that these procedures are reliable whenever sufficiently accurate neutron and photon cross section and angular distribution information is available for the analysis. (13 figures, 5 tables) (auth)
In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele
2017-04-19
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.
The impact of sample size and marker selection on the study of haplotype structures
Directory of Open Access Journals (Sweden)
Sun Xiao
2004-03-01
Full Text Available Abstract Several studies of haplotype structures in the human genome in various populations have found that the human chromosomes are structured such that each chromosome can be divided into many blocks, within which there is limited haplotype diversity. In addition, only a few genetic markers in a putative block are needed to capture most of the diversity within a block. There has been no systematic empirical study of the effects of sample size and marker set on the identified block structures and representative marker sets, however. The purpose of this study was to conduct a detailed empirical study to examine such impacts. Towards this goal, we have analysed three representative autosomal regions from a large genome-wide study of haplotypes with samples consisting of African-Americans and samples consisting of Japanese and Chinese individuals. For both populations, we have found that the sample size and marker set have significant impact on the number of blocks and the total number of representative markers identified. The marker set in particular has very strong impacts, and our results indicate that the marker density in the original datasets may not be adequate to allow a meaningful characterisation of haplotype structures. In general, we conclude that we need a relatively large sample size and a very dense marker panel in the study of haplotype structures in human populations.
Size selective isocyanate aerosols personal air sampling using porous plastic foams
International Nuclear Information System (INIS)
Cong Khanh Huynh; Trinh Vu Duc
2009-01-01
As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.
PIXE–PIGE analysis of size-segregated aerosol samples from remote areas
Energy Technology Data Exchange (ETDEWEB)
Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Lucarelli, F.; Nava, S.; Taccetti, F. [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Becagli, S.; Frosini, D.; Traversi, R.; Udisti, R. [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
2014-01-01
The chemical characterization of size-segregated samples is helpful to study the aerosol effects on both human health and environment. The sampling with multi-stage cascade impactors (e.g., Small Deposit area Impactor, SDI) produces inhomogeneous samples, with a multi-spot geometry and a non-negligible particle stratification. At LABEC (Laboratory of nuclear techniques for the Environment and the Cultural Heritage), an external beam line is fully dedicated to PIXE–PIGE analysis of aerosol samples. PIGE is routinely used as a sidekick of PIXE to correct the underestimation of PIXE in quantifying the concentration of the lightest detectable elements, like Na or Al, due to X-ray absorption inside the individual aerosol particles. In this work PIGE has been used to study proper attenuation correction factors for SDI samples: relevant attenuation effects have been observed also for stages collecting smaller particles, and consequent implications on the retrieved aerosol modal structure have been evidenced.
Li, Huili; Ostermann, Anne; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D; Mortimer, Peter E
2018-07-01
The species-area relationship is an important factor in the study of species diversity, conservation biology, and landscape ecology. A deeper understanding of this relationship is necessary, in order to provide recommendations on how to improve the quality of data collection on macrofungal diversity in different land use systems in future studies, a systematic assessment of methodological parameters, in particular optimal plot sizes. The species-area relationship of macrofungi in tropical and temperate climatic zones and four different land use systems were investigated by determining the macrofungal species richness in plot sizes ranging from 100 m 2 to 10 000 m 2 over two sampling seasons. We found that the effect of plot size on recorded species richness significantly differed between land use systems with the exception of monoculture systems. For both climate zones, land use system needs to be considered when determining optimal plot size. Using an optimal plot size was more important than temporal replication (over two sampling seasons) in accurately recording species richness. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-02-08
This manual summarizes the theory and preliminary verifications of the JacketSE module, which is an offshore jacket sizing tool that is part of the Wind-Plant Integrated System Design & Engineering Model toolbox. JacketSE is based on a finite-element formulation and on user-prescribed inputs and design standards' criteria (constraints). The physics are highly simplified, with a primary focus on satisfying ultimate limit states and modal performance requirements. Preliminary validation work included comparing industry data and verification against ANSYS, a commercial finite-element analysis package. The results are encouraging, and future improvements to the code are recommended in this manual.
Galbraith, Niall D; Manktelow, Ken I; Morris, Neil G
2010-11-01
Previous studies demonstrate that people high in delusional ideation exhibit a data-gathering bias on inductive reasoning tasks. The current study set out to investigate the factors that may underpin such a bias by examining healthy individuals, classified as either high or low scorers on the Peters et al. Delusions Inventory (PDI). More specifically, whether high PDI scorers have a relatively poor appreciation of sample size and heterogeneity when making statistical judgments. In Expt 1, high PDI scorers made higher probability estimates when generalizing from a sample of 1 with regard to the heterogeneous human property of obesity. In Expt 2, this effect was replicated and was also observed in relation to the heterogeneous property of aggression. The findings suggest that delusion-prone individuals are less appreciative of the importance of sample size when making statistical judgments about heterogeneous properties; this may underpin the data gathering bias observed in previous studies. There was some support for the hypothesis that threatening material would exacerbate high PDI scorers' indifference to sample size.
Evaluation of Approaches to Analyzing Continuous Correlated Eye Data When Sample Size Is Small.
Huang, Jing; Huang, Jiayan; Chen, Yong; Ying, Gui-Shuang
2018-02-01
To evaluate the performance of commonly used statistical methods for analyzing continuous correlated eye data when sample size is small. We simulated correlated continuous data from two designs: (1) two eyes of a subject in two comparison groups; (2) two eyes of a subject in the same comparison group, under various sample size (5-50), inter-eye correlation (0-0.75) and effect size (0-0.8). Simulated data were analyzed using paired t-test, two sample t-test, Wald test and score test using the generalized estimating equations (GEE) and F-test using linear mixed effects model (LMM). We compared type I error rates and statistical powers, and demonstrated analysis approaches through analyzing two real datasets. In design 1, paired t-test and LMM perform better than GEE, with nominal type 1 error rate and higher statistical power. In design 2, no test performs uniformly well: two sample t-test (average of two eyes or a random eye) achieves better control of type I error but yields lower statistical power. In both designs, the GEE Wald test inflates type I error rate and GEE score test has lower power. When sample size is small, some commonly used statistical methods do not perform well. Paired t-test and LMM perform best when two eyes of a subject are in two different comparison groups, and t-test using the average of two eyes performs best when the two eyes are in the same comparison group. When selecting the appropriate analysis approach the study design should be considered.
Crystallite size variation of TiO_2 samples depending time heat treatment
International Nuclear Information System (INIS)
Galante, A.G.M.; Paula, F.R. de; Montanhera, M.A.; Pereira, E.A.; Spada, E.R.
2016-01-01
Titanium dioxide (TiO_2) is an oxide semiconductor that may be found in mixed phase or in distinct phases: brookite, anatase and rutile. In this work was carried out the study of the residence time influence at a given temperature in the TiO_2 powder physical properties. After the powder synthesis, the samples were divided and heat treated at 650 °C with a ramp up to 3 °C/min and a residence time ranging from 0 to 20 hours and subsequently characterized by x-ray diffraction. Analyzing the obtained diffraction patterns, it was observed that, from 5-hour residence time, began the two-distinct phase coexistence: anatase and rutile. It also calculated the average crystallite size of each sample. The results showed an increase in average crystallite size with increasing residence time of the heat treatment. (author)
The study of the sample size on the transverse magnetoresistance of bismuth nanowires
International Nuclear Information System (INIS)
Zare, M.; Layeghnejad, R.; Sadeghi, E.
2012-01-01
The effects of sample size on the galvanomagnetice properties of semimetal nanowires are theoretically investigated. Transverse magnetoresistance (TMR) ratios have been calculated within a Boltzmann Transport Equation (BTE) approach by specular reflection approximation. Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. The obtained values are in good agreement with the experimental results, reported by Heremans et al. - Highlights: ► In this study effects of sample size on the galvanomagnetic properties of Bi. ► Nanowires were explained by Parrott theorem by solving the Boltzmann Transport Equation. ► Transverse magnetoresistance (TMR) ratios have been measured by specular reflection approximation. ► Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. ► The obtained values are in good agreement with the experimental results, reported by Heremans et al.
Evaluating the performance of species richness estimators: sensitivity to sample grain size
DEFF Research Database (Denmark)
Hortal, Joaquín; Borges, Paulo A. V.; Gaspar, Clara
2006-01-01
and several recent estimators [proposed by Rosenzweig et al. (Conservation Biology, 2003, 17, 864-874), and Ugland et al. (Journal of Animal Ecology, 2003, 72, 888-897)] performed poorly. 3. Estimations developed using the smaller grain sizes (pair of traps, traps, records and individuals) presented similar....... Data obtained with standardized sampling of 78 transects in natural forest remnants of five islands were aggregated in seven different grains (i.e. ways of defining a single sample): islands, natural areas, transects, pairs of traps, traps, database records and individuals to assess the effect of using...
A contemporary decennial global Landsat sample of changing agricultural field sizes
White, Emma; Roy, David
2014-05-01
Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by
Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence
International Nuclear Information System (INIS)
Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A.
2013-01-01
Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)
Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence
Energy Technology Data Exchange (ETDEWEB)
Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2013-07-01
Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)
Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies
Heckmann, Mark; Burk, Lukas
2017-01-01
The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs) into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a) discover all attribute categories relevant...
A Web-based Simulator for Sample Size and Power Estimation in Animal Carcinogenicity Studies
Directory of Open Access Journals (Sweden)
Hojin Moon
2002-12-01
Full Text Available A Web-based statistical tool for sample size and power estimation in animal carcinogenicity studies is presented in this paper. It can be used to provide a design with sufficient power for detecting a dose-related trend in the occurrence of a tumor of interest when competing risks are present. The tumors of interest typically are occult tumors for which the time to tumor onset is not directly observable. It is applicable to rodent tumorigenicity assays that have either a single terminal sacrifice or multiple (interval sacrifices. The design is achieved by varying sample size per group, number of sacrifices, number of sacrificed animals at each interval, if any, and scheduled time points for sacrifice. Monte Carlo simulation is carried out in this tool to simulate experiments of rodent bioassays because no closed-form solution is available. It takes design parameters for sample size and power estimation as inputs through the World Wide Web. The core program is written in C and executed in the background. It communicates with the Web front end via a Component Object Model interface passing an Extensible Markup Language string. The proposed statistical tool is illustrated with an animal study in lung cancer prevention research.
Type-II generalized family-wise error rate formulas with application to sample size determination.
Delorme, Phillipe; de Micheaux, Pierre Lafaye; Liquet, Benoit; Riou, Jérémie
2016-07-20
Multiple endpoints are increasingly used in clinical trials. The significance of some of these clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. The usual approach in multiple hypothesis testing is to control the family-wise error rate, which is defined as the probability that at least one type-I error is made. More recently, the q-generalized family-wise error rate has been introduced to control the probability of making at least q false rejections. For procedures controlling this global type-I error rate, we define a type-II r-generalized family-wise error rate, which is directly related to the r-power defined as the probability of rejecting at least r false null hypotheses. We obtain very general power formulas that can be used to compute the sample size for single-step and step-wise procedures. These are implemented in our R package rPowerSampleSize available on the CRAN, making them directly available to end users. Complexities of the formulas are presented to gain insight into computation time issues. Comparison with Monte Carlo strategy is also presented. We compute sample sizes for two clinical trials involving multiple endpoints: one designed to investigate the effectiveness of a drug against acute heart failure and the other for the immunogenicity of a vaccine strategy against pneumococcus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sample size methods for estimating HIV incidence from cross-sectional surveys.
Konikoff, Jacob; Brookmeyer, Ron
2015-12-01
Understanding HIV incidence, the rate at which new infections occur in populations, is critical for tracking and surveillance of the epidemic. In this article, we derive methods for determining sample sizes for cross-sectional surveys to estimate incidence with sufficient precision. We further show how to specify sample sizes for two successive cross-sectional surveys to detect changes in incidence with adequate power. In these surveys biomarkers such as CD4 cell count, viral load, and recently developed serological assays are used to determine which individuals are in an early disease stage of infection. The total number of individuals in this stage, divided by the number of people who are uninfected, is used to approximate the incidence rate. Our methods account for uncertainty in the durations of time spent in the biomarker defined early disease stage. We find that failure to account for this uncertainty when designing surveys can lead to imprecise estimates of incidence and underpowered studies. We evaluated our sample size methods in simulations and found that they performed well in a variety of underlying epidemics. Code for implementing our methods in R is available with this article at the Biometrics website on Wiley Online Library. © 2015, The International Biometric Society.
Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses
Lanfear, Robert; Hua, Xia; Warren, Dan L.
2016-01-01
Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794
Energy Technology Data Exchange (ETDEWEB)
Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)
2014-06-02
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Bocquet, L.; Hansen, J.P.; Piasecki, J.
1997-01-01
In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
A novel approach for small sample size family-based association studies: sequential tests.
Ilk, Ozlem; Rajabli, Farid; Dungul, Dilay Ciglidag; Ozdag, Hilal; Ilk, Hakki Gokhan
2011-08-01
In this paper, we propose a sequential probability ratio test (SPRT) to overcome the problem of limited samples in studies related to complex genetic diseases. The results of this novel approach are compared with the ones obtained from the traditional transmission disequilibrium test (TDT) on simulated data. Although TDT classifies single-nucleotide polymorphisms (SNPs) to only two groups (SNPs associated with the disease and the others), SPRT has the flexibility of assigning SNPs to a third group, that is, those for which we do not have enough evidence and should keep sampling. It is shown that SPRT results in smaller ratios of false positives and negatives, as well as better accuracy and sensitivity values for classifying SNPs when compared with TDT. By using SPRT, data with small sample size become usable for an accurate association analysis.
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Methodology for sample preparation and size measurement of commercial ZnO nanoparticles
Directory of Open Access Journals (Sweden)
Pei-Jia Lu
2018-04-01
Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology
The Effect of Sterilization on Size and Shape of Fat Globules in Model Processed Cheese Samples
Directory of Open Access Journals (Sweden)
B. Tremlová
2006-01-01
Full Text Available Model cheese samples from 4 independent productions were heat sterilized (117 °C, 20 minutes after the melting process and packing with an aim to prolong their durability. The objective of the study was to assess changes in the size and shape of fat globules due to heat sterilization by using image analysis methods. The study included a selection of suitable methods of preparation mounts, taking microphotographs and making overlays for automatic processing of photographs by image analyser, ascertaining parameters to determine the size and shape of fat globules and statistical analysis of results obtained. The results of the experiment suggest that changes in shape of fat globules due to heat sterilization are not unequivocal. We found that the size of fat globules was significantly increased (p < 0.01 due to heat sterilization (117 °C, 20 min, and the shares of small fat globules (up to 500 μm2, or 100 μm2 in the samples of heat sterilized processed cheese were decreased. The results imply that the image analysis method is very useful when assessing the effect of technological process on the quality of processed cheese quality.
Statistical characterization of a large geochemical database and effect of sample size
Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.
2005-01-01
smaller numbers of data points showed that few elements passed standard statistical tests for normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes (e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough judgement of probability distribution if needed. ?? 2005 Elsevier Ltd. All rights reserved.
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.
Vegué, Marina; Perin, Rodrigo; Roxin, Alex
2017-08-30
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in
Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin
2017-06-01
A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.
Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions
International Nuclear Information System (INIS)
John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.
2000-01-01
Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was
Sample size effect on the determination of the irreversibility line of high-Tc superconductors
International Nuclear Information System (INIS)
Li, Q.; Suenaga, M.; Li, Q.; Freltoft, T.
1994-01-01
The irreversibility lines of a high-J c superconducting Bi 2 Sr 2 Ca 2 Cu 3 O x /Ag tape were systematically measured upon a sequence of subdivisions of the sample. The irreversibility field H r (T) (parallel to the c axis) was found to change approximately as L 0.13 , where L is the effective dimension of the superconducting tape. Furthermore, it was found that the irreversibility line for a grain-aligned Bi 2 Sr 2 Ca 2 Cu 3 O x specimen can be approximately reproduced by the extrapolation of this relation down to a grain size of a few tens of micrometers. The observed size effect could significantly obscure the real physical meaning of the irreversibility lines. In addition, this finding surprisingly indicated that the Bi 2 Sr 2 Ca 2 Cu 2 O x /Ag tape and grain-aligned specimen may have similar flux line pinning strength
Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size
Directory of Open Access Journals (Sweden)
Zhihua Wang
2014-01-01
Full Text Available Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead prediction, a novel autoregressive (AR prediction approach with rolling mechanism is proposed. In the modeling procedure, a new developed AR equation, which can be used to model nonstationary time series, is constructed in each prediction step. Meanwhile, the data window, for the next step ahead forecasting, rolls on by adding the most recent derived prediction result while deleting the first value of the former used sample data set. This rolling mechanism is an efficient technique for its advantages of improved forecasting accuracy, applicability in the case of limited and unstable data situations, and requirement of little computational effort. The general performance, influence of sample size, nonlinearity dynamic mechanism, and significance of the observed trends, as well as innovation variance, are illustrated and verified with Monte Carlo simulations. The proposed methodology is then applied to several practical data sets, including multiple building settlement sequences and two economic series.
Influence of secular trends and sample size on reference equations for lung function tests.
Quanjer, P H; Stocks, J; Cole, T J; Hall, G L; Stanojevic, S
2011-03-01
The aim of our study was to determine the contribution of secular trends and sample size to lung function reference equations, and establish the number of local subjects required to validate published reference values. 30 spirometry datasets collected between 1978 and 2009 provided data on healthy, white subjects: 19,291 males and 23,741 females aged 2.5-95 yrs. The best fit for forced expiratory volume in 1 s (FEV(1)), forced vital capacity (FVC) and FEV(1)/FVC as functions of age, height and sex were derived from the entire dataset using GAMLSS. Mean z-scores were calculated for individual datasets to determine inter-centre differences. This was repeated by subdividing one large dataset (3,683 males and 4,759 females) into 36 smaller subsets (comprising 18-227 individuals) to preclude differences due to population/technique. No secular trends were observed and differences between datasets comprising >1,000 subjects were small (maximum difference in FEV(1) and FVC from overall mean: 0.30- -0.22 z-scores). Subdividing one large dataset into smaller subsets reproduced the above sample size-related differences and revealed that at least 150 males and 150 females would be necessary to validate reference values to avoid spurious differences due to sampling error. Use of local controls to validate reference equations will rarely be practical due to the numbers required. Reference equations derived from large or collated datasets are recommended.
Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data.
Li, Johnson Ching-Hong
2016-12-01
In psychological science, the "new statistics" refer to the new statistical practices that focus on effect size (ES) evaluation instead of conventional null-hypothesis significance testing (Cumming, Psychological Science, 25, 7-29, 2014). In a two-independent-samples scenario, Cohen's (1988) standardized mean difference (d) is the most popular ES, but its accuracy relies on two assumptions: normality and homogeneity of variances. Five other ESs-the unscaled robust d (d r * ; Hogarty & Kromrey, 2001), scaled robust d (d r ; Algina, Keselman, & Penfield, Psychological Methods, 10, 317-328, 2005), point-biserial correlation (r pb ; McGrath & Meyer, Psychological Methods, 11, 386-401, 2006), common-language ES (CL; Cliff, Psychological Bulletin, 114, 494-509, 1993), and nonparametric estimator for CL (A w ; Ruscio, Psychological Methods, 13, 19-30, 2008)-may be robust to violations of these assumptions, but no study has systematically evaluated their performance. Thus, in this simulation study the performance of these six ESs was examined across five factors: data distribution, sample, base rate, variance ratio, and sample size. The results showed that A w and d r were generally robust to these violations, and A w slightly outperformed d r . Implications for the use of A w and d r in real-world research are discussed.
Analysis of femtogram-sized plutonium samples by thermal ionization mass spectrometry
International Nuclear Information System (INIS)
Smith, D.H.; Duckworth, D.C.; Bostick, D.T.; Coleman, R.M.; McPherson, R.L.; McKown, H.S.
1994-01-01
The goal of this investigation was to extend the ability to perform isotopic analysis of plutonium to samples as small as possible. Plutonium ionizes thermally with quite good efficiency (first ionization potential 5.7 eV). Sub-nanogram sized samples can be analyzed on a near-routine basis given the necessary instrumentation. Efforts in this laboratory have been directed at rhenium-carbon systems; solutions of carbon in rhenium provide surfaces with work functions higher than pure rhenium (5.8 vs. ∼ 5.4 eV). Using a single resin bead as a sample loading medium both concentrates the sample nearly to a point and, due to its interaction with rhenium, produces the desired composite surface. Earlier work in this area showed that a layer of rhenium powder slurried in solution containing carbon substantially enhanced precision of isotopic measurements for uranium. Isotopic fractionation was virtually eliminated, and ionization efficiencies 2-5 times better than previously measured were attained for both Pu and U (1.7 and 0.5%, respectively). The other side of this coin should be the ability to analyze smaller samples, which is the subject of this report
Mandava, Pitchaiah; Krumpelman, Chase S; Shah, Jharna N; White, Donna L; Kent, Thomas A
2013-01-01
Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall pdecrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe
2015-08-01
The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Terry, Leann; Kelley, Ken
2012-11-01
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.
Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample.
Li, Guohong; Luican, Adina; Andrei, Eva Y
2011-07-01
We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.
Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples
International Nuclear Information System (INIS)
Lisboa-Filho, P N; Deimling, C V; Ortiz, W A
2010-01-01
In this contribution superconducting specimens of YBa 2 Cu 3 O 7-δ were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Clustering for high-dimension, low-sample size data using distance vectors
Terada, Yoshikazu
2013-01-01
In high-dimension, low-sample size (HDLSS) data, it is not always true that closeness of two objects reflects a hidden cluster structure. We point out the important fact that it is not the closeness, but the "values" of distance that contain information of the cluster structure in high-dimensional space. Based on this fact, we propose an efficient and simple clustering approach, called distance vector clustering, for HDLSS data. Under the assumptions given in the work of Hall et al. (2005), w...
Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples
Energy Technology Data Exchange (ETDEWEB)
Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)
2010-01-15
In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian
2016-01-01
Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the
Estimated ventricle size using Evans index: reference values from a population-based sample.
Jaraj, D; Rabiei, K; Marlow, T; Jensen, C; Skoog, I; Wikkelsø, C
2017-03-01
Evans index is an estimate of ventricular size used in the diagnosis of idiopathic normal-pressure hydrocephalus (iNPH). Values >0.3 are considered pathological and are required by guidelines for the diagnosis of iNPH. However, there are no previous epidemiological studies on Evans index, and normal values in adults are thus not precisely known. We examined a representative sample to obtain reference values and descriptive data on Evans index. A population-based sample (n = 1235) of men and women aged ≥70 years was examined. The sample comprised people living in private households and residential care, systematically selected from the Swedish population register. Neuropsychiatric examinations, including head computed tomography, were performed between 1986 and 2000. Evans index ranged from 0.11 to 0.46. The mean value in the total sample was 0.28 (SD, 0.04) and 20.6% (n = 255) had values >0.3. Among men aged ≥80 years, the mean value of Evans index was 0.3 (SD, 0.03). Individuals with dementia had a mean value of Evans index of 0.31 (SD, 0.05) and those with radiological signs of iNPH had a mean value of 0.36 (SD, 0.04). A substantial number of subjects had ventricular enlargement according to current criteria. Clinicians and researchers need to be aware of the range of values among older individuals. © 2017 EAN.
Multiple sensitive estimation and optimal sample size allocation in the item sum technique.
Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz
2018-01-01
For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden
Energy Technology Data Exchange (ETDEWEB)
Wagner, Annemarie [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden)], E-mail: wagnera@chalmers.se; Boman, Johan [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden); Gatari, Michael J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)
2008-12-15
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 {mu}m aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.
Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden
International Nuclear Information System (INIS)
Wagner, Annemarie; Boman, Johan; Gatari, Michael J.
2008-01-01
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 μm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers
Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size
International Nuclear Information System (INIS)
Tsang, Y.W.; Witherspoon, P.A.
1983-01-01
A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations
Candel, Math J J M; Van Breukelen, Gerard J P
2010-06-30
Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.
Shieh, Gwowen; Jan, Show-Li
2013-01-01
The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…
Assessment of bone biopsy needles for sample size, specimen quality and ease of use
International Nuclear Information System (INIS)
Roberts, C.C.; Liu, P.T.; Morrison, W.B.; Leslie, K.O.; Carrino, J.A.; Lozevski, J.L.
2005-01-01
To assess whether there are significant differences in ease of use and quality of samples among several bone biopsy needles currently available. Eight commonly used, commercially available bone biopsy needles of different gauges were evaluated. Each needle was used to obtain five consecutive samples from a lamb lumbar pedicle. Subjective assessment of ease of needle use, ease of sample removal from the needle and sample quality, before and after fixation, was graded on a 5-point scale. The number of attempts necessary to reach a 1 cm depth was recorded. Each biopsy specimen was measured in the gross state and after fixation. The RADI Bonopty 15 g and Kendall Monoject J-type 11 g needles were rated the easiest to use, while the Parallax Core-Assure 11 g and the Bard Ostycut 16 g were rated the most difficult. Parallax Core-Assure and Kendall Monoject needles had the highest quality specimen in the gross state; Cook Elson/Ackerman 14 g and Bard Ostycut 16 g needles yielded the lowest. The MD Tech without Trap-Lok 11 g needle had the highest quality core after fixation, while the Bard Ostycut 16 g had the lowest. There was a significant difference in pre-fixation sample length between needles (P<0.0001), despite acquiring all cores to a standard 1 cm depth. Core length and width decrease in size by an average of 28% and 42% after fixation. Bone biopsy needles vary significantly in performance. Detailed knowledge of the strengths and weaknesses of different needles is important to make an appropriate selection for each individual's practice. (orig.)
Effects of sample size on estimation of rainfall extremes at high temperatures
Boessenkool, Berry; Bürger, Gerd; Heistermann, Maik
2017-09-01
High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.
Effects of sample size on estimation of rainfall extremes at high temperatures
Directory of Open Access Journals (Sweden)
B. Boessenkool
2017-09-01
Full Text Available High precipitation quantiles tend to rise with temperature, following the so-called Clausius–Clapeyron (CC scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.