WorldWideScience

Sample records for finite range model

  1. Finite temperature CPN-1 model and long range Neel order

    International Nuclear Information System (INIS)

    Ichinose, Ikuo; Yamamoto, Hisashi.

    1989-09-01

    We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)

  2. Finite-range-scaling analysis of metastability in an Ising model with long-range interactions

    International Nuclear Information System (INIS)

    Gorman, B.M.; Rikvold, P.A.; Novotny, M.A.

    1994-01-01

    We apply both a scalar field theory and a recently developed transfer-matrix method to study the stationary properties of metastability in a two-state model with weak, long-range interactions: the Nx∞ quasi-one-dimensional Ising model. Using the field theory, we find the analytic continuation f of the free energy across the first-order transition, assuming that the system escapes the metastable state by the nucleation of noninteracting droplets. We find that corrections to the field dependence are substantial, and, by solving the Euler-Lagrange equation for the model numerically, we have verified the form of the free-energy cost of nucleation, including the first correction. In the transfer-matrix method, we associate with the subdominant eigenvectors of the transfer matrix a complex-valued ''constrained'' free-energy density f α computed directly from the matrix. For the eigenvector with an associated magnetization most strongly opposed to the applied magnetic field, f α exhibits finite-range scaling behavior in agreement with f over a wide range of temperatures and fields, extending nearly to the classical spinodal. Some implications of these results for numerical studies of metastability are discussed

  3. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    International Nuclear Information System (INIS)

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  4. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.

    Science.gov (United States)

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  5. Complex fragments from excited actinide nuclei. A new test of the finite range model

    International Nuclear Information System (INIS)

    Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.

    1989-01-01

    Complex fragments ranging in charge from 7 ≤ Z ≤ 45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. (orig.)

  6. Complex fragments from excited actinide nuclei: A new test of the finite range model

    International Nuclear Information System (INIS)

    Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.

    1988-05-01

    Complex fragments ranging in charge from 7≤Z≤45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. 15 refs., 3 figs

  7. A Hybrid Finite Element/Helmholtz-Kirchhoff-Integral Model for Shooting Range Sound Prediction

    NARCIS (Netherlands)

    Nijhof, M.J.J.; Eerden, F.J.M. van der

    2013-01-01

    National legislation enforces a limit on the Sound Levels of outdoor military shooting ranges observed in nearby residential areas. These restrictions directly influence the number of shots that may be fired at a specific shooting range, which may conflict with the required/ scheduled training

  8. Finite element modelling

    International Nuclear Information System (INIS)

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  9. Finite Range Decomposition of Gaussian Processes

    CERN Document Server

    Brydges, C D; Mitter, P K

    2003-01-01

    Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0

  10. Finite unified models

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)

    1993-09-01

    We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)

  11. Finite unified models

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Mondragon, M.; Zoupanos, G.

    1993-01-01

    We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)

  12. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  13. Nuclear mass formula with a neutron skin degree of freedom and finite-range model for the surface energy

    International Nuclear Information System (INIS)

    Moeller, P.; Myers, W.D.

    1984-01-01

    The possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system to include provision for the existence of a neutron skin is studied. The model gives excellent fit to masses and fission barriers and improves predictions of isotopic trends in charge radii

  14. An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women.

    Science.gov (United States)

    Zhang, Kai; Cao, Libo; Fanta, Abeselom; Reed, Matthew P; Neal, Mark; Wang, Jenne-Tai; Lin, Chin-Hsu; Hu, Jingwen

    2017-07-26

    Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nuclear mass formula with a neutron skin degree of freedom and finite-range model for the surface energy

    International Nuclear Information System (INIS)

    Moeller, P.; Myers, W.D.

    1984-03-01

    We study the possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system, to describe compressibility effects and the existence of a neutron skin. 9 references

  16. Nuclear mass formula with a neutron skin degree of freedom and finite-range model for the surface energy

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.; Myers, W.D.

    1984-03-01

    We study the possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system, to describe compressibility effects and the existence of a neutron skin. 9 references. (WHK)

  17. Mappings with closed range and finite dimensional linear spaces

    International Nuclear Information System (INIS)

    Iyahen, S.O.

    1984-09-01

    This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)

  18. Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction

    Science.gov (United States)

    Its, A. R.; Mezzadri, F.; Mo, M. Y.

    2008-11-01

    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L → ∞ of the determinant of a block-Toeplitz matrix with symbol Φ(z) = left(begin{array}{cc} iλ & g(z) \\ g^{-1}(z) & i λ right), where g( z) is the square root of a rational function and g(1/ z) = g -1( z). The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve {mathcal{L}} of genus g ≥ 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for these systems are characterized by the branch points of {mathcal{L}} approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin [14] for the XX model and Its, Jin and Korepin [12, 13] for the XY model.

  19. A finite range coupled channel Born approximation code

    International Nuclear Information System (INIS)

    Nagel, P.; Koshel, R.D.

    1978-01-01

    The computer code OUKID calculates differential cross sections for direct transfer nuclear reactions in which multistep processes, arising from strongly coupled inelastic states in both the target and residual nuclei, are possible. The code is designed for heavy ion reactions where full finite range and recoil effects are important. Distorted wave functions for the elastic and inelastic scattering are calculated by solving sets of coupled differential equations using a Matrix Numerov integration procedure. These wave functions are then expanded into bases of spherical Bessel functions by the plane-wave expansion method. This approach allows the six-dimensional integrals for the transition amplitude to be reduced to products of two one-dimensional integrals. Thus, the inelastic scattering is treated in a coupled channel formalism while the transfer process is treated in a finite range born approximation formalism. (Auth.)

  20. Finite Range Effects in Energies and Recombination Rates of Three Identical Bosons

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2013-01-01

    is large. The models are built on contact potentials which take into account finite range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wave function when two of the particles are at the same point...... in space. We compare the results with the results of the ubiquitous single-parameter zero-range model where only the scattering length is taken into account. Both finite range models predict variations of the well-known geometric scaling factor 22.7 that arises in Efimov physics. The threshold value...... at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed...

  1. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  2. Nuclear dynamics with the (finite range) Gogny force: flow effects

    International Nuclear Information System (INIS)

    Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.

    1988-01-01

    We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details

  3. Coulomb breakup of 31Ne using finite range DWBA

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  4. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  5. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  6. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  7. Analysis of (d,n) reactions via the Dirac DWBA with finite range

    Science.gov (United States)

    Hawk, Eric; McNeil, J. A.

    2004-10-01

    The Distorted-wave Born Approximation (DWBA) is used to calculate differential cross sections of low-energy deuteron stripping reactions. The implementation makes use of Dirac phenomenological potentials with an exact treatment of finite-range effects. The mutual interaction of these effects upon the resulting calculations will be presented. In addition, we use our finite-range implementation to study the effect on the cross sections due to the model dependence of the internal deuteron wave function. Specifically, we examine this effect using the internal deuteron wave functions generated with the Reid soft-core, Bonn, and Argonne-V18 potentials.

  8. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  9. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  10. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  11. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  12. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  13. A Finite Model Property for Intersection Types

    Directory of Open Access Journals (Sweden)

    Rick Statman

    2015-03-01

    Full Text Available We show that the relational theory of intersection types known as BCD has the finite model property; that is, BCD is complete for its finite models. Our proof uses rewriting techniques which have as an immediate by-product the polynomial time decidability of the preorder <= (although this also follows from the so called beta soundness of BCD.

  14. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  15. Modelling robot's behaviour using finite automata

    Science.gov (United States)

    Janošek, Michal; Žáček, Jaroslav

    2017-07-01

    This paper proposes a model of a robot's behaviour described by finite automata. We split robot's knowledge into several knowledge bases which are used by the inference mechanism of the robot's expert system to make a logic deduction. Each knowledgebase is dedicated to the particular behaviour domain and the finite automaton helps us switching among these knowledge bases with the respect of actual situation. Our goal is to simplify and reduce complexity of one big knowledgebase splitting it into several pieces. The advantage of this model is that we can easily add new behaviour by adding new knowledgebase and add this behaviour into the finite automaton and define necessary states and transitions.

  16. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  17. Finiteness of PST self-dual models

    International Nuclear Information System (INIS)

    Del Cima, Oswaldo M.; Piguet, Olivier; Sarandy, Marcelo S.

    2000-12-01

    The Pasti-Sorokin-Tonin model for describing chiral forms is considered at the quantum level. We study the ultraviolet and infrared behaviour of the model in two, four and six dimensions in the framework of algebraic renormalization. The absence of anomalies, as well as the finiteness, up to non-physical renormalizations, are shown in all dimensions analyzed. (author)

  18. Verification of Orthogrid Finite Element Modeling Techniques

    Science.gov (United States)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  19. Avalanching Systems with Longer Range Connectivity: Occurrence of a Crossover Phenomenon and Multifractal Finite Size Scaling

    Directory of Open Access Journals (Sweden)

    Simone Benella

    2017-07-01

    Full Text Available Many out-of-equilibrium systems respond to external driving with nonlinear and self-similar dynamics. This near scale-invariant behavior of relaxation events has been modeled through sand pile cellular automata. However, a common feature of these models is the assumption of a local connectivity, while in many real systems, we have evidence for longer range connectivity and a complex topology of the interacting structures. Here, we investigate the role that longer range connectivity might play in near scale-invariant systems, by analyzing the results of a sand pile cellular automaton model on a Newman–Watts network. The analysis clearly indicates the occurrence of a crossover phenomenon in the statistics of the relaxation events as a function of the percentage of longer range links and the breaking of the simple Finite Size Scaling (FSS. The more complex nature of the dynamics in the presence of long-range connectivity is investigated in terms of multi-scaling features and analyzed by the Rank-Ordered Multifractal Analysis (ROMA.

  20. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    Science.gov (United States)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  1. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana; Ait Abderrahmane, Hamid; Upadhyay, Ranjit Kumar; Kumari, Nitu

    2013-01-01

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  2. Finite Time Blowup in a Realistic Food-Chain Model

    KAUST Repository

    Parshad, Rana

    2013-05-19

    We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.

  3. On constitutive modelling in finite element analysis

    International Nuclear Information System (INIS)

    Bathe, K.J.; Snyder, M.D.; Cleary, M.P.

    1979-01-01

    This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)

  4. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    Science.gov (United States)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  5. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  6. Finite automata over magmas: models and some applications in Cryptography

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Skobelev

    2018-05-01

    Full Text Available In the paper the families of finite semi-automata and reversible finite Mealy and Moore automata over finite magmas are defined and analyzed in detail. On the base of these models it is established that the set of finite quasigroups is the most acceptable subset of the set of finite magmas at resolving model problems in Cryptography, such as design of iterated hash functions and stream ciphers. Defined families of finite semi-automata and reversible finite automata over finite $T$-quasigroups are investigated in detail. It is established that in this case models time and space complexity for simulation of the functioning during one instant of automaton time can be much lower than in general case.

  7. Maximum likelihood estimation of finite mixture model for economic data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  8. Finite Unification: Theory, Models and Predictions

    CERN Document Server

    Heinemeyer, S; Zoupanos, G

    2011-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...

  9. A finite range pairing force for density functional theory in superfluid nuclei

    International Nuclear Information System (INIS)

    Tian, Y.; Ma, Z.Y.; Ring, P.

    2009-01-01

    The problem of pairing in the 1 S 0 channel of finite nuclei is revisited. In nuclear matter forces of separable form can be adjusted to the bare nuclear force, to any phenomenological pairing interaction such as the Gogny force or to exact solutions of the gap equation. In finite nuclei, because of translational invariance, such forces are no longer separable. Using well-known techniques of Talmi and Moshinsky we expand the matrix elements in a series of separable terms, which converges quickly preserving translational invariance and finite range. In this way the complicated problem of a cut-off at large momenta or energies inherent in other separable or zero range pairing forces is avoided. Applications in the framework of the relativistic Hartree-Bogoliubov approach show that the pairing properties are depicted on almost the same footing as by the original pairing interaction not only in nuclear matter, but also in finite nuclei. This simple separable force can be easily applied for the investigation of pairing properties in nuclei far from stability as well as for further investigations going beyond mean field theory.

  10. Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    4/2010, č. 3 (2010), s. 236-250 ISSN 1802-4696 R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310 Institutional research plan: CEZ:AV0Z10750506 Keywords : rescaled range analysis * detrended fluctuation analysis * Hurst exponent * long-range dependence Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-rescaled range analysis and detrended fluctuation analysis finite sample properties and confidence intervals.pdf

  11. Finite

    Directory of Open Access Journals (Sweden)

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  12. Finite element modelling of composite castellated beam

    Directory of Open Access Journals (Sweden)

    Frans Richard

    2017-01-01

    Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.

  13. Finite element model updating using bayesian framework and modal properties

    CSIR Research Space (South Africa)

    Marwala, T

    2005-01-01

    Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...

  14. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    Science.gov (United States)

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  15. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  16. Modelling and finite-time stability analysis of psoriasis pathogenesis

    Science.gov (United States)

    Oza, Harshal B.; Pandey, Rakesh; Roper, Daniel; Al-Nuaimi, Yusur; Spurgeon, Sarah K.; Goodfellow, Marc

    2017-08-01

    A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite-time stability and stabilisation have been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite-time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite-time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite-time convergence motivates the development of a modified version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite-time actuators.

  17. Assessing women's lacrosse head impacts using finite element modelling.

    Science.gov (United States)

    Clark, J Michio; Hoshizaki, T Blaine; Gilchrist, Michael D

    2018-04-01

    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  19. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  20. Finite-element modeling and micromagnetic modeling of perpendicular writers

    Science.gov (United States)

    Heinonen, Olle; Bozeman, Steven P.

    2006-04-01

    We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.

  1. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation ...

  2. Modelling drawbeads with finite elements and verification

    NARCIS (Netherlands)

    Carleer, B.D.; Carleer, B.D.; Vreede, P.T.; Vreede, P.T.; Louwes, M.F.M.; Louwes, M.F.M.; Huetink, Han

    1994-01-01

    Drawbeads are commonly used in deep drawing processes to control the flow of the blank during the forming operation. In finite element simulations of deep drawing the drawbead geometries are seldom included because of the small radii; because of these small radii a very large number of elements is

  3. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  4. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  5. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    Science.gov (United States)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  6. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  7. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  8. Cluster decay half-lives of trans-lead nuclei based on a finite-range nucleon–nucleon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Adel, A., E-mail: aa.ahmed@mu.edu.sa [Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Physics Department, College of Science, Majmaah University, Zulfi (Saudi Arabia); Alharbi, T. [Physics Department, College of Science, Majmaah University, Zulfi (Saudi Arabia)

    2017-02-15

    Nuclear cluster radioactivity is investigated using microscopic potentials in the framework of the Wentzel–Kramers–Brillouin approximation of quantum tunneling by considering the Bohr–Sommerfeld quantization condition. The microscopic cluster–daughter potential is numerically constructed in the well-established double-folding model. A realistic M3Y-Paris NN interaction with the finite-range exchange part as well as the ordinary zero-range exchange NN force is considered in the present work. The influence of nuclear deformations on the cluster decay half-lives is investigated. Based on the available experimental data, the cluster preformation factors are extracted from the calculated and the measured half lives of cluster radioactivity. Some useful predictions of cluster emission half-lives are made for emissions of known clusters from possible candidates, which may guide future experiments.

  9. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  10. Modelling bucket excavation by finite element

    Science.gov (United States)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  11. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....

  12. Beta Regression Finite Mixture Models of Polarization and Priming

    Science.gov (United States)

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  13. Towards Finite-Gap Integration of the Inozemtsev Model

    Directory of Open Access Journals (Sweden)

    Kouichi Takemura

    2007-03-01

    Full Text Available The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.

  14. Entropy of finite random binary sequences with weak long-range correlations.

    Science.gov (United States)

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  15. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  16. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  17. Finite Element Simulation of Medium-Range Blast Loading Using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Yuzhen Han

    2015-01-01

    Full Text Available This study investigated the Finite Element simulation of blast loading using LS-DYNA. The objective is to identify approaches to reduce the requirement of computation effort while maintaining reasonable accuracy, focusing on blast loading scheme, element size, and its relationship with scale of explosion. The study made use of the recently developed blast loading scheme in LS-DYNA, which removes the necessity to model the explosive in the numerical models but still maintains the advantages of nonlinear fluid-structure interaction. It was found that the blast loading technique could significantly reduce the computation effort. It was also found that the initial density of air in the numerical model could be purposely increased to partially compensate the error induced by the use of relatively large air elements. Using the numerical approach, free air blast above a scaled distance of 0.4 m/kg1/3 was properly simulated, and the fluid-structure interaction at the same location could be properly duplicated using proper Arbitrary Lagrangian Eulerian (ALE coupling scheme. The study also showed that centrifuge technique, which has been successfully employed in model tests to investigate the blast effects, may be used when simulating the effect of medium- to large-scale explosion at small scaled distance.

  18. Application of capital replacement models with finite planning horizons

    NARCIS (Netherlands)

    Scarf, P.A.; Christer, A.H.

    1997-01-01

    Capital replacement models with finite planning horizons can be used to model replacement policies in complex operational contexts. They may also be used to investigate the cost consequences of technological change. This paper reviews the application of these models in various such contexts. We also

  19. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  20. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    Science.gov (United States)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  1. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  2. Probabilistic finite element modeling of waste rollover

    International Nuclear Information System (INIS)

    Khaleel, M.A.; Cofer, W.F.; Al-fouqaha, A.A.

    1995-09-01

    Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ''rolls over'' and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described

  3. Hualien forced vibration calculation with a finite element model

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.

    1995-01-01

    The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs

  4. Finite-lattice form factors in free-fermion models

    International Nuclear Information System (INIS)

    Iorgov, N; Lisovyy, O

    2011-01-01

    We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field

  5. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  6. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  7. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  8. Solutions manual to accompany finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr

  9. Straightened cervical lordosis causes stress concentration: a finite element model study

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)

    2013-03-15

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  10. Straightened cervical lordosis causes stress concentration: a finite element model study

    International Nuclear Information System (INIS)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui

    2013-01-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  11. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  12. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2012-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  13. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  14. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Science.gov (United States)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  15. Finite difference time domain modelling of particle accelerators

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1989-03-01

    Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs

  16. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  17. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  18. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  19. Finite Element Modeling of Airflow During Phonation

    Directory of Open Access Journals (Sweden)

    Šidlof P.

    2010-07-01

    Full Text Available In the paper a mathematical model of airflow in human vocal folds is presented. The geometry of the glottal channel is based on measurements of excised human larynges. The airflow is modeled by nonstationary incompressible Navier-Stokes equations in a 2D computational domain, which is deformed in time due to vocal fold vibration. The paper presents numerical results and focuses on flow separation in glottis. Quantitative data from numerical simulations are compared to results of measurements by Particle Image Velocimetry (PIV, performed on a scaled self-oscillating physical model of vocal folds.

  20. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  1. Massive Schwinger model at finite θ

    Science.gov (United States)

    Azcoiti, Vicente; Follana, Eduardo; Royo-Amondarain, Eduardo; Di Carlo, Giuseppe; Vaquero Avilés-Casco, Alejandro

    2018-01-01

    Using the approach developed by V. Azcoiti et al. [Phys. Lett. B 563, 117 (2003), 10.1016/S0370-2693(03)00601-4], we are able to reconstruct the behavior of the massive one-flavor Schwinger model with a θ term and a quantized topological charge. We calculate the full dependence of the order parameter with θ . Our results at θ =π are compatible with Coleman's conjecture on the phase diagram of this model.

  2. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  3. A study of self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer calculations with finite-range interactions

    Science.gov (United States)

    Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.

    2014-02-01

    In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.

  4. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  5. Finite Nuclei in the Quark-Meson Coupling Model.

    Science.gov (United States)

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  6. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

    2015-10-28

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

  7. Finite Element Modeling of Airflow During Phonation

    Czech Academy of Sciences Publication Activity Database

    Šidlof, P.; Lunéville, E.; Chambeyron, C.; Doaré, O.; Chaigne, A.; Horáček, Jaromír

    2010-01-01

    Roč. 4, č. 1 (2010), s. 121-132 ISSN 1802-680X R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal fold s * airflow * numerical modeling * ALE * flow separation Subject RIV: BI - Acoustics

  8. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    NARCIS (Netherlands)

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  9. Finite element modelling of vocal tract changes after voice therapy

    Directory of Open Access Journals (Sweden)

    Vampola T.

    2011-06-01

    Full Text Available Two 3D finite element (FE models were constructed, based on CT measurements of a subject phonating on [a:] before and after phonation into a tube. Acoustic analysis was performed by exciting the models with acoustic flow velocity at the vocal folds. The generated acoustic pressure of the response was computed in front of the mouth and inside the vocal tract for both FE models. Average amplitudes of the pressure oscillations inside the vocal tract and in front of the mouth were compared to display the cost-efficiency of sound energy transfer at different formant frequencies. The formants F1–F3 correspond to classical vibration modes also solvable by 1D vocal tract model. However, for higher formants, there occur more complicated transversal modes which require 3D modelling. A special attention is given to the higher frequency range (above 3.5 Hz where transversal modes exist between piriform sinuses and valleculae. Comparison of the pressure oscillation inside and outside the vocal tract showed that formants differ in their efficiency, F4 (at about 3.5 kHz, i.e. at the speaker’s or singer’s formant region being the most effective. The higher formants created a clear formant cluster around 4 kHz after the vocal exercise with the tube. Since the human ear is most sensitive to frequencies between 2 and 4 kHz concentration of sound energy in this frequency region (F4–F5 is effective for communication. The results suggest that exercising using phonation into tubes help in improving the vocal economy.

  10. Normal compliance contact models with finite interpenetration

    Czech Academy of Sciences Publication Activity Database

    Eck, Ch.; Jarušek, Jiří; Stará, J.

    2013-01-01

    Roč. 208, č. 1 (2013), s. 25-57 ISSN 0003-9527 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : compliance models * approximation Subject RIV: BA - General Mathematics Impact factor: 2.022, year: 2013 http://link.springer.com/article/10.1007%2Fs00205-012-0602-8#

  11. Three-dimensional modeling with finite element codes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.

    1986-01-17

    This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.

  12. A Finite Element Model for convection-dominatel transport problems

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Galeao, A.C.N.R.

    1987-08-01

    A new Protev-Galerkin Finite Element Model which automatically incorporates the search for the appropriate upwind direction is presented. It is also shown that modifying the Petrov-Galerkin weightin functions associated with elements adjascent to downwing boudaries effectively eliminates numerical oscillations normally obtained near boundary layers. (Author) [pt

  13. Response to selection in finite locus models with nonadditive effects

    NARCIS (Netherlands)

    Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jørn Rind; Bijma, Piter; Sørensen, Anders Christian

    2017-01-01

    Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive

  14. The dilute random field Ising model by finite cluster approximation

    International Nuclear Information System (INIS)

    Benyoussef, A.; Saber, M.

    1987-09-01

    Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs

  15. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  16. Finite difference computing with exponential decay models

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .

  17. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  18. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    models may be created by assembling models of floor and wall structures into large models of complete buildings. When assembling the floor and wall models, the number of degrees of freedom quickly increases to exceed the limits of computer capacity, at least in a reasonable amount of computational time...... Hz. Three different methods of model reduction were investigated; Guyan reduction, component mode synthesis and a third approach where a new finite element model was created with structural elements. Eigenvalue and steady-state analyses were performed in order to compare the errors...

  19. A Dealer Model of Foreign Exchange Market with Finite Assets

    Science.gov (United States)

    Hamano, Tomoya; Kanazawa, Kiyoshi; Takayasu, Hideki; Takayasu, Misako

    An agent-based model is introduced to study the finite-asset effect in foreign exchange markets. We find that the transacted price asymptotically approaches an equilibrium price, which is determined by the monetary balance between the pair of currencies. We phenomenologically derive a formula to estimate the equilibrium price, and we model its relaxation dynamics around the equilibrium price on the basis of a Langevin-like equation.

  20. Analytic regularization of the Yukawa model at finite temperature

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.

    1996-07-01

    It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs

  1. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    Science.gov (United States)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  2. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  3. Finite element modeling of trolling-mode AFM.

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  5. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    Science.gov (United States)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  6. A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu

    2016-12-01

    The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutral physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.

  7. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  8. Insider Models with Finite Utility in Markets with Jumps

    International Nuclear Information System (INIS)

    Kohatsu-Higa, Arturo; Yamazato, Makoto

    2011-01-01

    In this article we consider, under a Lévy process model for the stock price, the utility optimization problem for an insider agent whose additional information is the final price of the stock blurred with an additional independent noise which vanishes as the final time approaches. Our main interest is establishing conditions under which the utility of the insider is finite. Mathematically, the problem entails the study of a “progressive” enlargement of filtration with respect to random measures. We study the jump structure of the process which leads to the conclusion that in most cases the utility of the insider is finite and his optimal portfolio is bounded. This can be explained financially by the high risks involved in models with jumps.

  9. Finite-element model of ultrasonic NDE [nondestructive evaluation

    International Nuclear Information System (INIS)

    Lord, W.

    1989-07-01

    An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs

  10. Finite element modeling of micromachined MEMS photon devices

    Science.gov (United States)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  11. Finite Element Modeling of Micromachined MEMS Photon Devices

    International Nuclear Information System (INIS)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-01-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness

  12. Finite element approximation to a model problem of transonic flow

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1986-12-01

    A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig

  13. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  14. On the finite element modeling of the asymmetric cracked rotor

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  15. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.

    2002-01-01

    of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...

  16. 2D Finite Element Model of a CIGS Module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, P.O.Box 1, NL-1755 ZG Petten (Netherlands)

    2012-06-15

    The performance of thin-film CIGS (Copper indium gallium selenide) modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is presented that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  17. Finite detector based projection model for super resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hengyong; Wang, Ge [Wake Forest Univ. Health Sciences, Winston-Salem, NC (United States). Dept. of Radiology; Virgina Tech, Blacksburg, VA (United States). Biomedical Imaging Div.

    2011-07-01

    For finite detector and focal spot sizes, here we propose a projection model for super resolution CT. First, for a given X-ray source point, a projection datum is modeled as an area integral over a narrow fan-beam connecting the detector elemental borders and the X-ray source point. Then, the final projection value is expressed as the integral obtained in the first step over the whole focal spot support. An ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is developed using the proposed projection model. In the numerical simulation, our method produces super spatial resolution and suppresses high-frequency artifacts. (orig.)

  18. 2D - Finite element model of a CIGS module

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    The performance of thin-film CIGS modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is demonstrated that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.

  19. Detecting Housing Submarkets using Unsupervised Learning of Finite Mixture Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    association between prices that can be attributed, among others, to unobserved neighborhood effects. In this paper, a model of spatial association for housing markets is introduced. Spatial association is treated in the context of spatial heterogeneity, which is explicitly modeled in both a global and a local....... The identified mixtures are considered as the different spatial housing submarkets. The main advantage of the approach is that submarkets are recovered by the housing prices data compared to submarkets imposed by administrative or geographical criteria. The Finite Mixture Model is estimated using the Figueiredo...

  20. Model order reduction techniques with applications in finite element analysis

    CERN Document Server

    Qu, Zu-Qing

    2004-01-01

    Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...

  1. A discrete finite element modelling and measurements for powder compaction

    International Nuclear Information System (INIS)

    Choi, J L; Gethin, D T

    2009-01-01

    An experimental investigation into friction between powder and a target surface together with numerical modelling of compaction and friction processes at a micro-scale are presented in this paper. The experimental work explores friction mechanisms by using an extended sliding plate apparatus operating at low load while sliding over a long distance. Tests were conducted for copper and 316 steel with variation in loads, surface finish and its orientation. The behaviours of the static and dynamic friction were identified highlighting the important influence of particle size, particle shape, material response and surface topography. The results also highlighted that under light loading the friction coefficient remains at a level lower than that derived from experiments on equipment having a wider dynamic range and this is attributed to the enhanced sensitivity of the measurement equipment. The results also suggest that friction variation with sliding distance is a consequence of damage, rather than presentation of an uncontaminated target sliding surface. The complete experimental cycle was modelled numerically using a combined discrete and finite element scheme enabling exploration of mechanisms that are defined at the particle level. Using compaction as the starting point, a number of simulation factors and process parameters were investigated. Comparisons were made with previously published work, showing reasonable agreement and the simulations were then used to explore the process response to the range of particle scale factors. Models comprising regular packing of round particles exhibited stiff response with high initial density. Models with random packing were explored and were found to reflect trends that are more closely aligned with experimental observation, including rearrangement, followed by compaction under a regime of elastic then plastic deformation. Numerical modelling of the compaction stage was extended to account for the shearing stage of the

  2. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  3. Development of a hip joint model for finite volume simulations.

    Science.gov (United States)

    Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A

    2014-01-01

    This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

  4. A finite element model for protein transport in vivo

    Directory of Open Access Journals (Sweden)

    Montas Hubert J

    2007-06-01

    Full Text Available Abstract Background Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. Methods A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery after Photobleaching (FRAP technique, to estimate biomolecule mass transport and reaction rate parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution. The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma. Results The numerical simulator shows excellent agreement with the analytic solutions and experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and constant variance and are normally distributed and uncorrelated. Therefore, the necessary and sufficient criteria for least square parameter optimization, which was used in this study, were met. Conclusion The developed strategy is an efficient approach to extract as much physiochemical information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem, however, indicates that the FRAP protocol provides insufficient

  5. Finite element modeling of ultrasonic inspection of weldments

    International Nuclear Information System (INIS)

    Dewey, B.R.; Adler, L.; Oliver, B.F.; Pickard, C.A.

    1983-01-01

    High performance weldments for critical service applications require 100% inspection. Balanced against the adaptability of the ultrasonic method for automated inspection are the difficulties encountered with nonhomogeneous and anisotropic materials. This research utilizes crystals and bicrystals of nickel to model austenitic weld metal, where the anisotropy produces scattering and mode conversion, making detection and measurement of actual defects difficult. Well characterized samples of Ni are produced in a levitation zone melting facility. Crystals in excess of 25 mm diameter and length are large enough to permit ultrasonic measurements of attenuation, wave speed, and spectral content. At the same time, the experiments are duplicated as finite element models for comparison purposes

  6. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter; Jü ngel, Ansgar; Aoki, Kazuo

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  7. Finite element modeling and experimentation of bone drilling forces

    International Nuclear Information System (INIS)

    Lughmani, W A; Bouazza-Marouf, K; Ashcroft, I

    2013-01-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

  8. Finite difference time domain modeling of spiral antennas

    Science.gov (United States)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  9. Finite Element Approximation of the FENE-P Model

    OpenAIRE

    Barrett , John ,; Boyaval , Sébastien

    2017-01-01

    We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $\\subset$ R d , d = 2 or 3$, subject to no flow boundary conditions. Our schemes are based on approximating the pressure and the symmetric conforma-tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the velocity field is approximated by c...

  10. Artificial emotional model based on finite state machine

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-mei; WU Wei-guo

    2008-01-01

    According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition function was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform.And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.

  11. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)

    2001-09-01

    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)

  12. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  13. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  14. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  15. Development of a finite element model of the human abdomen.

    Science.gov (United States)

    Lee, J B; Yang, K H

    2001-11-01

    Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50(th) percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels. Hollow organs, such as the esophagus, stomach, small and large intestines, gallbladder, bile ducts, ureters, rectum and adrenal glands are grouped into three bodybags in order to provide realistic inertial properties and to maintain the position of the solid organs in their appropriate locations. Using direct connections, the model was joined superiorly to a partial model of the human thorax, and inferiorly to models of the human pelvis and the lower extremities that have been previously developed. Material properties for various tissues of the abdomen were derived from the literature. Data obtained in a series of cadaveric pendulum impact tests conducted at Wayne State University (WSU), a series of lateral drop tests conducted at Association Peugeot-Renault (APR) and a series of cadaveric lower abdomen frontal impact tests conducted at WSU were used to validate the model. Results predicted by the model match these experimental data for various impact speeds, impactor masses and drop heights. Further study is still needed in order to fully validate WSUHAM before it can be used to assess various impact loading conditions associated with vehicular crashes.

  16. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    Science.gov (United States)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  17. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  18. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  19. Finite element modeling of Balsa wood structures under severe loadings

    International Nuclear Information System (INIS)

    Toson, B.; Pesque, J.J.; Viot, P.

    2014-01-01

    In order to compute, in various situations, the requirements for transporting packages using Balsa wood as an energy absorber, a constitutive model is needed that takes into account all of the specific characteristics of the wood, such as its anisotropy, compressibility, softening, densification, and strain rate dependence. Such a model must also include the treatment of rupture of the wood when it is in traction. The complete description of wood behavior is not sufficient: robustness is also necessary because this model has to work in presence of large deformations and of many other external nonlinear phenomena in the surrounding structures. We propose such a constitutive model that we have developed using the commercial finite element package ABAQUS. The necessary data were acquired through an extensive compilation of the existing literature with the augmentation of personal measurements. Numerous validation tests are presented that represent different impact situations that a transportation cask might endure. (authors)

  20. Baryon number dissipation at finite temperature in the standard model

    International Nuclear Information System (INIS)

    Mottola, E.; Raby, S.; Starkman, G.

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, γ is given in terms of real time correlation functions of the operator E·B, and is directly proportional to the sphaleron transition rate, Γ: γ preceq n f Γ/T 3 . Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs

  1. Calibration of a finite element composite delamination model by experiments

    DEFF Research Database (Denmark)

    Gaiotti, M.; Rizzo, C.M.; Branner, Kim

    2013-01-01

    This paper deals with the mechanical behavior under in plane compressive loading of thick and mostly unidirectional glass fiber composite plates made with an initial embedded delamination. The delamination is rectangular in shape, causing the separation of the central part of the plate into two...... distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...

  2. Superconducting instabilities in the finite U Anderson lattice model

    International Nuclear Information System (INIS)

    Karbowski, J.

    1995-01-01

    We have investigated superconducting instabilities in the finite U Anderson lattice model within the Zou-Anderson slave boson representation in the Kondo lattice limit appropriate for heavy fermion systems. We found Cooper instability in the p channel and a repulsion in both the s and d channels. Based on the above mechanism of pairing, we have derived a ratio of the Gruneisen parameters Γ(T c )/Γ(T K ) which can be negative or positive, consistent with the experimental data. This result cannot be achieved in the U=∞ limit, which gives only positive values for this ratio. ((orig.))

  3. A finite element model for the quench front evolution problem

    International Nuclear Information System (INIS)

    Folescu, J.; Galeao, A.C.N.R.; Carmo, E.G.D. do.

    1985-01-01

    A model for the rewetting problem associated with the loss of coolant accident in a PWR reactor is proposed. A variational formulation for the time-dependent heat conduction problem on fuel rod cladding is used, and appropriate boundary conditions are assumed in order to simulate the thermal interaction between the fuel rod cladding and the fluid. A numerical procedure which uses the finite element method for the spatial discretization and a Crank-Nicolson-like method for the step-by-step integration is developed. Some numerical results are presented showing the quench front evolution and its stationary profile. (Author) [pt

  4. Dynamic Tax Incidence in a Finite Horizon Model

    OpenAIRE

    Itaya, Jun-ichi

    1992-01-01

    This paper reexamines the problem of long-run tax incidence by using a two-sector growth model in which finitely-lived individuals undertake intertemporal optimizing decisions in the presence of annuity markets. Under a constant relative risk aversion utility function, none of the selective taxes imposed on the consumption goods sector are neutral with respect to the long-run wage/profit ratio even if labor supply is fixed. This result differs significantly both from that of the infinite hori...

  5. Development of a finite element model of decompressive craniectomy.

    Directory of Open Access Journals (Sweden)

    Tim L Fletcher

    Full Text Available Decompressive craniectomy (DC, an operation whereby part of the skull is removed, is used in the management of patients with brain swelling. While the aim of DC is to reduce intracranial pressure, there is the risk that brain deformation and mechanical strain associated with the operation could damage the brain tissue. The nature and extent of the resulting strain regime is poorly understood at present. Finite element (FE models of DC can provide insight into this applied strain and hence assist in deciding on the best surgical procedures. However there is uncertainty about how well these models match experimental data, which are difficult to obtain clinically. Hence there is a need to validate any modelling approach outside the clinical setting. This paper develops an axisymmetric FE model of an idealised DC to assess the key features of such an FE model which are needed for an accurate simulation of DC. The FE models are compared with an experimental model using gelatin hydrogel, which has similar poro-viscoelastic material property characteristics to brain tissue. Strain on a central plane of the FE model and the front face of the experimental model, deformation and load relaxation curves are compared between experiment and FE. Results show good agreement between the FE and experimental models, providing confidence in applying the proposed FE modelling approach to DC. Such a model should use material properties appropriate for brain tissue and include a more realistic whole head geometry.

  6. A new variable interval schedule with constant hazard rate and finite time range.

    Science.gov (United States)

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  7. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  8. Finite element modeling of nanotube structures linear and non-linear models

    CERN Document Server

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  9. Progress in Developing Finite Element Models Replicating Flexural Graphite Testing

    International Nuclear Information System (INIS)

    Bratton, Robert

    2010-01-01

    This report documents the status of flexural strength evaluations from current ASTM procedures and of developing finite element models predicting the probability of failure. This work is covered under QLD REC-00030. Flexural testing procedures of the American Society for Testing and Materials (ASTM) assume a linear elastic material that has the same moduli for tension and compression. Contrary to this assumption, graphite is known to have different moduli for tension and compression. A finite element model was developed and demonstrated that accounts for the difference in moduli tension and compression. Brittle materials such as graphite exhibit significant scatter in tensile strength, so probabilistic design approaches must be used when designing components fabricated from brittle materials. ASTM procedures predicting probability of failure in ceramics were compared to methods from the current version of the ASME graphite core components rules predicting probability of failure. Using the ASTM procedures yields failure curves at lower applied forces than the ASME rules. A journal paper was published in the Journal of Nuclear Engineering and Design exploring the statistical models of fracture in graphite.

  10. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  11. A study of the angular momentum dependence of the phase shift for finite range and Coulomb potentials

    International Nuclear Information System (INIS)

    Valluri, S.R.; Romo, W.J.

    1989-01-01

    The dependence of the phase shift δ l (k) on the angular momentum l is investigated. An analytic expression for the derivative of the phase shift with respect to angular momentum is derived for a class of potentials that includes complex and real potentials. The potentials behave like the finite range potential for small r and like a Coulomb potential for large r. Specific examples like the square well, the pure point charge Coulomb and a combination of a square well and the Coulomb potential are analytically treated. Possible applications are briefly indicated. (orig.)

  12. An enhanced finite volume method to model 2D linear elastic structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2014-04-01

    Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...

  13. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  14. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  15. A finite oscillator model related to sl(2|1)

    International Nuclear Information System (INIS)

    Jafarov, E I; Van der Jeugt, J

    2012-01-01

    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0 j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±√k, where k = 0, 1, …, j. We construct the discrete position wavefunctions, which are given in terms of certain Krawtchouk polynomials. These wavefunctions have appealing properties, as can already be seen from their plots. The model is sufficiently simple in the sense that the corresponding discrete Fourier transform (relating position wavefunctions to momentum wavefunctions) can be constructed explicitly. (paper)

  16. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  17. Finite-volume spectra of the Lee-Yang model

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Deeb, Omar el [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Physics Department, Faculty of Science, Beirut Arab University (BAU),Beirut (Lebanon); Pearce, Paul A. [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia)

    2015-04-15

    We consider the non-unitary Lee-Yang minimal model M(2,5) in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels (r,s)=(1,1),(1,2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ{sub 1,3} integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ{sub 1,3} integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A{sub 4} RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of (m,n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  18. Development of a finite element model for ultrasonic NDT phenomena

    International Nuclear Information System (INIS)

    Lord, W.

    1988-01-01

    Ultrasonic NDT techniques are used extensively in the nuclear industry for the detection and characterization of defects in critical structural components such as pressure vessels and piping. The feasibility of applying finite element analysis methods to the problem of modeling ultrasound/defect interactions has been shown. Considerable work remains to be done before a full three-dimensional model is available for the prediction of realistic ultrasonic transducer signals from sound wave interaction with arbitrarily shaped defects in highly attenuative and anisotropic materials. However, a two-dimensional code has been developed that is capable of predicting finite aperture ultrasonic transducer signals associated with wave propagations in isotropic materials and that shows good qualitative agreement with corresponding experimental observations. This 2-D code has now been extended to include anisotropic materials such as centrifugally cast stainless steel (CCSS), a necessary step in the development of the full 3-D code. Results are given showing the capability of the 2-D code to predict the anomalous wave behavior normally associated with ultrasonic wave propagation in anisotropic materials. In addition, a new signal processing technique is discussed, based on the Wigner transformation, that shows promise for application to centrifugally cast stainless steel NDT problems

  19. Finite element modeling of electrically rectified piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    Wu, P H; Shu, Y C

    2015-01-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique. (paper)

  20. Finite element modeling of electrically rectified piezoelectric energy harvesters

    Science.gov (United States)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  1. Finite element modelling and analysis of composites toecaps

    International Nuclear Information System (INIS)

    Yang, C C; Duhovic, M; Lin, R J T; Bhattacharyya, D

    2009-01-01

    Composite toe-caps have attracted considerable attention due to their advantageous properties over traditional metallic toe-caps. However, the anisotropic properties of composite materials also make the toe-cap performance more complex to analyse. This project aims at developing a Finite Element (FE) model for composite toe-caps with the aid of compression testing data. The geometry of the toe-cap was first scanned and imported into an FEA software package to create a workable FE model. The method was then validated by comparing the FE model with experimental results of steel toe-caps. Manufacturing, modelling and testing of custom-made composite toe-cap samples were then carried out. Modelling outputs of composite toe-caps were compared with compression test data for validation. The stress distributions and deformations of the toe-caps were also analysed. Modelling of the steel and composite toe-caps was realized using LS-DYNA Solver and PrePost (registered) . All FE analyses were modelled with reference to European Standards. The developed FE models can in the future be used to model toe-caps with various materials to determine the effects of fibre orientation relating to structural strength, and to achieve structural optimisation.

  2. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  3. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  4. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k{approx}20A{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-07-21

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  5. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k∼20A-1

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  6. Heterogeneous modelling and finite element analysis of the femur

    Directory of Open Access Journals (Sweden)

    Zhang Binkai

    2017-01-01

    Full Text Available As the largest and longest bone in the human body, the femur has important research value and application prospects. This paper introduces a fast reconstruction method with Mimics and ANSYS software to realize the heterogeneous modelling of the femur according to Hu distribution of the CT series, and simulates it in various situations by finite element analysis to study the mechanical characteristics of the femur. The femoral heterogeneous model shows the distribution of bone mineral density and material properties, which can be used to assess the diagnosis and treatment of bone diseases. The stress concentration position of the femur under different conditions can be calculated by the simulation, which can provide reference for the design and material selection of prosthesis.

  7. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  8. Lower extremity finite element model for crash simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, D.A.; Perfect, S.A.

    1996-03-01

    A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.

  9. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  10. Finite Element Modeling of the Posterior Eye in Microgravity

    Science.gov (United States)

    Feola, Andrew; Raykin, Julia; Mulugeta, Lealem; Gleason, Rudolph; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian; Ethier, C. Ross

    2015-01-01

    Microgravity experienced during spaceflight affects astronauts in various ways, including weakened muscles and loss of bone density. Recently, visual impairment and intracranial pressure (VIIP) syndrome has become a major concern for space missions lasting longer than 30 days. Astronauts suffering from VIIP syndrome have changes in ocular anatomical and visual impairment that persist after returning to earth. It is hypothesized that a cephalad fluid shift in microgravity may increase the intracranial pressure (ICP), which leads to an altered biomechanical environment of the posterior globe and optic nerve sheath (ONS).Currently, there is a lack of knowledge of how elevated ICP may lead to vision impairment and connective tissue changes in VIIP. Our goal was to develop a finite element model to simulate the acute effects of elevated ICP on the posterior eye and optic nerve sheath. We used a finite element (FE) analysis approach to understand the response of the lamina cribrosa and optic nerve to the elevations in ICP thought to occur in microgravity and to identify which tissue components have the greatest impact on strain experienced by optic nerve head tissues.

  11. Short-ranged memory model with preferential growth

    Science.gov (United States)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Almeira, Nahuel; Billoni, Orlando V.

    2018-02-01

    In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.

  12. Finite element modeling of piezoelectric elements with complex electrode configuration

    International Nuclear Information System (INIS)

    Paradies, R; Schläpfer, B

    2009-01-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  13. Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model.

    Science.gov (United States)

    Watson, Nicole A; Duchman, Kyle R; Grosland, Nicole M; Bollier, Matthew J

    2017-01-01

    This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it

  14. Evaluation of radiation damping using 3-D finite element models

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1983-01-01

    The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)

  15. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Aristovich, K Y; Khan, S H

    2010-01-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  16. Finite element modelling of cornea mechanics: a review

    Directory of Open Access Journals (Sweden)

    Talisa Mohammad Nejad

    2014-01-01

    Full Text Available The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.

  17. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  18. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  19. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study.

    Science.gov (United States)

    Tîrnăucă, Cristina; Montaña, José L; Ontañón, Santiago; González, Avelino J; Pardo, Luis M

    2016-06-24

    Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent's actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.

  20. Contribution to finite element modelling of airfoil aeroelastic instabilities

    Directory of Open Access Journals (Sweden)

    Horáček J.

    2007-10-01

    Full Text Available Nonlinear equations of motion for a flexibly supported rigid airfoil with additional degree of freedom for controlling of the profile motion by a trailing edge flap are derived for large vibration amplitudes. Preliminary results for numerical simulation of flow-induced airfoil vibrations in a laminar incompressible flow are presented for the NACA profile 0012 with three-degrees of freedom (vertical translation, rotation around the elastic axis and rotation of the flap. The developed numerical solution of the Navier – Stokes equations and the Arbitrary Eulerian-Lagrangian approach enable to consider the moving grid for the finite element modelling of the fluid flow around the oscillating airfoil. A sequence of numerical simulation examples is presented for Reynolds numbers up to about Re~10^5, when the system loses the aeroelastic stability, and when the large displacements of the profile and a post-critical behaviour of the system take place.

  1. Customized Finite Element Modelling of the Human Cornea.

    Directory of Open Access Journals (Sweden)

    Irene Simonini

    Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.

  2. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  3. Integral projection models for finite populations in a stochastic environment.

    Science.gov (United States)

    Vindenes, Yngvild; Engen, Steinar; Saether, Bernt-Erik

    2011-05-01

    Continuous types of population structure occur when continuous variables such as body size or habitat quality affect the vital parameters of individuals. These structures can give rise to complex population dynamics and interact with environmental conditions. Here we present a model for continuously structured populations with finite size, including both demographic and environmental stochasticity in the dynamics. Using recent methods developed for discrete age-structured models we derive the demographic and environmental variance of the population growth as functions of a continuous state variable. These two parameters, together with the expected population growth rate, are used to define a one-dimensional diffusion approximation of the population dynamics. Thus, a substantial reduction in complexity is achieved as the dynamics of the complex structured model can be described by only three population parameters. We provide methods for numerical calculation of the model parameters and demonstrate the accuracy of the diffusion approximation by computer simulation of specific examples. The general modeling framework makes it possible to analyze and predict future dynamics and extinction risk of populations with various types of structure, and to explore consequences of changes in demography caused by, e.g., climate change or different management decisions. Our results are especially relevant for small populations that are often of conservation concern.

  4. Finite element modelling of elastic intraplate stresses due to ...

    Indian Academy of Sciences (India)

    Among a range of material parameters analysed, the model with a mechan- ically strong lower ..... curves marked by solid circles and diamonds cor- respond to two values of .... the Indian continental lithosphere: Role of diffusion creep;. Proc.

  5. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  6. Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models

    International Nuclear Information System (INIS)

    Quak, W.; Boogaard, A. H. van den

    2011-01-01

    A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.

  7. Energy dependence of the zero-range DWBA normalization of the /sup 58/Ni(/sup 3/He,. cap alpha. )/sup 57/Ni reaction. [15 to 205 GeV, finite-range and nonlocality corrections

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J R; Zimmerman, W R; Kraushaar, J J [Colorado Univ., Boulder (USA). Dept. of Physics and Astrophysics

    1977-01-04

    Strong transitions in the /sup 58/Ni(/sup 3/He,..cap alpha..)/sup 57/Ni reaction were analyzed using both the zero-range and exact finite-range DWBA. Data considered covered a range of bombarding energies from 15 to 205 MeV. The zero-range DWBA described all data well when finite-range and non-locality corrections were included in the local energy approximation. Comparison of zero-range and exact finite-range calculations showed the local energy approximation correction to be very accurate over the entire energy region. Empirically determined D/sub 0/ values showed no energy dependence. A theoretical D/sub 0/ value calculated using an ..cap alpha.. wave function which reproduced the measured ..cap alpha.. rms charge radius and the elastic electron scattering form factor agreed well the empirical values. Comparison was made between these values and D/sub 0/ values quoted previously in the literature.

  8. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  9. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  10. An outgoing energy flux boundary condition for finite difference ICRP antenna models

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.

    1992-11-01

    For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods

  11. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  12. Finite element modeling of superelastic nickel-titanium orthodontic wires.

    Science.gov (United States)

    Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled

    2014-11-28

    Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.

  13. Modeling of NiTiHf using finite difference method

    Science.gov (United States)

    Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad

    2018-03-01

    NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.

  14. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  15. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  16. Material Models for the Human Torso Finite Element Model

    Science.gov (United States)

    2018-04-04

    44-mm standard for body armors required ballistic tests of armor backed by Roma Plastilina clay . The scope has expanded to include hard armors as...conditions were not fully considered, and that the connections between the clay -backed deflections and goat lethality were preliminary results... viscosity component needed to represent organic tissue in the Mat77 material model. Material characterizations from the published literature were drawn

  17. Non linear permanent magnets modelling with the finite element method

    International Nuclear Information System (INIS)

    Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.

    1989-01-01

    In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter

  18. 3D finite element modelling of sheet metal blanking process

    Science.gov (United States)

    Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel

    2018-05-01

    The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.

  19. FEMA: a Finite Element Model of Material Transport through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above

  20. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  1. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  2. Finite-temperature models of Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Proukakis, Nick P; Jackson, Brian [School of Mathematics and Statistics, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)], E-mail: Nikolaos.Proukakis@ncl.ac.uk

    2008-10-28

    The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models. (phd tutorial)

  3. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  4. Advances in 3D electromagnetic finite element modeling

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed

  5. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced

  6. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  7. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  8. Finite element modeling of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Tinic, S.; Orr, R.

    2003-01-01

    The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)

  9. Finite-element method modeling of hyper-frequency structures

    International Nuclear Information System (INIS)

    Zhang, Min

    1990-01-01

    The modelization of microwave propagation problems, including Eigen-value problem and scattering problem, is accomplished by the finite element method with vector functional and scalar functional. For Eigen-value problem, propagation modes in waveguides and resonant modes in cavities can be calculated in a arbitrarily-shaped structure with inhomogeneous material. Several microwave structures are resolved in order to verify the program. One drawback associated with the vector functional is the appearance of spurious or non-physical solutions. A penalty function method has been introduced to reduce spurious' solutions. The adaptive charge method is originally proposed in this thesis to resolve waveguide scattering problem. This method, similar to VSWR measuring technique, is more efficient to obtain the reflection coefficient than the matrix method. Two waveguide discontinuity structures are calculated by the two methods and their results are compared. The adaptive charge method is also applied to a microwave plasma excitor. It allows us to understand the role of different physical parameters of excitor in the coupling of microwave energy to plasma mode and the mode without plasma. (author) [fr

  10. Finite element model to study calcium distribution in oocytes ...

    African Journals Online (AJOL)

    Parvaiz Ahmad Naik

    2015-03-20

    Mar 20, 2015 ... Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051 ... finite element method has been employed to obtain the solution. ..... Nelson MT, Cheng H, Rubart M. Relaxation of arterial smooth.

  11. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  12. Investigation of faulted tunnel models by combined photoelasticity and finite element analysis

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Huang, Yuping

    1994-01-01

    Models of square and circular tunnels with short faults cutting through their surfaces are investigated by photoelasticity. These models, when duplicated by finite element analysis can predict the stress states of square or circular faulted tunnels adequately. Finite element analysis, using gap elements, may be used to investigate full size faulted tunnel system

  13. Low-frequency scaling applied to stochastic finite-fault modeling

    Science.gov (United States)

    Crane, Stephen; Motazedian, Dariush

    2014-01-01

    Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.

  14. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  15. Radar meteors range distribution model. I. Theory

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 83-106 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. One-dimensional "atom" with zero-range potential perturbed by finite sequence of zero-duration laser pulses

    Science.gov (United States)

    Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.

    2018-04-01

    The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.

  17. Finite element modeling of multilayered structures of fish scales.

    Science.gov (United States)

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. Published by Elsevier Ltd.

  18. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  19. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    KAUST Repository

    Pathmanathan, P

    2009-05-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  20. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    KAUST Repository

    Pathmanathan, P; Gavaghan, D; Whiteley, J

    2009-01-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  1. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  2. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  3. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak; Alfano, Marco; Lubineau, Gilles; Duval, Sé bastien; Sherik, Abdelmounam M.

    2012-01-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure

  4. Underlying finite state machine for the social engineering attack detection model

    CSIR Research Space (South Africa)

    Mouton, Francois

    2017-08-01

    Full Text Available one to have a clearer overview of the mental processing performed within the model. While the current model provides a general procedural template for implementing detection mechanisms for social engineering attacks, the finite state machine provides a...

  5. Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models

    KAUST Repository

    Woessner, J.; Jonsson, Sigurjon; Sudhaus, H.; Baumann, C.

    2012-01-01

    Static stress transfer is one physical mechanism to explain triggered seismicity. Coseismic stress-change calculations strongly depend on the parameterization of the causative finite-fault source model. These models are uncertain due

  6. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  7. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...

  8. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  9. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  10. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  11. Model-based estimation of finite population total in stratified sampling

    African Journals Online (AJOL)

    The work presented in this paper concerns the estimation of finite population total under model – based framework. Nonparametric regression approach as a method of estimating finite population total is explored. The asymptotic properties of the estimators based on nonparametric regression are also developed under ...

  12. Market segment derivation and profiling via a finite mixture model framework

    NARCIS (Netherlands)

    Wedel, M; Desarbo, WS

    The Marketing literature has shown how difficult it is to profile market segments derived with finite mixture models. especially using traditional descriptor variables (e.g., demographics). Such profiling is critical for the proper implementation of segmentation strategy. we propose a new finite

  13. Exactly solvable models: the way towards a rigorous treatment of phase transitions in finite systems

    International Nuclear Information System (INIS)

    Bugaev, K.A.

    2007-01-01

    The exact analytical solutions of a variety of statistical models recently obtained for finite systems are thoroughly discussed. Among them are a constrained version of the statistical multifragmentation model, the Bag Model of Gases and the Hills and Dales Model of surface partition. The finite volume analytical solutions of these models were obtained by a novel powerful mathematical method - the Laplace-Fourier transform. The Laplace-Fourier transform allows one to study the nuclear matter equation of state, the equation of state of hadronic and quark-gluon plasma and the surface entropy of large clusters on the same footing. A complete analysis of the isobaric partition singularities of these models is done for finite systems. The developed formalism allows one to exactly define the finite volume analogs of gaseous, liquid and mixed phases of these models from the first principles of statistical mechanics [ru

  14. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  15. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    Science.gov (United States)

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  16. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    Science.gov (United States)

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  17. Can finite element models detect clinically inferior cemented hip implants?

    NARCIS (Netherlands)

    Stolk, J.; Maher, S.A.; Verdonschot, N.J.J.; Prendergast, P.J.; Huiskes, R.

    2003-01-01

    Rigorous preclinical testing of cemented hip prostheses against the damage accumulation failure scenario will reduce the incidence of aseptic loosening. For that purpose, a finite element simulation is proposed that predicts damage accumulation in the cement mantle and prosthetic migration. If the

  18. Modelling Convergence of Finite Element Analysis of Cantilever Beam

    African Journals Online (AJOL)

    Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...

  19. A cohesive finite element formulation for modelling fracture and ...

    Indian Academy of Sciences (India)

    cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.

  20. Refinement of finite element model of a power plant by Ambient Vibration Test using system identification

    International Nuclear Information System (INIS)

    Murnal, Pranesh; Kotalwar, Sandip; Ramarao, A.; Sinha, S.K.; Singh, U.P.

    2008-01-01

    Finite Element Modeling is one of the efficient analytical tools for analysis of complicated structures subjected to variety of loads. However the reliability of the analyses is always questionable due to idealizations and assumptions made in the design. The model can be more realistic if it is refined based on experimental support. This paper presents refinement of finite-element model of Koyna Dam-foot Power House (KDPH) building, which is structurally complicated and asymmetrical. The dynamic properties of the building have been identified experimentally through Ambient Vibration Tests (AVT). The building has also been elaborately modeled analytically. The finite-element model is further refined so as to minimize the differences between analytical and the measured natural frequency of the building. The final refined finite-element model of KDPH building is able to produce natural frequency in good agreement with the measured natural frequency of the building. (author)

  1. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  2. Finite Time Control for Fractional Order Nonlinear Hydroturbine Governing System via Frequency Distributed Model

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-01-01

    Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.

  3. Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods

    Directory of Open Access Journals (Sweden)

    Nikoleta Mikušová

    2017-12-01

    Full Text Available The finite element methods are used in many disciplines by the development of products, typically in mechanical engineering (for example in automotive industry, biomechanics, etc.. Some modern programs of the finite element's methods have specific tools (electromagnetic, fluid and structural simulations. The finite elements methods allow detailed presentation of structures by bending or torsion, complete design, testing and optimization before the prototype production. The aims of this paper were to the model of conveyor belt passage by driving drum. The model was created by the program Abaqus CAE. The created model presented data about forces, pressures, and deformation of the belt conveyor.

  4. A short summary on finite element modelling of fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol(United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-12-15

    This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.

  5. Exact finite range DWBA results for the /sup 12/C(p,d)/sup 11/C reaction at 700 MeV. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-08

    The differential cross sections for the /sup 12/C(p,d)/sup 11/C(g.s.) reaction at 700 MeV have been calculated in a full finite range DWBA approach. The absolute cross sections agree with the data and are dominated by contributions arising from the deuteron D-state.

  6. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  7. Implementation and applications of a finite-element model for the contact between rough surfaces

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Klit, Peder

    2013-01-01

    Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more ...... in the examples. Among the presented results one can find the distribution of the contact pressure at the interface and diagrams of the real area of contact as a function of the nominal contact pressure. © 2013 Elsevier B.V.......Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more...... straightforward to understand and easier to extend to more complex cases like contacting bodies that demonstrate elasto-plastic behavior. This paper presents a finite-element model for studying the frictionless contact between nominally flat rough surfaces. Apart from a description of the model implementation...

  8. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  9. Efficient Finite Element Models for Calculation of the No-load losses of the Transformer

    Directory of Open Access Journals (Sweden)

    Kamran Dawood

    2017-10-01

    Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.

  10. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  11. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. A finite, rational model for the EPR-Bohm experiment

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    We construct 3 + 1 space-time and particles from bit-strings of finite length. At an early stage in the construction, we find that we can identify single particle Dirac wave functions. Considering a space-like trajectory for a single particle we find the usual spin correlations which violate Bell's inequalities. The only ''non-local'' parameter is our discrete version of the global time ordering of special relativity. 23 refs

  13. Framework for non-coherent interface models at finite displacement jumps and finite strains

    Science.gov (United States)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  14. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    International Nuclear Information System (INIS)

    Tan, Sirui; Huang, Lianjie

    2014-01-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion

  15. Implementation of a Unified Constitutive Model into the ABAQUS Finite Element Package

    National Research Council Canada - National Science Library

    Wescott, R

    1999-01-01

    Unified constitutive models have previously been developed at AMRL and implemented into the PAFEC and ABAQUS Finite Element packages to predict the stress-strain response of structures that undergo...

  16. A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling

    Science.gov (United States)

    Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit

    2014-09-01

    When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.

  17. Finite element models of earthquake cycles in mature strike-slip fault zones

    Science.gov (United States)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  18. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  19. Finite-size effects in the three-state quantum asymmetric clock model

    International Nuclear Information System (INIS)

    Gehlen, G. v.; Rittenberg, V.

    1983-04-01

    The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)

  20. On the representability of complete genomes by multiple competing finite-context (Markov models.

    Directory of Open Access Journals (Sweden)

    Armando J Pinho

    Full Text Available A finite-context (Markov model of order k yields the probability distribution of the next symbol in a sequence of symbols, given the recent past up to depth k. Markov modeling has long been applied to DNA sequences, for example to find gene-coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i multiple competing Markov models of different orders (ii careful programming techniques that allow orders as large as sixteen (iii adequate inverted repeat handling (iv probability estimates suited to the wide range of context depths used. To measure how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence, is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical models. This is surprising, because Markov models are local (short-range, contrasting with the statistical models underlying other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local character.

  1. A Kriging Model Based Finite Element Model Updating Method for Damage Detection

    Directory of Open Access Journals (Sweden)

    Xiuming Yang

    2017-10-01

    Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.

  2. A finite Zitterbewegung model for relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    Starting from steps of length h/mc and time intervals h/mc 2 , which imply a quasi-local Zitterbewegung with velocity steps ±c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig

  3. A finite Zitterbewegung model for relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  4. Estimating Young’s Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    Ibrahim Dauda Muhammad

    2015-01-01

    Full Text Available The single-walled zirconia nanotube is structurally modeled and its Young’s modulus is valued by using the finite element approach. The nanotube was assumed to be a frame-like structure with bonds between atoms regarded as beam elements. The properties of the beam required for input into the finite element analysis were computed by connecting energy equivalence between molecular and continuum mechanics. Simulation was conducted by applying axial tensile strain on one end of the nanotube while the other end was fixed and the corresponding reaction force recorded to compute Young’s modulus. It was found out that Young’s modulus of zirconia nanotubes is significantly affected by some geometrical parameters such as chirality, diameter, thickness, and length. The obtained values of Young’s modulus for a certain range of diameters are in agreement with what was obtained in the few experiments that have been conducted so far. This study was conducted on the cubic phase of zirconia having armchair and zigzag configuration. The optimal diameter and thickness were obtained, which will assist in designing and fabricating bulk nanostructured components containing zirconia nanotubes for various applications.

  5. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  6. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Science.gov (United States)

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  7. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  8. Finite element model updating of natural fibre reinforced composite structure in structural dynamics

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.

  9. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  10. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    Science.gov (United States)

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  11. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  12. A finite element modeling method for predicting long term corrosion rates

    International Nuclear Information System (INIS)

    Fu, J.W.; Chan, S.

    1984-01-01

    For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation

  13. Determination of acoustic vibration in watermelon by finite element modeling

    Science.gov (United States)

    Nourain, Jamal; Ying, Yibin B.; Wang, Jianping; Rao, Xiuqin

    2004-11-01

    The analysis of the vibration responses of a fruit is suggested to measure firmness non-destructively. A wooden ball excited the fruits and the response signals were captured using an accelerometer sensor. The method has been well studied and understood on ellipsoidal shaped fruit (watermelon). In this work, using the finite element simulations, the applicability of the method on watermelon was investigated. The firmness index is dependent on the mass, density, and natural frequency of the lowest spherical modes (under free boundary conditions). This developed index extends the firmness estimation for fruits or vegetables from a spherical to an ellipsoidal shape. The mode of Finite element analysis (FEA) of watermelon was generated based on measured geometry, and it can be served as a theoretical reference for predicting the modal characteristics as a function of design parameters such as material, geometrical, and physical properties. It was found that there were four types of mode shapes. The 1st one was first-type longitudinal mode, the 2nd one was the second-type longitudinal mode, the 3rd one was breathing mode or pure compression mode, and the fourth was flexural or torsional mode shape. As suggested in many references, the First-type spherical vibration mode or oblate-Prolate for watermelon is the lowest bending modes, it's most likely related to fruit firmness. Comparisons of finite element and experimental modal parameters show that both results were agreed in mode shape as well as natural frequencies. In order to measure the vibration signal of the mode, excitation and sensors should be placed on the watermelon surface far away from the nodal lines. The excitation and the response sensors should be in accordance with vibration directions. The correlations between the natural frequency and firmness was 0.856, natural frequency and Young's modulus was 0.800, and the natural frequency and stiffness factor (SF) was 0.862. The stiffness factor (SF) is adequate

  14. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-03

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  15. Heat transfer model and finite element formulation for simulation of selective laser melting

    Science.gov (United States)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  16. A finite element model of the foot and ankle for automotive impact applications.

    Science.gov (United States)

    Shin, Jaeho; Yue, Neng; Untaroiu, Costin D

    2012-12-01

    A finite element (FE) model of the foot and leg was developed to improve understanding of injury mechanisms of the ankle and subtalar joints during vehicle collisions and to aid in the design of injury countermeasures. The FE model was developed based on the reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male and a commercial anatomical database. While the forefoot bones were defined as rigid bodies connected by ligament models, the surrounding bones of the ankle and subtalar joints and the leg bones were modeled as deformable structures. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The whole foot and leg model was validated in different loading conditions including forefoot impact, axial rotation, dorsiflexion, and combined loadings. Overall results obtained in the model validation indicated improved biofidelity relative to previous FE models. The developed model was used to investigate the injury tolerance of the ankle joint under brake pedal loading for internally and externally rotated feet. Ligament failures were predicted as the main source of injury in this loading condition. A 12% variation of failure moment was observed in the range of axial foot rotations (±15°). The most vulnerable position was the internally rotated (15°) posture among three different foot positions. Furthermore, the present foot and ankle model will be coupled together with other body region FE models into the state-of-art human FE model to be used in the field of automotive safety.

  17. Development and validation of a 10-year-old child ligamentous cervical spine finite element model.

    Science.gov (United States)

    Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H

    2013-12-01

    Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.

  18. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  19. Modeling bistable behaviors in morphing structures through finite element simulations.

    Science.gov (United States)

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  20. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  1. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    Science.gov (United States)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  2. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  3. PROBABILISTIC MODEL OF LASER RANGE FINDER FOR THREE DIMENSIONAL GRID CELL IN CLOSE RANGE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Hafiz b Iman

    2016-04-01

    Full Text Available The probabilistic model of a laser scanner presents an important aspect for simultaneous localization and map-building (SLAM. However, the characteristic of the beam of the laser range finder under extreme incident angles approaching 900 has not been thoroughly investigated. This research paper reports the characteristic of the density of the range value coming from a laser range finder under close range circumstances where the laser is imposed with a high incident angle. The laser was placed in a controlled environment consisting of walls at a close range and 1000 iteration of scans was collected. The assumption of normal density of the metrical data collapses when the beam traverses across sharp edges in this environment. The data collected also shows multimodal density at instances where the range has discontinuity. The standard deviation of the laser range finder is reported to average at 10.54 mm, with 0.96 of accuracy. This significance suggests that under extreme incident angles, a laser range finder reading behaves differently compared to normal distribution. The use of this information is crucial for SLAM activity in enclosed environments such as inside piping grid or other cluttered environments.KEYWORDS:   Hokuyo UTM-30LX; kernel density estimation; probabilistic model  

  4. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun; Santamarina, Carlos

    2016-01-01

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low

  5. Model tests and elasto-plastic finite element analysis on multicavity type PCRV

    International Nuclear Information System (INIS)

    Nojiri, Y.; Yamazaki, M.; Kotani, K.; Matsuzaki, Y.

    1978-01-01

    Multicavity type PCRV models were tested to investigate elastic stress distributions, cracking and failure mode of the models, and to determine the adequacy and relative accuracy of finite element structural analyses. The behavior of the models under pressure was investigated, and it was found that the predictions of the analyses showed a good agreement with the test results

  6. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling.

    Science.gov (United States)

    Knoops, Paul G M; Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W F; Jeelani, Owase; Dunaway, David J; Schievano, Silvia

    2018-01-01

    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face.

  7. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  8. Neotectonics of Asia: Thin-shell finite-element models with faults

    Science.gov (United States)

    Kong, Xianghong; Bird, Peter

    1994-01-01

    As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the

  9. Theoretical predictions for α -decay chains of 118 290 -298Og isotopes using a finite-range nucleon-nucleon interaction

    Science.gov (United States)

    Ismail, M.; Adel, A.

    2018-04-01

    The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.

  10. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  11. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    Science.gov (United States)

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  12. Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality

    CERN Document Server

    Saldi, Naci; Yüksel, Serdar

    2018-01-01

    In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...

  13. Soft tissue deformation using a Hierarchical Finite Element Model.

    Science.gov (United States)

    Faraci, Alessandro; Bello, Fernando; Darzi, Ara

    2004-01-01

    Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.

  14. A review on application of finite element modelling in bone biomechanics

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Parashar

    2016-09-01

    Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.

  15. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    Science.gov (United States)

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  17. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  18. Finite element modeling of a 3D coupled foot-boot model.

    Science.gov (United States)

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    Science.gov (United States)

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  20. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

    Science.gov (United States)

    Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.

    2018-05-01

    The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.

  1. A Range-Based Multivariate Model for Exchange Rate Volatility

    OpenAIRE

    Tims, Ben; Mahieu, Ronald

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are interpreted as the underlying currency specific components. Due to the normality of logarithmic volatilities the model can be estimated conveniently with standard Kalman filter techniques. Our resu...

  2. Finite frequency current noise in the Holstein model

    Science.gov (United States)

    Stadler, P.; Rastelli, G.; Belzig, W.

    2018-05-01

    We investigate the effects of local vibrational excitations in the nonsymmetrized current noise S (ω ) of a nanojunction. For this purpose, we analyze a simple model—the Holstein model—in which the junction is described by a single electronic level that is coupled to two metallic leads and to a single vibrational mode. Using the Keldysh Green's function technique, we calculate the nonsymmetrized current noise to the leading order in the charge-vibration interaction. For the noise associated to the latter, we identify distinct terms corresponding to the mean-field noise and the vertex correction. The mean-field result can be further divided into an elastic correction to the noise and in an inelastic correction, the second one being related to energy exchange with the vibration. To illustrate the general behavior of the noise induced by the charge-vibration interaction, we consider two limit cases. In the first case, we assume a strong coupling of the dot to the leads with an energy-independent transmission, whereas in the second case we assume a weak tunneling coupling between the dot and the leads such that the transport occurs through a sharp resonant level. We find that the noise associated to the vibration-charge interaction shows a complex pattern as a function of the frequency ω and of the transmission function or of the dot's energy level. Several transitions from enhancement to suppression of the noise occurs in different regions, which are determined, in particular, by the vibrational frequency. Remarkably, in the regime of an energy-independent transmission, the zero-order elastic noise vanishes at perfect transmission and at positive frequency, whereas the noise related to the charge-vibration interaction remains finite, enabling the analysis of the pure vibrational-induced current noise.

  3. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  4. Modelling time course gene expression data with finite mixtures of linear additive models.

    Science.gov (United States)

    Grün, Bettina; Scharl, Theresa; Leisch, Friedrich

    2012-01-15

    A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).

  5. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  6. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    Science.gov (United States)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  7. Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research

    Science.gov (United States)

    de Jong, Martijn G.; Steenkamp, Jan-Benedict E. M.

    2010-01-01

    We present a class of finite mixture multilevel multidimensional ordinal IRT models for large scale cross-cultural research. Our model is proposed for confirmatory research settings. Our prior for item parameters is a mixture distribution to accommodate situations where different groups of countries have different measurement operations, while…

  8. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  9. Finite element based bladder modeling for image-guided radiotherapy of bladder cancer

    NARCIS (Netherlands)

    Chai, Xiangfei; van Herk, Marcel; van de Kamer, Jeroen B.; Hulshof, Maarten C. C. M.; Remeijer, Peter; Lotz, Heidi T.; Bel, Arjan

    2011-01-01

    Purpose: A biomechanical model was constructed to give insight into pelvic organ motion as a result of bladder filling changes. Methods: The authors used finite element (FE) modeling to simulate bladder wall deformation caused by urine inflow. For ten volunteers, a series of MRI scans of the pelvic

  10. Universal model of finite Reynolds number turbulent flow in channels and pipes

    NARCIS (Netherlands)

    L'vov, V.S.; Procaccia, I.; Rudenko, O.

    2008-01-01

    In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order

  11. Development and applications of two finite element groundwater flow and contaminant transport models: FEWA and FEMA

    International Nuclear Information System (INIS)

    Yeh, G.T.; Wong, K.V.; Craig, P.M.; Davis, E.C.

    1985-01-01

    This paper presents the construction, verification, and application of two groundwater flow and contaminant transport models: A Finite Element Model of Water Flow through Aquifers (FEWA) and A Finite Element Model of Material Transport through Aquifers (FEMA). The construction is based on the finite element approximation of partial differential equations of groundwater flow (FEWA) and of solute movement (FEMA). The particular features of FEWA and FEMA are their versatility and flexibility for dealing with nearly all vertically integrated two-dimensional problems. The models were verified against both analytical solutions and widely used US Geological Survey finite difference approximations. They were then applied for calibration and validation, using data obtained in experiments at the Engineering Test Facility at Oak Ridge National Laboratory. Results indicated that the models are valid for this specific site. To demonstrate the versatility anf flexibility of the models, they were applied to two hypothetical, but realistic, complex problems and three field sites across the United States. In these applications the models yielded good agreement with the field data for all three sites. Finally, the predictive capabilities of the models were demonstrated using data obtained at the Hialeah Preston site in Florida. This case illustrates the capability of FEWA and FEMA as predictive tools and their usefulness in the management of groundwater flow and contaminant transport. 25 refs

  12. Application of the Single Hardening Model in the Finite Element Program ABAQUS

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b) is implemented as a user defined material module, UMAT, in the commercial finite element program, ABAQUS. The advantages of the Single Hardening Model Iie in its ability to predict elastic and plastic displacements...

  13. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  14. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  15. A finite element model for the stress and flexibility analysis of curved pipes

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.

    1987-03-01

    We present a finite element model for the analysis of pipe bends with flanged ends or flanged tangents. Comments are made on the consideration of the internal pressure load. Flexibility and stress instensification factores obtained with the present model are compared with others available. (Author) [pt

  16. Differential expression among tissues in morbidly obese individuals using a finite mixture model under BLUP approach

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Trabzuni, Daniah; Bonder, Marc Jan

    effects of the interactions between tissues and probes using BLUP (Best Linear Unbiased Prediction) linear models correcting for gender, which were subsequently used in a finite mixture model to detect DE genes in each tissue. This approach evades the multiple-testing problem and is able to detect...

  17. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  18. Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction

    Directory of Open Access Journals (Sweden)

    Djillali Amar Bouzid

    2018-04-01

    Full Text Available A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines (OWTs chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KR and cross-coupling stiffness KLR, of which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements (displacements and rotations, the values of KL, KR and KLR were obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. Keywords: Nonlinear finite element analysis, Vertical slices model, Monopiles under horizontal loading, Natural frequency, Monopile head stiffness, Offshore wind turbines (OWTs

  19. 2d Model Field Theories at Finite Temperature and Density

    OpenAIRE

    Schoen, Verena; Thies, Michael

    2000-01-01

    In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...

  20. A finite element model for analyzing horizontal well BHA behavior

    Energy Technology Data Exchange (ETDEWEB)

    Akgun, F. [Petroleum Engineering, The Petroleum Institute, P.O. Box 17555, Al-Ain (United Arab Emirates)

    2004-04-01

    appropriate BHA can be designed if bit side force and bit tilt are determined accurately. Finite element method (FEM) used in this study determines the bit side force and bit tilt simultaneously. The FEM is superior to existing analytical techniques because it can accommodate many more independent parameters which otherwise cannot be taken into account. As a matter of fact, it is believed that oversimplification of actual physical phenomena with unacceptable assumptions is the major source of error with existing BHA designs. This paper presents an FEM technique in assessing the bit tilt and side forces and compares the results with the existing techniques.

  1. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS

    Directory of Open Access Journals (Sweden)

    Oana CHIVU

    2013-05-01

    Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

  2. On the Abaqus FEA model of finite viscoelasticity

    OpenAIRE

    Ciambella, Jacopo; Destrade, Michel; Ogden, Ray W.

    2013-01-01

    Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.

  3. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Science.gov (United States)

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development and validation of a weight-bearing finite element model for total knee replacement.

    Science.gov (United States)

    Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch

    2016-01-01

    Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.

  5. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  6. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  7. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  8. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    Science.gov (United States)

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  9. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  10. Standard Model Extension and Casimir effect for fermions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Department of Physics, University of Alberta, T6J 2J1, Edmonton, Alberta (Canada)

    2016-11-10

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  11. Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification

    Science.gov (United States)

    Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.

    2017-12-01

    We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a

  12. Medium Range Forecast (MRF) and Nested Grid Model (NGM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nested Grid Model (NGM) and Medium Range Forecast (MRF) Archive is historical digital data set DSI-6140, archived at the NOAA National Centers for Environmental...

  13. Finite element prediction of the swift effect based on Taylor-type polycrystal plasticity models

    OpenAIRE

    Duchene, Laurent; Delannay, L.; Habraken, Anne

    2004-01-01

    This paper describes the main concepts of the stress-strain interpolation model that has been implemented in the non-linear finite element code Lagamine. This model consists in a local description of the yield locus based on the texture of the material through the full constraints Taylor’s model. The prediction of the Swift effect is investigated: the influence of the texture evolution is shown up. The LAMEL model is also investigated for the Swift effect prediction. Peer reviewed

  14. The King model for electrons in a finite-size ultracold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2008-10-24

    A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.

  15. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  16. A Model for Long Range Planning for Seminole Community College.

    Science.gov (United States)

    Miner, Norris

    A model for long-range planning designed to maximize involvement of college personnel, to improve communication among various areas of the college, to provide a process for evaluation of long-range plans and the planning process, to adjust to changing conditions, to utilize data developed at a level useful for actual operations, and to have…

  17. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  18. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  19. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  20. Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2011-01-01

    Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.

  1. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  2. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  3. Modelling control of epidemics spreading by long-range interactions.

    Science.gov (United States)

    Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A

    2009-10-06

    We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.

  4. A collocation--Galerkin finite element model of cardiac action potential propagation.

    Science.gov (United States)

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  5. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  6. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  7. Compositional modeling of three-phase flow with gravity using higher-order finite element methods

    KAUST Repository

    Moortgat, Joachim

    2011-05-11

    A wide range of applications in subsurface flow involve water, a nonaqueous phase liquid (NAPL) or oil, and a gas phase, such as air or CO2. The numerical simulation of such processes is computationally challenging and requires accurate compositional modeling of three-phase flow in porous media. In this work, we simulate for the first time three-phase compositional flow using higher-order finite element methods. Gravity poses complications in modeling multiphase processes because it drives countercurrent flow among phases. To resolve this issue, we propose a new method for the upwinding of three-phase mobilities. Numerical examples, related to enhanced oil recovery and carbon sequestration, are presented to illustrate the capabilities of the proposed algorithm. We pay special attention to challenges associated with gravitational instabilities and take into account compressibility and various phase behavior effects, including swelling, viscosity changes, and vaporization. We find that the proposed higher-order method can capture sharp solution discontinuities, yielding accurate predictions of phase boundaries arising in computational three-phase flow. This work sets the stage for a broad extension of the higher-order methods for numerical simulation of three-phase flow for complex geometries and processes.

  8. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  9. Finite element modeling and simulation with ANSYS workbench

    CERN Document Server

    Chen, Xiaolin

    2014-01-01

    IntroductionSome Basic ConceptsAn Example in FEA: Spring SystemOverview of ANSYS WorkbenchSummaryProblemsBars and TrussesIntroductionReview of the 1-D Elasticity TheoryModeling of TrussesFormulation of the Bar ElementExamples with Bar ElementsCase Study with ANSYS WorkbenchSummaryProblemsBeams and FramesIntroductionReview of the Beam TheoryModeling of Beams and FramesFormulation of the Beam ElementExamples with Beam ElementsCase Study with ANSYS WorkbenchSummaryProblemsTwo-Dimensional ElasticityIntroductionReview of 2-D Elasticity TheoryModeling of 2-D Elasticity ProblemsFormulation of the Pla

  10. Astronaut Bone Medical Standards Derived from Finite Element (FE) Models of QCT Scans from Population Studies

    Science.gov (United States)

    Sibonga, J. D.; Feiveson, A. H.

    2014-01-01

    This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an

  11. Two dimensional finite element heat transfer models for softwood

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2004-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...

  12. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    2

    cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.

  13. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  14. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    Science.gov (United States)

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  15. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    Science.gov (United States)

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  16. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    Science.gov (United States)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  17. The mechanical properties of human dentin for 3-D finite element modeling: Numerical and analytical evaluation.

    Science.gov (United States)

    Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula

    2017-07-01

    The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.

  18. Precise determination of universal finite volume observables in the Gross-Neveu model

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, T.

    2007-01-26

    The Gross-Neveu model is a quantum field theory in two space time dimensions that shares many features with quantum chromo dynamics. In this thesis the continuum model and its discretized versions are reviewed and a finite volume renormalization scheme is introduced and tested. Calculations in the limit of infinitely many fermion flavors as well as perturbative computations are carried out. In extensive Monte-Carlo simulations of the one flavor and the four flavor lattice models with Wilson fermions a set of universal finite volume observables is calculated to a high precision. In the one flavor model which is equivalent to the massless Thirring model the continuum extrapolated Monte-Carlo results are confronted with an exact solution of the model. (orig.)

  19. Radon transport model into a porous ground layer of finite capacity

    Science.gov (United States)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  20. A study of finite mixture model: Bayesian approach on financial time series data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  1. Precise determination of universal finite volume observables in the Gross-Neveu model

    International Nuclear Information System (INIS)

    Korzec, T.

    2007-01-01

    The Gross-Neveu model is a quantum field theory in two space time dimensions that shares many features with quantum chromo dynamics. In this thesis the continuum model and its discretized versions are reviewed and a finite volume renormalization scheme is introduced and tested. Calculations in the limit of infinitely many fermion flavors as well as perturbative computations are carried out. In extensive Monte-Carlo simulations of the one flavor and the four flavor lattice models with Wilson fermions a set of universal finite volume observables is calculated to a high precision. In the one flavor model which is equivalent to the massless Thirring model the continuum extrapolated Monte-Carlo results are confronted with an exact solution of the model. (orig.)

  2. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim

    2011-01-01

    of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...

  3. Finite element modelling of vocal tract changes after voice therapy

    Czech Academy of Sciences Publication Activity Database

    Vampola, T.; Laukkanen, A. M.; Horáček, Jaromír; Švec, J. G.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 77-88 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of human voice * voice production modelling * vocal excersing * voice training Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/index.php/acm/article/view/138

  4. Surface multifragmentation investigated with a finite temperature spherical TDHF model

    International Nuclear Information System (INIS)

    Ngo, H.; Ighezou, F.Z.; Paula, L. De

    1992-01-01

    A model for multifragmentation caused by heavy ion collision is developed. The initial state is a hot and compressed spherical nucleus in thermal equilibrium. The dynamical evolution of this nucleus is studied. The nuclear density of the system is calculated with mean field approximation. It is shown that, in some cases, the surface of the nucleus breaks up before its volume. (K.A.) 8 refs.; 1 fig

  5. Finite Difference Time Domain Modeling at USA Instruments, Inc.

    Science.gov (United States)

    Curtis, Richard

    2003-10-01

    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  6. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  7. Extension of White's layered model to the full frequency range

    NARCIS (Netherlands)

    Vogelaar, Bouko; Smeulders, D.M.J.

    2007-01-01

    The low-frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for

  8. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    Science.gov (United States)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of

  9. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  10. Finite element modeling of small-scale tapered wood-laminated composite poles with biomimicry features

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse

    2008-01-01

    Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...

  11. Accuracy of semi-analytical finite elements for modelling wave propagation in rails

    CSIR Research Space (South Africa)

    Andhavarapu, EV

    2010-01-01

    Full Text Available The semi-analytical finite element method (SAFE) is a popular method for analysing guided wave propagation in elastic waveguides of complex cross-section such as rails. The convergence of these models has previously been studied for linear...

  12. Artificial intelligence and finite element modelling for monitoring flood defence structures

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.; Kusherbaeva, V.; Melnikova, N.B.; Krzhizhanovskaya, V.V.; Meijer, R.J.

    2011-01-01

    We present a hybrid approach to monitoring the stability of flood defence structures equipped with sensors. This approach combines the finite element modelling with the artificial intelligence for real-time signal processing and anomaly detection. This combined method has been developed for the

  13. Finite Element Modelling of Bends and Creases during Folding Ultra Thin Stainless Steel Foils

    NARCIS (Netherlands)

    Datta, K.; Akagi, H.; Geijselaers, Hubertus J.M.; Huetink, Han

    2003-01-01

    Finite Element Modelling of an ultra thin foil of SUS 304 stainless steel is carried out. These foils are 20 mm and below in thickness. The development of stresses and strains during folding of these foils is studied. The objective of this study is to induce qualities of paper in the foils of

  14. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.; Presho, Michael

    2015-01-01

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  15. The aetiology of pressure sores: combining animal experiments and finite element modelling

    NARCIS (Netherlands)

    Bosboom, E.M.H.; Oomens, C.W.J.; Bouten, C.V.C.; Janssen, J.D.; Kuipers, H.

    1999-01-01

    Animal experiments were performed to study the relationship between strictly controlled external mechanical loads and the onset of tissue damage. The finite element model was used to determine the local stresses and strains within the tissues during the experiments. By comparison of the results of

  16. Equilibrium Wall Model Implementation in a Nodal Finite Element Flow Solver JENRE for Large Eddy Simulations

    Science.gov (United States)

    2017-11-13

    finite element flow solver JENRE developed at the Naval Research Laboratory. The Crocco- Busemann relation is used to account for the compressibility. In...3 1. Comparison with the measurement data...Naval Research Laboratory. The Crocco-Busemann relation is used to account for the compressibility. In this wall-model implementation, the first

  17. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision

    DEFF Research Database (Denmark)

    Granados, Alba; Misztal, Marek Krzysztof; Brunskog, Jonas

    2016-01-01

    . Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations is developed. The effect of inexact contact constraint enforcement on vocal fold...

  18. Finite element modeling of the neuron-electrode interface: stimulus transfer and geometry

    NARCIS (Netherlands)

    Buitenweg, Jan R.; Rutten, Wim; Marani, Enrico

    1999-01-01

    The relation between stimulus transfer and the geometry of the neuron-electrode interface can not be determined properly using electrical equivalent circuits, since current that flows from the sealing gap through the neuronal membrane is difficult to model in these circuits. Therefore, finite

  19. Measurement of Temperature and Soil Properties for Finite Element Model Verification

    Science.gov (United States)

    2012-08-01

    In recent years, ADOT&PF personnel have used TEMP/W, a commercially available two-dimensional finite element program, to conduct thermal modeling of various : embankment configurations in an effort to reduce the thawing of ice-rich permafrost through...

  20. Expansion formulae for characteristics of cumulative cost in finite horizon production models

    NARCIS (Netherlands)

    Ayhan, H.; Schlegel, S.

    2001-01-01

    We consider the expected value and the tail probability of cumulative shortage and holding cost (i.e. the probability that cumulative cost is more than a certain value) in finite horizon production models. An exact expression is provided for the expected value of the cumulative cost for general

  1. Finite energy sum rules and instantons in the instanton liquid model

    International Nuclear Information System (INIS)

    Elias, V.; Fang Shi; Steele, T.G.

    1998-01-01

    We obtain the imaginary part of the direct single-instanton contribution to the pseudoscalar correlator, as defined by the appropriate dispersion relation, in order to derive an explicit integral representation for the instanton contribution to finite energy sum rules in the instanton liquid model. (author)

  2. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.

    2015-09-02

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  3. Symmetry restoration in the Georgi-Glashow model at finite temperature

    International Nuclear Information System (INIS)

    Guerra Junior, J.M.

    1985-01-01

    Symmetry restoration in the SU(5) model is analysed by means of finite temperature field theory. In our calculations symmetry restoration is due to topological defects which appear thanks to thermodynamical effects. We apply our results in cosmology, in order to explain the primordial inhomogeneity. Our results are compatible with Zeldovich's spectrum. (author) [pt

  4. Modeling electromagnetic rail launchers at speed using 3D finite elements

    International Nuclear Information System (INIS)

    Rodger, D.; Leonard, P.J.; Eastham, J.F.

    1991-01-01

    In this paper a new finite element technique for modelling 3D transient eddy currents in moving conductors is described. This has been implemented in the MEGA software package for 2 and 3D electromagnetic field analysis. The application of the technique to railgun launchers is illustrated

  5. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  6. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  7. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  8. Using a finite element pediatric hip model in clinical 2 evaluation - a feasibility study

    DEFF Research Database (Denmark)

    Skytte, T. L.; Mikkelsen, Lars Pilgaard; Sonne-Holm, Stig

    2017-01-01

    The paper describe a method to construct a finite element model of the hip joint of a child based on clinical recorded CT data. A model which can be used for diagnostic aid and pre-operative surgical evaluation. First part of this development is a feasibility study of this method. A scan...... to previous published experimental studies and computational models investigating the adult hip joint. Good correlation between the current model and previous models were found. The current case specific modeling technique may be a useful complement to the previously developed hip models....

  9. Modeling of trim panels in the energy finite element analysis

    Science.gov (United States)

    Moravaeji, Seyed-Javid

    Modeling a trim panel is divided into finding the power exchange through two different paths: (i) the connection of the outer and inner panels (ii) through the layers directly. The vibrational power exchanged through the mounts is modeled as the connection of two parallel plates connected via a beam. Wave matrices representing plates and beams are derived separately; then a matrix method is proposed to solve for the wave amplitudes and hence the vibrational power exchange between the plates accordingly. A closed form formula for the case of connection of two identical plates is derived. For the power transmission loss directly through the layers, first transfer matrices representing layers made of different materials is considered. New matrices for a porous layer are derived. A method of finding the layered structure transfer matrix is proposed. It is concluded that in general a single isotropic layer cannot replace a structure accurately. Finally, on the basis of an equivalent transfer matrix, an optimization process for is proposed to replace the panel by a suitable set of layers.

  10. Finite Element Method Based Modeling of Resistance Spot-Welded Mild Steel

    Directory of Open Access Journals (Sweden)

    Miloud Zaoui

    Full Text Available Abstract This paper deals with Finite Element refined and simplified models of a mild steel spot-welded specimen, developed and validated based on quasi-static cross-tensile experimental tests. The first model was constructed with a fine discretization of the metal sheet and the spot weld was defined as a special geometric zone of the specimen. This model provided, in combination with experimental tests, the input data for the development of the second model, which was constructed with respect to the mesh size used in the complete car finite element model. This simplified model was developed with coarse shell elements and a spring-type beam element was used to model the spot weld behavior. The global accuracy of the two models was checked by comparing simulated and experimental load-displacement curves and by studying the specimen deformed shapes and the plastic deformation growth in the metal sheets. The obtained results show that both fine and coarse finite element models permit a good prediction of the experimental tests.

  11. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    Science.gov (United States)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  12. Finite-size-scaling analysis of subsystem data in the dilute Ising model

    International Nuclear Information System (INIS)

    Hennecke, M.

    1993-01-01

    Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated

  13. Finite element modelling and updating of friction stir welding (FSW joint for vibration analysis

    Directory of Open Access Journals (Sweden)

    Zahari Siti Norazila

    2017-01-01

    Full Text Available Friction stir welding of aluminium alloys widely used in automotive and aerospace application due to its advanced and lightweight properties. The behaviour of FSW joints plays a significant role in the dynamic characteristic of the structure due to its complexities and uncertainties therefore the representation of an accurate finite element model of these joints become a research issue. In this paper, various finite elements (FE modelling technique for prediction of dynamic properties of sheet metal jointed by friction stir welding will be presented. Firstly, nine set of flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by FSW are used. Nine set of specimen was fabricated using various types of welding parameters. In order to find the most optimum set of FSW plate, the finite element model using equivalence technique was developed and the model validated using experimental modal analysis (EMA on nine set of specimen and finite element analysis (FEA. Three types of modelling were engaged in this study; rigid body element Type 2 (RBE2, bar element (CBAR and spot weld element connector (CWELD. CBAR element was chosen to represent weld model for FSW joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, total error of the natural frequencies for CBAR model is improved significantly. Therefore, CBAR element was selected as the most reliable element in FE to represent FSW weld joint.

  14. Finite temperature behaviour of the ISS-uplifted KKLT model

    International Nuclear Information System (INIS)

    Papineau, Chloe

    2008-01-01

    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector.

  15. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  16. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    Science.gov (United States)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  17. Finite element model updating of a small steel frame using neural networks

    International Nuclear Information System (INIS)

    Zapico, J L; González, M P; Alonso, R; González-Buelga, A

    2008-01-01

    This paper presents an experimental and analytical dynamic study of a small-scale steel frame. The experimental model was physically built and dynamically tested on a shaking table in a series of different configurations obtained from the original one by changing the mass and by causing structural damage. Finite element modelling and parameterization with physical meaning is iteratively tried for the original undamaged configuration. The finite element model is updated through a neural network, the natural frequencies of the model being the net input. The updating process is made more accurate and robust by using a regressive procedure, which constitutes an original contribution of this work. A novel simplified analytical model has been developed to evaluate the reduction of bending stiffness of the elements due to damage. The experimental results of the rest of the configurations have been used to validate both the updated finite element model and the analytical one. The statistical properties of the identified modal data are evaluated. From these, the statistical properties and a confidence interval for the estimated model parameters are obtained by using the Latin Hypercube sampling technique. The results obtained are successful: the updated model accurately reproduces the low modes identified experimentally for all configurations, and the statistical study of the transmission of errors yields a narrow confidence interval for all the identified parameters

  18. Modeling of finite aspect ratio effects on current drive

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.

    1996-01-01

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, η, is judged by a comparison with a direct calculation: where χ is the adjoint function, ε is the kinetic energy, and rvec Γ is the quasilinear flux. It is shown that for large aspect ratio devices (ε → 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear

  19. Finite Element Modelling of a Novel Anterior Cruciate Ligament Repairing Device

    Directory of Open Access Journals (Sweden)

    A.Vairis

    2014-07-01

    Full Text Available The knee anterior cruciate ligament which connects the femur to the tibia is often torn during sudden twisting motions resulting in knee instability with surgery being an effective treatment where the torn ligament is replaced with a graft. This study provides qualitative stress information on a restored knee which has been repaired using a novel device. This device has been designed to reduce graft damage and to minimize post-surgery complications. The device as well as the intact knee have been modelled in 3D and studied using finite elements to assess the mechanical behaviour of the device under different loads. Results are evaluated and compared to equivalent published works. They showed that high stresses appear where tendons wrap around objects like the securing pin of the knee ligament repair device, while the highest stresses are away from the repair device components indicating that the device design does not affect the graft. Developed stresses were within the tendon elastic range, and load case direction does not affect significantly the developed stresses on the circumference of tendons in the most stressed region.

  20. Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Chou Yuan-Fang

    2010-01-01

    Full Text Available The aim of the present study was to analyze the human mastoid cavity on sound transmission using finite element method. Pressure distributions in the external ear canal and middle ear cavity at different frequencies were demonstrated. Our results showed that, first, blocking the aditus improves middle ear sound transmission in the 1500- to 2500-Hz range and decreases displacement in frequencies below 1000 Hz when compared with the normal ear. Second, at frequencies lower than 1000 Hz, the acoustic pressures were almost uniformly distributed in the external ear canal and middle ear cavity. At high frequencies, higher than 1000 Hz, the pressure distribution varied along the external ear canal and middle ear cavity. Third, opening the aditus, the pressures difference in dB between the middle ear cavity and external ear canal were larger than those of the closed mastoid cavity in low frequency (<1000 Hz. Finally, there was no significant difference in the acoustic pressure between the oval window and round window is noted and increased by 5 dB by blocking the aditus. These results suggest that our complete FE model including the mastoid cavity is potentially useful and can provide more information in the study of middle ear biomechanics.

  1. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng

    2017-06-09

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.

  2. Analysis of the finite deformation response of shape memory polymers: II. 1D calibration and numerical implementation of a finite deformation, thermoelastic model

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part II of this work presents the calibration of a previously developed thermoelastic constitutive model which is capable of handling finite deformations. The model is proposed in a general three-dimensional framework; however, this work focuses on reducing the model to one dimension and subsequently calibrating the model using experimental data obtained in part I. The one-dimensional numerical implementation of the model is presented, including the handling of the system of nonlinear equations and the integral term resulting from the constitutive model. The model is then used to predict the uniaxial shape memory effect. Results indicate good agreement between the model predictions and the experimental results, but the predictions do not capture the irrecoverable deformation present at the end of recovery

  3. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  4. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  5. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  6. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  7. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  8. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  9. Finite element modeling of stress corrosion cracking for electromagnetic nondestructive evaluations

    International Nuclear Information System (INIS)

    Wang, J.; Yusa, N.; Hashizume, H.

    2012-01-01

    This paper discusses appropriate numerical model for a stress corrosion crack (SCC) from the viewpoint of anisotropy of their conductivity. Two SCCs, which are introduced into a plate of type 316 stainless steel, are considered. Finite element simulations are carried out to evaluate the conductivity. In the simulations, the cracks are modeled as a region with a constant width on the basis of the destructive tests. The results show the conductivity on direction of width has large effect to the accuracy of numerical modeling of SCC, whereas the conductivities on direction of length and depth almost do not have remarkable effects. The results obtained by this study indicate that distribution of conductivity along the surface of a crack would be more important than the anisotropy in modeling SCCs in finite element simulations

  10. Finite element modeling of camber evolution during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina

    2014-01-01

    The need for understanding the mechanisms and optimization of shape distortions during sintering of bilayers is necessary while producing structures with functionally graded architectures. A finite element model based on the continuum theory of sintering was developed to understand the camber...... developments during sintering of bilayers composed of La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 tapes. Free shrinkage kinetics of both tapes were used to estimate the parameters necessary for the finite element models. Systematic investigations of the factors affecting the kinetics of distortions such as gravity...... and friction as well as the initial geometric parameters of the bilayers were made using optical dilatometry experiments and the model. The developed models were able to capture the observed behaviors of the bilayers’ distortions during sintering. Finally, we present the importance of understanding and hence...

  11. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  12. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  13. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  14. A finite element/level set model of polyurethane foam expansion and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunini, Victor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tinsley, James [Honeywell Federal Manufacturing & Technologies, Kansas City, MO (United States); Mondy, Lisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown with water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven

  15. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    . With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible......, with as many applications as possible, for the least possible computational cost. The coupling method of the structural panels in the above mentioned modular finite element model is in this paper discussed and evaluated. The coupling of the panels are performed using the commercial finite element program....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...

  16. A parametric model order reduction technique for poroelastic finite element models.

    Science.gov (United States)

    Lappano, Ettore; Polanz, Markus; Desmet, Wim; Mundo, Domenico

    2017-10-01

    This research presents a parametric model order reduction approach for vibro-acoustic problems in the frequency domain of systems containing poroelastic materials (PEM). The method is applied to the Finite Element (FE) discretization of the weak u-p integral formulation based on the Biot-Allard theory and makes use of reduced basis (RB) methods typically employed for parametric problems. The parametric reduction is obtained rewriting the Biot-Allard FE equations for poroelastic materials using an affine representation of the frequency (therefore allowing for RB methods) and projecting the frequency-dependent PEM system on a global reduced order basis generated with the proper orthogonal decomposition instead of standard modal approaches. This has proven to be better suited to describe the nonlinear frequency dependence and the strong coupling introduced by damping. The methodology presented is tested on two three-dimensional systems: in the first experiment, the surface impedance of a PEM layer sample is calculated and compared with results of the literature; in the second, the reduced order model of a multilayer system coupled to an air cavity is assessed and the results are compared to those of the reference FE model.

  17. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated

  18. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    OpenAIRE

    Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.

    2015-01-01

    Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...

  19. Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2006-01-01

    A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples “cut” from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...

  20. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  1. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  2. Study of gap conductance model for thermo mechanical fully coupled finite element model

    International Nuclear Information System (INIS)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2012-01-01

    A light water reactor (LWR) fuel rod consists of zirconium alloy cladding and uranium dioxide pellets, with a slight gap between them. Therefore, the mechanical integrity of zirconium alloy cladding is the most critical issue, as it is an important barrier for fission products released into the environment. To evaluate the stress and strain of the cladding during operation, fuel performance codes with a one-dimensional (1D) approach have been reported since the 1970s. However, it is difficult for a 1D model to simulate the stress and strain of the cladding accurately owing to a lack of degree of freedom. A LWR fuel performance code should include thermo-mechanical coupled model owing to the existence of the fuel-cladding gap. Generally, the gap that is filled with helium gas results in temperature drop along radius direction. The gap conductance that determines temperature gradient within the gap is very sensitive to gap thickness. For instance, once the gap size increases up to several microns in certain region, difference of surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Consequently, the Finite Element (FE) module, which can simulate a higher degree of freedom numerically, is an indispensable requirement to understand the thermomechanical behavior of cladding. FRAPCON-3, which is reliable performance code, has iterative loop for thermo-mechanical coupled calculation to solve 1D gap conductance model. In FEMAXI-III, 1D thermal analysis module and FE module for stress-strain analysis were separated. 1D thermal module includes iterative analysis between them. DIONISIO code focused on thermal contact model as function of surface roughness and contact pressure when the gap is closed. In previous works, gap conductance model has been developed only for 1D model or hybrid model (1D and FE). To simulate temperature, stress and strain

  3. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  4. Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling

    Science.gov (United States)

    Melvin, Thomas

    2018-02-01

    Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.

  5. Fierz-complete NJL model study: Fixed points and phase structure at finite temperature and density

    Science.gov (United States)

    Braun, Jens; Leonhardt, Marc; Pospiech, Martin

    2017-10-01

    Nambu-Jona-Lasinio-type models are frequently employed as low-energy models in various research fields. With respect to the theory of the strong interaction, this class of models is indeed often used to analyze the structure of the phase diagram at finite temperature and quark chemical potential. The predictions from such models for the phase structure at finite quark chemical potential are of particular interest as this regime is difficult to access with lattice Monte Carlo approaches. In this work, we consider a Fierz-complete version of a Nambu-Jona-Lasinio model. By studying its renormalization group flow, we analyze in detail how Fierz-incomplete approximations affect the predictive power of such model studies. In particular, we investigate the curvature of the phase boundary at small chemical potential, the critical value of the chemical potential above which no spontaneous symmetry breaking occurs, and the possible interpretation of the underlying dynamics in terms of difermion-type degrees of freedom. We find that the inclusion of four-fermion channels other than the conventional scalar-pseudoscalar channel is not only important at large chemical potential but also leaves a significant imprint on the dynamics at small chemical potential as measured by the curvature of the finite-temperature phase boundary.

  6. A 3D finite element simulation model for TBM tunnelling in soft ground

    Science.gov (United States)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  7. Finite element modelling of fibre Bragg grating strain sensors and experimental validation

    Science.gov (United States)

    Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.

    2009-03-01

    Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.

  8. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    Science.gov (United States)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  9. Finite element modelling of the foot for clinical application: A systematic review.

    Science.gov (United States)

    Behforootan, Sara; Chatzistergos, Panagiotis; Naemi, Roozbeh; Chockalingam, Nachiappan

    2017-01-01

    Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling has only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. The ACR-program for automatic finite element model generation for part through cracks

    International Nuclear Information System (INIS)

    Leinonen, M.S.; Mikkola, T.P.J.

    1989-01-01

    The ACR-program (Automatic Finite Element Model Generation for Part Through Cracks) has been developed at the Technical Research Centre of Finland (VTT) for automatic finite element model generation for surface flaws using three dimensional solid elements. Circumferential or axial cracks can be generated on the inner or outer surface of a cylindrical or toroidal geometry. Several crack forms are available including the standard semi-elliptical surface crack. The program can be used in the development of automated systems for fracture mechanical analyses of structures. The tests for the accuracy of the FE-mesh have been started with two-dimensional models. The results indicate that the accuracy of the standard mesh is sufficient for practical analyses. Refinement of the standard mesh is needed in analyses with high load levels well over the limit load of the structure

  11. A numerical method to estimate AC loss in superconducting coated conductors by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.

  12. A computational model of a PEM fuel cell with finite vapor absorption rate

    Energy Technology Data Exchange (ETDEWEB)

    Vorobev, A.; Zikanov, O.; Shamim, T. [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Dearborn, MI (United States)

    2007-03-30

    The paper presents a new computational model of non-steady operation of a PEM fuel cell. The model is based on the macroscopic hydrodynamic approach and assumptions of low humidity operation and one-dimensionality of transport processes. Its novelty and advantage in comparison with similar existing models is that it takes into account the finite-time equilibration between vapor and membrane-phase liquid water within the catalyst layers. The phenomenon is described using an additional parameter with the physical meaning of the typical reciprocal time of the equilibration. A computational parametric study is conducted to identify the effect of the finite-time equilibration on steady-state and transient operation of a PEM fuel cell. (author)

  13. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  14. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation.

    Science.gov (United States)

    Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González

    2016-01-01

    Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  15. ON range searching in the group model and combinatorial discrepancy

    DEFF Research Database (Denmark)

    Larsen, Kasper Green

    2014-01-01

    In this paper we establish an intimate connection between dynamic range searching in the group model and combinatorial discrepancy. Our result states that, for a broad class of range searching data structures (including all known upper bounds), it must hold that $t_u t_q=\\Omega(\\mbox{disc}^2......)$, where $t_u$ is the worst case update time, $t_q$ is the worst case query time, and disc is the combinatorial discrepancy of the range searching problem in question. This relation immediately implies a whole range of exceptionally high and near-tight lower bounds for all of the basic range searching...... problems. We list a few of them in the following: (1) For $d$-dimensional halfspace range searching, we get a lower bound of $t_u t_q=\\Omega(n^{1-1/d})$. This comes within an lg lg $n$ factor of the best known upper bound. (2) For orthogonal range searching, we get a lower bound of $t_u t...

  16. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  17. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  18. Optimization of a simplified automobile finite element model using time varying injury metrics.

    Science.gov (United States)

    Gaewsky, James P; Danelson, Kerry A; Weaver, Caitlin M; Stitzel, Joel D

    2014-01-01

    In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.

  19. Three-dimensional body-wave model of Nepal using finite difference tomography

    Science.gov (United States)

    Ho, T. M.; Priestley, K.; Roecker, S. W.

    2017-12-01

    The processes occurring during continent-continent collision are still poorly understood. Ascertaining the seismic properties of the crust and uppermost mantle in such settings provides insight into continental rheology and geodynamics. The most active present-day continent-continent collision is that of India with Eurasia which has created the Himalayas and the Tibetan Plateau. Nepal provides an ideal laboratory for imaging the crustal processes resulting from the Indo-Eurasia collision. We build body wave models using local body wave arrivals picked at stations in Nepal deployed by the Department of Mining and Geology of Nepal. We use the tomographic inversion method of Roecker et al. [2006], the key feature of which is that the travel times are generated using a finite difference solution to the eikonal equation. The advantage of this technique is increased accuracy in the highly heterogeneous medium expected for the Himalayas. Travel times are calculated on a 3D Cartesian grid with a grid spacing of 6 km and intragrid times are estimated by trilinear interpolation. The gridded area spans a region of 80-90o longitude and 25-30o latitude. For a starting velocity model, we use IASP91. Inversion is performed using the LSQR algorithm. Since the damping parameter can have a significant effect on the final solution, we tested a range of damping parameters to fully explore its effect. Much of the seismicity is clustered to the West of Kathmandu at depths Small areas of strong fast wavespeeds exist in the centre of the region in the upper 30 km of the crust. At depths of 40-50 km, large areas of slow wavespeeds are present which track along the plate boundary.

  20. Constitutive modelling in the range of inelastic deformations

    International Nuclear Information System (INIS)

    Bruhns, O.T.; White, P.S.; Chaboche, J.L.; Eikhoff, J.V.D.

    1988-01-01

    The main objective of this report is to describe the state of the art in constitutive modelling in the range of inelastic deformations, with particular consideration of the practical use of these models in the field of fast reactors, rather than to formulate new models. An outline is given of the constitutive equations for high-temperature reactor materials developed at the Oak Ridge National Laboratory. Two forms of equations are considered, a semi-classical treatment in terms of separate plasticity and creep and unified equations in which the classical plasticity does not explicitly occur. The fraction model originally proposed by Besseling is described. The basic concept of this model is that the material is thought to be subdivided into a number of parallel fractions, each with simple conventional properties. The more complicated behaviour of real material is thus approximated by choosing a number of parallel fractions with suitable models and model parameters. Three time-independent formulations of plasticity are considered and compared. Attention is focused on the kinematic hardening in the multi-yield surface theory of Mroz and the non-linear kinematic rule intensively used at Enset and Onera. Some connections are pointed out with the two-surface model of Dafalias and Popov, and the range of applicability of the different models is studied in detail. Finally, the constitutive equations of the Interatom model are presented. They are mainly based on the concept of overstresses, expressing the rate-dependence of the material by the magnitude of these overstresses. This model furthermore comprises a combination of general non-linear isotropic and kinematic hardening, with a smooth transition from isotropic to kinematic hardening as a function of process time

  1. A high performance finite element model for wind farm modeling in forested areas

    Science.gov (United States)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  2. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  3. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  4. Finite automata over algebraic structures: models and some methods of analysis

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Skobelev

    2015-10-01

    Full Text Available In this paper some results of research in two new trends of finite automata theory are presented. For understanding the value and the aim of these researches some short retrospective analysis of development of finite automata theory is given. The first trend deals with families of finite automata defined via recurrence relations on algebraic structures over finite rings. The problem of design of some algorithm that simulates with some accuracy any element of given family of automata is investigated. Some general scheme for design of families of hash functions defined by outputless automata is elaborated. Computational security of these families of hash functions is analyzed. Automata defined on varieties with some algebra are presented and their homomorphisms are characterized. Special case of these automata, namely automata on elliptic curves, are investigated in detail. The second trend deals with quantum automata. Languages accepted by some basic models of quantum automata under supposition that unitary operators associated with input alphabet commute each with the others are characterized.

  5. Three-dimensional parallel edge-based finite element modeling of electromagnetic data with field redatuming

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael

    2015-01-01

    This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...

  6. Rapid world modeling: Fitting range data to geometric primitives

    International Nuclear Information System (INIS)

    Feddema, J.; Little, C.

    1996-01-01

    For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE's waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data

  7. 2D modeling of direct laser metal deposition process using a finite particle method

    Science.gov (United States)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  8. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  9. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    Science.gov (United States)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  10. Equations of the quasiparticle-phonon nuclear model with effective finite-rank separable interactions

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1989-01-01

    Basic equations are derived for the quasiparticle-phonon nuclear model for the finite-rank separable isoscalar and isovector multipole and spin-multipole and isovector tensor particle-hole and particle-particle interactions between quasiparticles. For even-even spherical nuclei it is shown that in the calculation of single-phonon states in the random phase approximation a significant complication arises due to the finite rank n max >1 of separable interactions. Taking into account separable interactions with n max >1 does not lead to significant difficulties in the calculation of fragmentation of quasiparticle and collective states. It is asserted that the model can be used as a basis for calculations of many characteristics of complex nuclei

  11. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

    Directory of Open Access Journals (Sweden)

    C. Alkin

    2005-01-01

    Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed. 

  12. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    Science.gov (United States)

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  13. Incorporating ligament laxity in a finite element model for the upper cervical spine.

    Science.gov (United States)

    Lasswell, Timothy L; Cronin, Duane S; Medley, John B; Rasoulinejad, Parham

    2017-11-01

    Predicting physiological range of motion (ROM) using a finite element (FE) model of the upper cervical spine requires the incorporation of ligament laxity. The effect of ligament laxity can be observed only on a macro level of joint motion and is lost once ligaments have been dissected and preconditioned for experimental testing. As a result, although ligament laxity values are recognized to exist, specific values are not directly available in the literature for use in FE models. The purpose of the current study is to propose an optimization process that can be used to determine a set of ligament laxity values for upper cervical spine FE models. Furthermore, an FE model that includes ligament laxity is applied, and the resulting ROM values are compared with experimental data for physiological ROM, as well as experimental data for the increase in ROM when a Type II odontoid fracture is introduced. The upper cervical spine FE model was adapted from a 50th percentile male full-body model developed with the Global Human Body Models Consortium (GHBMC). FE modeling was performed in LS-DYNA and LS-OPT (Livermore Software Technology Group) was used for ligament laxity optimization. Ordinate-based curve matching was used to minimize the mean squared error (MSE) between computed load-rotation curves and experimental load-rotation curves under flexion, extension, and axial rotation with pure moment loads from 0 to 3.5 Nm. Lateral bending was excluded from the optimization because the upper cervical spine was considered to be primarily responsible for flexion, extension, and axial rotation. Based on recommendations from the literature, four varying inputs representing laxity in select ligaments were optimized to minimize the MSE. Funding was provided by the Natural Sciences and Engineering Research Council of Canada as well as GHMBC. The present study was funded by the Natural Sciences and Engineering Research Council of Canada to support the work of one graduate student

  14. Non local separable interactions in the description of some nuclear properties. Recoil and finite range effects in the CRC formalism for the study of heavy ion transfers

    International Nuclear Information System (INIS)

    Meyer, J.

    1976-01-01

    Some simplifications given by the nonlocal separable interactions (NLSI) allowed an exhaustive study of the three body problem to be performed. This work is intended to show that NLSI are also useful in studying the properties of nuclei. Some satisfactory results obtained in the infinite nuclear matter and also in the Hartree-Fock study of some 3s-1d nuclei are then given. A coupled reaction formalism has been developed for the analysis of heavy ion induced reactions. The recoil and finite range effects, which are necessary tools in heavy-ion induced reactions, have been introduced from the work of Coker et al. for the ( 3 He,t) reaction [fr

  15. Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature

    International Nuclear Information System (INIS)

    Rukeng Su

    1994-01-01

    By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)

  16. Finite Element Analysis Modeling of Chemical Vapor Deposition of Silicon Carbide

    Science.gov (United States)

    2014-06-19

    concentrations. This is the method by which species adsorb to the surface of the substrate. The movement resulting from diffusion is governed by...itself. This can be treacherous, however. The mesh is what the entire finite element method is built upon. If the movement of the backbone has... Brownian Motion Algorithm for Tow Scale Modeling of Chemical Vapor Infiltration. Computational Materials Science, 1871-1878. !178 23. Wang, C. & D

  17. Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites

    OpenAIRE

    Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu

    2008-01-01

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect...

  18. Finite element analysis of a model scale footing on clean and oil contaminated sand

    International Nuclear Information System (INIS)

    Evgin, E.; Boulon, M.; Das, B.M.

    1995-01-01

    The effects of oil contamination on the behavior of a model scale footing is determined. Tests are carried out with both clean and oil contaminated sand. The data show that the bearing capacity of the footing is reduced significantly as a result of oil contamination. A finite element analysis is performed to calculate the bearing capacity of the footing and the results are compared with the experimental data. The significance of using an interface element in the analysis is discussed

  19. Metastability of the (φiφi)32 model at finite temperature and density

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1996-11-01

    Using concurrently the dimensional and analytic regularization methods we applied the Gross-Neveu model at finite temperature and density (chemical potential) in a D-dimensional spacetime. The renormalized effective potential is presented at the one-loop approximation. In the case of non-zero chemical potential we show that the effective potential acquires an imaginary part, which means that the system becomes metastable, indicating the possibility of a first phase transition. (author)

  20. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Finite-Control-Set Model Predictive Control (FCS-MPC) for Islanded Hybrid Microgrids

    OpenAIRE

    Yi, Zhehan; Babqi, Abdulrahman J.; Wang, Yishen; Shi, Di; Etemadi, Amir H.; Wang, Zhiwei; Huang, Bibin

    2018-01-01

    Microgrids consisting of multiple distributed energy resources (DERs) provide a promising solution to integrate renewable energies, e.g., solar photovoltaic (PV) systems. Hybrid AC/DC microgrids leverage the merits of both AC and DC power systems. In this paper, a control strategy for islanded multi-bus hybrid microgrids is proposed based on the Finite-Control-Set Model Predictive Control (FCS-MPC) technologies. The control loops are expedited by predicting the future states and determining t...

  2. Finite element implementation of the Hoek-Brown material model with general strain softening behavior

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan Christian; Damkilde, Lars

    2015-01-01

    A numerical implementation of the Hoek–Brown criterion is presented, which is capable of modeling different post-failure behaviors observed in jointed rock mass. This is done by making the material parameters a function of the accumulated plastic strain. The implementation is for use in finite...... for perfectly-plastic, brittle and strain softening material behavior and the results are compared with known solutions....

  3. Garos AIMS. Finite element modelling of the wind power plant WTS-3 at Maglarp

    Energy Technology Data Exchange (ETDEWEB)

    Haagen, T.; Henoch, A.; Olsson, J.; Noren, L.; Ulfvarsson, A.

    1985-07-01

    The project deals with the dynamic response of a rotating horizontal axis windturbine with two blades. The work is directed towards lifetime estimation, stability, analysis and yaw stability. This report presents the accomplishment of finite modelling of the Maglarp plant by means of the matrice NASTRAN. Selection of suitable measurements for later dynamic analysis by the GAROS package is reported. Computer files suitable for further analysis are being stored, and are listed in the report.

  4. The Guidelines for Modelling the Preloading Bolts in the Structural Connection Using Finite Element Methods

    OpenAIRE

    Paulina Krolo; Davor Grandić; Mladen Bulić

    2016-01-01

    The aim of this paper is the development of the two different numerical techniques for the preloading of bolts by the finite element method using the software Abaqus Standard. Furthermore, this paper gave detailed guidelines for modelling contact, method for solving the numerical error problems such as numerical singularity error and negative eigenvalues due to rigid body motion or the problem of the extensive elongation of bolts after pretension which is occurring during the analysis. The be...

  5. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    Science.gov (United States)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  6. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  7. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M. Shadi [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  8. Statistical quantization of GUT models and phase diagrams of W condensation for the Universe with finite fermion density

    International Nuclear Information System (INIS)

    Kalashnikov, O.K.; Razumov, L.V.; Perez Rojas, H.

    1990-01-01

    The problems of statistical quantization for grand-unified-theory models are studied using as an example the Weinberg-Salam model with finite fermion density under the conditions of neutral and electric charge conservation. The relativistic R γ gauge with an arbitrary parameter is used and the one-loop effective potential together with its extremum equations are found. We demonstrate (and this is our main result) that the thermodynamic potential obtained from the effective one, after the mass shell for ξ is used, remains gauge dependent if all temperature ranges (not only the leading high-temperature terms) are considered. The contradiction detected within the calculational scheme is eliminated after the redefinition of the model studied is made with the aid of the terms which are proportional to the ''non-Abelian'' chemical potential and equal to zero identically when the unitary gauge is fixed. The phase diagrams of the W condensation are established and all their peculiarities are displayed. We found for the universe with a zero neutral charge density that the W condensate occurs at any small fermion density ρ and appears at first near the point of symmetry restoration. For all ρ≠0 this condensate exists only in the finite-temperature domain and evaporates completely or partially when T goes to zero

  9. Assessment of finite element and smoothed particles hydrodynamics methods for modeling serrated chip formation in hardened steel

    Directory of Open Access Journals (Sweden)

    Usama Umer

    2016-05-01

    Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.

  10. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)

  11. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    Science.gov (United States)

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  12. FEMWATER: a finite-element model of water flow through saturated-unsaturated porous media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1980-10-01

    Upon examining the Water Movement Through Saturated-Unsaturated Porous Media: A Finite-Element Galerkin Model, it was felt that the model should be modified and expanded. The modification is made in calculating the flow field in a manner consistent with the finite element approach, in evaluating the moisture-content increasing rate within the region of interest, and in numerically computing the nonlinear terms. With these modifications, the flow field is continuous everywhere in the flow regime, including element boundaries and nodal points, and the mass loss through boundaries is much reduced. Expansion is made to include four additional numerical schemes which would be more appropriate for many situations. Also, to save computer storage, all arrays pertaining to the boundary condition information are compressed to smaller dimension, and to ease the treatment of different problems, all arrays are variably dimensioned in all subroutines. This report is intended to document these efforts. In addition, in the derivation of finite-element equations, matrix component representation is used, which is believed more readable than the matrix representation in its entirety. Two identical sample problems are simulated to show the difference between the original and revised models

  13. Accuracy of finite-element models for the stress analysis of multiple-holed moderator blocks

    International Nuclear Information System (INIS)

    Smith, P.D.; Sullivan, R.M.; Lewis, A.C.; Yu, H.J.

    1981-01-01

    Two steps have been taken to quantify and improve the accuracy in the analysis. First, the limitations of various approximation techniques have been studied with the aid of smaller benchmark problems containing fewer holes. Second, a new family of computer programs has been developed for handling such large problems. This paper describes the accuracy studies and the benchmark problems. A review is given of some proposed modeling techniques including local mesh refinement, homogenization, a special-purpose finite element, and substructuring. Some limitations of these approaches are discussed. The new finite element programs and the features that contribute to their efficiency are discussed. These include a standard architecture for out-of-core data processing and an equation solver that operates on a peripheral array processor. The central conclusions of the paper are: (1) modeling approximation methods such as local mesh refinement and homogenization tend to be unreliable, and they should be justified by a fine mesh benchmark analysis; and (2) finite element codes are now available that can achieve accurate solutions at a reasonable cost, and there is no longer a need to employ modeling approximations in the two-dimensional analysis of HTGR fuel elements. 10 figures

  14. Long range anti-ferromagnetic spin model for prebiotic evolution

    International Nuclear Information System (INIS)

    Nokura, Kazuo

    2003-01-01

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states

  15. Model Based Verification of Cyber Range Event Environments

    Science.gov (United States)

    2015-11-13

    that may include users, applications, operating systems, servers, hosts, routers, switches, control planes , and instrumentation planes , many of...which lack models for their configuration. Our main contributions in this paper are the following. First, we have developed a configuration ontology...configuration errors in environment designs for several cyber range events. The rest of the paper is organized as follows. Section 2 provides an overview of

  16. Concrete model for finite element analysis of structures subjected to severe damages

    International Nuclear Information System (INIS)

    Jamet, Ph.; Millard, A.; Hoffmann, A.; Nahas, G.; Barbe, B.

    1984-01-01

    A specific concrete model has been developed, in order to perform mechanical analysis of civil engineering structures, when subjected to accidental loadings, leading to severe damages. Its formulation is based on the physical mechanisms, which have been observed on laboratory specimens. The model has been implemented into the CASTEM finite element system, and the case of a concrete slab perforation by a rigid missile has been considered. The qualitative behaviour of the structure is well predicted by the model. Comparison between numerical and experimental results is also performed, using two main curves: missile velocity versus penetration depth; reaction forces versus time. (Author) [pt

  17. Finiteness of Ricci flat supersymmetric non-linear sigma-models

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)

  18. A model finite-element to analyse the mechanical behavior of a PWR fuel rod

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Tanajura, C.A.S.

    1988-01-01

    A model to analyse the mechanical behavior of a PWR fuel rod is presented. We drew our attention to the phenomenon of pellet-pellet and pellet-cladding contact by taking advantage of an elastic model which include the effects of thermal gradients, cladding internal and external pressures, swelling and initial relocation. The problem of contact gives rise ro a variational formulation which employs Lagrangian multipliers. An iterative scheme is constructed and the finite element method is applied to obtain the numerical solution. Some results and comments are presented to examine the performance of the model. (author) [pt

  19. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    International Nuclear Information System (INIS)

    Hojbota, C I; Toşa, V; Mercea, P V

    2013-01-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food

  20. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    Science.gov (United States)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the