WorldWideScience

Sample records for finite pressure effects

  1. Finite pressure effects on the tokamak sawtooth crash

    International Nuclear Information System (INIS)

    Nishimura, Yasutaro

    1998-07-01

    The sawtooth crash is a hazardous, disruptive phenomenon that is observed in tokamaks whenever the safety factor at the magnetic axis is below unity. Recently, Tokamak Test Fusion Reactor (TFTR) experimental data has revealed interesting features of the dynamical pressure evolution during the crash phase. Motivated by the experimental results, this dissertation focuses on theoretical modeling of the finite pressure effects on the nonlinear stage of the sawtooth crash. The crash phase has been studied numerically employed a toroidal magnetohydrodynamic (MHD) initial value code deduced from the FAR code. For the first time, by starting from a concentric equilibrium, it has been shown that the evolution through an m/n = 1/1 magnetic island induces secondary high-n ballooning instabilities. The magnetic island evolution gives rise to convection of the pressure inside the inversion radius and builds up a steep pressure gradient across the island separatrix, or current sheet, and thereby triggers ballooning instabilities below the threshold for the axisymmetric equilibrium. Due to the onset of secondary ballooning modes, concomitant fine scale vortices and magnetic stochasticity are generated. These effects produce strong flows across the current sheet, and thereby significant modify the m = 1 driven magnetic reconnection process. The resultant interaction of the high-n ballooning modes with the magnetic reconnection process is discussed

  2. Interaction Effect of Pressurized Lamination Pipe by using 2D Finite Element Analysis

    International Nuclear Information System (INIS)

    Razak, N; Sulaiman, A; Alang, N

    2012-01-01

    The availability of the multiple sites is often observed in pipeline and their interaction and coalescence may significantly affect their life. In this paper the finite element method has been used to study the effect of pressure defect on the stress field and their interaction in the interlaminar region. The effect of the crack size and the pressure defect will be investigated. The results are presented as the evolution of the stress field in the interlaminar region as a function of the pressure defect. It is observed that for two cracks with equal length, the pressure inside the lamination give greater value than those for unequal length

  3. Effect of boundary conditions on pressure behavior of finite-conductivity fractures in bounded stratified reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    In this study, a mathematical model was developed to model the pressure behavior of a well located in a bounded multilayer reservoir and crossed by a finite-conductivity vertical fracture. It was found that the dimensionless pressure function and its derivative strongly depend on fracture conductivity and fracture extension during early times. The effect of reservoir heterogeneity on the pressure function is negligible compared to that on the pressure derivative. Both functions exhibit four flow periods: bilinear, formation linear, pseudoradial and pseudosteady-state which are separated by transition periods. One or more of these flow periods may be missing. Data obtained from a long test and which are characterized by a unit slope line indicate that the well is intercepted by deeply extended fractures. It has been found that the fractional production rates of different layers are a good measure of reservoir and fracture characteristics. Flowmeter survey data can be used to eliminate the non-uniqueness problem when using the type curves presented in this study

  4. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  5. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    Science.gov (United States)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  6. Effects of the finite pressure of plasma on internal kink mode

    International Nuclear Information System (INIS)

    Oliveira, G.M.G. de.

    1980-01-01

    The objective of this work is to study the stability of the Internal Kink and Central Kink modes in ideal MHD cylindrical plasma due to the pressure variations and the different current profiles. It was used the σ Euler equation derived by Goedbloed and Sakanaka. Its analysis is based on the boundary layer method, where the effects due to the plasma inertia are only considered in a boundary layer in the neighborhood of the surface where the perturbation is parallel to the field lines. For the internal Kink mode a numerical analysis is also done by integrating the Euler equation. It was calculated the growth rate of the two modes for the different pressure ans current profiles. It was verified that for both, the Internal Kink and Central Kink modes, the growth rate becomes larger as the derivative of these profiles increases. However, for the Internal Kink mode, one obtains a reduction of up to 50% in the growth rate calculated by Rosenbluth et al. For the Central Kink mode, one notices that the growth rate is proportional to β of the plasma and to the derivatives of the pressure and current. (author) [pt

  7. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2011-01-01

    Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.

  8. Confining pressure effects on stress intensity factors: A 3D finite ...

    African Journals Online (AJOL)

    . MRM Aliha, MR Ayatollahi, MMS Mousavi. Abstract. At great depths of earth, fracture in rock masses occurs under the influence of confining pressure. However, most of the previous rock fracture studies deal only with ambient conditions and ...

  9. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette; Murat, Franç ois; Salgado, Abner

    2010-01-01

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and

  10. Particle image velocimetry investigation of a finite amplitude pressure wave

    Science.gov (United States)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  11. Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure

    Science.gov (United States)

    Nazzal, M. A.

    2018-04-01

    It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.

  12. Effect of finite β on stellarator transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-04-01

    A theory of the modification of stellarator transport due to the presence of finite plasma pressure is developed, and applied to a range of stellarator configurations. For many configurations of interest, plasma transport can change by more than an order of magnitude in the progression from zero pressure to the equilibrium β limit of the device. Thus, a stellarator with transport-optimized vacuum fields can have poor confinement at the desired operating β. Without an external compensating field, increasing β tends to degrade confinement, unless the initial field structure is very carefully chosen. The theory permits one to correctly determine this vacuum structure, in terms of the desired structure of the field at a prescribed operating β. With a compensating external field, the deleterious effect of finite β on transport can be partially eliminated

  13. Consistency between analytical and finite element predictions for safety of cylindrical pressure vessels at higher temperatures

    International Nuclear Information System (INIS)

    Iancu, Otto Theodor

    2014-01-01

    The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overall structural instability and cannot be determined directly from a Finite Element analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered to be incompressible and the tensor of plastic strains to be parallel to the stress deviator tensor. In this case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs. The analytical results are completely confirmed by Finite Element predictions. (orig.)

  14. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3D cracks under arbitrary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to any FEM program able to deal with the data handling problems of the substructuring technique. Special finite elements with a built-in stress-singularity are not necessary although their use contributes to accuracy and the mesh can be coarser. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. Although not of any fundamental importance, in practice the difficulties consist in generating an appropriate mesh to represent the crack front. For the example of the corner crack in a nozzle the problem has been solved by developing a special purpose mesh generation program (EURCRACK)

  15. Finite-element pre-analysis for pressurized thermoshock tests

    International Nuclear Information System (INIS)

    Keinaenen, H.; Talja, H.; Lehtonen, M.; Rintamaa, R.; Bljumin, A.; Timofeev, B.

    1992-05-01

    The behaviour of a model pressure vessel is studied in a pressurized thermal shock loading. The tests were performed at the Prometey Institute in St. Petersburg. The calculations were performed at the Technical Research Centre of Finland. The report describes the preliminary finite-element analyses for the fourth, fifth and sixth thermoshock tests with the first model pressure vessel. Seven pressurized thermoshock tests were made with the same model using five different flaw geometries. In the first three tests the flaw was actually a blunt notch. In the two following tests (tests 4 and 5) a sharp pre-crack was produced before the test. In the last two test (tests 6 and 7) the old crack was used. According to the measurements and post-test ultrasonic examination of the crack front, the sixth test led to significant crack extension. Both temperatures and stresses were calculated using the finite-element method. The calculations were made using the idealized initial flaw geometry and preliminary material data. Both two-and three-dimensional models were used in the calculations. J-integral values were calculated from the elastic-plastic finite-element results. The stress intensity factor values were evaluated on the basis of the calculated J-integrals and compared with the preliminary material fracture toughness data obtained from the Prometey Institute

  16. Hydromagnetic modes in an inhomogeneous collisionless plasma of finite pressure

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    2006-01-01

    One studied three-dimensional structure and rate of growth of hydromagnetic waves. The mode is shown to be the Alfven modified inhomogeneity, finite pressure and plasma anisotropy. The mode structure transverse the magnetic shells may be of two types. Under some specific conditions one may observe image-drift waves in the magnetosphere. The described modes may be responsible for some types of geomagnetic field oscillations [ru

  17. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  18. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette

    2010-02-23

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods. © 2010 EDP Sciences, SMAI.

  19. Finite

    Directory of Open Access Journals (Sweden)

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  20. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  1. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  2. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  3. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    In order to assess the safety of pressure vessel nozzles, the analysis should take into account cracks. The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3 D cracks under arbitary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to only FEM program able to deal with the data handling problems of the substructuring technique. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. (Auth.)

  4. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  5. Analysis of noncoplanar pressurized laminations in X2 steel pipes by non-linear finite element

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo [Instituto Tecnologico de Puebla (Mexico). Dept. de Posgrado; Gonzalez, Jorge L.; Hallen, Jose M. [Instituto Politecnico Nacional (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2005-07-01

    Hydrogen induced cracking is of great interest in the mechanical integrity assessment of sour gas pipelines. Multiple stepwise cracks with internal pressure called laminations are often observed in pipelines and their interaction and coalescence may significantly affect the residual strength of the pipes. In this work, the interacting fields of non coplanar pressurized laminations in the wall of a pipe under pressure are analyzed by non-lineal finite element, considering an isotropic hardening law and the real tensile properties of the X52 steel. The results are presented as the evolution of the stress fields in the interlaminar region as a function of the pressure inside the laminations. It is found that for two approaching stepwise laminations the critical pressure follows a hyperbolic type law, thus the effect of the lamination length is principal for greater lengths and for shorter lengths the effect is minimum. The critical pressure is defined as pressure inside the lamination that causes plastification of the interlaminar region. (author)

  6. Experimental and finite element prediction of bursting pressure in compound cylinders

    International Nuclear Information System (INIS)

    Majzoobi, G.H.; Farrahi, G.H.; Pipelzadeh, M.K.; Akbari, A.

    2004-01-01

    Aluminium cylinders with a constant ratio of outer to inner radii, k=2.2, with different diametral interferences and various shrinkage radii were subjected to bursting and autofrettage pressures. Numerical simulations of the compound cylinders were also performed using the finite element code, NISA. The results can predict the optimum shrinkage radius to a reasonable accuracy with the use of finite element analysis. This radius corresponds to the situation when the maximum von-Mises stress at the internal radii of both the inner and outer cylinders become equal. It was shown that the maximum von-Mises stress across the wall of the cylinder is at the minimum at this shrinkage radius. The optimum diametral interference was found to be that which sufficiently brought the contact surface of the inner and outer cylinders to the point of yielding. Should the shrinkage pressure exceed the elastic limit, the pressure capacity of the cylinder will not be improved. The numerical and experimental results show that autofrettage had no effect on the bursting pressure of the thick-walled compound cylinder for the material tested

  7. Parametric study of unconstrained high-pressure torsion- Finite element analysis

    International Nuclear Information System (INIS)

    Halloumi, A; Busquet, M; Descartes, S

    2014-01-01

    The high-pressure torsion (HPT) experiments have been investigated numerically. An axisymmetric model with twist was developed with commercial finite element software (Abaqus) to study locally the specificity of the stress and strain history within the transformed layers produced during HPT processing. The material local behaviour law in the plastic domain was modelled. A parametric study highlights the role of the imposed parameters (friction coefficient at the interfaces anvil surfaces/sample, imposed pressure) on the stress/strain distribution in the sample bulk for two materials: ultra-high purity iron and steel grade R260. The present modelling provides a tool to investigate and to analyse the effect of pressure and friction on the local stress and strain history during the HPT process and to couple with experimental results

  8. Effective permittivity of finite inhomogeneous objects

    NARCIS (Netherlands)

    Raghunathan, S.B.; Budko, N.V.

    2010-01-01

    A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.

  9. Finite element analysis of large elasto-plastic deformation for sealing ring in nuclear pressure vessel

    International Nuclear Information System (INIS)

    Xiao Xuejian; Chen Ruxin

    1995-02-01

    Based on the R. Hills incremental virtual power principle and the elasto-plastic constitution equation for large deformation and by considering physical nonlinear, geometric nonlinear and thermal effects, a plane and axisymmetric finite element equation for thermal large elasto-plastic deformation has been established in the Euler description. The corresponding analysis program ATLEPD has been also complied for thermal large elasto-plastic deformation process of O-ring in RPV. The variations of stress, strain, contact specific pressure, mesh deformation and the aspects of spring back in upsetting and spring back process have been also investigated. Numerical results are fairly consistent with experimental ones. (5 figs., 4 tabs.)

  10. Stress analysis in pressure vessels by mixed finite element methods taking into account shear deformation

    International Nuclear Information System (INIS)

    Franca, L.P.; Toledo, E.M.; Loula, A.F.D.; Garcia, E.L.M.

    1988-12-01

    A new finite element method is employed to approximate axisymmetric shell problems. This formulation enhances stability and accuracy, from thin to moderately thick shells, compared to the correspondent Galerkin finite element approximations. Numerical results illustrate the good performance of the present method on some typical pressure vessels aplications. (author) [pt

  11. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

    International Nuclear Information System (INIS)

    De Windt, P.; Reynen, J.

    1974-12-01

    EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

  12. Finite beta effects on turbulent transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Hein, Tobias

    2011-01-01

    The research on the transport properties of magnetically confined plasmas plays an essential role towards the achievement of practical nuclear fusion energy. An economically viable fusion reactor is expected to operate at high plasma pressure. This implies that the detailed study of the impact of electromagnetic effects, whose strength increases with increasing pressure, is of critical importance. In the present work, the electromagnetic effects on the particle, momentum and heat transport channels have been investigated, with both analytical and numerical calculations. Transport processes due to a finite plasma pressure have been identified, their physical mechanisms have been explained, and their contributions have been quantified, showing that they can be significant under experimentally relevant conditions.

  13. Line pressure effects on differential pressure measurements

    International Nuclear Information System (INIS)

    Neff, G.G.; Evans, R.P.

    1982-01-01

    The performance of differential pressure transducers in experimental pressurized water reactor (PWR) systems was evaluated. Transient differential pressure measurements made using a simple calibration proportionality relating differential pressure to output voltage could have large measurement uncertainties. A more sophisticated calibration equation was derived to incorporate the effects of zero shifts and sensitivity shifts as pressure in the pressure sensing line changes with time. A comparison made between the original calibration proportionality equation and the derived compensation equation indicates that potential measurement uncertainties can be reduced

  14. Calculation of pressure distribution in vacuum systems using a commercial finite element program

    International Nuclear Information System (INIS)

    Howell, J.; Wehrle, B.; Jostlein, H.

    1991-01-01

    The finite element method has proven to be a very useful tool for calculating pressure distributions in complex vacuum systems. A number of finite element programs have been developed for this specific task. For those who do not have access to one of these specialized programs and do not wish to develop their own program, another option is available. Any commercial finite element program with heat transfer analysis capabilities can be used to calculate pressure distributions. The approach uses an analogy between thermal conduction and gas conduction with the quantity temperature substituted for pressure. The thermal analogies for pumps, gas loads and tube conductances are described in detail. The method is illustrated for an example vacuum system. A listing of the ANSYS data input file for this example is included. 2 refs., 4 figs., 1 tab

  15. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  16. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  17. Finite size effects of a pion matrix element

    International Nuclear Information System (INIS)

    Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.

    2004-01-01

    We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation

  18. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  19. Finite element analysis of cylindrical pressure vessels having a misalignment in a circumferential joint

    International Nuclear Information System (INIS)

    Aseer Brabin, T.; Christopher, T.; Nageswara Rao, B.

    2010-01-01

    Finite element analysis (FEA) has been carried out to obtain the elastic stress distribution at cylinder-to-cylinder junction in pressurized shell structures that have applications in space - vehicle design. To validate the finite element modeling and analysis results, three joint configurations, (viz., unfilleted butt joint with equal thickness, unfilleted butt joint with unequal thickness and filleted butt joint with equal thickness) having test results in open literature were considered. The peak stress values for these configurations obtained from FEA are close to that of test results. The peak stress value is found to reduce due to filleted butt joint as expected and also confirmed through test results.

  20. Pressure Effect on Entrance Flow

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Couch, Mark

    1997-01-01

    The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts.......The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts....

  1. Experimental study of finite Larmor radius effects

    International Nuclear Information System (INIS)

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N 2 , and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10 15 /cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 μsec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 μF, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption

  2. Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell

    Science.gov (United States)

    Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.

    2002-10-01

    Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.

  3. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  4. Discussion of plastic instabilities of a pressure vessel by means of the finite element method

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.; Tsakmakis, C.

    1994-06-01

    In this report the influence of geometrical and thermal imperfections on the load-carrying capacity of pressure vessels has been studied by means of the ABAQUS finite element code. Using a thermo-plasticity model for finite strains failure due to plastic instability has been investigated. The parameters needed for this model were identified with uniaxial tensile tests. The parameters were fitted in such a way that necking of the tensile rod was described in a satisfactory manner. Starting from the tensile rod the influence of imperfections on necking of a structure is discussed. Axisymmetric and three dimensional calculations showed that for a sufficient size of the imperfection necking can be obtained. As expected, the maximum internal pressure at failure and the beginning of localization of plastic deformations depend on the size of the imperfection. (orig.) [de

  5. Finite element modeling for predicting the contact pressure between a foam mattress and the human body in a supine position.

    Science.gov (United States)

    Lee, Wookjin; Won, Byeong Hee; Cho, Seong Wook

    2017-01-01

    In this paper, we generated finite element (FE) models to predict the contact pressure between a foam mattress and the human body in a supine position. Twenty-year-old males were used for three-dimensional scanning to produce the FE human models, which was composed of skin and muscle tissue. A linear elastic isotropic material model was used for the skin, and the Mooney-Rivlin model was used for the muscle tissue because it can effectively represent the nonlinear behavior of muscle. The contact pressure between the human model and the mattress was predicted by numerical simulation. The human models were validated by comparing the body pressure distribution obtained from the same human subject when he was lying on two different mattress types. The experimental results showed that the slope of the lower part of the mattress caused a decrease in the contact pressure at the heels, and the effect of bone structure was most pronounced in the scapula. After inserting a simple structure to function as the scapula, the contact pressure predicted by the FE human models was consistent with the experimental body pressure distribution for all body parts. These results suggest that the models proposed in this paper will be useful to researchers and designers of products related to the prevention of pressure ulcers.

  6. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  7. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  8. Finite element method used in strength calculations of nuclear power plant pressure vessels

    International Nuclear Information System (INIS)

    Hanulak, E.

    1987-01-01

    A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)

  9. LB03.04: SPHYGMOMANOMETER CUFF CONSTRUCTION AND MATERIALS AFFECT TRANSMISSION OF PRESSURE FROM CUFF TO ARTERIAL WALL. FINITE ELEMENT ANALYSIS OF HUMAN PRESSURE MEASUREMENTS AND DICOM DATA.

    Science.gov (United States)

    Lewis, P; Naqvi, S; Mandal, P; Potluri, P

    2015-06-01

    Sphygmomanometer cuff pressure during deflation is assumed to equal systolic arterial pressure at the point of resumption of flow. Previous studies demonstrated that pressure decreases with increasing depth of soft tissues whilst visco-elastic characteristics of the arm tissue cause spatial and temporal variation in pressure magnitude. These generally used non-anatomical axisymmetrical arm simulations without incorporating arterial pressure variation. We used data from a volunteer's Magnetic Resonance (MR) arm scan and investigated the effect of variations in cuff materials and construction on the simulated transmission of pressure from under the cuff to the arterial wall under sinusoidal flow conditions. Pressure was measured under 8 different cuffs using Oxford Pressure Monitor Sensors placed at 90 degrees around the mid upper arm of a healthy male. Each cuff was inflated 3 times to 155 mmHg and then deflated to zero with 90 seconds between inflations. Young's modulus, flexural rigidity and thickness of each cuff was measured.Using DICOM data from the MR scan of the arm, a 3D model was derived using ScanIP and imported into Abaqus for Finite Element Analysis (FEA). Published mechanical properties of arm tissues and geometric non-linearity were assumed. The measured sub-cuff pressures were applied to the simulated arm and pressure was calculated around the brachial arterial wall. which was loaded with a sinusoidal pressure of 125/85 mmHg. FEA estimates of pressure around the brachial artery cuffs varied by up to 27 mmHg SBP and 17 mmHg DBP with different cuffs. Pressures within the cuffs varied up to 27 mmHg. Pressure transmission from the cuff to the arterial surface achieved a 95% transmission ratio with one rubber-bladdered cuff but varied between 76 and 88% for the others. Non-uniform pressure distribution around the arterial wall was strongly related to cuff fabric elastic modulus. Identical size cuffs with a separate rubber bladder produced peri

  10. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  11. Pressure transient analysis in single and two-phase water by finite difference methods

    International Nuclear Information System (INIS)

    Berry, G.F.; Daley, J.G.

    1977-01-01

    An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary

  12. Stress categorization in nozzle to pressure vessel connections finite elements models

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos de

    1999-01-01

    The ASME Boiler and Pressure Vessel Code, Section III , is the most important code for nuclear pressure vessels design. Its design criteria were developed to preclude the various pressure vessel failure modes throughout the so-called 'Design by Analysis', some of them by imposing stress limits. Thus, failure modes such as plastic collapse, excessive plastic deformation and incremental plastic deformation under cyclic loading (ratchetting) may be avoided by limiting the so-called primary and secondary stresses. At the time 'Design by Analysis' was developed (early 60's) the main tool for pressure vessel design was the shell discontinuity analysis, in which the results were given in membrane and bending stress distributions along shell sections. From that time, the Finite Element Method (FEM) has had a growing use in pressure vessels design. In this case, the stress results are neither normally separated in membrane and bending stress nor classified in primary and secondary stresses. This process of stress separation and classification in Finite Element (FE) results is what is called stress categorization. In order to perform the stress categorization to check results from FE models against the ASME Code stress limits, mainly from 3D solid FE models, several research works have been conducted. This work is included in this effort. First, a description of the ASME Code design criteria is presented. After that, a brief description of how the FEM can be used in pressure vessel design is showed. Several studies found in the literature on stress categorization for pressure vessel FE models are reviewed and commented. Then, the analyses done in this work are presented in which some typical nozzle to pressure vessel connections subjected to internal pressure and concentrated loads were modeled with solid finite elements. The results from linear elastic and limit load analyses are compared to each other and also with the results obtained by formulae for simple shell

  13. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure collisional plasma

    International Nuclear Information System (INIS)

    Tang, J.T.

    1974-01-01

    In a finite beta (β = 8πn 0 kT 0 /B 0 2 ) plasma, where the plasma pressure n 0 kT 0 is an appreciable fraction of the confining magnetic field energy-density B 0 2 /8π, density-gradient driven drift waves couple with Alfven waves when the phase velocities of the two waves become comparable. The resulting hydromagnetic drift-Alfven waves separate into two branches--a drift mode and an Alfven mode, with both modes exhibiting magnetic field and localized density fluctuations near the coupling point. The dispersion relation of the collisional drift-Alfven wave is derived by using a slab-geometry, two-fluid model which includes finite beta, electron-ion collisions, ion-ion collisions, finite ion larmar radius, temperature fluctuations, and an axial electron current. A hydromagnetic drift mode is found to be unstable in a moderately dense plasma. A localized ''Alfven'' mode is destabilized only with the passage of an axial current along the plasma column. In order to check the theoretical predictions an experiment is performed in a finite-beta plasma of density n 0 = 10 13 -10 15 cm -3 and temperature T/sub e/ approximately T/sub i/ = 1-7 eV. (U.S.)

  14. Plantar pressure relief under the metatarsal heads: therapeutic insole design using three-dimensional finite element model of the foot.

    Science.gov (United States)

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2015-02-26

    Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ergodization of magnetic surfaces due to finite beta effect in a helical system

    International Nuclear Information System (INIS)

    Hayashi, Takaya.

    1989-04-01

    Breaking of magnetic surfaces due to finite beta effect in a l=2 heliotron/torsatron configuration is studied by using a newly developed three dimensional equilibrium code. Breaking can be suppressed by a larger aspect ratio configuration, shaping of magnetic surface (inward shift or prolate shape), pitch modulation of helical coils, or pressure profile control. (author)

  16. Transition to chaos for ballooning modes stabilized by finite Larmor radius effects

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, J; Wilhelmsson, H [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Elektromagnetisk Faeltteori

    1983-08-01

    The nonlinear dynamics of interacting ballooning modes, stabilized by finite Larmor radius effects is analyzed in terms of a set of equations, which exhibit stochastic properties. These are explicitly shown to depend on the balance between shear and driving pressure force. The onset of bifurcations and chaotic behaviour are directly identified with certain values of parameters characterizing the physical system.

  17. Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking.

    Science.gov (United States)

    Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng

    2017-11-01

    This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.

  18. Application of a general purpose finite element program system in pressure vessel technology

    International Nuclear Information System (INIS)

    Aamodt, B.; Sandsmark, N.; Medonos, S.

    1977-01-01

    Main advantages of using general purpose finite element program systems in structural analysis are summarized. Several illustrative applications of the program system SESAM-69 to pressure vessel problems are described. The first example is a dynamic analysis of the motor housing of the internal main circulation pump of a BWR nuclear reactor. The next example is a transient heat conduction and stress analysis of deflector of feeding nozzle of PWR nuclear reactor. Then, numerical calculations of stress intensity factors and fatigue crack growth of semi-elliptical surface cracks are discussed. And finally, an elasto-plastic analysis of a thick plate with edge-cracks is considered. It is concluded that due to the fact that general purpose finite element program systems are general and user-orientated, they will gain increasingly higher popularity in the years ahead

  19. PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING

    Directory of Open Access Journals (Sweden)

    ROBIN ROY P.

    2017-09-01

    Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.

  20. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  1. Finite Source Effects in Microlensing Events

    OpenAIRE

    Gould, Andrew; Gaucherel, Cedric

    1996-01-01

    The computation of the magnification of a finite source by an arbitrary gravitational lens can be reduced from a two-dimensional to a one-dimensional integral using a generalization of Stoke's theorem. For a large source lensed by a planetary-system whose planet lies at the position where one of the two images would be in the absence of a planet, the integral can be done analytically. If the planet lies at the position of the major (unperturbed) image, the excess flux is the same as it would ...

  2. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity

    Czech Academy of Sciences Publication Activity Database

    Hirn, A.; Lanzendörfer, Martin; Stebel, Jan

    2012-01-01

    Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012

  3. A finite volume study for pressure waves propagation in a straight section of pipeline with caviation

    Directory of Open Access Journals (Sweden)

    C Silva

    2016-09-01

    Full Text Available The main objective of this research was to study the pressure waves propagation generated by a sudden closure of a valve in a straight pipe. The physical model consisted of a head tank that can be pressurized with air, and a copper pipe with a fast-closing ball valve on the downstream end of the line. The cavitation and fluid-structure interaction phenomena were integrated analytically into the one-dimensional continuity and momentum equations, by assuming that the fluid density and the flow area vary with pressure. These equations were solved through a high resolution finite volume method, in combination with others numerical methods such as Taylor series expansion, Newton method, Simpson's Rule and quadratic interpolation. Due to the complexity of the solution procedure, a computational code in FORTRAN 95 language was developed in order to obtain numerical solutions. Several discretizations of the computational grid were achieved to assess their impact on the solution. The model was validated with experimental data and analytic results obtained by other researchers. Several pressure values, in different points of pipe, were compared, and an excellent agreement was found for both cases.

  4. Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects

    International Nuclear Information System (INIS)

    Yan, D; Yang, C; Nguyen, N-T; Huang, X

    2006-01-01

    In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices

  5. Effect of limiter end loss in finite Larmor radius theory

    International Nuclear Information System (INIS)

    Berk, H.L.; Kotelnikov, I.A.

    1993-08-01

    We have examined the effect of incomplete line tying on the MHD flute mode with FLR (finite Larmor radius) effects. We show that the combination of line tying and FLR effects can slow down MHD instability, but cannot produce complete stabilization

  6. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures

    International Nuclear Information System (INIS)

    Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.

    2012-01-01

    A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.

  7. Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Pyo, E-mail: hplee@kepri.re.k [Nuclear Power Laboratory, Korea Electric Power Research Institute, 103-16 Munji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of)

    2011-02-15

    Research highlights: Finite element program with 9-node degenerated shell element was developed. The developed program was mainly forced to analyze nuclear containment building. Concrete material model is adapted Niwa and Yamada failure criteria. The performance of program developed is verified through various numerical examples. The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.

  8. Coupling finite elements and reliability methods - application to safety evaluation of pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Pitner, P.; Venturini, V.

    1995-02-01

    When reliability studies are extended form deterministic calculations in mechanics, it is necessary to take into account input parameters variabilities which are linked to the different sources of uncertainty. Integrals must then be calculated to evaluate the failure risk. This can be performed either by simulation methods, or by approximations ones (FORM/SORM). Model in mechanics often require to perform calculation codes. These ones must then be coupled with the reliability calculations. Theses codes can involve large calculation times when they are invoked numerous times during simulations sequences or in complex iterative procedures. Response surface method gives an approximation of the real response from a reduced number of points for which the finite element code is run. Thus, when it is combined with FORM/SORM methods, a coupling can be carried out which gives results in a reasonable calculation time. An application of response surface method to mechanics reliability coupling for a mechanical model which calls for a finite element code is presented. It corresponds to a probabilistic fracture mechanics study of a pressurized water reactor vessel. (authors). 5 refs., 3 figs

  9. Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Hong Pyo

    2011-01-01

    Research highlights: → Finite element program with 9-node degenerated shell element was developed. → The developed program was mainly forced to analyze nuclear containment building. → Concrete material model is adapted Niwa and Yamada failure criteria. → The performance of program developed is verified through various numerical examples. → The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.

  10. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  11. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    Larsen, Aa.

    1987-01-01

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  12. Numerical Simulations of Finite-Length Effects in Diocotron Modes

    Science.gov (United States)

    Mason, Grant W.; Spencer, Ross L.

    2000-10-01

    Over a decade ago Driscoll and Fine(C. F. Driscoll and K. S. Fine, Phys. Fluids B 2) (6), 1359, June 1990. reported experimental observations of an exponential instability in the self-shielded m=1 diocotron mode for an electron plasma confined in a Malmberg-Penning trap. More recently, Finn et al(John M. Finn, Diego del-Castillo-Negrete and Daniel C. Barnes, Phys. Plasmas 6) (10), 3744, October 1999. have given a theoretical explanation of the instability as a finite-length end effect patterned after an analogy to theory for shallow water fluid vortices. However, in a test case selected for comparison, the growth rate in the experiment exceeds the theoretical value by a factor of two. We present results from a two-dimensional, finite length drift-kinetic code and a fully three-dimensional particle-in-cell code written to explore details of finite-length effects in diocotron modes.

  13. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    Science.gov (United States)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  14. Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability

    Science.gov (United States)

    Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard

    2001-06-01

    We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.

  15. Finite size effects in quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gopie, Andy; Ogilvie, Michael C.

    1999-01-01

    Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c

  16. Finite life time effects in the coherent exciton transfer

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1992-04-01

    The paper addresses a specific problem in the exciton transfer in molecular aggregates, namely the influence of the finite life time effects, on the memory functions entering the Generalized Master Equation (GME) which connect different sites of the system. 7 refs, 2 figs

  17. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...

  18. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  19. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  20. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  1. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  2. Stresses from pressure, radial, and moment loads in cylinder-to-cylinder vessel by a finite plate method

    International Nuclear Information System (INIS)

    Brown, S.J.; Fox, M.E.

    1977-08-01

    A structural problem that has received continued interest and development over the last several decades is the determination of stresses in two normally intersecting cylindrical shells subjected to internal pressure and external loading. In nuclear pressure vessels the external loading of the vessel through the attachment is encountered in thermal interaction, seismic loading and various postulated rupture or failure mechanisms. A simple technique, the Finite Plate Method, (FPM) is presented to analyze stresses in cylinder-to-cylinder junctures. The approach uses shallow shell formulations and a three term series expansion plate formulation, which limits the range of applicability. It is felt that the value of the method is its accuracy, economy, and ease in modeling a structure which falls within the range of applicability. Another appealing feature of the method is that its simplistic approach of superposition of results permits an easy extension to include additional loads not treated. For those mechanical loadings not developed, it is felt that their effect can either be accounted for by the mechanisms discussed or by simple calculations. Generally, the stresses resulting from torsional or transverse shear are small compared to the loads discussed, however, these shear effects may be included. Finally, in the instance of thermal stress within the cylinder-to-cylinder structure, it has been shown in an unpublished study by Brown that the FPM yields very good results for the range of curvatures discussed

  3. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  4. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  5. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    Science.gov (United States)

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  6. Pressure effects on nanostructured manganites

    International Nuclear Information System (INIS)

    Acha, C.; Garbarino, G.; Leyva, A.G.

    2007-01-01

    We have measured the pressure sensitivity of magnetic properties on La 5/8-y Pr y Ca 3/8 MnO 3 (y=0.3) nanostructured powders. Samples were synthesized following a microwave assisted denitration process and a final heat treatment at different temperatures to control the grain size of the samples. A span in grain diameters from 40 nm to ∼1000 nm was obtained. Magnetization curves as a function of temperature were measured following different thermomagnetic histories. AC susceptibility as a function of temperature was also measured at different hydrostatic pressures (up to 10 kbar) and for different frequencies. Our results indicate that the nanostructuration plays a role of an internal pressure, producing a structural deformation with similar effects to those obtained under an external hydrostatic pressure

  7. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  8. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    Science.gov (United States)

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The influence of finite-length flaw effects on PTS analyses

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Dickson, T.L.

    1993-01-01

    Current licensing issues within the nuclear industry dictate a need to investigate the effects of cladding on the extension of small finite-length cracks near the inside surface of a vessel. Because flaws having depths of the order of the combined clad and heat affected zone thickness dominate the frequency distribution of flaws, their initiation probabilities can govern calculated vessel failure probabilities. Current pressurized-thermal-shock (PTS) analysis computer programs recognize the influence of the inner-surface cladding layer in the heat transfer and stress analysis models, but assume the cladding fracture toughness is the same as that for the base material. The programs do not recognize the influence cladding may have in inhibiting crack initiation and propagation of shallow finite-length surface flaws. Limited experimental data and analyses indicate the cladding can inhibit the propagation of certain shallow flaws. This paper describes an analytical study which was carried out to determine (1) the minimum flaw depth for crack initiation under PTS loading for semicircular surface flaws in a clad reactor pressure vessel and (2) the impact, in terms of the conditional probability of vessel failure, of using a semicircular surface flaw as the initial flaw and assuming that the flaw cannot propagate in the cladding. The analytical results indicate that for initiation a much deeper critical crack depth is required for the finite-length flaw than for the infinite-length flaw, except for the least severe transient. The minimum flaw depths required for crack initiation from the finite-length flaw analyses were incorporated into a modified version of the OCA-P code. The modified code was applied to the analysis of selected PTS transients, and the results produced a substantial decrease in the conditional probability of failure. This initial study indicates a significant effect on probabilistic fracture analyses by incorporating finite-length flaw results

  10. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Held, Magnus; Wiesenberger, M.; Madsen, Jens

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic...... finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals...... that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the E × B vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity...

  11. Confining dyon gas with finite-volume effects under control

    Energy Technology Data Exchange (ETDEWEB)

    Bruckmann, Falk [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Dinter, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ilgenfritz, Ernst-Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Maier, Benjamin; Mueller-Preussker, Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Wagner, Marc [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-11-15

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature Tfinite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  12. Confining dyon gas with finite-volume effects under control

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Maier, Benjamin; Mueller-Preussker, Michael; Wagner, Marc; Frankfurt Univ.

    2011-11-01

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T c , we consider a non-interacting ensemble of dyons (magnetic monopoles) with non-trivial holonomy. We show analytically, that the quark-antiquark free energy from the Polyakov loop correlator grows linearly with the distance, and how the string tension scales with the dyon density. In numerical treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  13. Finite size effects on hydrogen bonds in confined water

    International Nuclear Information System (INIS)

    Musat, R.; Renault, J.P.; Le Caer, S.; Pommeret, S.; Candelaresi, M.; Palmer, D.J.; Righini, R.

    2008-01-01

    Femtosecond IR spectroscopy was used to study water confined in 1-50 nm pores. The results show that even large pores induce significant changes (for example excited-state lifetimes) to the hydrogen-bond network, which are independent of pore diameter between 1 and 50 nm. Thus, the changes are not surface-induced but rather finite size effects, and suggest a confinement-induced enhancement of the acidic character of water. (authors)

  14. Finite temperature effects in Bose-Einstein condensed dark matter halos

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Madarassy, Enikö J.M.

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates

  15. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  16. Investigating size effects of complex nanostructures through Young-Laplace equation and finite element analysis

    International Nuclear Information System (INIS)

    Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing

    2015-01-01

    Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape

  17. fB from finite size effects in lattice QCD

    International Nuclear Information System (INIS)

    Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD

  18. The computation of pressure waves in shock tubes by a finite difference procedure

    International Nuclear Information System (INIS)

    Barbaro, M.

    1988-09-01

    A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)

  19. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  20. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    Science.gov (United States)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  1. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  2. Finite-correlation-time effects in the kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, Alexander A.; Kulsrud, Russell M.

    2001-01-01

    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas

  3. Finite-size effects on multibody neutrino exchange

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J; Abada, As

    1998-01-01

    The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...

  4. SUPPRESSION OF DIELECTRONIC RECOMBINATION DUE TO FINITE DENSITY EFFECTS

    International Nuclear Information System (INIS)

    Nikolić, D.; Gorczyca, T. W.; Korista, K. T.; Ferland, G. J.; Badnell, N. R.

    2013-01-01

    We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a suppression factor those highly-accurate total zero-density DR rate coefficients which have been produced from state-of-the-art theoretical calculations and which have been benchmarked by experiment. The suppression factor is based upon earlier detailed collision-radiative calculations which were made for a wide range of ions at various densities and temperatures, but used a simplified treatment of DR. A general suppression formula is then developed as a function of isoelectronic sequence, charge, density, and temperature. These density-dependent effective DR rate coefficients are then used in the plasma simulation code Cloudy to compute ionization balance curves for both collisionally ionized and photoionized plasmas at very low (n e = 1 cm –3 ) and finite (n e = 10 10 cm –3 ) densities. We find that the denser case is significantly more ionized due to suppression of DR, warranting further studies of density effects on DR by detailed collisional-radiative calculations which utilize state-of-the-art partial DR rate coefficients. This is expected to impact the predictions of the ionization balance in denser cosmic gases such as those found in nova and supernova shells, accretion disks, and the broad emission line regions in active galactic nuclei.

  5. Numerical investigation of finite-volume effects for the HVP

    Science.gov (United States)

    Boyle, Peter; Gülpers, Vera; Harrison, James; Jüttner, Andreas; Portelli, Antonin; Sachrajda, Christopher

    2018-03-01

    It is important to correct for finite-volume (FV) effects in the presence of QED, since these effects are typically large due to the long range of the electromagnetic interaction. We recently made the first lattice calculation of electromagnetic corrections to the hadronic vacuum polarisation (HVP). For the HVP, an analytical derivation of FV corrections involves a two-loop calculation which has not yet been carried out. We instead calculate the universal FV corrections numerically, using lattice scalar QED as an effective theory. We show that this method gives agreement with known analytical results for scalar mass FV effects, before applying it to calculate FV corrections for the HVP. This method for numerical calculation of FV effects is also widely applicable to quantities beyond the HVP.

  6. Numerical investigation of finite-volume effects for the HVP

    Directory of Open Access Journals (Sweden)

    Boyle Peter

    2018-01-01

    Full Text Available It is important to correct for finite-volume (FV effects in the presence of QED, since these effects are typically large due to the long range of the electromagnetic interaction. We recently made the first lattice calculation of electromagnetic corrections to the hadronic vacuum polarisation (HVP. For the HVP, an analytical derivation of FV corrections involves a two-loop calculation which has not yet been carried out. We instead calculate the universal FV corrections numerically, using lattice scalar QED as an effective theory. We show that this method gives agreement with known analytical results for scalar mass FV effects, before applying it to calculate FV corrections for the HVP. This method for numerical calculation of FV effects is also widely applicable to quantities beyond the HVP.

  7. Nuclear dynamics with the (finite range) Gogny force: flow effects

    International Nuclear Information System (INIS)

    Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.

    1988-01-01

    We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details

  8. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak; Alfano, Marco; Lubineau, Gilles; Duval, Sé bastien; Sherik, Abdelmounam M.

    2012-01-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure

  9. Contact stresses, pressure and area in a fixed-bearing total ankle replacement: a finite element analysis.

    Science.gov (United States)

    Martinelli, Nicolo; Baretta, Silvia; Pagano, Jenny; Bianchi, Alberto; Villa, Tomaso; Casaroli, Gloria; Galbusera, Fabio

    2017-11-25

    Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.

  10. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    single structure per cell while the cubic and truncated octahedron show consistent results, with more than one structure per cell. For systems of the size studied in this work these effects are still noticeable, but we find evidence to support that the dependence of the results on the cell geometry becomes smaller as the system size is increased. When the Coulomb interaction is present, the competition between opposing interactions of different range results in a proper, physically meaningful length scale that is independent of the system size and periodic cell of choice. Only under these conditions “finite size effects” will vanish for large enough systems (i.e. cells much larger than this characteristic length). Larger simulations are in order, but our computational capabilities forbid it for the time being.

  11. Finite element simulation of pressure-loaded phase-field fractures

    NARCIS (Netherlands)

    Singh, N.; Verhoosel, C.V.; van Brummelen, E.H.

    2018-01-01

    A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary

  12. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  13. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  14. The aetiology of pressure sores: combining animal experiments and finite element modelling

    NARCIS (Netherlands)

    Bosboom, E.M.H.; Oomens, C.W.J.; Bouten, C.V.C.; Janssen, J.D.; Kuipers, H.

    1999-01-01

    Animal experiments were performed to study the relationship between strictly controlled external mechanical loads and the onset of tissue damage. The finite element model was used to determine the local stresses and strains within the tissues during the experiments. By comparison of the results of

  15. Finite-size effect on optimal efficiency of heat engines.

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  16. Finite temperature effects on monopole and dipole excitations

    International Nuclear Information System (INIS)

    Niu, Y F; Paar, N; Vretenar, D; Meng, J

    2011-01-01

    The relativistic random phase approximation based on effective Lagrangian with density dependent meson-nucleon couplings has been extended to finite temperature and employed in studies of multipole excitations within the temperature range T = 1 - 2 MeV. The model calculations showed that isoscalar giant monopole and isovector giant dipole resonances are only slightly modified with temperature, but additional transition strength appears at low energies because of thermal unblocking of single-particle orbitals close to the Fermi level. The analysis of low-lying states shows that isoscalar monopole response in 132 Sn results from single particle transitions, while the isovector dipole strength for 60 Ni, located around 10 MeV, is composed of several single particle transitions, accumulating a small degree of collectivity.

  17. Finite-size effects on current correlation functions

    Science.gov (United States)

    Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong

    2014-02-01

    We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.

  18. Incentive Effects of Peer Pressure in Organizations

    OpenAIRE

    Kohei Daido

    2006-01-01

    This paper studies the effects of peer pressure on incentives. We assume that, in addition to the material payoff, each agent's utility includes the psychological payoff from peer pressure generated by a comparison of effort costs. We show that the optimal incentive schemes depend mainly on the degree of peer pressure and of the heterogeneity of agents. Furthermore, we examine the optimal organizational forms in terms of the principal''s intention to make use of the effects of peer pressure.

  19. Finite Larmor radius effects on Z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-10-01

    The effect of finite Larmor radius (FLR) on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the Incompressible FLR MHD model; a collisionless fluid model which consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD 2rdp/dr+m 2 B 2 /μ 0 >=0 predicts instability for internal modes unless the current density becomes singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall terms have a damping, however not stabilizing, effect, in agreement with earlier work. Specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m=1 modes are then fully stabilized over the cross-section for wavelengths λ/a max =3-5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (authors)

  20. Pressure effects on dynamics behavior of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Taha [Faculty of Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-01-15

    The dynamic behavior of Multiwall boron nitride nanotubes (MWBNNTs) is investigated by employing multiple elastic shells model. The influences of van der Waals interactions on layers are shown as nonlinear functions of the interlayer distance of MWBNNTs. Governing equations are solved by using the developed finite element method and by employing time history diagrams. The radial wave speed from the outermost layer to the innermost layer is computed. The effects of geometrical factors such as diameter-to-thickness ratio on dynamic behavior of MWBNNTs are determined. The magnification aspects of MWBNNTs are computed, and the effects of surrounding pressures on wave speed and magnification aspect of MWBNNTs are discussed.

  1. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)

    2011-11-15

    The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)

  2. Finite size effects in lattice QCD with dynamical Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, B.

    2004-06-01

    Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass

  3. Defining Effectiveness Using Finite Sets A Study on Computability

    DEFF Research Database (Denmark)

    Macedo, Hugo Daniel dos Santos; Haeusler, Edward H.; Garcia, Alex

    2016-01-01

    finite sets and uses category theory as its mathematical foundations. The model relies on the fact that every function between finite sets is computable, and that the finite composition of such functions is also computable. Our approach is an alternative to the traditional model-theoretical based works...... which rely on (ZFC) set theory as a mathematical foundation, and our approach is also novel when compared to the already existing works using category theory to approach computability results. Moreover, we show how to encode Turing machine computations in the model, thus concluding the model expresses...

  4. Finite size effects for giant magnons on physical strings

    International Nuclear Information System (INIS)

    Minahan, J.A.; Ohlsson Sax, O.

    2008-01-01

    Using finite gap methods, we find the leading order finite size corrections for an arbitrary number of giant magnons on physical strings, where the sum of the momenta is a multiple of 2π. Our results are valid for the Hofman-Maldacena fundamental giant magnons as well as their dyonic generalizations. The energy corrections turn out to be surprisingly simple, especially if all the magnons are fundamental, and at leading order are independent of the magnon flavors. We also show how to use the Bethe ansatz to find finite size corrections for dyonic giant magnons with large R-charges

  5. The finite-size effect in thin liquid crystal systems

    Science.gov (United States)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  6. Finite mirror effects in advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai

    2008-01-01

    Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The 'Mesa' beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle α and beam width D. Varying α allows a continuous transition from the nearly flat (α=0) to the nearly concentric (α=π) Mesa beam configurations. We analytically prove that in the limit D→∞ hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an α=π Mesa beam a local minimum occurs at D=10.67 cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the α=0.91π hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D

  7. Finite-Larmor-radius effects on z-pinch stability

    Science.gov (United States)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  8. Finite-Larmor-radius effects on z-pinch stability

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, J.; Faghihi, M. (Royal Inst. of Tech., Stockholm (Sweden))

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m{sup 2}B{sup 2}/{mu}{sub 0}{ge}0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths {lambda}/{alpha}{le}1, where {alpha} denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N''{sub max}=5x10{sup 18}m{sup -1} is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10{sup 20} m{sup -1}. (author).

  9. Finite-Larmor-radius effects on z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1989-01-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m 2 B 2 /μ 0 ≥0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths λ/α≤1, where α denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N'' max =5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (author)

  10. Effects of hormone therapy on blood pressure.

    Science.gov (United States)

    Issa, Zeinab; Seely, Ellen W; Rahme, Maya; El-Hajj Fuleihan, Ghada

    2015-04-01

    Although hormone therapy remains the most efficacious option for the management of vasomotor symptoms of menopause, its effects on blood pressure remain unclear. This review scrutinizes evidence of the mechanisms of action of hormone therapy on signaling pathways affecting blood pressure and evidence from clinical studies. Comprehensive Ovid MEDLINE searches were conducted for the terms "hypertension" and either of the following "hormone therapy and menopause" or "selective estrogen receptor modulator" from year 2000 to November 2013. In vitro and physiologic studies did not reveal a clear deleterious effect of hormone therapy on blood pressure. The effect of oral therapy was essentially neutral in large trials conducted in normotensive women with blood pressure as primary outcome. Results from all other trials had several limitations. Oral therapy had a neutral effect on blood pressure in hypertensive women. Transdermal estrogen and micronized progesterone had a beneficial effect on blood pressure in normotensive women and, at most, a neutral effect on hypertensive women. In general, tibolone and raloxifene had a neutral effect on blood pressure in both hypertensive and normotensive women. Large randomized trials are needed to assess the effect of oral hormone therapy on blood pressure as a primary outcome in hypertensive women and the effect of transdermal preparations on both normotensive and hypertensive women. Transdermal preparations would be the preferred mode of therapy for hypertensive women, in view of their favorable physiologic and clinical profiles. The decision regarding the use of hormone therapy should be individualized, and blood pressure should be monitored during the course of treatment.

  11. Magnetic pressure effects in a plasma-liner interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2018-04-01

    A theoretical analysis of magnetic pressure effects in a magnetized liner inertial fusion-like plasma is presented. In previous publications [F. García-Rubio and J. Sanz, Phys. Plasmas 24, 072710 (2017)], the evolution of a hot magnetized plasma in contact with a cold unmagnetized plasma, aiming to represent the hot spot and liner, respectively, was investigated in planar geometry. The analysis was made in a double limit low Mach and high thermal to magnetic pressure ratio β. In this paper, the analysis is extended to an arbitrary pressure ratio. Nernst, Ettingshausen, and Joule effects come into play in the energy balance. The region close to the liner is governed by thermal conduction, while the Joule dissipation becomes predominant far from it when the pressure ratio is low. Mass ablation, thermal energy, and magnetic flux losses are reduced with plasma magnetization, characterized by the electron Hall parameter ω e τ e , until β values of order unity are reached. From this point forward, increasing the electron Hall parameter no longer improves the magnetic flux conservation, and mass ablation is enhanced due to the magnetic pressure gradients. A thoughtful simplification of the problem that allows to reduce the order of the system of governing equations while still retaining the finite β effects is presented and compared to the exact case.

  12. Finite element analysis of hysteresis effects in piezoelectric transducers

    Science.gov (United States)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  13. Finite element model of intermuscular pressure during isometric contraction of skeletal muscle

    NARCIS (Netherlands)

    Jenkyn, T.R.; Koopman, B.; Huijing, P.A.J.B.M.; Lieber, R.L.; Kaufman, K.R.

    2002-01-01

    The measurement of in vivo intramuscular pressure (IMP) has recently become practical and IMP appears well correlated with muscle tension. A numerical model of skeletal muscle was developed to examine the mechanisms producing IMP. Unipennate muscle is modelled as a two-dimensional material continuum

  14. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong; Park, Jai Hak

    2009-01-01

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  15. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk University, Cheongju (Korea, Republic of)

    2009-11-15

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  16. Response to selection in finite locus models with nonadditive effects

    NARCIS (Netherlands)

    Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jørn Rind; Bijma, Piter; Sørensen, Anders Christian

    2017-01-01

    Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive

  17. Faraday effect in hollow quantum cylinder of finite thickness

    International Nuclear Information System (INIS)

    Ismailov, T.G.; Jabrailova, G.G.

    2009-01-01

    The interband Faraday rotation in hollow quantum cylinder of finite thickness is theoretically investigated. Faraday rotation in the dependence on incident light energy for different values of cylinder thickness. It is seen that the resonance peaks appear on Faraday rotation curve. The roles of selection are obtained

  18. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  19. Finite geometry effect on the interaction of a hot beam with a plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The effect of finite geometry on the interaction of a hot low-density beam with a uniform plasma filling a circular waveguide is studied. An expression is derived for the growth rate of the instabilities developing at the harmonic of the beam gyrofrequency, taking the finite beam gyroradius into account. The calculations are done in the quasistatic approximation. (author)

  20. The finite-temperature Gaussian effective potential from a variational principle

    International Nuclear Information System (INIS)

    Haugerud, H.; Ravndal, F.

    1990-08-01

    Writing the partition function for a scalar quantum field theory as a functional integral, it follows that the finite-temperature Gaussian effective potential is an upper limit to the free energy of the system. Explicit results are given for the anharmonic oscillator at finite temperature. 5 refs., 2 figs

  1. Finite element limit analysis based plastic limit pressure solutions for cracked pipes

    International Nuclear Information System (INIS)

    Shim, Do Jun; Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2002-01-01

    Based on detailed FE limit analyses, the present paper provides tractable approximations for plastic limit pressure solutions for axial through-wall cracked pipe; axial (inner) surface cracked pipe; circumferential through-wall cracked pipe; and circumferential (inner) surface cracked pipe. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach

  2. Pressure effects on single chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mito, M. E-mail: mitoh@elcs.kyutech.ac.jp; Shindo, N.; Tajiri, T.; Deguchi, H.; Takagi, S.; Miyasaka, H.; Yamashita, M.; Clerac, R.; Coulon, C

    2004-05-01

    Pressure effects on a single chain magnet [Mn{sub 2}(saltmen){sub 2}Ni(pao){sub 2}(py){sub 2}](ClO{sub 4}){sub 2} (saltmen{sup 2-}=N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate), and pao{sup -}=pyridine-2-aldoximate) have been investigated through AC magnetic measurements under pressure (P). The slow relaxation of the magnetization depends on pressure. Both the blocking temperature (T{sub B}) and energy barrier ({delta}) increase by pressurization, and those enhancements saturate at around P=7 kbar.

  3. Side effects of ambulatory blood pressure monitoring.

    NARCIS (Netherlands)

    Steen, M.S. van der; Lenders, J.W.M.; Thien, Th.

    2005-01-01

    OBJECTIVE: To study the experiences and complaints of patients who underwent 24 h blood pressure monitoring. METHODS: Two groups of hypertensive patients of a tertiary outpatient clinic were asked to fill in a nine-item questionnaire about the side effects of ambulatory blood pressure monitoring

  4. Effects of hydrostatic pressure on mouse sperm.

    Science.gov (United States)

    Karimi, N; Kamangar, P Bahrami; Azadbakht, M; Amini, A; Amiri, I

    2014-01-01

    The objective of this study was to investigate the abnormalities in sperm after exposure to hydrostatic pressure. Hydrostatic pressure acting on the cells is one of the fundamental environmental mechanical forces. Disorders of relationship between the cells and this mechanical force, such as when pressure varies beyond physiological limits, can lead to disease or pathological states. Sperm exposed to different range of hydrostatic pressure within male reproductive system and after entering the female reproductive system. Sexually mature male NMRI mice, 8-12 weeks-old were sperm donors. Sperms were separated from the caudal epididymis and maintained in Ham's F-10 culture medium supplemented with 10 % FBS and divided into control and treatments. Sperm suspensions in the treatments were placed within pressure chamber and were subjected to increased hydrostatic pressure of 25, 50 and 100 mmHg (treatment I, II and III) above atmospheric pressure for 2 and 4 h. Sperm viability, motility, morphology, DNA integrity and fertilizing ability were assessed and compared with control. Results showed that hydrostatic pressure dependent on ranges and time manner reduced sperm quality due to adverse effect on viability, motility , morphology, DNA integrity and fertilizing ability in all of treatments, especially after 4h (phydrostatic pressure reduces sperm quality as a consequence of adverse effects on sperm parameters and may cause male infertility or subfertility (Tab. 5, Ref. 5).

  5. Finite size effects and chiral symmetry breaking in quenched three-dimensional QED

    International Nuclear Information System (INIS)

    Hands, S.; Kogut, J.B.

    1990-01-01

    Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)

  6. Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm

    OpenAIRE

    Atighehchi , Kévin; Ballet , Stéphane; Bonnecaze , Alexis; Rolland , Robert

    2016-01-01

    International audience; Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes ef...

  7. Assessment of the Internal Pressure Fragility of the Hanul NPP Units 3 and 4 Containment Building Using a Nonlinear Finite Element Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung Kui; Hahm, Dea Gi; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The sensitivity of the concrete strength is relatively higher compared to that of the steel strength. According to changes in the structure of the material, about 6-10% ultimate internal pressure differences occurred. Thirty sets of an FE model considering the material uncertainty of concrete and steel were composed for the internal pressure fragility assessment. From the internal pressure fragility assessment of the target containment building, the median capacity of liner leakage is estimated to be 116 psi. As can be seen from the Fukushima nuclear power plant accident, the containment building is the final protecting shield to prevent radiation leakage. Thus, a structural soundness evaluation for the containment pressure loads owing to a severe accident is very important. Recently, a probabilistic safety assessment has been commonly used to take into account the possible factors of uncertainty in a structural system. An assessment of the internal pressure fragility of the CANDU type containment buildings considering the correlation of structural material variables, and an assessment of the internal pressure fragility of the CANDU type containment buildings using a nonlinear finite element analysis, were also performed. However, for PWR type containment buildings, a fragility assessment has not been performed yet using a nonlinear finite element model (FEM) analysis. In this study, for the Hanul NPP units 3 and 4 containment building, the internal pressure fragility assessment was established using an FEM analysis. To do this, a three-dimensional finite element model, material property values, and a sensitive analysis were developed. A nonlinear finite element analysis of the Hanul NPP units 3 and 4 containment building was performed for a material sensitivity analysis and internal pressure fragility assessment.

  8. Assessment of the Internal Pressure Fragility of the Hanul NPP Units 3 and 4 Containment Building Using a Nonlinear Finite Element Analysis

    International Nuclear Information System (INIS)

    Park, Hyung Kui; Hahm, Dea Gi; Choi, In Kil

    2013-01-01

    The sensitivity of the concrete strength is relatively higher compared to that of the steel strength. According to changes in the structure of the material, about 6-10% ultimate internal pressure differences occurred. Thirty sets of an FE model considering the material uncertainty of concrete and steel were composed for the internal pressure fragility assessment. From the internal pressure fragility assessment of the target containment building, the median capacity of liner leakage is estimated to be 116 psi. As can be seen from the Fukushima nuclear power plant accident, the containment building is the final protecting shield to prevent radiation leakage. Thus, a structural soundness evaluation for the containment pressure loads owing to a severe accident is very important. Recently, a probabilistic safety assessment has been commonly used to take into account the possible factors of uncertainty in a structural system. An assessment of the internal pressure fragility of the CANDU type containment buildings considering the correlation of structural material variables, and an assessment of the internal pressure fragility of the CANDU type containment buildings using a nonlinear finite element analysis, were also performed. However, for PWR type containment buildings, a fragility assessment has not been performed yet using a nonlinear finite element model (FEM) analysis. In this study, for the Hanul NPP units 3 and 4 containment building, the internal pressure fragility assessment was established using an FEM analysis. To do this, a three-dimensional finite element model, material property values, and a sensitive analysis were developed. A nonlinear finite element analysis of the Hanul NPP units 3 and 4 containment building was performed for a material sensitivity analysis and internal pressure fragility assessment

  9. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  10. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  11. Study on effective prestressing effects on concrete containment under the design-basis pressure condition

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Wang Lu; Mao Huan; Yang Yu

    2013-01-01

    Prestressing technology is widely used in nuclear power plant containment building, and the durability of containment structure is affected directly by the distribution and loss of prestressing value under design-basis pressure. Containment structure and the distribution of prestressing system are introduced briefly. Furthermore, the calculating process of horizontal prestressing bunch loss near the equipment hatch hole is put forward in details, and the containment structure prestressing loss when 5-year pressure test is obtained. Based above analysis, the finite element model of the prestressed concrete containment structure is built by using ANSYS code, the prestressing effect on concrete containment is analysed. The results show that most of the design pressure is bore by the prestressing system under the design-basis pressure, so the containment structure is safe. These conclusions are consistent with prestressing containment system design concepts, which can provide reference to the engineering staff. (authors)

  12. Interchange instability with line-typing and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Riordan, J.C.; Hartman, C.W.

    1977-01-01

    Finite Larmor radius and end effects are included in a treatment of the low-β interchange instability. Higher order modes are shown to be destabilized by incomplete line-tying through an external plasma

  13. Pressure effect on iron based superconductors

    International Nuclear Information System (INIS)

    Arumugam, S.; Kanagaraj, M.

    2011-01-01

    A tuning of macroscopic thermo dynamical parameters such as temperature, pressure and volume play a crucial role in strongly correlated electron systems especially high T c superconductors, which leads to increasing conductivity as well as effective way of reducing intrinsic magnetic moments. Application of chemical and external pressure exhibits significant increases of critical temperature of recently discovered iron pnictides and chalcogenides superconductors. In this present report, we have investigated hydrostatic pressure effects on resistivity and magnetization of some 1111 type based oxypnictide superconductors such as Co doped CeFeAsO, La 0.8 Th 0.2 FeAsO, Ce 0.6 Y 0.4 FeAsO 0.8 F 0.2 and Yb doped CeFeAsO systems respectively. The initially applied pressure increases the T c and its down to lower value when beyond increasing pressure also has been observed and pressure effects on crystal structure were also discussed. From that all the obtained results reveal that controlling of magnetic instability and structure distortion at higher pressure is a dominant way to further developing of T c of these new ferropnictides compounds. (author)

  14. Effect of finite ion-temperature on ion-acoustic solitary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Shivamoggi, B.K.

    1981-01-01

    The propagation of weakly nonlinear ion-acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion-acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave. (author)

  15. Kirkwood-Buff integrals of finite systems: shape effects

    Science.gov (United States)

    Dawass, Noura; Krüger, Peter; Simon, Jean-Marc; Vlugt, Thijs J. H.

    2018-06-01

    The Kirkwood-Buff (KB) theory provides an important connection between microscopic density fluctuations in liquids and macroscopic properties. Recently, Krüger et al. derived equations for KB integrals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB integrals can be computed either from density fluctuations inside such subvolumes, or from integrals of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric function w(x) which depends on the shape of the subvolume, and the relative position inside the subvolume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo (MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB integrals are a linear function of area over volume, which is independent of the shape of the subvolume.

  16. Effects of pressure on doped Kondo insulators

    International Nuclear Information System (INIS)

    Lee, Chengchung; Xu, Wang

    1999-08-01

    The effects of pressure on the doped Kondo insulators (KI) are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation (CPA). A unified picture for both electron-type KI and hole-type KI is presented. The density of states of the f-electrons under the applied pressures and its variation with the concentration of the Kondo holes are calculated self-consistently. The specific heat coefficient, the zero-temperature magnetic susceptibility as well as the low temperature electric resistivity of the doped KI under various pressures are obtained. The two contrasting pressure-dependent effects observed in the doped KI systems can be naturally explained within a microscopic model. (author)

  17. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  18. On The Effective Construction of Asymmetric Chudnovsky Multiplication Algorithms in Finite Fields Without Derivated Evaluation

    OpenAIRE

    Ballet, Stéphane; Baudru, Nicolas; Bonnecaze, Alexis; Tukumuli, Mila

    2016-01-01

    The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. We describe the effective algorithm of this asymmetric method, without derivated evaluation. Finally, we give examples with the finite ...

  19. Stark effect in finite-barrier quantum wells, wires, and dots

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)

  20. Effect of cocoa on blood pressure.

    Science.gov (United States)

    Ried, Karin; Fakler, Peter; Stocks, Nigel P

    2017-04-25

    High blood pressure is an important risk factor for cardiovascular disease, contributing to about 50% of cardiovascular events worldwide and 37% of cardiovascular-related deaths in Western populations. Epidemiological studies suggest that cocoa-rich products reduce the risk of cardiovascular disease. Flavanols found in cocoa have been shown to increase the formation of endothelial nitric oxide which promotes vasodilation and therefore blood pressure reduction. Here we update previous meta-analyses on the effect of cocoa on blood pressure. To assess the effects on blood pressure of chocolate or cocoa products versus low-flavanol products or placebo in adults with or without hypertension when consumed for two weeks or longer. This is an updated version of the review initially published in 2012. In this updated version, we searched the following electronic databases from inception to November 2016: Cochrane Hypertension Group Specialised Register, CENTRAL, MEDLINE and Embase. We also searched international trial registries, and the reference lists of review articles and included trials. Randomised controlled trials (RCTs) investigating the effects of chocolate or cocoa products on systolic and diastolic blood pressure in adults for a minimum of two weeks duration. Two review authors independently extracted data and assessed the risks of bias in each trial. We conducted random-effects meta-analyses on the included studies using Review Manager 5. We explored heterogeneity with subgroup analyses by baseline blood pressure, flavanol content of control group, blinding, age and duration. Sensitivity analyses explored the influence of unusual study design. Thirty-five trials (including 40 treatment comparisons) met the inclusion criteria. Of these, we added 17 trials (20 treatment comparisons) to the 18 trials (20 treatment comparisons) in the previous version of this updated review.Trials provided participants with 30 to 1218 mg of flavanols (mean = 670 mg) in 1.4 to 105

  1. Effect of total pressure on graphite oxidation

    International Nuclear Information System (INIS)

    Burnette, R.D.; Hoot, C.G.

    1983-04-01

    Graphite corrosion in the high-temperature gas-cooled reactor (HTGR) is calculated using two key assumptions: (1) the kinetic, catalysis, and transport characteristics of graphite determined by bench-scale tests apply to large components at reactor conditions and (2) the effects of high pressure and turbulent flow are predictable. To better understand the differences between laboratory tests and reactor conditions, a high-pressure test loop (HPTL) has been constructed and used to perform tests at reactor temperature, pressure, and flow conditions. The HPTL is intended to determine the functional dependence of oxidation rate and characteristics on total pressure and gas velocity and to compare the oxidation results with calculations using models and codes developed for the reactor

  2. Finite element method for starved hydrodynamic lubrication with film separation and free surface effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Vølund, Anders; Klit, Peder

    2018-01-01

    This paper proposes a numerical method for determining the evolution of lubricant film thickness and pressure in partially and fully flooded regions of a hydrodynamic contact between two non-conformal rigid surfaces. The proposed method accounts for the classical Reynolds equation within the fully...... thickness is zero. Both pressure and film thickness fields are considered as unknowns to solve for in each time step and they are approximated through quadratic B-spline finite elements. The geometry of the gap between the rigid surfaces delimiting the lubricant is accounted for in the form of a unilateral...

  3. Modeling of Pressure Effects in HVDC Cables

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole; Strøbech, Esben

    1999-01-01

    A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities.......A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities....

  4. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes

    International Nuclear Information System (INIS)

    Liu, M; Bassler, K E

    2011-01-01

    Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.

  5. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  6. Finite beta and compressibility effects on stability of resistive modes in toroidal geometry

    International Nuclear Information System (INIS)

    Leboeuf, J-N.G.; Kurita, Gen-ichi.

    1998-03-01

    Linear resistive stability results obtained from the toroidal magnetohydrodynamic codes FAR developed at the Oak Ridge National Laboratory in United States of America and AEOLUS developed at the Japan Atomic Energy Research Institute are compared for carefully constructed benchmark profiles and parameters. These are unstable to a tearing mode with toroidal mode number n=1. The eigenvalues and eigenfunctions calculated with both codes are in close agreement and show that the effect of compressibility is weak for these modes. The effect of finite plasma beta is considered, and the eigenvalues calculated by the FAR and AEOLUS codes also show good agreement. It is shown that the finite beta has a stabilizing effect on the toroidal tearing mode, but that the compressibility also has little effect on finite beta tearing modes. (author)

  7. Hybridization and pressure effects in UTX compounds

    Czech Academy of Sciences Publication Activity Database

    Alsmadi, A. M.; Sechovský, V.; Lacerda, A. H.; Prokes, K.; Kamarád, Jiří; Chang, S.; Jung, M. H.; Nakotte, H.

    2002-01-01

    Roč. 91, - (2002), s. 8123-8125 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010914 Keywords : UTX intermetallic compounds * pressure effects magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.281, year: 2002

  8. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  9. Standard Model Extension and Casimir effect for fermions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Department of Physics, University of Alberta, T6J 2J1, Edmonton, Alberta (Canada)

    2016-11-10

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  10. The effect of positive end-expiratory pressure on pulse pressure ...

    African Journals Online (AJOL)

    The effect of positive end-expiratory pressure on pulse pressure variation. FJ Smith, M Geyser, I Schreuder, PJ Becker. Abstract. Objectives: To determine the effect of different levels of positive end-expiratory pressure (PEEP) on pulse pressure variation (PPV). Design: An observational study. Setting: Operating theatres of a ...

  11. Internal pressure effects in the AIRCO-LCT conductor sheath

    International Nuclear Information System (INIS)

    Luton, J.N.; Clinard, J.A.; Lue, J.W.; Gray, W.H.; Summers, L.T.; Kershaw, R.

    1985-01-01

    The large Nb 3 Sn superconducting test coil produced by Westinghouse Electric Corporation for the international Large Coil Task (LCT) utilizes a conductor composed of cabled multifilamentary strands immersed in flowing supercritical helium contained by a square structural sheath made of the high-strength stainless alloy JBX-75. Peak pressures of a few hundred atmospheres are predicted to occur during quench, and measurement of these pressures seems feasible only through penetrations of the sheath wall. Fully processed short lengths of conductor were taken from production ends, fitted with pressure taps and strain gauges, and pressurized with helium gas. Failure, at 1000 atm at liquid nitrogen temperature, was by a catastrophic splitting of the sheath at a corner. Strain measurements and burst pressure agreed with elastic-plastic finite element stress calculations made for the sheath alone. Neither the production seam weld nor the pressure tap penetrations or their fillet welds contributed to the failure, although the finite element calculations show that these areas were also highly stressed, and examination of the failed sample showed that the finite welds were of poor quality. Failure was by tensile overload, with no evidence of fatigue

  12. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  13. Stress categorization in nozzle to pressure vessel connections finite elements models; Categorizacao de tensoes em modelos de elementos finitos de conexoes bocal-vaso de pressao

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Levi Barcelos de

    1999-07-01

    The ASME Boiler and Pressure Vessel Code, Section III , is the most important code for nuclear pressure vessels design. Its design criteria were developed to preclude the various pressure vessel failure modes throughout the so-called 'Design by Analysis', some of them by imposing stress limits. Thus, failure modes such as plastic collapse, excessive plastic deformation and incremental plastic deformation under cyclic loading (ratchetting) may be avoided by limiting the so-called primary and secondary stresses. At the time 'Design by Analysis' was developed (early 60's) the main tool for pressure vessel design was the shell discontinuity analysis, in which the results were given in membrane and bending stress distributions along shell sections. From that time, the Finite Element Method (FEM) has had a growing use in pressure vessels design. In this case, the stress results are neither normally separated in membrane and bending stress nor classified in primary and secondary stresses. This process of stress separation and classification in Finite Element (FE) results is what is called stress categorization. In order to perform the stress categorization to check results from FE models against the ASME Code stress limits, mainly from 3D solid FE models, several research works have been conducted. This work is included in this effort. First, a description of the ASME Code design criteria is presented. After that, a brief description of how the FEM can be used in pressure vessel design is showed. Several studies found in the literature on stress categorization for pressure vessel FE models are reviewed and commented. Then, the analyses done in this work are presented in which some typical nozzle to pressure vessel connections subjected to internal pressure and concentrated loads were modeled with solid finite elements. The results from linear elastic and limit load analyses are compared to each other and also with the results obtained by formulae

  14. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  15. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  16. Effect of lemon juice on blood pressure

    OpenAIRE

    SARI, Aysel; SELİM, Nevzat; DİLEK, Melda; AYDOĞDU, Turkan; ADIBELLİ, Zelal; BÜYÜKKAYA, Piltan; AKPOLAT, Tekin

    2012-01-01

    Lemon juice has commonly been used by hypertensive patients in order to lower blood pressure (BP) acutely when BP is raised or as an alternative/complementary therapy for expectation of chronic improvement. Grapefruit, a citrus fruit like lemon, causes clinically significant interactions with a variety of drugs including calcium antagonists. The aims of this study were to investigate acute and chronic effects of lemon juice on BP among hypertensive patients. Ninty-eight patients were included...

  17. Bibliography on vapour pressure isotope effects

    International Nuclear Information System (INIS)

    Illy, H.; Jancso, G.

    1976-03-01

    The bibliography of research on vapour pressure isotope effects from 1919 to December 1975 is presented in chronological order. Within each year the references are listed alphabetically according to the name of the first author of each work. The bibliography is followed by a Compound Index containing the names o compounds, but the type of isotopic substituation is not shown. The Author Index includes all authors of the papers. (Sz.N.Z.)

  18. Finite size and dynamical effects in pair production by an external field

    International Nuclear Information System (INIS)

    Martin, C.; Vautherin, D.

    1988-12-01

    We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei

  19. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  20. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  1. Inertial Effects on Finite Length Pipe Seismic Response

    Directory of Open Access Journals (Sweden)

    Virginia Corrado

    2012-01-01

    Full Text Available A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-structure interaction. The approach is focused on axial strains, since bending strains in a buried pipe due to the wave propagation are typically a second-order effect. Unlike many works, the inertial terms are considered in solving equations. Accurate numerical simulations are carried out to show the influence of pipe length and constraint conditions on the pipe seismic strain. The obtained results are compared with results inferred from other models present in the literature. For free-end pipelines, inertial effects have significant influence only for short length. On the contrary, their influence is always important for pinned pipes. Numerical simulations show that a simple rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models.

  2. Finite-temperature effects in helical quantum turbulence

    Science.gov (United States)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  3. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD

    Science.gov (United States)

    Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.

    2016-10-01

    We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.

  4. Finite size effects in the evaporation rate of 3He clusters

    International Nuclear Information System (INIS)

    Guirao, A.; Pi, M.; Barranco, M.

    1991-01-01

    We have computed the density of states and the evaporation rate of 3 He clusters, paying special attention to finite size effects which modify the 3 He level density parameter and chemical potential from their bulk values. Ready-to-use liquid-drop expansions of these quantities are given. (orig.)

  5. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  6. Condensation effects in a pressurizer scaled from a pressurized water reactor

    International Nuclear Information System (INIS)

    Loomis, G.G.; Shaw, R.A.

    1985-01-01

    This paper presents results from an experimental investigation of phenomena associated with pressurizer auxiliary spray during an abnormal plant transient in a commercial PWR. If normal pressurizer spray is unavailable (main coolant pumps are off) or the pressurizer power operated relief valve cannot be used during abnormal transients, pressurizer auxiliary spray can be used to reduce primary system pressure. Results from both transient integral experiments involving pressurizer auxiliary spray during tube rupture and separate effects spray experiments are presented. The experimental investigation was conducted in the Semiscale MOD-2B facility. Phenomenon of interest that occurred in the pressurizer during the pressurized auxiliary spray was desuperheating of the pressurizer steam space and quenching of metal walls followed by dropwise condensation of the pressurizer steam. The data from both the transient integral experiments and the separate effects experiments are compared to RELAP5 computer calculations and the capability of existing models in the code is discussed

  7. Casimir effect at finite temperature for the Kalb-Ramond field

    International Nuclear Information System (INIS)

    Belich, H.; Silva, L. M.; Helayeel-Neto, J. A.; Santana, A. E.

    2011-01-01

    We use the thermofield dynamics formalism to obtain the energy-momentum tensor for the Kalb-Ramond field in a topology S 1 xS 1 xR 2 . The compactification is carried out by a generalized thermofield dynamics-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor. The expressions for the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and the results may be important for applications, as in cuprate superconductivity, for instance.

  8. Addendum to "Finite-size effects on multibody neutrino exchange"

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J

    1999-01-01

    The interaction energy of the neutrons due to massless neutrino exchange in a neutron star has recently been proved, using an effective theory, to be extremely small and infrared-safe. Our comment here is of conceptual order: two approaches to compute the total interaction energy density have recently been proposed. Here, we study the connection between these two approaches. From CP invariance, we argue that the resulting interaction energy has to be even in the parameter $b=-G_F n_n /\\sqrt{2}$, which expresses the static neutrino potential created by a neutron medium of density $n_n$.

  9. Thermoelectric conductivities at finite magnetic field and the Nernst effect

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Kim, Kyung Kiu; Seo, Yunseok; Sin, Sang-Jin

    2015-01-01

    We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current (DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current (AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.

  10. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin

    2016-01-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  11. Numerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2014-01-01

    Full Text Available Chemical Vapor Deposition (CVD is one of the most popular methods for producing Carbon Nanotubes (CNTs. The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In this article the operating pressure variations are studied as the effective parameter on CNT growth rate and length uniformity.

  12. Tearing modes with pressure gradient effect in pair plasmas

    International Nuclear Information System (INIS)

    Cai Huishan; Li Ding; Zheng Jian

    2009-01-01

    The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.

  13. Finite frequency effects on global S diffracted traveltimes

    Science.gov (United States)

    To, Akiko; Romanowicz, Barbara

    2009-12-01

    Many seismic observations have shown that strong heterogeneities exist in the bottom few hundreds kilometres of the mantle. Among different seismic phases, this region, that is, the D'' layer, can be most globally sampled by diffracted waves along the core mantle boundary. Here, we assess the amplitude and distribution of S-wave velocity variations in the D'' layer of an existing tomographic model. We compare observed SHdiff traveltime anomalies to synthetic ones obtained using (1) the coupled spectral element method (CSEM), which is our reference exact method, (2) non-linear asymptotic coupling theory (NACT) and (3) 1-D ray theory. Synthetic waveforms are calculated down to 0.057 Hz with a corner frequency at 0.026 Hz. In the first part of this paper, we compare the traveltime anomaly predictions from the three different methods. The anomalies from CSEM and NACT are obtained by taking cross-correlations of the 3-D and 1-D synthetic waveforms. Both NACT and standard ray theory, which are used in other recent tomographic models, suffer from biases in traveltime predictions for vertically varying structure near the core-mantle boundary: NACT suffers from saturation of traveltimes, due to the portion in the kernel calculation that is based on the reference 1-D model, while ray theory suffers from wave front healing effects in the vertical plane, exacerbated in the presence of thin low velocity layers. In the second part, we compare observed traveltime anomalies and predictions from CSEM. The data consists of 506 Sdiff traveltime anomalies from 15 events, obtained form global seismograph network records. The tomographic model does a good job at predicting traveltimes of Sdiff phases especially when the path mostly samples fast S velocity regions at the base of the mantle, such as beneath India, China, North America and Northern Pacific. The underprediction of the positive observed traveltime anomalies seems to occur in regions where the paths sample close to the border

  14. Evaluative pressure overcomes perceptual load effects.

    Science.gov (United States)

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  15. Pressurization rate effect on ligament rupture and burst pressures of cracked steam generator tubes

    International Nuclear Information System (INIS)

    Majumdar, S.; Kasza, K.

    2009-01-01

    The question of whether ligament rupture pressure or unstable burst pressure may vary significantly with pressurization rate at room temperature arose from the results of pressure tests by industry on tubes with machined part-throughwall notches. Slow (quasi-static) and fast 14 MPa/s (2000 psi/s) pressurization rate tests on specimens with nominally the same notch geometry appeared to show a significant effect of the rate of pressurization on the unstable burst pressure. Unfortunately, the slow and fast loading rate tests were conducted following two different test procedures, which could confound the results. The current series of tests were conducted on a variety of specimen geometries using a consistent test procedure to better establish the effect of pressurization rate on ligament rupture and burst pressures. (author)

  16. Pressurization rate effect on ligament rupture and burst pressures of cracked steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.; Kasza, K. [Argonne National Laboratory, Nuclear Energy Division, Lemont, Illinois (United States)

    2009-07-01

    The question of whether ligament rupture pressure or unstable burst pressure may vary significantly with pressurization rate at room temperature arose from the results of pressure tests by industry on tubes with machined part-throughwall notches. Slow (quasi-static) and fast 14 MPa/s (2000 psi/s) pressurization rate tests on specimens with nominally the same notch geometry appeared to show a significant effect of the rate of pressurization on the unstable burst pressure. Unfortunately, the slow and fast loading rate tests were conducted following two different test procedures, which could confound the results. The current series of tests were conducted on a variety of specimen geometries using a consistent test procedure to better establish the effect of pressurization rate on ligament rupture and burst pressures. (author)

  17. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  18. Finite Range Effects in Energies and Recombination Rates of Three Identical Bosons

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2013-01-01

    is large. The models are built on contact potentials which take into account finite range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wave function when two of the particles are at the same point...... in space. We compare the results with the results of the ubiquitous single-parameter zero-range model where only the scattering length is taken into account. Both finite range models predict variations of the well-known geometric scaling factor 22.7 that arises in Efimov physics. The threshold value...... at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed...

  19. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    International Nuclear Information System (INIS)

    Kestner, J. P.; Das Sarma, S.

    2010-01-01

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  20. Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2006-01-01

    A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples “cut” from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...

  1. Finite element prediction of the swift effect based on Taylor-type polycrystal plasticity models

    OpenAIRE

    Duchene, Laurent; Delannay, L.; Habraken, Anne

    2004-01-01

    This paper describes the main concepts of the stress-strain interpolation model that has been implemented in the non-linear finite element code Lagamine. This model consists in a local description of the yield locus based on the texture of the material through the full constraints Taylor’s model. The prediction of the Swift effect is investigated: the influence of the texture evolution is shown up. The LAMEL model is also investigated for the Swift effect prediction. Peer reviewed

  2. Effects of diffraction and target finite size on coherent transition radiation spectra in bunch length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M.; Cianchi, A.; Verzilov, V.A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Orlandi, G. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)]|[Rome Univ., Tor Vergata, Rome (Italy)

    1999-07-01

    Effects of diffraction and the size of the target on TR in the context of CTR-based bunch length measurements are studied on the basis of Kirchhoff diffraction theory. Spectra of TR from the finite-size target for several schemes of measurements are calculated in the far-infrared region showing strong distortion at low frequencies. Influence of the effect on the accuracy of bunch length measurements is estimated.

  3. Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2008-02-01

    Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.

  4. Effect of high pressure on mesophilic lactic fermentation streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Reps, A; Kuzmicka, M; Wisniewska, K [Chair of Food Biotechnology, University of Warmia and Mazury, ul. Heweliusza 1, 10-724 Olsztyn (Poland)], E-mail: arnold.reps@uwm.edu.pl

    2008-07-15

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  5. Finite-size effects on two-particle production in continuous and discrete spectrum

    CERN Document Server

    Lednicky, R

    2005-01-01

    The effect of a finite space-time extent of particle production region on the lifetime measurement of hadronic atoms produced by a high energy beam in a thin target is discussed. Particularly, it is found that the neglect of this effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation on the level of the expected 10% statistical error. It is argued that the data on correlations of identical particles obtained in the same experimental conditions, together with transport code simulation, allow to diminish the systematic error in the extracted lifetime to an acceptable level. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair c.m.s., the space-time coherence and the residual charge are shown to be negligible.

  6. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak

    2012-11-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure build-up mechanism related to the recombination of atomic hydrogen into hydrogen gas within the crack cavity. In addition, the strong couplings between non-Fickian hydrogen diffusion, pressure build-up and crack extension are accounted for. In order to enhance the predictive capabilities of the proposed model, problem boundary conditions are based on actual in-field operating parameters, such as pH and partial pressure of H 2S. The computational results reported herein show that, during the extension phase, the propagating crack behaves like a trap attracting more hydrogen, and that the hydrostatic stress field at the crack tip speed-up HIC related crack initiation and growth. In addition, HIC is reduced when the pH increases and the partial pressure of H2S decreases. Furthermore, the relation between the crack growth rate and (i) the initial crack radius and position, (ii) the pipe wall thickness and (iii) the fracture toughness, is also evaluated. Numerical results agree well with experimental data retrieved from the literature. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  7. Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, Imdat; Benli, Merthan [Department of Mechanical Engineering, University of Sakarya, 54187 Adapazari (Turkey)

    2010-05-15

    The performance of the fuel cell is affected by many parameters. One of these parameters is assembly pressure that changes the mechanical properties and dimensions of the fuel cell components. Its first duty, however, is to prevent gas or liquid leakage from the cell and it is important for the contact behaviors of fuel cell components. Some leakage and contact problems can occur on the low assembly pressures whereas at high pressures, components of the fuel cell, such as bipolar plates (BPP), gas diffusion layers (GDL), catalyst layers, and membranes, can be damaged. A finite element analysis (FEA) model is developed to predict the deformation effect of assembly pressure on the single channel PEM fuel cell in this study. Deformed fuel cell single channel model is imported to three-dimensional, computational fluid dynamics (CFD) model which is developed for simulating proton exchange membrane (PEM) fuel cells. Using this model, the effect of assembly pressure on fuel cell performance can be calculated. It is found that, when the assembly pressure increases, contact resistance, porosity and thickness of the gas diffusion layer (GDL) decreases. Too much assembly pressure causes GDL to destroy; therefore, the optimal assembly pressure is significant to obtain the highest performance from fuel cell. By using the results of this study, optimum fuel cell design and operating condition parameters can be predicted accordingly. (author)

  8. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  9. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    Science.gov (United States)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  10. Effects of pressurization procedures on calibration results for precise pressure transducers

    International Nuclear Information System (INIS)

    Kajikawa, Hiroaki; Kobata, Tokihiko

    2010-01-01

    The output of electromechanical pressure gauges depends on not only the currently applied pressure, but also the pressurization history. Thus, the calibration results of gauges are affected by the pressurization procedure. In this paper, among several important factors influencing the results, we report the effects of the interval between the calibration cycles and the effects of the preliminary pressurizations. In order to quantitatively evaluate these effects, we developed a fully automated system that uses a pressure balance to calibrate pressure gauges. Subsequently, gauges containing quartz Bourdon-type pressure transducers were calibrated in a stepwise manner for pressures between 10 MPa and 100 MPa. The typical standard deviation of the data over three cycles was reduced to a few parts per million (ppm). The interval between the calibration cycles, which ranges from zero to more than 12 h, exerts a strong influence on the results in the process of increasing the pressure, where at 10 MPa the maximum difference between the results was approximately 40 ppm. The preliminary pressurization immediately before the calibration cycle reduces the effects of the interval on the results in certain cases. However, in turn, the influence of the waiting time between the preliminary pressurization and the main calibration cycle becomes strong. In the present paper, we outline several possible measures for obtaining calibration results with high reproducibility

  11. Stresses in reinforced nozzle-cylinder attachments under internal pressure loading analyzed by the finite-element method: a parameter study

    International Nuclear Information System (INIS)

    Bryson, J.W.; Johnson, W.G.; Bass, B.R.

    1977-01-01

    A parameter study was conducted on stresses in reinforced nozzle-to-cylinder attachments under internal pressure loading as analyzed by the finite-element method. Twenty-five models with branch-to-run diameter ratios 0.08 less than or equal to d/D less than or equal to 0.50 and run diameter-to-thickness ratios 10 less than or equal to D/T less than or equal to 100 were investigated. A three-dimensional finite-element program, CORTES-SA, which was developed at the University of California at Berkeley specifically for analyzing tee-joint configurations, was used in the study. It was concluded from the study that both of the reinforcement designs investigated significantly reduce maximum stresses relative to configurations having little or no reinforcement. For internal pressure loading, neither of the reinforcement designs offered a significant advantage over the other in that both types of reinforcement gave very nearly the same maximum stresses

  12. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  13. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    Science.gov (United States)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  14. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-05-01

    A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

  15. Finite spatial-volume effect for π-N sigma term in lattice QCD

    International Nuclear Information System (INIS)

    Fukushima, M.; Chiba, S.; Tanigawa, T.

    2003-01-01

    We report on a finite spatial-volume effect for the pion-nucleon sigma term σ πN for quenched Wilson fermion on 8 3 x 20 and 16 3 x 20 lattices at β = 5.7 with the spatial lattice size of La∼1.12fm and La∼2.24fm, respectively. It is found that the spatial size dependence of the connected part of σ πN con is significant small. We observed the magnitude of finite size effect for the disconnected part of σ πN dis is much larger than for to connected one and an almost drastic decrease of σ πN dis amounting to 50% between La∼2.24fm to the smaller lattice size of La∼1.12fm. (author)

  16. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Science.gov (United States)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  17. Modelling of SOEC-FT reactor: Pressure effects on methanation process

    International Nuclear Information System (INIS)

    Chen, Bin; Xu, Haoran; Ni, Meng

    2017-01-01

    Highlights: • Numerical study on combined SOEC-FT reactor in pressurized condition. • Effects of operating pressure on co-electrolysis and CH_4 production are studied. • The lower limit temperature of the FT section is dependent on the operating pressure. • The CH_4 production can be improved at higher voltage due to the current increase. • Effects of higher exchange current density is predicted at different temperature. - Abstract: In this paper a numerical model is developed for a novel reactor combining a Solid Oxide Electrolyzer Cell (SOEC) section with a Fischer Tropsch like section for methane production under pressurized & temperature-gradient condition. Governing equations for mass, momentum, charge transport are solved with Finite Element Method. The chemical reaction kinetics of reversible water gas shift reaction and reversible methanation reaction in Ni/YSZ cathode are fully considered. The model is validated by comparing simulation results with experimental data. Parametric simulations are conducted to understand the physical-chemical processes in the reactor with a focus on the pressure effect. It is predicted that the optimal operating pressure is around 3 bar, beyond which the CH_4 conversion ratio (2.5 times enhanced than 1 bar operating) cannot be further increased. It is also found that it is feasible to operate the pressurized SOEC at a lower temperature for CH_4 production with improved catalyst activity.

  18. Finite size effects in liquid-gas phase transition of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Pawlowski, P.

    2001-01-01

    Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb

  19. The effects of finite rate chemical processes on high enthalpy nozzle performance - A comparison between SPARK and SEAGULL

    Science.gov (United States)

    Carpenter, M. H.

    1988-01-01

    The generalized chemistry version of the computer code SPARK is extended to include two higher-order numerical schemes, yielding fourth-order spatial accuracy for the inviscid terms. The new and old formulations are used to study the influences of finite rate chemical processes on nozzle performance. A determination is made of the computationally optimum reaction scheme for use in high-enthalpy nozzles. Finite rate calculations are compared with the frozen and equilibrium limits to assess the validity of each formulation. In addition, the finite rate SPARK results are compared with the constant ratio of specific heats (gamma) SEAGULL code, to determine its accuracy in variable gamma flow situations. Finally, the higher-order SPARK code is used to calculate nozzle flows having species stratification. Flame quenching occurs at low nozzle pressures, while for high pressures, significant burning continues in the nozzle.

  20. Effects of vegetarian diets on blood pressure

    Directory of Open Access Journals (Sweden)

    Yokoyama Y

    2016-04-01

    Full Text Available Yoko Yokoyama,1,2 Kazuo Tsubota,2,3 Mitsuhiro Watanabe1,2,4,5 1Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 2Health Science Laboratory, 3Department of Ophthalmology, 4Department of Internal Medicine, Keio University School of Medicine, Tokyo, 5Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan Abstract: Hypertension is a major independent risk factor for coronary artery diseases, and the prevalence of hypertension is continuously increasing. Diet is an important factor that can be modified to prevent hypertension. According to the US Department of Health and Human Services, dietary patterns are defined as the quantities, proportions, and variety or combinations of different foods and beverages in diets and the frequency with which they are habitually consumed. In this review, the vegetarian dietary pattern is introduced with a focus on the effect on blood pressure (BP. Although the available evidence is limited, according to a previous meta-analysis of controlled trials, vegetarian dietary patterns significantly reduced systolic and diastolic BPs. One of the common features of a vegetarian diet is weight loss, which might, at least partially, explain the effect on BP. Other possible factors such as sodium, potassium, protein, amino acids, vitamin B-12, antioxidants, fiber, and the microbiome are introduced as possible mechanisms. Further studies are needed with non-Western populations to determine the most effective vegetarian dietary pattern and to explore the exact mechanisms by which these dietary patterns affect BP. Keywords: vegetarian diet, plant-based diet, blood pressure, hypertension, meta-analysis

  1. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  2. Finite Larmor radius effects on the stability properties of internal modes of a z-pinch

    International Nuclear Information System (INIS)

    Aakerstedt, H.O.

    1987-01-01

    From the Vlasov-fluid model a set of approximate stability equations describing the stability of a cylindrically symmetric z-pinch is derived. The equations are derived in the limit of small gyroradius and include first order kinetic effects such as finite ion Larmor radius effects and resonant ion effects. Neglecting the resonant ion terms, we explicitly solve this set of equations for a constant current density profile leading to a dispersion relation. FLR effects are shown for the case of m=1 internal mode to be stabilizing and for large wavenumbers k, using a trial function approach, absolute stabilization is found. (author)

  3. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  4. Lattice study of finite volume effect in HVP for muon g-2

    Directory of Open Access Journals (Sweden)

    Izubuchi Taku

    2018-01-01

    Full Text Available We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp,in lattice QCD by comparison with two different volumes, L4 = (5.44 and (8.14 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a−1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.

  5. Lattice study of finite volume effect in HVP for muon g-2

    Science.gov (United States)

    Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo

    2018-03-01

    We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.

  6. Finite-volume effects due to spatially non-local operators arXiv

    CERN Document Server

    Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.

    Spatially non-local matrix elements are useful lattice-QCD observables in a variety of contexts, for example in determining hadron structure. To quote credible estimates of the systematic uncertainties in these calculations, one must understand, among other things, the size of the finite-volume effects when such matrix elements are extracted from numerical lattice calculations. In this work, we estimate finite-volume effects for matrix elements of non-local operators, composed of two currents displaced in a spatial direction by a distance $\\xi$. We find that the finite-volume corrections depend on the details of the matrix element. If the external state is the lightest degree of freedom in the theory, e.g.~the pion in QCD, then the volume corrections scale as $ e^{-m_\\pi (L- \\xi)} $, where $m_\\pi$ is the mass of the light state. For heavier external states the usual $e^{- m_\\pi L}$ form is recovered, but with a polynomial prefactor of the form $L^m/|L - \\xi|^n$ that can lead to enhanced volume effects. These ...

  7. Finite-size effect and the components of multifractality in financial volatility

    International Nuclear Information System (INIS)

    Zhou Weixing

    2012-01-01

    Highlights: ► The apparent multifractality can be decomposed quantitatively. ► There is a marked finite-size effect in the detection of multifractality. ► The effective multifractality can be further decomposed into two components. ► A time series exhibits effective multifractality only if it possesses nonlinearity. ► The daily DJIA volatility is analyzed as an example. - Abstract: Many financial variables are found to exhibit multifractal nature, which is usually attributed to the influence of temporal correlations and fat-tailedness in the probability distribution (PDF). Based on the partition function approach of multifractal analysis, we show that there is a marked finite-size effect in the detection of multifractality, and the effective multifractality is the apparent multifractality after removing the finite-size effect. We find that the effective multifractality can be further decomposed into two components, the PDF component and the nonlinearity component. Referring to the normal distribution, we can determine the PDF component by comparing the effective multifractality of the original time series and the surrogate data that have a normal distribution and keep the same linear and nonlinear correlations as the original data. We demonstrate our method by taking the daily volatility data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. Extensive numerical experiments show that a time series exhibits effective multifractality only if it possesses nonlinearity and the PDF has an impact on the effective multifractality only when the time series possesses nonlinearity. Our method can also be applied to judge the presence of multifractality and determine its components of multifractal time series in other complex systems.

  8. Sensing line effects on PWR-based differential pressure measurements

    International Nuclear Information System (INIS)

    Evans, R.P.; Neff, G.G.

    1982-01-01

    An incorrrect configuration of the fluid-filled pressure sensing lines connecting differential pressure transducers to the pressure taps in a pressurized water reactor system can cause errors in the measurement and, during rapid pressure transients, could cause the transducer to fail. Testing was performed in both static and dynamic modes to experimentally determine the effects of sensing lines of various lengths, diameters, and materials. Testing was performed at ambient temperature with absolute line pressures at about 17 MPa using water as the pressure transmission fluid

  9. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  10. Finite thickness effect of a zone plate on focusing hard x-rays

    International Nuclear Information System (INIS)

    Yun, W.B.; Chrzas, J.; Viccaro, P.J.

    1992-01-01

    Spatial resolution and focusing efficiency are two important properties of a zone plate in x-ray focusing applications. A general expression of the zone plate equation describing its zone registration is derived from the interference of spherical waves emited from two mutually coherent point sources. An analytical expression of the focusing efficiency in terms of the zone plate thickness and x-ray refractive indices of the zones is also derived. Validity condition for using this expression is considered. Thickness required for obtaining adequate focusing efficiency is calculated as a function of x-ray energy for several representative materials. The spatial resolution of a finite thickness zone plate is worse than that of an infinetly thin zone plate. which is approximately equal to the smallest zone width of the zone plate. The effect of the finite thickness on the spatial resolution is considered

  11. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    Science.gov (United States)

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  12. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  13. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  14. Theoretical studies of finite size effects and screening effects caused by a STM tip in Luettinger liquids

    International Nuclear Information System (INIS)

    Guigou, Marine

    2009-01-01

    This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr

  15. Effects of finite coverage on global polarization observables in heavy ion collisions

    Science.gov (United States)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  16. Finite-key-size effect in a commercial plug-and-play QKD system

    Science.gov (United States)

    Chaiwongkhot, Poompong; Sajeed, Shihan; Lydersen, Lars; Makarov, Vadim

    2017-12-01

    A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sifted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturer’s software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.

  17. The low-energy effective theory of QCD at small quark masses in a finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Christoph

    2010-01-15

    At low energies the theory of quantum chromodynamics (QCD) can be described effectively in terms of the lightest particles of the theory, the pions. This approximation is valid for temperatures well below the mass difference of the pions to the next heavier particles. We study the low-energy effective theory at very small quark masses in a finite volume V. The corresponding perturbative expansion in 1/{radical}(V) is called {epsilon} expansion. At each order of this expansion a finite number of low-energy constants completely determine the effective theory. These low-energy constants are of great phenomenological importance. In the leading order of the {epsilon} expansion, called {epsilon} regime, the theory becomes zero-dimensional and is therefore described by random matrix theory (RMT). The dimensionless quantities of RMT are mapped to dimensionful quantities of the low-energy effective theory using the leading-order lowenergy constants {sigma} and F. In this way {sigma} and F can be obtained from lattice QCD simulations in the '' regime by a fit to RMT predictions. For typical volumes of state-of-the-art lattice QCD simulations, finite-volume corrections to the RMT prediction cannot be neglected. These corrections can be calculated in higher orders of the {epsilon} expansion. We calculate the finite-volume corrections to {sigma} and F at next-to-next-to-leading order in the {epsilon} expansion. We also discuss non-universal modifications of the theory due to the finite volume. These results are then applied to lattice QCD simulations, and we extract {sigma} and F from eigenvalue correlation functions of the Dirac operator. As a side result, we provide a proof of equivalence between the parametrization of the partially quenched low-energy effective theory without singlet particle and that of the super-Riemannian manifold used earlier in the literature. Furthermore, we calculate a special version of the massless sunset diagram at finite volume without

  18. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.

    Science.gov (United States)

    Papageorgiou, Spyridon N; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas; Bourauel, Christoph

    2016-06-01

    Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2015-01-01

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability

  20. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    Science.gov (United States)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  1. Finite Element Limit Pressures for Circumferential Through-Wall Cracks in the Interface between Elbow and Pipe

    International Nuclear Information System (INIS)

    Jang, Yoon-Young; Han, Tae-Song; Huh, Nam-Su; Jeong, Jae-Uk

    2014-01-01

    Among integrity assessment method based on a fracture mechanics concept for piping system, a limit load method is one of the important way to predict a maximum load carrying capacity in the materials with high ductility in the sense that it is used to either assess directly structural integrity of pipe based on fully plastic fracture mechanics or calculate elasticplastic fracture mechanics parameters based on reference stress concept. In nuclear power plants, piping system often involves elbows welded to straight pipe. Since welded regions are vulnerable to cracking, it is important to predict an accurate limit load for pipes with a crack in the interface between elbows and attached pipes. However, although extensive works have been made for developing limit analysis methods for cracked pipes, they were mainly for straight pipes. Recently, limit moment solutions for elbow that is attached to straight pipe with a circumferential through-wall crack(TWC) in the interface were proposed, whereas limit pressure for this geometry is not suggested yet. In this context, plastic limit pressures of circumferential TWCs between elbow and straight pipe were calculated in the present study considering geometric parameters such as an elbow curvature, a pipe size and a crack length. In the present study, the FE plastic limit analyses for circumferential TWC in the interface between elbow and pipe under internal pressure were conducted based on elastic perfectly plastic assumption. Based on the present FE results, it is found that plastic limit pressures of straight pipes with circumferential TWC are not appropriate for predicting plastic limit pressures of circumferential TWC in the interface between elbow and pipe for shorter crack length

  2. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  3. General approach to the computation of local transport coefficients with finite Larmor effects in the collision contribution

    International Nuclear Information System (INIS)

    Ghendrih, P.

    1986-10-01

    We expand the distribution functions on a basis of Hermite functions and obtain a general scheme to compute the local transport coefficients. The magnetic field dependence due to finite Larmor radius effects during the collision process is taken into account

  4. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui

    2013-01-01

    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  5. Application of dynamic relaxation and finite elements methods for the structural analysis of a scale model of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Tamura, Masaru

    1979-01-01

    A stress and strain analysis was made of a scale model of a Prestressed Concrete Pressure Vessel for a Boiling Water Reactor. The aim of this work was to obtain an experimental verification of the calculation method actually used at IPEN. The 1/10 scale model was built and tested at the Instituto Sperimentale Modelli e Structture, ISMES, Italy. The dynamic relaxation program PV2-A and the finite element programs , FEAST-1 have been used. A comparative analysis of the final results was made. A preliminary analysis was made for a simplified monocavity model now under development at IPEN with the object of confirming the data and the calculation method used. (author)

  6. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  7. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  8. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  9. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  10. Pressure effect on grain boundary diffusion

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1997-01-01

    The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement

  11. Predicating magnetorheological effect of magnetorheological elastomers under normal pressure

    International Nuclear Information System (INIS)

    Dong, X; Qi, M; Ma, N; Ou, J

    2013-01-01

    Magnetorheological elastomers (MREs) present reversible change in shear modulus in an applied magnetic field. For applications and tests of MREs, a normal pressure must be applied on the materials. However, little research paid attention on the effect of the normal pressure on properties of MREs. In this study, a theoretical model is established based on the effective permeability rule and the consideration of the normal pressure. The results indicate that the normal pressure have great influence on magnetic field-induced shear modulus. The shear modulus of MREs increases with increasing normal pressure, such dependence is more significant at high magnetic field levels.

  12. Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation

    International Nuclear Information System (INIS)

    Kar, Soumitra; Biswas, Subhajit; Chaudhuri, Subhadra; Nambissan, P.M.G.

    2005-01-01

    Quantum confinement effects in nanocrystalline CdS were studied using positrons as spectroscopic probes to explore the defect characteristics. The lifetime of positrons annihilating at the vacancy clusters on nanocrystalline grain surfaces increased remarkably consequent to the onset of such finite-size effects. The Doppler broadened line shape was also found to reflect rather sensitively such distinct changes in the electron momentum redistribution scanned by the positrons, owing to the widening of the band gap. The nanocrystalline sizes of the samples used were confirmed from x-ray diffraction and high resolution transmission electron microscopy and the optical absorption results supported the quantum size effects. Positron annihilation results indicated distinct qualitative changes between CdS nanorods and the bulk sample, notwithstanding the identical x-ray diffraction pattern and close resemblance of the optical absorption spectra. The results are promising in the event of positron annihilation being proved to be a very successful tool for the study of such finite-size effects in semiconductor nanoparticles

  13. Leading order finite size effects with spins for inspiralling compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics - Albert-Einstein-Institute,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-06-10

    The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.

  14. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E; Desa, E; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  15. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    Science.gov (United States)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  16. Finite-Size Effects in Single Chain Magnets: An Experimental and Theoretical Study

    Science.gov (United States)

    Bogani, L.; Caneschi, A.; Fedi, M.; Gatteschi, D.; Massi, M.; Novak, M. A.; Pini, M. G.; Rettori, A.; Sessoli, R.; Vindigni, A.

    2004-05-01

    The problem of finite-size effects in s=1/2 Ising systems showing slow dynamics of the magnetization is investigated introducing diamagnetic impurities in a Co2+-radical chain. The static magnetic properties have been measured and analyzed considering the peculiarities induced by the ferrimagnetic character of the compound. The dynamic susceptibility shows that an Arrhenius law is observed with the same energy barrier for the pure and the doped compounds while the prefactor decreases, as theoretically predicted. Multiple spin reversal has also been investigated.

  17. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada)

    2016-12-15

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  18. The effective potential for composite operator in the scalar model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ananos, G.N.J.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: nfuxsvai@lafex.cbpf.br; gino@lafex.cbpf.br

    2000-10-01

    We discuss the {phi}{sup 4} and {phi}{sup 6} theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature {beta}{sup -1}. To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  19. The effective potential for composite operator in the scalar model at finite temperature

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Svaiter, N.F.

    2000-10-01

    We discuss the φ 4 and φ 6 theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature β -1 . To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  20. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure.

    Science.gov (United States)

    Liu, Su-Meng; Wang, Ning-Li; Zuo, Zhen-Tao; Chen, Wei-Wei; Yang, Di-Ya; Li, Zhen; Cao, Yi-Wen

    2018-02-01

    In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77-1.05 mm), 0.77 ± 0.11 mm (range: 0.60-0.94 mm), 0.70 ± 0.08 mm (range: 0.62-0.80 mm), and 0.68 ± 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the

  1. The effects of endurance and resistance training on blood pressure.

    Science.gov (United States)

    Schwartz, R S; Hirth, V A

    1995-10-01

    There now exists substantial clinical data supporting a blood pressure lowering effect of endurance training. Though the effect is modest (5-10 mmHg), epidemiologic studies indicate the possibility of protection against the development of hypertension and also indicate significantly reduced cardiovascular mortality and increased longevity associated with chronic endurance exercise. The data for blood pressure lowering effects of resistive training are much less compelling, and this area requires additional investigation. However, it appears that resistance training is not associated with chronic elevations in blood pressure. Future studies need to focus on: 1) the relative efficacy of low-, moderate- and high-intensity training on lowering blood pressure; 2) the effect of training on ambulatory blood pressure; 3) targeting of at risk and high responding populations; and 4) the importance of insulinemia, SNS tone and central adiposity in the mechanism of any blood pressure lowering effect of training.

  2. Effect of fractional parameter on neutron transport in finite disturbed reactors with quadratic scattering

    International Nuclear Information System (INIS)

    Sallah, M.; Margeanu, C. A.

    2016-01-01

    The space-fractional neutron transport equation is used to describe the neutrons transport in finite disturbed reactors. It is approximated using the Pomraning-Eddington technique to yield two space-fractional differential equations, in terms of neutron density and net neutron flux. These resultant equations are coupled into a fractional diffusion-like equation for the neutron density whose solution is obtained by using Laplace transformation method. The solution is represented in terms of the Mittag-Leffler function and its different orders. The scattering is considered as quadratic scattering to offer a more realistic, compact representation of the system, and to increase the accuracy of the estimated neutronic parameters. The results are presented graphically to illustrate the fractional parameter effect in addition to the effect of radiative-transfer properties on the physical parameters of interest (reflection coefficient, transmission coefficient, neutron energy, and net neutron flux). The neutron transport problem in finite disturbed reactor with quadratic scattering is considered in investigating the shielding effectiveness, by using MAVRIC shielding module from SCALE6 programs package. The fractional parameter can be used to adjust the analysed data on neutron energy and flux, both for the theoretical model and the neutron transport application. (authors)

  3. Finite-volume and partial quenching effects in the magnetic polarizability of the neutron

    Science.gov (United States)

    Hall, J. M. M.; Leinweber, D. B.; Young, R. D.

    2014-03-01

    There has been much progress in the experimental measurement of the electric and magnetic polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects is required prior to an extrapolation in quark mass to the physical point. These dependencies are described using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the infinite-volume result at the physical pion mass. A variety of extrapolations are shown at different box sizes, providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A relatively precise value for the physical magnetic polarizability of the neutron is presented, βn=1.93(11)stat(11)sys×10-4 fm3, which is in agreement with current experimental results.

  4. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  5. Finite-width effects in unstable-particle production at hadron colliders

    International Nuclear Information System (INIS)

    Falgari, P.; Signer, A.; Zuerich Univ.

    2013-03-01

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of Γ X /m X , with Γ X and m X the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting ∝Γ t /m t ∝1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  6. Finite-width effects in unstable-particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Falgari, P. [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Utrecht Univ. (Netherlands). Spinoza Inst.; Papanastasiou, A.S. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Signer, A. [Paul Scherrer Institut, Villigen (Switzerland); Zuerich Univ. (Switzerland). Inst. for Theoretical Physics

    2013-03-15

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of {Gamma}{sub X}/m{sub X}, with {Gamma}{sub X} and m{sub X} the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting {proportional_to}{Gamma}{sub t}/m{sub t}{proportional_to}1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  7. Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury

    Science.gov (United States)

    Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.

  8. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  9. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  10. Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).

    Science.gov (United States)

    Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R

    2017-10-04

    A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.

  11. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  12. Optimization of powered Stirling heat engine with finite speed thermodynamics

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel

    2016-01-01

    Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.

  13. Study of the effect of finite extent on sound transmission loss of single panel using a waveguide model

    OpenAIRE

    Prasetiyo , Iwan; Thompson , David

    2012-01-01

    International audience; The sound transmission loss (STL) of a panel is often estimated using an infinite plate model. However, some discrepancies are found between these predicted results and experimental ones. One of the sources of such discrepancies corresponds to the finite extent that is naturally found in real structures. In the present study an analytical waveguide model of sound transmission is used to study the effect of finite dimensions in one direction for a panel which is long in...

  14. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of fenofibrate on blood pressure reduction

    Directory of Open Access Journals (Sweden)

    A K Lipatenkova

    2013-03-01

    Full Text Available Реферат по материалам статей 1. Gilbert K, Nian H, Yu C, Luther JM, Brown NJ. Fenofibrate lowers blood pressure in salt-sensitive but not salt-resistant hypertension. J Hypertens. 2013 Apr;31(4:820-9. doi: 10.1097/HJH.0b013e32835e8227. 2. Kwang K. K. Does Fenofibrate Lower Blood Pressure? Hypertension. 2013 Mar;61(3:e27. doi: 10.1161/HYPERTENSIONAHA.111.00792.

  16. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  17. Effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Ma, Jian-Feng

    Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.

  18. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    Directory of Open Access Journals (Sweden)

    W. X. Niu

    2013-01-01

    Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

  19. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  20. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  1. Compressibility effects on ideal and kinetic ballooning modes and elimination of finite Larmor radius stabilization

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1985-07-01

    The dynamics of ideal and kinetic ballooning modes are considered analytically including parallel ion dynamics, but without electron dissipation. For ideal modes, parallel dynamics predominantly determine the growth rate when β is within approx.30% of the ideal threshold, resulting in a substantial reduction in growth rate. Compressibility also eliminates the stabilization effects of finite Larmor radius (FLR); FLR effects (when temperature gradients are neglected) can even increase the growth rate above the MHD value. Temperature gradients accentuate this by adding a new source of free energy independent of the MHD drive, in this region of ballooning coordinate corresponding in MHD to the continuum. Analytic dispersion relations are derived demonstrating the effects above; the formalism emphasizes the similarities between the ideal MHD and kinetic cases

  2. Dominant two-loop corrections to the MSSM finite temperature effective potential

    International Nuclear Information System (INIS)

    Espinosa, J.R.

    1996-04-01

    We show that two-loop corrections to the finite temperature effective potential in the MSSM can have a dramatic effect on the strength of the electroweak phase transition, making it more strongly first order. The change in the order parameter v/Tc can be as large as 75% of the one-loop daisy improved result. This effect can be decisive to widen the region in parameter space where erasure of the created baryons by sphaleron processes after the transition is suppressed and hence, where electroweak baryogenesis might be successful. We find an allowed region with tan β< or∼4.5 and a Higgs boson with standard couplings and mass below 80 GeV within the reach of LEP II. (orig.)

  3. Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence

    International Nuclear Information System (INIS)

    Uzawa, K.; Li Jiquan; Kishimoto, Y.

    2009-01-01

    The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.

  4. Bibliography on vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Jancso, G.

    1980-04-01

    The first Bibliography on Vapour Pressure Isotope and covered the literature of the period from 1919 through December 1975. The present Supplement reviews the literature from January 1976 through December 1979. The bibliography is arranged in chronological order; within each year the references are listed alphabetically according to the name of the first author of each work. (author)

  5. Students' Pressure, Time Management and Effective Learning

    Science.gov (United States)

    Sun, Hechuan; Yang, Xiaolin

    2009-01-01

    Purpose: This paper aims to survey the status quo of the student pressure and the relationship between their daily time management and their learning outcomes in three different types of higher secondary schools at Shenyang, the capital city of Liaoning Province in mainland China. Design/methodology/approach: An investigation was carried out in 14…

  6. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  7. Blood pressure lowering effect of Tylophora hirsuta wall | Ahmad ...

    African Journals Online (AJOL)

    Crude hydromethanolic extract of Tylophora hirsuta (Th.Cr) was studied in spontaneous hypertensive Wistar rats for possible effects on high blood pressure and heart rate. In the absence of atropine, fall in arterial blood pressure was 64±7 mmHg at the dose of 100 mg/kg while in the presence of atropine, there was no effect ...

  8. Effect of Hibiscus sabdariffa on Blood Pressure and Electrolyte ...

    African Journals Online (AJOL)

    Effect of Hibiscus sabdariffa on Blood Pressure and Electrolyte Profile of Mild to Moderate Hypertensive Nigerians: A Comparative Study with Hydrochlorothiazide. ... Aim: The aim of this study is to investigate the effect of HS consumption on blood pressure (BP) and electrolytes of mild to moderate hypertensive Nigerians ...

  9. Effects of aging on blood pressure variability in resting conditions

    NARCIS (Netherlands)

    Veerman, D. P.; Imholz, B. P.; Wieling, W.; Karemaker, J. M.; van Montfrans, G. A.

    1994-01-01

    The objective of this study was to determine the effect of aging on beat-to-beat blood pressure and pulse interval variability in resting conditions and to determine the effect of aging on the sympathetic and vagal influence on the cardiovascular system by power spectral analysis of blood pressure

  10. Effects of finite-β and radial electric fields on neoclassical transport in the Large Helical Device

    International Nuclear Information System (INIS)

    Kanno, R.; Nakajima, N.; Sugama, H.; Okamoto, M.; Ogawa, Y.

    1997-01-01

    Effects of finite-β and radial electric fields on the neoclassical transport in the Large Helical Device are investigated with the DKES (Drift Kinetic Equation Solver) code. In the finite-β configuration, even orbits of deeply trapped particles deviate significantly from magnetic flux surfaces. Thus, neoclassical ripple transport coefficients in the finite-β configuration are several times larger than those in the vacuum configuration under the same condition of temperatures and radial electric fields. When the plasma temperature is several keV, a bifurcation of the electric fields appears under the ambipolarity condition, and sufficient large radial electric fields can be generated. As a result, the ExB drift rectifies orbits of particles and improves significantly the transport coefficients in the finite-β configuration. (author)

  11. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  12. Acute effects of consumption of energy drinks on intraocular pressure and blood pressure

    Directory of Open Access Journals (Sweden)

    Ilechie AA

    2011-04-01

    Full Text Available A Alex Ilechie, Sandra TettehDepartment of Optometry, University of Cape Coast, GhanaBackground: Energy drinks contain a wide variety of ingredients including caffeine, for which there have been conflicting reports regarding its effects on intraocular pressure (IOP and blood pressure. The aim of this study was to investigate the acute effects of an energy drink (Red Bull® on the IOP and blood pressure of healthy young adults.Methods: Thirty healthy university students of either gender, aged 18–30 (mean 23.20 ± 2.81 years were randomly selected to participate in this study. The subjects were randomly divided into two groups (experimental and control and were asked to abstain from caffeine for 48 hours prior to and during the study. Baseline IOP and blood pressure were measured. The experimental group (n = 15 consumed one can of the energy drink (containing 85 mg of caffeine in 250 mL and measurements were repeated at 30, 60, and 90 minutes, while the control group drank 250 mL of water and were tested over the same time period.Results: When compared with baseline, a significant decrease (P < 0.05 in mean IOP at 60 and 90 minutes was observed in the experimental group. There was no corresponding change in systolic or diastolic blood pressure.Conclusion: Our results suggest that energy drinks (ie, Red Bull produce a significant reduction in IOP but have no effect on blood pressure. These findings may be interpreted as reflecting the effect of the combination of caffeine and taurine in the Red Bull energy drink. This effect may result from the known hypotensive effect of taurine, and warrants further study.Keywords: acute effect, intraocular pressure, blood pressure, glaucoma, caffeine, taurine

  13. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    Science.gov (United States)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  14. Mechanisms of self-organization and finite size effects in a minimal agent based model

    International Nuclear Information System (INIS)

    Alfi, V; Cristelli, M; Pietronero, L; Zaccaria, A

    2009-01-01

    We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity

  15. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    Science.gov (United States)

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.

  16. Effect of intrusive and retraction forces in labial and lingual orthodontics: A finite element study

    Directory of Open Access Journals (Sweden)

    Rohan Mascarenhas

    2014-01-01

    Full Text Available Objectives: Lingual orthodontics differs in biomechanics as compared to labial system and has biomechanical advantages. Although theoretical approaches have explained the differences between labial and lingual orthodontics, the finite element method (FEM may be better suited to analyze these differences. This study analyzes the effect of vertical and horizontal forces together on the tooth using FEM. Materials and Methods: An extracted right maxillary central incisor was radiographed and was used to create a solid model using ANSYS. The geometric model was converted into a finite element model with the help of ANSYS software. The model consists of 27,000 elements and 30,000 nodes. Two force vectors (vertical and horizontal were applied labially and lingually at 3 different heights- 4 mm, 5 mm and 6 mm from the incisal edge. Results: In the labial system, the net force vector passes through the center of resistance (CR and brings about intrusion. The net force vector in lingual orthodontics does not pass through the center of resistance and produces lingual tipping of the incisors. Conclusion: Intrusion and retraction forces bring about tipping of incisors in lingual orthodontics. The same amount of intrusion and retraction forces brings about intrusion of incisors in labial orthodontics. Therefore, direction and amount of forces should be carefully and judiciously applied after taking into consideration the resultant biomechanical differences.

  17. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  18. Study of finite-orbit-width effect on neoclassical transport in tokamak core region

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao

    2004-01-01

    Neoclassical transport simulation using the δf Monte-Carlo method is carried out to investigate the finite-orbit-width (FOW) effect on the transport near the magnetic axis. The time evolution of the radial electric field to maintain the ambipolarity of the flux is calculated simultaneously. It is found that, in the near-axis region, the ion heat flux decreases from the value predicted by the standard neoclassical theory both in the banana and plateau regimes. Though the radial transport shows a strong dependence on the FOW effect, the ambipolar electric field profile at the steady state is similar to that calculated in the small-orbit-width limit approximation. (author)

  19. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    International Nuclear Information System (INIS)

    Witteveen, Jeroen A.S.; Bijl, Hester

    2009-01-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  20. Cost-effectiveness of pressure-relieving devices for the prevention and treatment of pressure ulcers.

    Science.gov (United States)

    Fleurence, Rachael L

    2005-01-01

    The cost-effectiveness of alternating pressure-relieving devices, mattress replacements, and mattress overlays compared with a standard hospital (high-specification foam mattress) for the prevention and treatment of pressure ulcers in hospital patients in the United Kingdom was investigated. A decision-analytic model was constructed to evaluate different strategies to prevent or treat pressure ulcers. Three scenarios were evaluated: the prevention of pressure ulcers, the treatment of superficial ulcers, and the treatment of severe ulcers. Epidemiological and effectiveness data were obtained from the clinical literature. Expert opinion using a rating scale technique was used to obtain quality of life data. Costs of the devices were obtained from manufacturers, whereas costs of treatment were obtained from the literature. Uncertainty was explored through probabilistic sensitivity analysis. Using 30,000 pounds sterling/QALY (quality-adjusted life year) as the decision-maker's cut off point (the current UK standard), in scenario 1 (prevention), the cost-effective strategy was the mattress overlay at 1, 4, and 12 weeks. In scenarios 2 and 3, the cost-effective strategy was the mattress replacement at 1, 4, and 12 weeks. Standard care was a dominated intervention in all scenarios for values of the decision-maker's ceiling ratio ranging from 5,000 pounds sterling to 100,000 pounds sterling/QALY. However, the probabilistic sensitivity analysis results reflected the high uncertainty surrounding the choice of devices. Current information suggests that alternating pressure mattress overlays may be cost-effective for the prevention of pressure ulcers, whereas alternating pressure mattress replacements appears to be cost-effective for the treatment of superficial and severe pressure ulcers.

  1. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions

    Science.gov (United States)

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2018-05-01

    We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  2. Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Damiano, P. A.; Wright, A. N.; McKenzie, J. F.

    2009-01-01

    The linear wave equation (sixth order in space and time) and the corresponding dispersion relation is derived for Hall magnetohydrodynamic (MHD) waves including electron inertial and finite Larmor radius effects together with several limiting cases for a homogeneous plasma. We contrast these limits with the solution of the full dispersion relation in terms of wave normal (k perpendicular ,k || ) diagrams to clearly illustrate the range of applicability of the individual approximations. We analyze the solutions in terms of all three MHD wave modes (fast, slow, and Alfven), with particular attention given to how the Alfven branch (including the cold ideal field line resonance (FLR) [D. J. Southwood, Planet. Space Sci. 22, 483 (1974)]) is modified by the Hall term and electron inertial and finite Larmor radius effects. The inclusion of these terms breaks the degeneracy of the Alfven branch in the cold plasma limit and displaces the asymptote position for the FLR to a line defined by the electron thermal speed rather than the Alfven speed. For a driven system, the break in this degeneracy implies that a resonance would form at one field line for small k perpendicular and then shift to another as k perpendicular →∞. However for very large ωk perpendicular /V A , Hall term effects lead to a coupling to the whistler mode, which would then transport energy away from the resonant layer. The inclusion of the Hall term also significantly effects the characteristics of the slow mode. This analysis reveals an interesting 'swapping' of the perpendicular root behavior between the slow and Alfven branches.

  3. Non-linear finite element modelling and analysis of the effect of gasket creep-relaxation on circular bolted flange connections

    International Nuclear Information System (INIS)

    Luyt, P.C.B.; Theron, N.J.; Pietra, F.

    2017-01-01

    It is well known that gasket creep-relaxation results in a reduction of contact pressure between the surface of a gasket and the face of a flange over an extended period of time. This reduction may result in the subsequent failure of the circular bolted flange connection due to leakage. In this paper a pair of flat and raised face integral flanges, PN 10 DN 50 (in accordance with the European EN 1092-1 standard), with non-asbestos compressed fibre ring gaskets with aramid and a nitrile rubber binder were considered. Finite element modelling and analyses were done, for both the circular bolted flange configurations, during the seating condition. The results of the finite element analyses were experimentally validated. It was found that the number of bolt tightening increments as well as the time between the bolt tightening increments had a significant impact on the effect which gasket creep-relaxation had after the seating condition. An increase in either the number of bolting increments or the time between the bolting increments will reduce the effect which gasket creep-relaxation has once the bolts had been fastened. Based on these results it is possible to develop an optimisation scheme to minimize the effect which gasket creep-relaxation has on the contact pressure between the face of the flange and the gasket, after seating, by either increasing or decreasing the number of bolt tightening increments or the time between the bolt tightening increments. - Highlights: • Number of bolt tightening increments and time between bolt tightening increments had significant impact on effect of gasket creep-relaxation after the seating condition. • Impact of gasket creep-relaxation during seating and operating phases investigated by means of finite element analysis and experimentally verified. • Possible to develop optimisation scheme to minimize effect ofh gasket creep-relaxation on contact pressure between flange face and gasket. • Knowing the contact pressure is

  4. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors.

    Science.gov (United States)

    Cornelissen, Véronique A; Fagard, Robert H

    2005-10-01

    Previous meta-analyses of randomized controlled trials on the effects of chronic dynamic aerobic endurance training on blood pressure reported on resting blood pressure only. Our aim was to perform a comprehensive meta-analysis including resting and ambulatory blood pressure, blood pressure-regulating mechanisms, and concomitant cardiovascular risk factors. Inclusion criteria of studies were: random allocation to intervention and control; endurance training as the sole intervention; inclusion of healthy sedentary normotensive or hypertensive adults; intervention duration of > or =4 weeks; availability of systolic or diastolic blood pressure; and publication in a peer-reviewed journal up to December 2003. The meta-analysis involved 72 trials, 105 study groups, and 3936 participants. After weighting for the number of trained participants and using a random-effects model, training induced significant net reductions of resting and daytime ambulatory blood pressure of, respectively, 3.0/2.4 mm Hg (Phypertensive study groups (-6.9/-4.9) than in the others (-1.9/-1.6; Pendurance training decreases blood pressure through a reduction of vascular resistance, in which the sympathetic nervous system and the renin-angiotensin system appear to be involved, and favorably affects concomitant cardiovascular risk factors.

  5. Effects of positive end-expiratory pressure on renal function.

    Science.gov (United States)

    Järnberg, P O; de Villota, E D; Eklund, J; Granberg, P O

    1978-01-01

    The effects were studied positive end-expiratory pressure (PEEP) on renal function in eight patients with acute respiratory failure, requiring mechanical ventilation. On application of PEEP + 10 cm H2O, central venous pressure increased, systolic blood pressure decreased, urine flow and PAH-clearance were reduced, while inulin clearance remained stable. There was a marked increase in fractional sodium reabsorption and a concurrent decrease in fractional osmolal excretion. Fractional free-water clearance and the ratio UOsm/POsm did change.

  6. Correction Effect of Finite Pulse Duration for High Thermal Diffusivity Materials

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Baik, Seung Je; Yoo, Byoung Ok; Ahn, Sang Bok; Ryu, Woo Seok

    2010-01-01

    In the laser pulsed flash method, a pulse of energy is incident on one of two parallel faces of a sample. The subsequent temperature history of the opposite face is then related to the thermal diffusivity. When the heat pulse is of infinitesimal duration, the diffusivity is obtained from the transient response of the rear face temperature proposed by Parker et al. The diffusivity αis computed from relation 2222121.37cattαππ≡= (1) Where a is the sample thickness and is the time required for the rear face temperature to reach half-maximum, and t c ≡a 2 / π 2 t 1/2 is the characteristic rise time of the rear face temperature. When the pulse-time 1/2tτis not infinitesimal, but becomes comparable to tc, it is apparent that the rise in temperature of the rear face will be retarded, and will be greater than 1.37 t c . This retardation has been called the ' finite pulse-time effect.' Equation (1) is accurate to 1% for tc > ∼ 501/2tτ. For many substances, this inequality cannot be achieved with conventional optical sources (e.g. τ. 10 -3 sec for a solid state laser) unless the sample thickness is so large that its rise in temperature is too small for accurate measurement. One must therefore make an appropriate correction for the retardation of the temperature wave. Purpose of study are to observe impact of finite pulse time effect in appropriate sample thickness and to verify the effect of pulse correction using Cape and Lehman method for high thermal diffusivity materials

  7. Finite size effects in the intermittency analysis of the fragment-size correlations

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.; Tucholski, A.

    1991-01-01

    An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs

  8. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    International Nuclear Information System (INIS)

    Knudsen, W.C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gases consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor

  9. On routing strategy with finite-capacity effect on scale-free networks

    International Nuclear Information System (INIS)

    Tang, S.; Jiang, X.; Ma, L.; Zhang, Z.; Zheng, Z.

    2010-01-01

    We propose a class of systems with finite-capacity effect to investigate routing-strategy optimization. The local topology and the variable capacity, two crucial elements for routing, are naturally coupled by considering the interactions among packets. We show how the combination of these two elements controls the normal and efficient functioning of routing in the frame of condensation and coverage, respectively. Specifically, it is shown that the dynamic behaviors of diffusing packets exhibit condensation, for which exact results of the stationary state and phase transition are given. Further, we explore the diffusion coverage of routed packets through simulation. Various alternatives for the strategy parameters are illustrated to apply standard techniques to alleviate condensation and accelerate coverage. Our results provide a practical way for the design of optimal routing strategies in complex networks by the manipulation of a few parameters. (author)

  10. Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element

    Science.gov (United States)

    Akinlabi, Stephen; Akinlabi, Esther

    2017-08-01

    Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.

  11. Taking into account of effects of finite geometry in a neutron-physical experiment

    International Nuclear Information System (INIS)

    Dushin, V.N.; Ippolitov, V.T.

    1981-01-01

    Problems for account of finite geometry of neutron-physical experiment are considered from the point of view of increasing the determination accuracy of nuclear-physical constants (NPC). A three-equation system, which relates studied nuclear-physical characteristics of the target to experimental results obtained at the output of registering device, is presented. A problem of accurate NPC determination is the solution of the given system in relation to parameters sought for, it is a so-called reverse problem of the irradiation transfer theory. A method of error matrix determination measuring NPC, with the help of the introduction of the sensitivity coefficients is considered. Proposed interpretation of reverse problems of the irradiation transfer theory is effective during the planning of experimental investigations taking into account correlation properties of experimental techniques [ru

  12. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  13. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  14. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    International Nuclear Information System (INIS)

    Drewes, Marco

    2014-01-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model

  15. Radiation effects on reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue

  16. The effects of cigarette smoking on intraocular pressure and arterial ...

    African Journals Online (AJOL)

    This study was designed to determine the effects of cigarette Smoking on intra ocular pressure and arterial blood pressure of normotensive young male adults. Fifty male students (who met the screening conditions and devoid of obvious ocular pathology and systemic diseases and nonsmokers) had their intra ocular ...

  17. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  18. Effects of Malaria on Blood Pressure, Heart Rate, Electrocardiogram ...

    African Journals Online (AJOL)

    The effect of malaria on blood pressure, heart rate, electrocardiogram and the cardiovascular responses to postural change were studied in malaria patients. Blood pressure was measured by the sphygmomanometric-auscultatory method. Standard ECG machine was used to record the electrocardiogram. Heart rate was ...

  19. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  20. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  1. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  2. Effects of pressure and temperature on gate valve unwedging

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  3. Effects of pressure and temperature on gate valve unwedging

    International Nuclear Information System (INIS)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-01-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. open-quotes Pressure lockingclose quotes and open-quotes thermal bindingclose quotes refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an open-quotes interferenceclose quotes between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat open-quotes interferenceclose quotes. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat open-quotes interferenceclose quotes or disk-to-seat friction

  4. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  5. Pipeline's natural frequency response due to internal pressure effect

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Andre L.L.; Guevara Junior, Nestor O. [Suporte - Consultoria e Projetos Ltda., Rio de Janeiro, RJ (Brazil); Galgoul, Nelson S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Fernandes, Antonio C.; Coelho, Fabio M. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao de Programas de Pos-graduacao de Engenharia

    2009-12-19

    A few years ago, a discussion about how internal pressure is treated in submarine pipelines has taken place. Galgoul et al (2004) have pointed out the conservatism of the latest recommendations for pipeline free-span evaluations associated to the way the axial force is considered in the determination of the pipeline natural frequency. Fyrileiv and Collberg (2005) have also discussed this point in defense of the effective axial force concept and its use in the natural frequency determination. In order to contribute to this aspect, an experimental test has been performed with a fully embedded pipeline which was pressurized. The main object consists in showing that the pipe is under tension (and not under compression) and, as a consequence, it is the authors' intention to prove that the natural frequency increases instead of reducing when the internal pressure is incremented. In addition to the test, a finite element model has been presented where this internal pressure effect is taken into account as it actually is (and not as an axial force) in order to show the real behavior of the wall stresses. Static analyses, as well as modal and transient analysis have been performed in order to compare theoretical results with the experimental test conducted. (author)

  6. Effect of the hydrostatic pressure on the electron mobility in delta-doped systems

    Energy Technology Data Exchange (ETDEWEB)

    Oubram, O; Mora-Ramos, M E; Gaggero-Sager, L M, E-mail: 1gaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2009-05-01

    The influence of hydrostatic pressure on the electron states and low-temperature mobility in n-type GaAs delta-doped single quantum wells is studied. Values of hydrostatic pressure consider are below the so-called GAMMA-X crossover, keeping all attention in the electronic properties at the Brillouin zone center. The effect of the pressure on the electron mobility is described via a relative quantity that is proportional to the ratio between P not = 0 and zero pressure results. Calculation is performed using an analytical description of the potential energy function profile, based on the Thomas-Fermi approach, taking explicitly into account the dependence upon P of the main input parameters: effective masses and dielectric constant. The relative mobility increases for higher values of P. The cases of zero and finite -although small- temperature are studied, showing that the influence of T is mainly to lower the values of the relative mobility in the entire range of P considered. Numerical results are reported for a two-dimensional density of ionized impurities equals to 7.5 x 10{sup 12} cm{sup -2}.

  7. Cost-effectiveness of Intensive Blood Pressure Management

    DEFF Research Database (Denmark)

    Richman, Ilana B; Fairley, Michael; Jørgensen, Mads Emil

    2016-01-01

    Importance: Among high-risk patients with hypertension, targeting a systolic blood pressure of 120 mm Hg reduces cardiovascular morbidity and mortality compared with a higher target. However, intensive blood pressure management incurs additional costs from treatment and from adverse events......-effectiveness of intensive blood pressure management among 68-year-old high-risk adults with hypertension but not diabetes. We used the Systolic Blood Pressure Intervention Trial (SPRINT) to estimate treatment effects and adverse event rates. We used Centers for Disease Control and Prevention Life Tables to project age...... and accrued $155 261 in lifetime costs, while intensive management yielded 10.5 QALYs and accrued $176 584 in costs. Intensive blood pressure management cost $23 777 per QALY gained. In a sensitivity analysis, serious adverse events would need to occur at 3 times the rate observed in SPRINT and be 3 times...

  8. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature

    Science.gov (United States)

    Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana

    2018-03-01

    Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water

  9. Hydrostatic pressure effects on the dielectric response of potassium cyanide

    International Nuclear Information System (INIS)

    Ortiz Lopez, J.

    1992-01-01

    The complex dielectric constant of crystalline KCN was measured under hydrostatic pressures up to 6.1 kbar in the temperature and frequency ranges of 50-300 K and 10-10 5 Hz, respectively. It is found that the pressure derivative of the real part of the dielectric constant at all measured temperatures is negative. From these results we obtain estimates for the pressure and volume derivatives of polarizabilities. The anomaly in the real part of the dielectric constant at the elastic order-disorder transition shifts to higher temperatures with increasing pressure at a rate of 2.05 K/kbar. By carefully avoiding thermal cycling through this transition we find no evidence of the monoclinic phase reported to exist in the P-T phase diagram of KCN at relatively low pressures. Dielectric loss measurements show thermally-activated CN - reorientation rates in the elastically ordered phase with pressure-independent reorientational barriers and decreasing attempt frequencies for increasing pressures. Additional pressure effects on dielectric loss allow to obtain the pressure derivative of the antiferroelectric transition temperature as 1.97 K/kbar. (Author)

  10. Care planning for pressure ulcers in hospice: the team effect.

    Science.gov (United States)

    Eisenberger, Andrew; Zeleznik, Jomarie

    2004-09-01

    The standards of care for patients at risk for or with a pressure ulcer in hospitals and nursing homes focus on prevention and ulcer healing using an interdisciplinary approach. Although not a primary hospice condition, pressure ulcers are not uncommon in dying patients. Their management in hospices, particularly the involvement of family caregivers, has not been studied. The objective of this study is to identify the factors that influence care planning for the prevention and treatment of pressure ulcers in hospice patients and develop a taxonomy to use for further study. A telephone survey was conducted with 18 hospice directors of clinical services and 10 direct-care nurses. Descriptive qualitative data analysis using grounded theory was utilized. The following three themes were identified: (1) the primary role of the hospice nurse is an educator rather than a wound care provider; (2) hospice providers perceive the barriers and burdens of family caregiver involvement in pressure ulcer care to be bodily location of the pressure ulcer, unpleasant wound characteristics, fear of causing pain, guilt, and having to acknowledge the dying process when a new pressure ulcer develops; and (3) the "team effect" describes the collaboration between family caregivers and the health care providers to establish individualized achievable goals of care ranging from pressure ulcer prevention to acceptance of a pressure ulcer and symptom palliation. Pressure ulcer care planning is a model of collaborative decision making between family caregivers and hospice providers for a condition that occurs as a secondary condition in hospice. A pressure ulcer places significant burdens on family caregivers distinct from common end-of-life symptoms whose treatment is directed at the patient. Because the goals of pressure ulcer care appear to be individualized for a dying patient and their caregivers, the basis of quality-of-care evaluations should be the process of care rather than the outcome

  11. Peripheral vascular effects on auscultatory blood pressure measurement.

    Science.gov (United States)

    Rabbany, S Y; Drzewiecki, G M; Noordergraaf, A

    1993-01-01

    Experiments were conducted to examine the accuracy of the conventional auscultatory method of blood pressure measurement. The influence of the physiologic state of the vascular system in the forearm distal to the site of Korotkoff sound recording and its impact on the precision of the measured blood pressure is discussed. The peripheral resistance in the arm distal to the cuff was changed noninvasively by heating and cooling effects and by induction of reactive hyperemia. All interventions were preceded by an investigation of their effect on central blood pressure to distinguish local effects from changes in central blood pressure. These interventions were sufficiently moderate to make their effect on central blood pressure, recorded in the other arm, statistically insignificant (i.e., changes in systolic [p cooling experiments was statistically significant (p < 0.001). Moreover, both measured systolic (p < 0.004) and diastolic (p < 0.001) pressure decreases during the reactive hyperemia experiments were statistically significant. The findings demonstrate that alteration in vascular state generates perplexing changes in blood pressure, hence confirming experimental observations by earlier investigators as well as predictions by our model studies.

  12. Effect of geometry, material and pressure variability on strain and stress fields in dented pipelines under static and cyclic pressure loading using probability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muslim, Husain Mohammed; Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2010-07-01

    Mechanical damage in transportation pipelines is an issue of extreme importance to pipeline operators and many others. Appropriate procedures for severity assessment are necessary. This paper mainly studies the effect of geometry, material and pressure variability on strain and stress fields in dented pipelines subjected to static and cyclic pressure. Finite element analysis (FEA) has often been used to overcome the limitations of a full-scale test, but it is still impossible to run FEA for all possible combinations of parameters. Probabilistic analysis offers an excellent alternative method to determine the sensitivity of the strain and stress fields to each of those input parameters. A hundred cases were randomly generated with Monte Carlo simulations and analyzed, a general formula was proposed to relate the output variables in terms of practically measured variables, and regression analysis was performed to confirm the appropriateness of the general formula.

  13. Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.

    Science.gov (United States)

    Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio

    2015-01-01

    The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.

  14. Effective theory for heavy quark QCD at finite temperature and density with stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Mathias

    2015-07-01

    In this thesis we presented the derivation as well as the numerical and analytical treatment of an effective theory for lattice Quantum Chromodynamics (LQCD). We derived the effective theory directly from LQCD, which allows us to systematically introduce further improvements. The derivation was performed by means of an expansion around the limit of infinite quark masses and infinite gauge coupling. Using this theory we were able to derive results in the region of large densities. This region is, due to the sign problem, inaccessible to standard LQCD approaches. Although LQCD simulations at large densities have been performed recently by applying stochastic quantization, those are still limited to lattice with low numbers of timeslices and therefor can not reach the low temperature region. Furthermore, they can not be crosschecked with Monte-Carlo simulations. Since the equivalence between stochastic quantization and Monte-Carlo is unproven for the case of finite density systems, new approaches to access the cold dense region of the QCD phase diagram are desirable. The effective theory presented in this thesis provides such an approach. We introduced continuum QCD in chapter 2. In chapter 3 we presented how LQCD, i.e. QCD in a discretized space-time, can be formulated and used as a tool to explore the non-perturbative regions of the QCD phase diagram. Special emphasis was placed on simulations at finite baryon densities and the numerical problems that arise in this region. These problems are caused by the complexification of the action and are known as the sign problem. We gave a detailed presentation of the derivation of our effective theory in chapter 4. For this we performed expansions around the limit of strong coupling and static quarks, κ=β=0, introducing corrections order by order in the expansion parameters κ and β. Truncating the theory at different orders allowed us to determine the parameter region where the convergence to full LQCD is good. The gauge

  15. Effects of Brown-Rho scalings in nuclear matter, neutron stars and finite nuclei

    Science.gov (United States)

    Kuo, T. T. S.; Dong, Huan

    2011-01-01

    We have carried out calculations for nuclear matter, neutron stars and finite nuclei using NN potentials with and without the medium-dependent modifications based on the Brown-Rho (BR) scalings. Using the Vlow-k low-momentum interactions derived from such potentials, the equations of state (EOS) for symmetric and asymmetric nuclear matter, for densities up to ~ 5ρ0, are calculated using a RPA method where the particle-particle hole-hole ring diagrams are summed to all orders. The medium effects from both a linear BR scaling (BR1) and a non-linear one (BR2) are considered, and they both are essential for our EOSs to reproduce the nuclear matter saturation properties. For densities ρ below ρ0, results from BR1 and BR2 are close to each other. For higher densities, the EOS given by BR2 is more desirable and is well reproduced by that given by the interaction (Vlow-k+TBF) where Vlow-k is the unsealed low-momentum interaction and TBF is an empirical Skyrme three-body force. The moment of inertia of neutron stars is ~ 60 and ~ 25Modotkm2 respectively with and without the inclusion of the above BR2 medium effects. Effects from the BR scaling are important for the long half-life, ~ 5000yrs, of the 14C - 14N β-decay.

  16. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Chen, Yuling; Rößler, Benjamin; Zielonka, Simon; Lemmer, Andreas; Wonneberger, Anna-Maria; Jungbluth, Thomas

    2014-01-01

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m −3 d −1 . Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 l N g −1 COD to 0.31 l N g −1 COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  17. Effect of finited pressure on plasma stability and particle motion i axial-assymetrical open traps

    International Nuclear Information System (INIS)

    Kotel'nikov, I.A.

    1984-01-01

    Hydrodynamic equilibrium confiqurations of plasma are investigated as well as the processes of cross-section transfer in axial-asymmetrical open traps. It is shown that drift surfaces are essentially deformed allowing for the final β, and, as a rule, the property of local injection is disturbed. But non-injection of particle drift surfaces with different energies and a magnetic moment in a paraxial trap turns out to be small by the perimeter of paraxiallity even at βapproximately1

  18. Effect of finite chemical potential on QGP-hadron phase transition in a statistical model of fireball formation

    International Nuclear Information System (INIS)

    Ramanathan, R.; Singh, S.S.; Jha, A.K.; Gupta, K.K.

    2011-01-01

    We study the effect of finite chemical potential for the QGP constituents in the Ramanathan et al. statistical model. While the earlier computations using this model with vanishing chemical potentials indicated a weakly first order phase transition for the system in the vicinity of 170 MeV, the introduction of finite values for the chemical potentials of the constituents makes the transition a smooth roll over of the phases, while allowing fireball formation with radius of a few 'fermi' to take place. This seems to be in conformity with the latest consensus on the nature of the QGP-Hadron phase transition. (author)

  19. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    Science.gov (United States)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  20. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    Science.gov (United States)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  1. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects

    NARCIS (Netherlands)

    Yucesoy, C.A.; Koopman, Hubertus F.J.M.; Grootenboer, H.J.; Huijing, P.A.J.B.M.

    2007-01-01

    Finite element modeling of aponeurotomized rat extensor digitorium longus muscle was performed to investigate the acute effects of proximal aponeurotomy. The specific goal was to assess the changes in lengths of sarcomeres within aponeurotomized muscle and to explain how the intervention leads to

  2. Ultrasonically assisted drilling: A finite-element model incorporating acoustic softening effects

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V

    2013-01-01

    Ultrasonically assisted drilling (UAD) is a novel machining technique suitable for drilling in hard-to-machine quasi-brittle materials such as carbon fibre reinforced polymer composites (CFRP). UAD has been shown to possess several advantages compared to conventional drilling (CD), including reduced thrust forces, diminished burr formation at drill exit and an overall improvement in roundness and surface finish of the drilled hole. Recently, our in-house experiments of UAD in CFRP composites demonstrated remarkable reductions in thrust-force and torque measurements (average force reductions in excess of 80%) when compared to CD with the same machining parameters. In this study, a 3D finite-element model of drilling in CFRP is developed. In order to model acoustic (ultrasonic) softening effects, a phenomenological model, which accounts for ultrasonically induced plastic strain, was implemented in ABAQUS/Explicit. The model also accounts for dynamic frictional effects, which also contribute to the overall improved machining characteristics in UAD. The model is validated with experimental findings, where an excellent correlation between the reduced thrust force and torque magnitude was achieved

  3. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.

    1983-01-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. This results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite elements method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account an elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type elements. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation. (orig.)

  4. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.; Vaghi, H.; Ricard, A.

    1983-08-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. The results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite element method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account on elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type element. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation

  5. Finite banana orbit effects in the presence of mini-magnetic islands

    International Nuclear Information System (INIS)

    Wang, J.P.; Hegna, C.C.; Callen, J.D.

    1993-01-01

    To address the interaction of trapped ions on magnetic islands, the contribution of collisionless finite banana orbit effects on the parallel (to the magnetic field B) current is investigated. In this calculation the width of the magnetic islands and the ion banana orbits are assumed to be small compared with the characteristic equilibrium gradient scale length, a, but comparable to each other, e.g., w isl ∼Δr T much-lt a. The ion drift kinetic equation is solved near the rational flux surface for a single resonant helicity perturbation of the magnetic field, B 1 =∇x(-ψ 1 ∇ζ)∼exp{im(θ-ζ/q s )}. Here, θ is the poloidal angle, ζ the toroidal angle, and q s =m/n the safety factor on the rational flux surface. Then, using this solution, the parallel current will be calculated in combination with the electron drift kinetic solution previously solved by Hegna and Callen, where the electron banana width effects are neglected since the electron poloidal gyro radius is taken to be very small with respect to the magnetic island width

  6. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  7. Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study.

    Science.gov (United States)

    Rungsiyakull, Chaiy; Rungsiyakull, Pimdeun; Li, Qing; Li, Wei; Swain, Michael

    2011-01-01

    To provide a preliminary understanding of the biomechanics with respect to the effect of cusp inclination and occlusal loading on the mandibular bone remodeling. Three different cusp inclinations (0, 10, and 30 degrees) of a ceramic crown and different occlusal loading locations (central fossa and 1- and 2-mm offsets horizontally) were taken into account to explore the stresses and strains transferred from the crown to the surrounding dental bone through the implant. A strain energy density obtained from two-dimensional plane-strain finite element analysis was used as the mechanical stimulus to drive cancellous and cortical bone remodeling in a buccolingual mandibular section. Different ceramic cusp inclinations had a significant effect on bone remodeling responses in terms of the change in the average peri-implant bone density and overall stability. The remodeling rate was relatively high in the first few months of loading and gradually decreased until reaching its equilibrium. A larger cusp inclination and horizontal offset (eg, 30 degrees and 2-mm offset) led to a higher bone remodeling rate and greater interfacial stress. The dental implant superstructure design (in terms of cusp inclination and loading location) determines the load transmission pattern and thus largely affects bone remodeling activities. Although the design with a lower cusp inclination recommended in previous studies may reduce damage and fracture failure, it could, to a certain extent, compromise bone engagement and long-term stability.

  8. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  9. Soil-blade orientation effect on tillage forces determined by 3D finite element models

    Directory of Open Access Journals (Sweden)

    Ayadi Ibrahmi

    2014-10-01

    Full Text Available This paper investigated the effect of the cutting parameters of a blade on the tillage force components using finite element modeling. A three-dimensional model was carried out with Abaqus Explicit in order to study the interaction between the tool and soil. The soil was modeled with linear forms of the Drucker-Pager model, while the tool was considered as a rigid body with a reference point taken at its tip. The effect of tillage depth and the width of a vertical blade were studied. It was found that the amounts of the draught and vertical forces increase linearly with a slope of 0.037 and 0.0143 respectively when the width increases. The narrow tool (width< 60mm has a greater effect on the specific draught force than a larger tool. Draught and specific draught force increase with polynomial and linear curve respectively versus the depth. However, this effect was reduced for the vertical force. These results were in a good agreement with previously published works. The second part of this paper is focused on the oblique position of the blade to evaluate the effect of the attack angles on both the tillage forces (draught, lateral and vertical and the cutting process of the soil during and after its failure. For all considered angles, the draught force presents the highest values compared to the vertical and lateral forces. Results showed that working with small cutting and an average rake angles (30° to 60° and 45° respectively can produce a good soil inversion.

  10. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  11. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  12. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  13. The effect of fish oil supplements on blood pressure.

    Science.gov (United States)

    Lofgren, R P; Wilt, T J; Nichol, K L; Crespin, L; Pluhar, R; Eckfeldt, J

    1993-01-01

    We conducted a double-blind, placebo-controlled crossover study to determine the effects of fish oil supplementation on blood pressure in middle-aged men. Subjects were randomly assigned to consume either 20 g of fish oil or safflower oil for 12 weeks and then consume the other oil for an additional 12 weeks after a 4-week washout period. We found no significant changes from the pretreatment value in systolic or diastolic blood pressure with the use of fish oil supplements. In addition, there were no significant differences in the posttreatment blood pressures comparing the fish and safflower oil phases of the study. PMID:8427339

  14. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  15. Finite-size effects in the three-state quantum asymmetric clock model

    International Nuclear Information System (INIS)

    Gehlen, G. v.; Rittenberg, V.

    1983-04-01

    The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)

  16. The effect of seated pelvic tilt on posterior edge-loading in total hip arthroplasty: A finite element investigation.

    Science.gov (United States)

    Pierrepont, Jim; Yang, Long; Arulampalam, Jevan; Stambouzou, Catherine; Miles, Brad; Li, Qing

    2018-03-01

    Edge-loading of a ceramic-on-ceramic total hip replacement can lead to reproducible squeaking and revision. A patient's functional acetabular cup orientation, driven by their pelvic tilt, has been shown to be a significant factor in squeaking during hip flexion. The aim of this study was to investigate the effect of seated pelvic tilt on the contact mechanics at the ceramic bearing surface. A finite element model of a ceramic-on-ceramic total hip replacement was created. The cup was orientated at 40° inclination and 15° anteversion relative to the anterior pelvic plane. The stem was flexed 90° to replicate sitting in a chair. The model was loaded using data from in vivo measurements taken during a sit-to-stand activity. The pelvis was modelled in seven different sagittal positions, ranging from -30° to 30° of pelvic tilt, where a positive value denotes anterior pelvic tilt. Three different head sizes were investigated: 32, 36 and 40 mm. The maximum contact pressure and contact patch to rim distance were determined for each of the 21 simulations. Edge-loading (contact patch to rim distance Edge-loading initiated at seated pelvic tilts of 7°, 9° and 5° for the 32, 36 and 40 mm heads, respectively. Patients with anterior pelvic tilts in the seated position are susceptible to posterior edge-loading. As the position of the pelvis when seated is patient specific, cup orientation should be adjusted on an individual basis to minimise edge-loading.

  17. Effect of pressure on thermal expansion of UNiGa

    International Nuclear Information System (INIS)

    Honda, F.; Andreev, A.V.; Havela, L.; Prokes, K.; Sechovsky, V.

    1997-01-01

    The thermal expansion of single crystalline UNiGa has been measured along the crystallographic axes (a and c) under pressures up to 1.1 GPa. The linear thermal expansion both in the paramagnetic and antiferromagnetic ranges is strongly anisotropic. The antiferromagnetic ordering is accompanied by considerable (10 -4 ) linear spontaneous magnetostrictions (along the a- and c-axis) of different signs (-0.8 x 10 -4 and 1.8 x 10 -4 ). The mutual compensation of these two effects causes the volume effect to be rather small (∝10 -5 ). Two of the four magnetic phase transitions in UNiGa indicated by the expansion anomalies under ambient pressure are suppressed by pressures above 0.5 GPa. Results of our experiments allow to construct a pressure-temperature (p-T) magnetic phase diagram. (orig.)

  18. Pressure effects on magnetism in the uranium and neptunium monopnictides

    International Nuclear Information System (INIS)

    Braithwaite, D.; Demuer, A.; Ichas, V.; Rebizant, J.; Spirlet, J.C.; Zwirner, S.; Vogt, O.

    1998-01-01

    The magnetic properties of the cubic NaCl uranium and neptunium monopnictides (UX, NpX; X=N, P, As, Sb, Bi) have been widely studied at ambient pressure. Properties ranging from itinerant to localized magnetism, and a variety of ordered magnetic structures have been observed. In particular the profusion of non-collinear double-k or triple-k structures is a consequence of strongly anisotropic exchange interactions. The application of pressure is a clean way of continuously varying the lattice parameter, and the exchange interactions, from one compound to another. A number of studies have been performed using different high pressure techniques. Some of the effects of pressure can be understood in a simple picture of a continuous variation of the lattice parameter, but some highly anomalous effects are also found which are discussed in relation to the possible nature of the magnetic interactions. (orig.)

  19. Effect of overtime work on 24-hour ambulatory blood pressure.

    Science.gov (United States)

    Hayashi, T; Kobayashi, Y; Yamaoka, K; Yano, E

    1996-10-01

    Recently, the adverse effects of long working hours on the cardiovascular systems of workers in Japan, including "Karoshi" (death from overwork), have been the focus of social concern. However, conventional methods of health checkups are often unable to detect the early signs of such adverse effects. To evaluate the influence of overtime work on the cardiovascular system, we compared 24-hour blood pressure measurements among several groups of male white-collar workers. As a result, for those with normal blood pressure and those with mild hypertension, the 24-hour average blood pressure of the overtime groups was higher than that of the control groups; for those who periodically did overtime work, the 24-hour average blood pressure and heart rate during the busy period increased. These results indicate that the burden on the cardiovascular system of white-collar workers increases with overtime work.

  20. Synergistic effect of high pressure processing and Lactobacillus casei antimicrobial activity against pressure resistant Listeria monocytogenes.

    Science.gov (United States)

    Chung, Hyun-Jung; Yousef, Ahmed E

    2010-09-30

    The purpose of this study was to evaluate combinations of high pressure processing (HPP) and Lactobacillus casei antimicrobial activity against Listeria monocytogenes strains with variation in pressure resistance in culture and in a food model. In culture, combination of HPP (350 MPa, for 1-20 min) and Lb. casei cell extract (CE, 32 CEAU/ml) showed a significant synergistic bactericidal effect (P5 log(10)CFU/ml. Synergy between CE and HPP was most evident in the pressure-resistant strain, OSY-8578. Similar result was observed in meat products where high pressure (500 MPa for 1 min), and high-activity CE (100 CEAU/g) caused >5 log reduction in the viability of L. monocytogenes Scott A. The combination treatment resulted in the absence of peaks associated with cellular components in DSC thermogram suggesting that the presence of CE may have caused a considerable damage to cellular components during the high pressure treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Mechanical effects on the reactor pressure vessel

    International Nuclear Information System (INIS)

    Goeller, B.; Krieg, R.; Stach, T.

    1995-01-01

    The mechanical RPV effects of a steam explosion are to be studied in an experimental program focusing on the BERDA tests. The BERDA facility has been completed. The analytical avaluation is difficult. Therefore the similarity attainable between the fluid/structure bouncing phenomena on different scales is investigated by the FLIPPER experiments. For an analytical description of the problem a model was used which had beeen developed by the CEA for the PLEXUS code. It is based on a discretization of the fluid plug by an assembly of spheres. The computational results, however, do not compare well with the FLIPPER tests and are also in disagreement with the continuum theoretical SLUGDY model. (orig.)

  2. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  4. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    Science.gov (United States)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  5. Finite temperature effective action, AdS5 black holes, and 1/N expansion

    International Nuclear Information System (INIS)

    Alvarez-Gaume, Luis; Gomez, Cesar; Liu Hong; Wadia, Spenta R.

    2005-01-01

    We propose a phenomenological matrix model to study string theory in AdS 5 xS 5 in the canonical ensemble. The model reproduces all the known qualitative features of the theory. In particular, it gives a simple effective potential description of Euclidean black hole nucleation and the tunneling between thermal anti-de Sitter (AdS) and the big black hole. It also has some interesting predictions. We find that there exists a critical temperature at which the Euclidean small black hole undergoes a Gross-Witten phase transition. We identify the phase transition with the Horowitz-Polchinski point where the black hole horizon size becomes comparable to the string scale. The appearance of the Hagedorn divergence of thermal AdS is due to the merger of saddle points corresponding to the Euclidean small black hole and thermal AdS. The merger can be described in terms of a cusp (A 3 ) catastrophe and divergences at the perturbative string level are smoothed out at finite string coupling using standard techniques of catastrophe theory

  6. Fundamental simulations of transverse load effects on Nb3Sn strands using finite element analysis

    Science.gov (United States)

    Wang, T.; Chiesa, L.; Takayasu, M.

    2012-06-01

    A 2D finite element elasto-plastic analysis with various property values of the materials in composite Nb3Sn wires has been conducted to simulate the transverse compression effect on a single strand and a 3-strand cable as basic elements of a Cable-in-Conduit Conductor (CICC). The simulation results have been compared with previously reported experimental results. A parametric study of the stress-strain characteristics of copper at 4 K was considered. The simulation results showed that wire and cable deformations due to the transverse load are very sensitive to the elasto-plastic material properties of copper and bronze. In a triplet it is found that the strain distributions inside the superconducting strand are very different along its axis, that is, for a configuration in which two strands lined in parallel to the transverse load direction shows much higher internal strain than other configurations under the same transverse load. The simulation results agree with the reported experimental results indicating a low Young's modulus for Nb3Sn wires under transverse compression. The simulation also supports the reported contact mechanics model for critical current degradation.

  7. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  8. Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method

    Science.gov (United States)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.

  9. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  10. Finite element modelling of transport and drift effects in tokamak divertor and SOL

    International Nuclear Information System (INIS)

    Simard, M.; Marchand, R.; Boucher, C.; Gunn, J.P.

    1996-01-01

    A finite element code is used to simulate transport of a single-species plasma in the edge and divertor of a tokamak. The physical model is based on Braginskii's fluid equations for the conservation of particles, parallel momentum, ion and electron energy. In modelling recycling, transport of neutral density and energy is treated in the diffusion approximation. The electrostatic potential is obtained from the generalized Ohm's law. It is used to compute the electric field and the associated E x B drift. In a first approximation, transport is assumed to be ambipolar. The system of equations is discretized on an unstructured triangular mesh, thus permitting good spatial resolution near the X-point and an accurate description of divertor plates of arbitrary shape. Special care must be taken to prevent numerical corruption of the highly anisotropic thermal diffusion. Comparisons will be made between simulations and experimental results from TdeV. This will focus, in particular, on density and temperature profiles at the divertor plates, and on the plasma parallel velocity in the SOL. The asymmetry in the power deposited to the inner and outer divertors and the effect of magnetic field reversal will be considered. Comparisons with B2-Eirene simulation results will also be presented

  11. Effects of the imposed pressure differential conditions on duoplasmatron performance

    International Nuclear Information System (INIS)

    Oztarhan, A.

    1988-01-01

    The duoplasmatron plasma source (D.P.T.) was modified to allow access to the arc discharge (to measure the discharge properties) and to vary independently the pressures in different volumes of the arc with the aim of seeing if this freedom would help in optimising the output. The duoplasmatron plasma source was operated under normal running condition (N.R.C.), positive imposed pressure differential condition (P.I.P.D.C.) and negative imposed pressure differential condition (N.I.P.D.C.) and the corresponding properties of the plasma output were measured. Running the duoplasmatron under P.I.P.D. condition did not seem to improve the output as compared to that under N.R.C. However, running the duoplasmatron under N.I.P.D. condition seemed to be advantageous as the output increased by about 30%. It was observed that the back pressure was critical in maintaining the arc and the gap pressure could be lowered much below the normal minimum (while the arc was on) if back pressure was kept above a critical value. The results showed that the effects of varying the dimensions of the intermediate electrode nozzle on the output could be understood in terms of the effect of changes in these dimensions on the relative pressures. An empirical expression for the effect of the pressure ratio was developed from the observations and compared with the experimental results. The reasons for various results can be related to the plasma emission mechanism. (author). 8 refs, 6 figs, 1 tab

  12. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    Science.gov (United States)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  13. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  14. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    Directory of Open Access Journals (Sweden)

    Maziar Heidari

    2018-03-01

    Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

  15. Integrative Strategy for Effective Teaching of Density and Pressure in ...

    African Journals Online (AJOL)

    Integrative Strategy for Effective Teaching of Density and Pressure in Senior Secondary Schools: A Guide to Physics teachers. U Stephen, J T Mkpanang. Abstract. The problem of many teachers throughout the world is not what to teach but how to teach what. In this paper, integrative strategy for effective teaching of density ...

  16. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  17. Pressure effects on the thermal stability of silicon carbide fibers

    Science.gov (United States)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1989-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  18. ATMOSPHERE PRESSURE EFFECT ON THE FIBER OPTIC GYROSCOPE OUTPUT SYGNAL

    Directory of Open Access Journals (Sweden)

    Ilya A. Sharkov

    2017-05-01

    Full Text Available The paper describes research results of the atmospheric pressure effect on the output signal of a fiber optic gyroscope (FOG. In the course of experiments, FOG was placed into a hermetic chamber. The atmosphere pressure was varying in the range from 0.8 to 1.5 atm. All the data, including the FOG output signal, temperature, and data from the pressure sensor installed inside the FOG, were synchronously registered with the computer software. The separation of scale factor change from zero offset in the experiment was carried out by setting the sensitive FOG axis at 0°, 90° and 270° relative to the East (the FOG was set perpendicular to the horizon. After the data processing it was concluded that the FOG signal error associated with the pressure affects mainly on the additive component. The pressure effect on the multiplicative component appeared to be negligible at rotational velocities used in the experiment (0 - 130 /h. At the same time, the FOG signal has a high linear correlation coefficient with the derivative of pressure over time (in some cases, more than 0.9. The experiment was repeated several times and the high degree of the drift repeatability was shown. That makes it possible to implement the compensation algorithm. Application of the simplest algorithmic compensation based on the polynomial of the first degree (ax + b enabled to reduce the root-mean-square (RMS and drift of the signal by 2-9 times.

  19. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  1. The pressure-dependent MR effect of magnetorheological elastomers

    International Nuclear Information System (INIS)

    Dong, Xufeng; Qi, Min; Chen, Ran; Ma, Ning; Li, Jinhai; Ou, Jinping

    2012-01-01

    The mechanism for the influence of the normal pressure on the magnetic-induced shear modulus of magnetorheological elastomers (MREs) was analyzed. Pre-structured MRE samples with 30% micro-sized (∼4 μm) carbonyl iron particles by volume fraction and silicon rubber were prepared under a constant magnetic field of 200 kA m −1 . A parallel-plate MR rheometer was used to conduct dynamic measurements. Under constant strain amplitude (1%) and frequency (10 Hz), different normal pressures (32–128 kPa) were applied on the samples to investigate the normal pressure-dependence properties of MREs. The results indicated that as the normal pressure increases, the magnetic-induced shear modulus of an MRE increases, while the relative MR effect decreases. (paper)

  2. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  3. Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    1991-01-01

    The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)

  4. Effect of finite Coulomb interaction on full counting statistics of electronic transport through single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Xue Haibin, E-mail: xhb98326110@163.co [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Nie, Y.-H., E-mail: nieyh@sxu.edu.c [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Li, Z.-J.; Liang, J.-Q. [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2011-01-17

    We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U{yields}{infinity}, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U{yields}{infinity}; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.

  5. Effect of finite Coulomb interaction on full counting statistics of electronic transport through single-molecule magnet

    International Nuclear Information System (INIS)

    Xue Haibin; Nie, Y.-H.; Li, Z.-J.; Liang, J.-Q.

    2011-01-01

    We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U→∞, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U→∞; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.

  6. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  7. Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    Most phased arrays are designed using infinite array theory, which does not account for edge effects. However, this approximation might not be adequate for the design of wideband arrays, for which truncation effects are more significant than in traditional narrow-band arrays. In particular, edge

  8. Experimental studies on radiation effects under high pressure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  9. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  10. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  11. Purcell effect for finite-length metal-coated and metal nanowires

    DEFF Research Database (Denmark)

    Filonenko, Konstantin V.; Willatzen, Morten; Bordo, Vladimir G.

    2014-01-01

    We investigate the modification (enhancement and suppression) of the spontaneous emission rate of a dipole emitter in two configurations: inside a finite-length semiconductor nanowire surrounded by bulk metal and in the vicinity of a finite metal nanowire. Our analysis is based on a first......-principle approach, which is reduced to a seminumeric one in the limit of large nanowire aspect ratios. The numerical calculations are carried out for an emitter in a GaAs nanowire embedded in Ag or Au and for that nearby an Ag or Au nanowire in vacuum or dielectric. We consider in detail the Purcell and β factors...

  12. Effects of fasting on Blood pressure in normotensive males

    Directory of Open Access Journals (Sweden)

    Fatima Samad

    2016-07-01

    Full Text Available Muslims all over the world fast in the holy month of Ramadan. Fasting means abstinence from drinking any liquids, eating, smoking and taking anything parenterally.  It is intermittent in nature from the start of dawn to end at dusk. Fasting has various physiological effects on different biological parameters of the human body. Previous studies that look at effect of Ramadan fasting on blood pressure have focused mainly on hypertensive patients and patients with already established heart disease.(1,2There is very limited data regarding the effect of fasting on the normal population. (3,4 A few previous studies have advocated a hypotensive role of fasting.(5 In our study published in Journal of Ayub Medical College Abbottabad (JAMC in 2015, “Effects of Ramadan Fasting on Blood pressure in normotensive males”, we investigated the effect of Ramadan fasting on blood pressure of normotensive men. We conducted a repeated measure observational study in Karachi, Pakistan on 70 individuals who were normotensive, non-smokers between the ages of 18–50 years. . Blood pressure, pulse, BMI of each participant was recorded one week before the start of Ramadan and in the first, second and third week of Ramadan. The results of our study show that intermittent fasting has a hypotensive effect in normotensive males as proven in animal models and certain human population. There was an average drop of 8/3 mmHg and while the results are significant, their clinical relevance needs to be analysed. Studies on animal models have suggested atrial natriuretic peptide, catecholamines, opiates and body mass index as possible reasons for the decrease in blood pressure due to fasting.(3, 6  Dewanti et al suggested that the cause of drop in blood pressure was the drop in BMI however in our study we found that a drop in BMI only occurred before Iftar towards the end of the fast. There was no significant drop in post-Iftar BMI although there was a significant drop in blood

  13. The effects of polarized light therapy in pressure ulcer healing

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2008-01-01

    Full Text Available Background/Aim. Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. Methods. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C. A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. Results. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80±19.18; C: 22,97±25,47; p = 0.0005, rank of pressure ulcer (E: 5.90±2.48; C: 8.6±1.05; p = 0.0005 and total PUSH score (E: 7.35±3.17; C: 11.85±2.35; p = 0,0003. The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. Conclusion. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  14. The effects of polarized light therapy in pressure ulcer healing.

    Science.gov (United States)

    Durović, Aleksandar; Marić, Dragan; Brdareski, Zorica; Jevtić, Miodrag; Durdević, Slavisa

    2008-12-01

    Neglecting polarized light as an adjuvant therapy for pressure ulcers and methodology distinctions in the trials engaging polarized light are the reasons for many dilemmas and contradictions. The aim of this study was to establish the effects of polarized light therapy in pressure ulcer healing. This prospective randomized single-blind study involved 40 patients with stage I-III of pressure ulcer. The patients in the experimental group (E) were subjected, besides polarized light therapy, to standard wound cleaning and dressing. Standard wound cleaning and dressing were the only treatment used in the control group (C). A polarized light source was a Bioptron lamp. Polarized light therapy was applied for six min daily, five times a week, four weeks. The Pressure Ulcer Scale for Healing (PUSH) was used in the assessment of outcome. Statistic analysis included Mann Whitney Test, Fisher Exact Test, Wilcoxon Signed Rank test. There were significant differences between the groups at the end of the treatment regarding the surface of pressure ulcer (E: 10.80 +/- 19.18; C: 22,97 +/- 25,47; p = 0.0005), rank of pressure ulcer (E: 5.90 +/- 2.48; C: 8.6 +/- 1.05; p = 0.0005) and total PUSH score (E: 7.35 +/- 3.17; C: 11.85 +/- 2.35; p = 0,0003). The patients in the experimental group had significantly better values of the parameters monitored than the patients in the control group. After a four-week polarized light therapy 20 patients with stage I-III ulcer had significant improvement in pressure ulcer healing, so it could be useful to apply polarized light in the treatment of pressure ulcers.

  15. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  16. Pressure effects in Debye-Waller factors and in EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Hung, E-mail: hungnv@vnu.edu.v [University of Science, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Vu Van Hung [Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Ho Khac Hieu [University of Science, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); National University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi (Viet Nam); Frahm, Ronald R. [Bergische Universitaet-Gesamthochschule Wuppertal, FB: 8-Physik, Gauss Strasse 20, 42097 Wuppertal (Germany)

    2011-02-01

    Anharmonic correlated Einstein model (ACEM) and statistical moment method (SMM) have been developed to derive analytical expressions for pressure dependence of the lattice bond length, effective spring constant, correlated Einstein frequency and temperature, Debye-Waller factors (DWF) or second cumulant, first and third cumulants in Extended X-ray Absorption Fine Structure (EXAFS) at a given temperature. Numerical results for pressure-dependent DWF of Kr and Cu agree well with experiment and other theoretical values. Simulated EXAFS of Cu and its Fourier transform magnitude using our calculated pressure-induced change in the 1st shell are found to be in a reasonable agreement with those using X-ray diffraction (XRD) experimental results. -- Research Highlights: {yields} We have developed anharmonic correlated Einstein model and statistical moment method. {yields} The pressure effects in cumulants including DWF and in EXAFS has been investigated. {yields} Calculated pressure-dependent DWF for Kr, Cu agree with experiment and other results. {yields} Simulated EXAFS and Fourier transform magnitude of Cu agree with those using XRD data.

  17. Pressure effects in Debye-Waller factors and in EXAFS

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Vu Van Hung; Ho Khac Hieu; Frahm, Ronald R.

    2011-01-01

    Anharmonic correlated Einstein model (ACEM) and statistical moment method (SMM) have been developed to derive analytical expressions for pressure dependence of the lattice bond length, effective spring constant, correlated Einstein frequency and temperature, Debye-Waller factors (DWF) or second cumulant, first and third cumulants in Extended X-ray Absorption Fine Structure (EXAFS) at a given temperature. Numerical results for pressure-dependent DWF of Kr and Cu agree well with experiment and other theoretical values. Simulated EXAFS of Cu and its Fourier transform magnitude using our calculated pressure-induced change in the 1st shell are found to be in a reasonable agreement with those using X-ray diffraction (XRD) experimental results. -- Research Highlights: → We have developed anharmonic correlated Einstein model and statistical moment method. → The pressure effects in cumulants including DWF and in EXAFS has been investigated. → Calculated pressure-dependent DWF for Kr, Cu agree with experiment and other results. → Simulated EXAFS and Fourier transform magnitude of Cu agree with those using XRD data.

  18. Effect of hydrostatic pressure on gas solubilization in micelles.

    Science.gov (United States)

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  19. Influence of Baseline Diastolic Blood Pressure on Effects of Intensive Compared With Standard Blood Pressure Control.

    Science.gov (United States)

    Beddhu, Srinivasan; Chertow, Glenn M; Cheung, Alfred K; Cushman, William C; Rahman, Mahboob; Greene, Tom; Wei, Guo; Campbell, Ruth C; Conroy, Margaret; Freedman, Barry I; Haley, William; Horwitz, Edward; Kitzman, Dalane; Lash, James; Papademetriou, Vasilios; Pisoni, Roberto; Riessen, Erik; Rosendorff, Clive; Watnick, Suzanne G; Whittle, Jeffrey; Whelton, Paul K

    2018-01-09

    In individuals with a low diastolic blood pressure (DBP), the potential benefits or risks of intensive systolic blood pressure (SBP) lowering are unclear. SPRINT (Systolic Blood Pressure Intervention Trial) was a randomized controlled trial that compared the effects of intensive (target baseline DBP. Mean baseline SBP and DBP were 139.7±15.6 and 78.1±11.9 mm Hg, respectively. Regardless of the randomized treatment, baseline DBP had a U-shaped association with the hazard of the primary cardiovascular disease outcome. However, the effects of the intensive SBP intervention on the primary outcome were not influenced by baseline DBP level ( P for interaction=0.83). The primary outcome hazard ratio for intensive versus standard treatment was 0.78 (95% confidence interval, 0.57-1.07) in the lowest DBP quintile (mean baseline DBP, 61±5 mm Hg) and 0.74 (95% confidence interval, 0.61-0.90) in the upper 4 DBP quintiles (mean baseline DBP, 82±9 mm Hg), with an interaction P value of 0.78. Results were similar for all-cause death and kidney events. Low baseline DBP was associated with increased risk of cardiovascular disease events, but there was no evidence that the benefit of the intensive SBP lowering differed by baseline DBP. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01206062. © 2017 American Heart Association, Inc.

  20. Isovector pairing effect on nuclear moment of inertia at finite temperature in N = Z even–even systems

    International Nuclear Information System (INIS)

    Ami, I.; Fellah, M.; Allal, N.H.; Benhamouda, N.; Oudih, M.R.; Belabbas, M.

    2011-01-01

    Expressions of temperature-dependent perpendicular (ℑ⊥) and parallel (ℑ‖) moments of inertia, including isovector pairing effects, have been established using the cranking method. They are derived from recently proposed temperature-dependent gap equations. The obtained expressions generalize the conventional finite-temperature BCS (FTBCS) ones. Numerical calculations have been carried out within the framework of the schematic Richardson model as well as for nuclei such as N = Z, using the single-particle energies and eigenstates of a deformed Woods–Saxon mean-field. ℑ⊥ and ℑ‖ have been studied as a function of the temperature. It has been shown that the isovector pairing effect on both the perpendicular and parallel moments of inertia is non-negligible at finite temperature. These correlations must thus be taking into account in studies of warm rotating nuclei in the N ≃ Z region. (author)

  1. Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report

    International Nuclear Information System (INIS)

    Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.

    2002-01-01

    We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques

  2. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-01-01

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  3. Mossbauer effect studies at pressures to 300 kbar

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1985-01-01

    In a recent experiment carried out at Los Alamos National Laboratory in collaboration with Prof. Moshe Paz Pasternak of Tel Aviv University, we have used the diamond anvil cell for a Mossbauer effect absorber experiment. A high-atomic-weight gasket material was developed; it served both to contain the pressure and to collimate the 27.8-keV Mossbauer effect gamma rays and nearby K x-rays emitted from the source. Elemental iodine is known to transform with pressure becoming metallic near 160 kbar. Furthermore, it has been reported that I 2 becomes monatomic at about 215 kbar. The Mossbauer effect of iodine-129 was employed to check this latter supposition. The Mossbauer effect ''fingerprint'' of I 2 was found to change slowly with pressure up to about 160 kbar whereupon a new high pressure phase or site began to appear. At 300 kbar the Mossbauer spectrum shows about half of the low temperature phase (I 2 ) is still present. This contradiction with x-ray results and or their interpretation is still under investigation

  4. Effect of simulated pulpal pressure on composite bond strength to ...

    African Journals Online (AJOL)

    Statistical significance was determined by T-test (p < 0.05). There was a statistically significant difference in the mean microtensile bond strengths between the groups (p < 0.0005). Simulated pulpal pressure had a negative effect on microtensile bond strength of laser ablated dentin when Single Bond adhesive system was ...

  5. Effects of time pressure and accountability to constituents on negotiation

    NARCIS (Netherlands)

    Mosterd, I.; Rutte, C.G.

    2000-01-01

    A laboratory experiment examined the effects of time pressure (high versus low) and accountability to constituents (not-accountable-to-constituents versus accountable-to-constituents) on the competitiveness of negotiators' interaction and on the outcome (i.e., agreement or impasse) of the

  6. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    Science.gov (United States)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-01-01

    In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…

  7. Effect of stocking pressure on selected diet quality, intake and ...

    African Journals Online (AJOL)

    ABUBAKER

    Effect of different grazing pressures by lambs grazing Lolium perenne and ... Animal productivity and efficiency of production are functions of the level of nutrition, ... among the different parts of a plant, choice of parts can markedly affect a .... is a decline in DM intake per bite and a tendency to increase the time spent grazing.

  8. Some central nervous system and blood pressure lowering effects of ...

    African Journals Online (AJOL)

    The methanol extract of the leaves of Spondias mombin (SP) was evaluated for some central nervous system and blood pressure lowering effect in albino wistar rats and mice. The extract was administered to pre-weighed mice (20-35 g), divided into five groups of five mice each at the doses of 50, 100 and 200 mg/kg for the ...

  9. Effect of Training Frequency on Maximum Expiratory Pressure

    Science.gov (United States)

    Anand, Supraja; El-Bashiti, Nour; Sapienza, Christine

    2012-01-01

    Purpose: To determine the effects of expiratory muscle strength training (EMST) frequency on maximum expiratory pressure (MEP). Method: We assigned 12 healthy participants to 2 groups of training frequency (3 days per week and 5 days per week). They completed a 4-week training program on an EMST trainer (Aspire Products, LLC). MEP was the primary…

  10. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  11. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  12. Effects of periodic atmospheric pressure variation on radon entry into buildings

    Science.gov (United States)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  13. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.; Goriely, Alain

    2013-01-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects

  14. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  15. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis

    OpenAIRE

    Tokuyama, T.; Ikeda, T.; Sato, K.

    1998-01-01

    BACKGROUND—In a previous case report, it was shown that an increase in plasma colloid osmotic pressure induced by the removal of fluid during haemodialysis was instrumental in decreasing intraocular pressure. The relation between changes in intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight before and after haemodialysis is evaluated.
METHODS—Intraocular pressure, plasma osmolarity, plasma colloid osmotic pressure, and body weight were evaluated before a...

  16. Effective field theories of QCD for heavy quarkonia at finite temperature

    International Nuclear Information System (INIS)

    Ghiglieri, Jacopo

    2011-01-01

    Quarkonia, i.e. heavy quark-antiquark bound states, represent one of the most important probes in the experimental investigation, through heavy-ion collisions, of the high-temperature region of the phase diagram of QCD, where the onset of a deconfined medium, the quark-gluon plasma, is expected. Such bound states were hypothesized to dissociate in this plasma due to the screening of the colour charges and experimental data from SPS, RHIC and very recently also LHC indeed show a suppression pattern. In this thesis we extend the well-established and successful zero temperature framework of Non-Relativistic (NR) Effective Field Theories (EFTs) (NRQCD, pNRQCD) for the study of heavy quarkonia (production, spectroscopy, decays,..) to finite temperatures. This is achieved by integrating out in sequence the scales that characterize a NR bound state and those that are typical of a thermal medium, in the possible hierarchies that are relevant for quarkonia in the quark-gluon plasma. Within this framework we show how the potential that governs the evolution of the quark-antiquark pair is derived from QCD in a modern and rigorous way, thereby bridging the gap between phenomenological potential models and QCD. We show how the EFTs can be systematically improved and how effects that cannot be encoded in a potential arise naturally in the EFT, giving rise to new mechanisms of dissociation. We use this EFT framework to compute the spectrum and width of quarkonia in a particular setting that is relevant for the phenomenology of the ground states of bottomonium at the LHC. We also analyze within this framework the correlator of Polyakov loops, which is related to the thermodynamical free energy of heavy quark-antiquark pairs in the medium. As such, lattice computations thereof were frequently used as input for potential models. With our approach we are able to clarify the relation between these free energies and the real-time potential describing the dynamics of quarkonia, finding

  17. Effective field theories of QCD for heavy quarkonia at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglieri, Jacopo

    2011-07-27

    Quarkonia, i.e. heavy quark-antiquark bound states, represent one of the most important probes in the experimental investigation, through heavy-ion collisions, of the high-temperature region of the phase diagram of QCD, where the onset of a deconfined medium, the quark-gluon plasma, is expected. Such bound states were hypothesized to dissociate in this plasma due to the screening of the colour charges and experimental data from SPS, RHIC and very recently also LHC indeed show a suppression pattern. In this thesis we extend the well-established and successful zero temperature framework of Non-Relativistic (NR) Effective Field Theories (EFTs) (NRQCD, pNRQCD) for the study of heavy quarkonia (production, spectroscopy, decays,..) to finite temperatures. This is achieved by integrating out in sequence the scales that characterize a NR bound state and those that are typical of a thermal medium, in the possible hierarchies that are relevant for quarkonia in the quark-gluon plasma. Within this framework we show how the potential that governs the evolution of the quark-antiquark pair is derived from QCD in a modern and rigorous way, thereby bridging the gap between phenomenological potential models and QCD. We show how the EFTs can be systematically improved and how effects that cannot be encoded in a potential arise naturally in the EFT, giving rise to new mechanisms of dissociation. We use this EFT framework to compute the spectrum and width of quarkonia in a particular setting that is relevant for the phenomenology of the ground states of bottomonium at the LHC. We also analyze within this framework the correlator of Polyakov loops, which is related to the thermodynamical free energy of heavy quark-antiquark pairs in the medium. As such, lattice computations thereof were frequently used as input for potential models. With our approach we are able to clarify the relation between these free energies and the real-time potential describing the dynamics of quarkonia, finding

  18. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    C, and then dual stained with the fluorescent dyes SYTO 16 and propidium iodide. For pressure treated spores four distinct populations were detected by flow cytometry, and for these we suggest a three step model of inactivation involving a germination step following hydrolysis of the spore cortex, an unknown step, and finally an inactivation step with physical compromise of the spore inner membrane. An understanding of these effects and mechanisms will aid the safety assessment of pressure assisted thermal sterilisation, in turn facilitating the adoption by industry and commercialisation of such processes.

  19. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    with 37 deg. C, and then dual stained with the fluorescent dyes SYTO 16 and propidium iodide. For pressure treated spores four distinct populations were detected by flow cytometry, and for these we suggest a three step model of inactivation involving a germination step following hydrolysis of the spore cortex, an unknown step, and finally an inactivation step with physical compromise of the spore inner membrane. An understanding of these effects and mechanisms will aid the safety assessment of pressure assisted thermal sterilisation, in turn facilitating the adoption by industry and commercialisation of such processes.

  20. New pressure and temperature effects on bacterial spores

    International Nuclear Information System (INIS)

    Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    with 37 deg. C, and then dual stained with the fluorescent dyes SYTO 16 and propidium iodide. For pressure treated spores four distinct populations were detected by flow cytometry, and for these we suggest a three step model of inactivation involving a germination step following hydrolysis of the spore cortex, an unknown step, and finally an inactivation step with physical compromise of the spore inner membrane. An understanding of these effects and mechanisms will aid the safety assessment of pressure assisted thermal sterilisation, in turn facilitating the adoption by industry and commercialisation of such processes

  1. Effect of pressurized steam on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Ambat, Rajan

    2012-01-01

    Purpose - The purpose of this paper is to understand the effect of pressurized steam on surface changes, structures of intermetallic particles and corrosion behavior of AA1050 aluminium. Design/methodology/approach - Industrially pure aluminium (AA1050, 99.5 per cent) surfaces were exposed...... reactivities was observed due to the formation of the compact oxide layer. Originality/value - This paper reveals a detailed investigation of how pressurized steam can affect the corrosion behaviour of AA1050 aluminium and the structure of Fe-containing intermetallic particles....

  2. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  3. Conduction mechanism in a novel oxadiazole derivative: effects of temperature and hydrostatic pressure

    International Nuclear Information System (INIS)

    Luo Jifeng; Han Yonghao; Tang Bencheng; Gao Chunxiao; Li Min; Zou Guangtian

    2005-01-01

    The quasi-four-probe resistivity measurement on the microcrystal of 1,4-bis[(4-heptyloxyphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-3) is carried out under variable pressure and temperature conditions using a diamond anvil cell (DAC). Sample resistivity is calculated with a finite element analysis method. The temperature and pressure dependences of the resistivity of OXD-3 microcrystal are measured up to 150 0 C and 15 GPa, and the resistivity of OXD-3 decreases with increasing temperature, indicating that OXD-3 exhibits organic semiconductor transport property in the region of experimental pressure. With an increase of pressure, the resistivity of OXD-3 first increases and reaches a maximum at about 8 GPa, and then begins to decrease at high pressures. From the x-ray diffraction data in DAC under pressure, we can conclude that the anomaly of resistivity variation at 8 GPa results from the pressure-induced amorphism of OXD-3

  4. Water cycles in closed ecological systems: effects of atmospheric pressure.

    Science.gov (United States)

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  5. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  6. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  7. Effects of strength mis-matching on the fracture behavior of nuclear pressure steel A508-III welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhengqiang [School of Material Science and Technology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: zhuzhq01@sjtu.edu.cn; Jing Hongyang [School of Material Science and Technology, Tianjin University, Tianjin 300072 (China); Ge Jingguo [School of Material Science and Technology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030 (China); Chen Ligong [School of Material Science and Technology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030 (China)

    2005-01-15

    In this paper, according to the nuclear pressure steel A508-III, the effect of strength mis-matching on the fracture behavior was analyzed by fracture mechanics test and the crack tip stress field of three-point bend specimen was analyzed by using finite element analysis method (FEM). The fracture of heat-affected zone (HAZ) was emphasized especially. The results of FEM show that if the under-matching weld was used, the opening stress and stress triaxiality in the vicinity of crack tip would increase for weld-crack specimen, and would reduce for HAZ-crack specimen. This tendency was confirmed by the test results.

  8. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.

    1997-01-01

    Thermal composition fluctuations in a homogeneous binary polymer blend and in a diblock copolymer were measured by small-angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed with theoretical expressions, including the important effect of thermal...... fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... respects, to a universal behaviour, such behaviour is not found in diblock copolymers. It is shown that the Ginzburg number decreases with pressure sensitively in blends, while it is constant in diblock copolymers. The Ginzburg number is an estimation of the transition between the universality classes...

  9. Effects of nattokinase on blood pressure: a randomized, controlled trial.

    Science.gov (United States)

    Kim, Ji Young; Gum, Si Nae; Paik, Jean Kyung; Lim, Hyo Hee; Kim, Kyong-Chol; Ogasawara, Kazuya; Inoue, Kenichi; Park, Sungha; Jang, Yangsoo; Lee, Jong Ho

    2008-08-01

    The objective of this study was to examine the effects of nattokinase supplementation on blood pressure in subjects with pre-hypertension or stage 1 hypertension. In a randomized, double-blind, placebo-controlled trial, 86 participants ranging from 20 to 80 years of age with an initial untreated systolic blood pressure (SBP) of 130 to 159 mmHg received nattokinase (2,000 FU/capsule) or a placebo capsule for 8 weeks. Seventy-three subjects completed the protocol. Compared with the control group, the net changes in SBP and diastolic blood pressure (DBP) were -5.55 mmHg (95% confidence interval [CI], -10.5 to -0.57 mmHg; pnattokinase group compared with the control group (pnattokinase supplementation resulted in a reduction in SBP and DBP. These findings suggest that increased intake of nattokinase may play an important role in preventing and treating hypertension.

  10. Vapour pressure isotope effects in liquid hydrogen chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.N.C.; Calado, J.C.G. (Instituto Superior Tecnico, Lisbon (Portugal)); Jancso, Gabor (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)

    1992-08-10

    The difference between the vapour pressures of HCl and DCl has been measured over the temperature range 170-203 K by a differential manometric technique in a precision cryostat. In this range the vapour pressure of HCl is higher than that of DCl by 3.2% at 170 K, decreasing to 0.9% at 200 K. The reduced partition function ratios f[sub l]/f[sub g] derived from the vapour pressure data can be described by the equation ln(f[sub l]/f[sub g]) = (3914.57[+-]10)/T[sup 2] - (17.730[+-]0.055)/T. The experimentally observed H-D vapour pressure isotope effect, together with the values on the [sup 35]Cl-[sup 37]Cl isotope effect available in the literature, is interpreted in the light of the statistical theory of isotope effects in condensed systems by using spectroscopic data of the vapour and liquid phases. The results indicate that the rotation in liquid hydrogen chloride is hindered. Temperature-dependent force constants for the hindered translational and rotational motions were invoked in order to obtain better agreement between the model calculation and experiment. (author).

  11. Effect of pressure on the physical properties of magnetorheological fluids

    Directory of Open Access Journals (Sweden)

    A. Spaggiari

    2013-01-01

    Full Text Available To date, several applications of magnetorheological (MR fluids are present in the industrial world, nonetheless system requirements often needs better material properties. In technical literature a previous work shows that MR fluids exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices are rotary devices, this paper investigates the behaviour of MR fluids under pressure when a rotation is applied to shear the fluid. The system is designed in order to apply both the magnetic field and the pressure and follows a Design of Experiment approach. The experimental apparatus comprises a cylinder in which a piston is used both to apply the pressure and to shear the fluid. The magnetic circuit is designed to provide a nearly constant induction field in the MR fluid. The experimental apparatus measures the torque as a function of the variables considered and the yield shear stress is computed. The analysis of the results shows that there is a positive interaction between magnetic field and pressure, which enhances the MR fluid performances more than twice.

  12. THE EFFECT OF CORE EXERCISES ON TRANSDIAPHRAGMATIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Lisa M. Strongoli

    2010-06-01

    Full Text Available Abdominal exercises, such as sit ups and leg lifts, are used to enhance strength of the core muscles. An overlooked aspect of abdominal exercises is the compression the abdomen, leading to increased diaphragmatic work. We hypothesized that core exercises would produce a variety of transdiaphragmatic pressures. We also sought to determine if some of the easy exercises would produce pressures sufficient for a training stimulus to the diaphragm. We evaluated the effect of 13 different abdominal exercises, ranging in difficulty, on transdiaphragmatic pressure (Pdi, an index of diaphragmatic activity. Six healthy subjects, aged 22 to 53, participated. Each subject was instrumented with two balloon-tipped catheters to obtain gastric and esophageal pressures, from which Pdi was calculated. Prior to initiating the exercises, each subject performed a maximal inspiratory pressure (MIP maneuver. Resting Pdi was also measured. The exercises were performed from least to most difficult, with five repetitions each. There was a significant difference between the exercises and the MIP Pdi, as well as between the exercises and resting Pdi (p 50% of the Pdi during the MIP maneuver, which may provide a training stimulus to the diaphragm if used as a regular exercise. The Pdi measurements also provide insight into diaphragm recruitment during different core exercises, and may aid in the design of exercises to improve diaphragm strength and endurance

  13. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  14. 3D Finite Element Simulation of Micro End-Milling by Considering the Effect of Tool Run-Out

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Tosello, Guido; Parenti, Paolo

    2017-01-01

    Understanding the micro milling phenomena involved in the process is critical and difficult through physical experiments. This study presents a 3D finite element modeling (3D FEM) approach for the micro end-milling process on Al6082-T6. The proposed model employs a Lagrangian explicit finite...... element formulation to perform coupled thermo-mechanical transient analyses. FE simulations were performed at different cutting conditions to obtain realistic numerical predictions of chip formation, temperature distribution, and cutting forces by considering the effect of tool run-out in the model....... The predicted results of the model, involving the run-out influence, showed a good correlation with experimental chip formation and the signal shape of cutting forces....

  15. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  16. The effect of precrash velocity reduction on occupant response using a human body finite element model.

    Science.gov (United States)

    Guleyupoglu, B; Schap, J; Kusano, K D; Gayzik, F S

    2017-07-04

    The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature. In median crash severity cases, little to no risk (braking cases (1.0-1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median, severe, and NCAP cases. Forward excursion for both models decreased across median, severe, and NCAP cases and diverged from each other in cases above 1.0 g of braking intensity. The addition of precrash systems simulated through reduced precrash speeds caused reductions in some injury criteria, whereas others (chest

  17. Discontinuous finite element formulation for bodies of revolution with application in the prevention of fragile fracture in pressure vessel of PWR reactors; Formulacao de elementos finitos descontinuos para corpos de revolucao com aplicacao na prevencao de fratura fragil em vaso de pressao de reatores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Alvarez, Gustavo

    1999-08-15

    In this work, a hybrid formulation is established for bodies of revolution, based on the equation of Fourier series for the discontinuous finite element method, analogous to the one that exists in the classical finite element method. Furthermore, a methodology to analyse the prevention of fragile fracture in pressure vessel of pressurized water reactors is presented. The results obtained suggest that careful analysis must be made for non symmetric refrigeration. (author)

  18. Equations of the quasiparticle-phonon nuclear model with effective finite-rank separable interactions

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1989-01-01

    Basic equations are derived for the quasiparticle-phonon nuclear model for the finite-rank separable isoscalar and isovector multipole and spin-multipole and isovector tensor particle-hole and particle-particle interactions between quasiparticles. For even-even spherical nuclei it is shown that in the calculation of single-phonon states in the random phase approximation a significant complication arises due to the finite rank n max >1 of separable interactions. Taking into account separable interactions with n max >1 does not lead to significant difficulties in the calculation of fragmentation of quasiparticle and collective states. It is asserted that the model can be used as a basis for calculations of many characteristics of complex nuclei

  19. Dynamical correlations in finite nuclei: A simple method to study tensor effects

    International Nuclear Information System (INIS)

    Dellagiacoma, F.; Orlandini, G.; Traini, M.

    1983-01-01

    Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)

  20. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    OpenAIRE

    Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.

    2015-01-01

    Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...

  1. State switching kinetics for quasi-one-dimensional nanosystems: Effects of Finite length and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2017-01-15

    The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.

  2. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  3. The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies

    Science.gov (United States)

    Hellberg, Manfred A.; Verheest, Frank; Mace, Richard L.

    2018-03-01

    The propagation of arbitrary amplitude ion-acoustic solitons is investigated in a plasma containing cool adiabatic positive ions and hot electrons or negative ions. The latter can be described by polytropic pressure-density relations, both with or without the retention of inertial effects. For analytical tractability, the resulting Sagdeev pseudopotential needs to be expressed in terms of the hot negative species density, rather than the electrostatic potential. The inclusion of inertia is found to have no qualitative effect, but yields quantitative differences that vary monotonically with the mass ratio and the polytropic index. This result contrasts with results for analogous problems involving three species, where it was found that inertia could yield significant qualitative differences. Attention is also drawn to the fact that in the literature there are numerous papers in which species are assumed to behave adiabatically, where the isothermal assumption would be more appropriate. Such an assumption leads to quantitative errors and, in some instances, even qualitative gaps for "reverse polarity" solitons.

  4. Effect of pressure on magnetism of UIrGe

    International Nuclear Information System (INIS)

    Pospíšil, Jiří; Haga, Yoshinori; Tateiwa, Naoyuki; Kambe, Shinsaku; Yamamoto, Etsuji; Gouchi, Jun; Uwatoko, Yoshiya; Nagasaki, Shoko; Honda, Fuminori; Homma, Yoshiya

    2017-01-01

    We report the effect of hydrostatic pressure on the electronic state of the antiferromagnet UIrGe, which is isostructural and isoelectronic with the ferromagnetic superconductors UCoGe and URhGe. A series of electrical resistivity measurements in a piston–cylinder-type cell and a cubic-anvil cell were performed at hydrostatic pressures up to 15 GPa. The Néel temperature decreases with increasing pressure. We constructed a p–T phase diagram and estimated the critical pressure p_c, where the antiferromagnetism vanishes, as ∼12 GPa. The antiferromagnetic/paramagnetic transition appears to be first order. We suggest a scenario of competing antiferromagnetic inter-J- and ferromagnetic intra-J*-chain interactions in UIrGe. A moderate increase in the effective electron mass was detected in the vicinity of p_c. A discussion of the electronic specific heat γ and electron–electron correlation term A using the Kadowaki–Woods relation is given. (author)

  5. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  6. Correlated electron—hole transitions in wurtzite GaN quantum dots: the effects of strain and hydrostatic pressure

    International Nuclear Information System (INIS)

    Zheng Dongmei; Wang Zongchi; Xiao Boqi

    2012-01-01

    Within the effective-mass and finite-height potential barrier approximation, a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron—hole recombination rate in wurtzite cylindrical GaN/Al x Ga 1−x N quantum dots (QDs) is performed using a variational approach. Numerical results show that the emission wavelength with strain effect is higher than that without strain effect when the QD height is large (> 3.8 nm), but the status is opposite when the QD height is small (< 3.8 nm). The height of GaN QDs must be less than 5.5 nm for an efficient electron—hole recombination process due to the strain effect. The emission wavelength decreases linearly and the electron—hole recombination rate increases almost linearly with applied hydrostatic pressure. The hydrostatic pressure has a remarkable influence on the emission wavelength for large QDs, and has a significant influence on the electron—hole recombination rate for small QDs. Furthermore, the present numerical outcomes are in qualitative agreement with previous experimental findings under zero pressure. (semiconductor physics)

  7. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  8. Nonperturbative quark-gluon thermodynamics at finite density

    Science.gov (United States)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 confinement.

  9. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology.

    Science.gov (United States)

    Follonier, Stéphanie; Panke, Sven; Zinn, Manfred

    2012-03-01

    Much knowledge has been gained for the last 30 years about the effects of pressure on bacteria, and various pressure-based technologies have been designed. The development of modern molecular biology techniques (e.g., DNA microarrays) as well as the technological advances realized in the manufacturing of robust sampling and high-pressure devices has allowed these advances. Not only the direct effects on cell components (membranes, proteins, and nucleic acids) have been unraveled, but also the cellular response to pressure has been investigated by means of transcriptome and proteome analyses. Initially, research was performed by marine biologists who studied the microorganisms living in the deep sea at pressures of 1,000 bar. In parallel, food technologists developed pressure-based methods for inactivating microorganisms without altering the food properties as much as with temperature treatment. The preservation of specific product properties is also the rationale for pressure-based methods for the disinfection of biomaterials and for vaccine production. Therefore, attention was first focused on the “killing” potential of high pressure. On the other hand, there has been a growing interest in using elevated pressures (up to ~10 bar) for enhancing the productivity of bioprocesses. In this case, no killing effect was sought, but pressure was applied to “boost” the process by enhancing the oxygen transfer to the cell culture. This paper gives an overview on the effects of pressures in the range of 1 bar to 10 kbar on bacteria and presents the major and most recent achievements realized in the development of pressure-based biotechnological applications.

  10. Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, P.

    2009-01-01

    We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.

  11. Finite-size, chemical-potential and magnetic effects on the phase transition in a four-fermion interacting model

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.B.S. [Universidade Federal do Sul e Sudeste do Para, Instituto de Ciencias Exatas, Maraba (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCTI, Rio de Janeiro (Brazil); Malbouisson, J.M.C. [Universidade Federal da Bahia, Instituto de Fisica, Salvador (Brazil); Santana, A.E. [Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil)

    2017-04-15

    We study effects coming from finite size, chemical potential and from a magnetic background on a massive version of a four-fermion interacting model. This is performed in four dimensions as an application of recent developments for dealing with field theories defined on toroidal spaces. We study effects of the magnetic field and chemical potential on the size-dependent phase structure of the model, in particular, how the applied magnetic field affects the size-dependent critical temperature. A connection with some aspects of the hadronic phase transition is established. (orig.)

  12. Pressurization effects on the polymorphic forms of famotidine

    International Nuclear Information System (INIS)

    Nemet, Zoltan; Hegedues, Bela; Szantay, Csaba; Sztatisz, Janisz; Pokol, Gyoergy

    2005-01-01

    The effects of high static pressure on the polymorphic modifications A and B of famotidine were examined by differential scanning calorimetry, infrared and Raman spectroscopy, and X-ray powder diffractometry. The obtained effects appeared to differ significantly depending on whether they were monitored by DSC or any of the other above techniques. In particular, DSC measurements tend to deceptively amplify a tendency of the pure modification B to turn into the more stable form A under pressurization, while the spectroscopic methods and XRPD exhibit no essential change in the crystal structure of the metastable form B. The apparent morphological transformation in the pressed samples stems from the nature of the DSC method itself

  13. The effects of stereotypes and observer pressure on athletic performance.

    Science.gov (United States)

    Krendl, Anne; Gainsburg, Izzy; Ambady, Nalini

    2012-02-01

    Although the effects of negative stereotypes and observer pressure on athletic performance have been well researched, the effects of positive stereotypes on performance, particularly in the presence of observers, is not known. In the current study, White males watched a video either depicting Whites basketball players as the best free throwers in the NBA (positive stereotype), Black basketball players as the best free throwers in the NBA (negative stereotype), or a neutral sports video (control). Participants then shot a set of free throws, during which half the participants were also videotaped (observer condition), whereas the other half were not (no observer condition). Results demonstrated that positive stereotypes improved free throw performance, but only in the no observer condition. Interestingly, observer pressure interacted with the positive stereotype to lead to performance decrements. In the negative stereotype condition, performance decrements were observed both in the observer and no observer conditions.

  14. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    Science.gov (United States)

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  15. [Health and exercise: effects of exercise on high blood pressure].

    Science.gov (United States)

    Ikeda, M; Nanri, H; Himeno, E

    1993-09-01

    Many factors, such as genetic, psychological, environmental, and socioeconomical factors, influence the health of individuals. Recently behavioral risks which cause preventable chronic diseases or premature death have been increasing. These risk factors are mainly due to living habits, such as over-eating, less exercise and psychological stress. Physical activity or fitness is reported to be inversely associated with morbidity and mortality from chronic diseases, such as cardiovascular diseases diabetes mellitus, cancer and so on. Hypertension has also been reported to be associated with low physical fitness in cross-sectional studies. We have so far reported a significant blood pressure reduction in mild hypertensive patients who completed mild intensity exercise training in well controlled studies. Exercise seemed to modify the multiple factors that might participate in raising and maintaining high blood pressure. The mechanisms of lowering blood pressure by exercise training are mainly due to a depletion of blood volume or the reduction of both cardiac output and the sympathetic tone. They were supported by the evidence of increased levels of prostaglandin E, dopamine, taurine, and decreased levels of plasma norepinephrine and endogenous ouavain-like substance. In this article, we have reviewed the physiological and biochemical roles of exercise, the effects of exercise on high blood pressure, and the hypotensive mechanism of mild aerobic exercise hypertensive patients.

  16. Effects of light and pressure on photosynthesis in two seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Waisel, Y.

    1982-07-01

    Photosynthetic responses to light and pressure (up to 4 atm) were measured for two seagrass species abundant in the Gulf of Eilat (Red Sea). In Halophila stipulacea (Forssk.) Aschers. pressure had no effect on net photosynthetic rates. In both species, light saturation was reached at 300 ..mu..E (400-700 nm) m/sup -2/ s/sup -1/ and the compensation point was at 20-40 ..mu..E (499-700 nm) m/sup -2/ s/sup -1/. Comparing these results to in situ light measurements, neither species should be light limited to a depth of about 15 m, and Halophila stipulacea should reach compensation light intensities at about 50 m. The latter depth corresponds well to the natural depth penetration of this species. Halodule uninervis is never found deeper than 5 m in the Gulf of Eilat, and it appears that pressure rather than light is one of the factors limiting the depth penetration of this species. The differential pressure response of the two species may be related to aspects of leaf morphology and gas diffusion.

  17. Effect of radiation pressure in the cores of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Capuzzo-Dolcetta, R; Giannone

    1981-10-01

    The possible effects of a presence of a dust cloud in the cores of globular clusters was investigated. Two cluster models were considered together with various models of clouds. The problem of radiation transfer was solved under some simplifying assumptions. Owing to a differential absorption of the star light in the cloud, radiation pressure turned out be inward-directed in some cloud models. This fact may lead to a confinement of some dust in the central regions of globular clusters.

  18. Effect of laryngoscopy on middle ear pressure during anaesthesia induction

    OpenAIRE

    Degerli, Semih; Acar, Baran; Sahap, Mehmet; Horasanlı, Eyup

    2013-01-01

    Aims: The procedure of laryngoscopic orotracheal intubation (LOTI) has many impacts on several parts of the body. But its effect on middle ear pressure (MEP) is not known well. The purpose of this study is to evaluate the MEP changes subsequent to insertion of endotracheal tube with laryngoscope. Subjects and methods: 44 patients were included in this study with a normal physical examination of ear, nose and throat. A standard general anaesthesia induction without any inhaler agent was perfor...

  19. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  20. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  1. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  2. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  3. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  4. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  5. Equivalent effect of neutral gas pressure and transverse magnetic field in low-pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Toma, M.; Rusu, Ioana; Pohoata, V.; Mihaila, I.

    2001-01-01

    In the paper it is emphasized the equivalent effect of the neutral gas pressure and the action of a transverse magnetic field (TMF), respectively, on a striated positive plasma column. Experimental and theoretical results prove that the distance between striations has the same variation under the influence of both neutral gas pressure and the action of TMF. The pressure modification as well as the action of a TMF can induce ionization instability in the plasma column which explains the standing striation appearance. (authors)

  6. Effect of Sildenafil Citrate on Intraocular Pressure and Blood Pressure in Human Volunteers

    Science.gov (United States)

    Gerometta, Rosana; Alvarez, Lawrence J.; Candia, Oscar A.

    2011-01-01

    Anecdotal reports have suggested that the vasodilator, sildenafil citrate, which evokes its effect via a select inhibition of PDE5, has the potential to increase intraocular pressure (IOP) in some individuals. An ocular hypertensive effect by sildenafil was also recently described in a sheep animal model. In contrast, clinical studies have not found a direct association between sildenafil ingestion (commonly consumed as Viagra) and changes in IOP. However, some such studies also reported no effects of sildenafil on systemic blood pressure (BP) at the time of the IOP determination. Given this surprising result, our purpose was to repeat a study in human volunteers in the city of Corrientes, Argentina to corroborate the effects of sildenafil on human IOP and systemic BP. For the present study, 9 healthy volunteers (male and female, 18 to 74 years old) were selected as subjects after ophthalmic and cardiovascular evaluation indicated that they exhibited normal parameters for their age. In a masked, placebo-controlled study, the subjects ingested 100 mg sildenafil citrate (provided as Vorst from Laboratorios Bernabo, Argentina) in one session, and a placebo on a second separate occasion. IOP was measured with a Goldman applanation tonometer by an ophthalmologist, and BP by a second physician, neither of whom witnessed the tablet ingestion by the volunteers, nor provided with information on the nature of the test compounds. A third individual administered the tablets. The average baseline IOP of this group of 9 was 13.1 ± 0.6 mm Hg. Subsequent to sildenafil ingestion, IOP increased by 26% to 16.5 ± 0.8 mm Hg 60 min later (p< 0.005, as paired data), and returned to control values within 2 hrs. Both systolic and diastolic BP were significantly reduced by sildenafil ingestion. At the point of maximal systemic hypotension (90 min), the systolic and diastolic pressures declined by 15% and 13%, respectively. No significant changes in IOP or BP were recorded after ingestion

  7. Effect of sildenafil citrate on intraocular pressure and blood pressure in human volunteers.

    Science.gov (United States)

    Gerometta, Rosana; Alvarez, Lawrence J; Candia, Oscar A

    2011-07-01

    Anecdotal reports have suggested that the vasodilator, sildenafil citrate, which evokes its effect via a select inhibition of PDE5, has the potential to increase intraocular pressure (IOP) in some individuals. An ocular hypertensive effect by sildenafil was also recently described in a sheep animal model. In contrast, clinical studies have not found a direct association between sildenafil ingestion (commonly consumed as Viagra) and changes in IOP. However, some such studies also reported no effects of sildenafil on systemic blood pressure (BP) at the time of the IOP determination. Given this surprising result, our purpose was to repeat a study in human volunteers in the city of Corrientes, Argentina to corroborate the effects of sildenafil on human IOP and systemic BP. For the present study, 9 healthy volunteers (male and female, 18-74 years old) were selected as subjects after ophthalmic and cardiovascular evaluation indicated that they exhibited normal parameters for their age. In a masked, placebo-controlled study, the subjects ingested 100 mg sildenafil citrate (provided as Vorst from Laboratorios Bernabo, Argentina) in one session, and a placebo on a second separate occasion. IOP was measured with a Goldman applanation tonometer by an ophthalmologist, and BP by a second physician, neither of whom witnessed the tablet ingestion by the volunteers, nor provided with information on the nature of the test compounds. A third individual administered the tablets. The average baseline IOP of this group of 9 was 13.1 ± 0.6 mm Hg. Subsequent to sildenafil ingestion, IOP increased by 26% to 16.5 ± 0.8 mm Hg 60 min later (P < 0.005, as paired data), and returned to control values within 2 h. Both systolic and diastolic BP were significantly reduced by sildenafil ingestion. At the point of maximal systemic hypotension (90 min), the systolic and diastolic pressures declined by 15% and 13%, respectively. No significant changes in IOP or BP were recorded after

  8. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.

    2002-01-01

    of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...

  9. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    International Nuclear Information System (INIS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A.

    2004-01-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample

  10. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, A. E-mail: alessandro.vindigni@unifi.it; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A

    2004-05-01

    We investigate the relaxation time, {tau}, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of {tau}, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample.

  11. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  12. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    Science.gov (United States)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  13. Finite-size effects and switching times for Moran process with mutation.

    Science.gov (United States)

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  14. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  15. Effect of cavitation in high-pressure direct injection

    Science.gov (United States)

    Aboulhasanzadeh, Bahman; Johnsen, Eric

    2015-11-01

    As we move toward higher pressures for Gasoline Direct Injection and Diesel Direct Injection, cavitation has become an important issue. To better understand the effect of cavitation on the nozzle flow and primary atomization, we use a high-order accurate Discontinuous Galerkin approach using multi-GPU parallelism to simulate the compressible flow inside and outside the nozzle. Phase change is included using the six-equations model. We investigate the effect of nozzle geometry on cavitation inside the injector and on primary atomization outside the nozzle.

  16. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    Science.gov (United States)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase

  17. Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field

    DEFF Research Database (Denmark)

    Grap, Stephan; Andergassen, Sabine; Paaske, Jens

    2011-01-01

    ridges, which are robust against SOI as time-reversal symmetry is preserved. As a result of the crossing of a spin-up and a spin-down level at vanishing SOI, two additional Kondo plateaus appear at finite B. They are not protected by symmetry and rapidly vanish if the SOI is turned on. Left......-right asymmetric level-lead couplings and detuned on-site energies lead to a simultaneous breaking of left-right and bonding-antibonding state symmetry. In this case, the finite-B Kondo ridges in the Vg-B plane are bent with respect to the Vg axis. For the Kondo ridge to develop, different level renormalizations......We study electron transport through a serial double quantum dot with Rashba spin-orbit interaction (SOI) and Zeeman field of amplitude B in the presence of local Coulomb repulsion. The linear conductance as a function of a gate voltage Vg equally shifting the levels on both dots shows two B=0 Kondo...

  18. Finite size effects in the thermodynamics of a free neutral scalar field

    Science.gov (United States)

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  19. The Effect of Finite Thickness Extent on Estimating Depth to Basement from Aeromagnetic Data

    Science.gov (United States)

    Blakely, R. J.; Salem, A.; Green, C. M.; Fairhead, D.; Ravat, D.

    2014-12-01

    Depth to basement estimation methods using various components of the spectral content of magnetic anomalies are in common use by geophysicists. Examples of these are the Tilt-Depth and SPI methods. These methods use simple models having the base of the magnetic body at infinity. Recent publications have shown that this 'infinite depth' assumption causes underestimation of the depth to the top of sources, especially in areas where the bottom of the magnetic layer is shallow, as would occur in high heat-flow regions. This error has been demonstrated in both model studies and using real data with seismic or well control. To overcome the limitation of infinite depth this contribution presents the mathematics for a finite depth contact body in the Tilt depth and SPI methods and applies it to the central Red Sea where the Curie isotherm and Moho are shallow. The difference in the depth estimation between the infinite and finite contacts is such a case is significant and can exceed 200%.

  20. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.

    Science.gov (United States)

    Liang, Zhichun; Crepeau, Richard H; Freed, Jack H

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  1. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  2. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  3. Bubble column fermenter modeling: a comparison for pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Shioya, S; Dang, N D.P.; Dunn, I J

    1978-01-01

    Two models which describe the oxygen transfer, oxygen uptake, and axial mixing in a bubble column fermenter are described. Model I includes no pressure effects and can be solved analytically. Model II incorporates the influence of hydrostatic pressure on oxygen solubility and gas expansion and must be solved numerically. The liquid phase oxygen concentration profiles from both models are compared to ascertain for what parametric conditions and for what maximum column height Model I is valid. Results show that for many situations Model I can approximate the oxygen profiles in a 10 m column within 20%. As the transfer and uptake rates increase, the deviation of Model I can reach 80% for a 10 m column. 7 figures.

  4. Effect of Ramadan Fasting on Blood Pressure and Lipid Profiles

    Directory of Open Access Journals (Sweden)

    Maryam sadat Amirkalali sijavandi

    2015-09-01

    Full Text Available Introduction: Ramadan is a holy month for Muslims during which avoid from eating, drinking and sexual intercourse for about 13-17 hours. The aim of this study was surveying the effects of Islamic fasting in Ramadan on lipid profile and blood pressure.Materials and Methods: we designed this study in two phases, a week before and a week after Ramadan month. Eighty nine healthy subjects with 20-50 years old were participated in this study. Blood sampling for lipid profile measurement was done in the morning and blood pressure was measured in the afternoon with digital sphygmomanometer. Statistical analysis was performed with SPSS version 16.0 software.Results: In a week after Ramadan, body weight and body mass index (BMI decreased in both sexes, comparing with the week before Ramadan measurements (p

  5. Thermal expansion and pressure effect in MnWO4

    International Nuclear Information System (INIS)

    Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.

    2008-01-01

    MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure

  6. Fe substitution and pressure effects on superconductor Re6Hf

    Science.gov (United States)

    Yang, Jinhu; Guo, Yang; Wang, Hangdong; Chen, Bin

    2018-04-01

    Polycrystalline samples of (Re1-xFex) 6Hf were synthesized by arc-melting method and the phase purity of the samples was confirmed by powder X-ray diffraction method. In this paper, we report the Fe substitution and pressure effect on non-centrosymmetric superconductor Re6Hf. The superconducting transition temperature, TC, is confirmed by the measurements of magnetic susceptibility, electrical resistivity for x ≤ 0.22 samples with the temperature down to 2 K. We find that the TC is suppressed with the increase of Fe content. The upper critical field Hc2 is larger than the value predicted by the WHH theory and shows a linear temperature dependence down to 2 K. When upon the application of external pressure up to 2.5 GPa, the TC decreases monotonically at a rate dlnTC/dP of 0.01 GPa-1.

  7. The effect of facial expressions on respirators contact pressures.

    Science.gov (United States)

    Cai, Mang; Shen, Shengnan; Li, Hui

    2017-08-01

    This study investigated the effect of four typical facial expressions (calmness, happiness, sadness and surprise) on contact characteristics between an N95 filtering facepiece respirator and a headform. The respirator model comprised two layers (an inner layer and an outer layer) and a nose clip. The headform model was comprised of a skin layer, a fatty tissue layer embedded with eight muscles, and a skull layer. Four typical facial expressions were generated by the coordinated contraction of four facial muscles. After that, the distribution of the contact pressure on the headform, as well as the contact area, were calculated. Results demonstrated that the nasal clip could help make the respirator move closer to the nose bridge while causing facial discomfort. Moreover, contact areas varied with different facial expressions, and facial expressions significantly altered contact pressures at different key areas, which may result in leakage.

  8. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    Science.gov (United States)

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  9. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    Science.gov (United States)

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  10. Validation of Finite-Element Models of Persistent-Current Effects in Nb3Sn Accelerator Magnets

    International Nuclear Information System (INIS)

    Wang, X.; Ambrosio, G.; Chlachidze, G.; Collings, E. W.; Dietderich, D. R.; DiMarco, J.; Felice, H.; Ghosh, A. K.; Godeke, A.; Gourlay, S. A.; Marchevsky, M.; Prestemon, S. O.; Sabbi, G.; Sumption, M. D.; Velev, G. V.; Xu, X.; Zlobin, A. V.

    2015-01-01

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3 Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnet designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed

  11. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates

    International Nuclear Information System (INIS)

    Zhao, Hong Jian; Chen, Xiang Ming; Ren, Wei; Bellaiche, L

    2013-01-01

    First-principles calculations are performed to investigate structural and magnetic behaviors of rare-earth orthochromates as a function of ‘chemical’ pressure (that is, the rare-earth ionic radius), epitaxial misfit strain and hydrostatic pressure. From a structural point of view, (i) ‘chemical’ pressure significantly modifies antipolar displacements, Cr–O–Cr bond angles and the resulting oxygen octahedral tiltings; (ii) hydrostatic pressure mostly changes Cr–O bond lengths; and (iii) misfit strain affects all these quantities. The correlations between magnetic properties (Néel temperature and weak ferromagnetic moments) and unit cell volume are similar when varying the misfit strain or hydrostatic pressure, but differ from those associated with the ‘chemical’ pressure. Origins of such effects are also discussed. (paper)

  12. Positive expiratory pressure - Common clinical applications and physiological effects.

    Science.gov (United States)

    Fagevik Olsén, Monika; Lannefors, Louise; Westerdahl, Elisabeth

    2015-03-01

    Breathing out against resistance, in order to achieve positive expiratory pressure (PEP), is applied by many patient groups. Pursed lips breathing and a variety of devices can be used to create the resistance giving the increased expiratory pressure. Effects on pulmonary outcomes have been discussed in several publications, but the expected underlying physiology of the effect is seldom discussed. The aim of this article is to describe the purpose, performance, clinical application and underlying physiology of PEP when it is used to increase lung volumes, decrease hyperinflation or improve airway clearance. In clinical practice, the instruction how to use an expiratory resistance is of major importance since it varies. Different breathing patterns during PEP increase or reduce expiratory flow, result in movement of EPP centrally or peripherally and can increase or decrease lung volume. It is therefore necessary to give the right instructions to obtain the desired effects. As the different PEP techniques are being used by diverse patient groups it is not possible to give standard instructions. Based on the information given in this article the instructions have to be adjusted to give the optimal effect. There is no consensus regarding optimal treatment frequency and number of cycles included in each treatment session and must also be individualized. In future research, more precise descriptions are needed about physiological aims and specific instructions of how the treatments have been performed to assure as good treatment quality as possible and to be able to evaluate and compare treatment effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Finite geometry effects on the stability of a charged beam propagating through a relativistic annular electron beam

    International Nuclear Information System (INIS)

    Ganguli, G.; Palmadesso, P.

    1984-01-01

    Finite geometry effects on the stability properties of a charged beam propagating through an intense relativistic annular electron beam have been studied. The stability of the system under transverse oscillation has been examined in detail in a parameter domain pertinent to the collective particle accelerator, currently under development at the Naval Research Laboratory. Both the normal mode and the convective aspects of this instability have been investigated. Despite a substantial temporal growth rate as predicted by the normal mode approach, this instability does not prevent successful acceleration of a portion of the axial beam. Thus the transverse oscillation is not fatal to the collective particle accelerator operation

  14. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  15. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  16. A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-04-15

    In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

  17. Finite-size effect of η-deformed AdS5×S5 at strong coupling

    Directory of Open Access Journals (Sweden)

    Changrim Ahn

    2017-04-01

    Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.

  18. EFFECTS OF RAMADAN FASTING ON BLOOD PRESSURE IN NORMOTENSIVE MALES.

    Science.gov (United States)

    Samad, Fatima; Qazi, Fahd; Pervaiz, Mohammad B; Kella, Danesh K; Mansoor, Maryah; Osmani, Bushra Z; Mir, Fazia; Kadir, Muhammad Masood

    2015-01-01

    Research has been done to investigate the effect of intermittent complete fasting on human physiological parameters but the effect of fasting on blood pressure remains relatively unexplored. Research in animal models suggests a hypotensive effect with an undetermined mechanism. Muslims worldwide fast daily from dawn to dusk throughout the Islamic month of Ramadan. This study was to investigate the proposed hypotensive effect of Ramadan fasting in males over A period of 20 days and to study the relationship of the pattern of blood pressure variation with body mass index change. A repeated measures observational study design was implemented with convenient sampling. Study group included 40 normotensive, non-smoker males with no known comorbidities between the ages of 18-40 who fasted daily in the month of Ramadan. One set of BP readings, each, was taken one week before the start of Ramadan and on the 7th, 14th and 21st day of Ramadan which included pre and post Iftar measurements along with other variables. Data was analysed by repeated measures ANOVA using SPSS. The differences were compared with critical values generated by Tukey's Method. There was a significant drop in systolic BP of 7.61 mmHg before Iftar, 2.72 mm-Hg after Iftar (peffect of Ramadan on diastolic BP (p<0.005), the drop being 3.19 mmHg. The drop in body mass index was significant only before Iftar at 0.3 kg/m2 (p<0.005). Pulse rate showed a significant drop of 7.79 bpm before Iftar and a significant rise of 3.96 bpm (p<0.005). Intermittent fasting causes a drop in both systolic and diastolic blood pressure in normotensive males.

  19. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    International Nuclear Information System (INIS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-01-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  20. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Mousseau, Normand [Département de Physique and RQMP, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada); Becquart, Charlotte S. [UMET, UMR CNRS 8207, ENSCL, Université Lille I, 59655 Villeneuve d' Ascq Cédex (France); El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha (Qatar)

    2016-08-07

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from