WorldWideScience

Sample records for finite elements approach

  1. Experimental Finite Element Approach for Stress Analysis

    Directory of Open Access Journals (Sweden)

    Ahmet Erklig

    2014-01-01

    Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.

  2. B Free Finite Element Approach for Saturated Porous Media: Consolidation

    Directory of Open Access Journals (Sweden)

    M. M. Stickle

    2016-01-01

    Full Text Available The B free finite element approach is applied to the governing equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid and fluid phases. Under this approach, where Voigt notation is avoided, the finite element equilibrium equations and the linearization of the coupled governing equations are fully derived using tensor algebra. In order to assess the B free approach for the consolidation equations, direct comparison with analytical solution of the response of a homogeneous and isotropic water-saturated poroelastic finite column under harmonic load is presented. The results illustrate the capability of this finite element approach of reproducing accurately the response of quasistatic phenomena in a saturated porous medium.

  3. On the Approaching Domain Obtained by Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    邹青松; 李永海

    2002-01-01

    The use of finite element method leads to replacing the initial domain by an approaching domain,Under some appropriate assumptions,we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.

  4. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  5. A finite element approach to x-ray optics design

    Science.gov (United States)

    Honkanen, A. P.; Ferrero, C.; Guigay, J. P.; Mocella, V.

    2017-05-01

    Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 which, in general, have to be solved numerically on a regular 2-D grid of points representing a planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 which can be easily implemented on a regular Cartesian grid but is not suitable for deformed meshes. In this case, the inner deformed crystal structure can be taken into account, but not the shape of the crystal surface if this differs substantially from a planar profile 5,6. Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken into account in a FEM calculation. Bent crystals are often used as focusing optical elements in Xray beamlines 11-13. In the following, we show the implementation of a general numerical framework for describing the propagation of X-rays inside a crystal based on the solution of the Takagi equations via the COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal will be taken as an example to illustrate the capabilities of the new approach.

  6. Finite element approach for transient analysis of multibody systems

    Science.gov (United States)

    Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.

    1992-01-01

    A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.

  7. A Finite Element Approach to Modeling Abrasive Wear Modes

    NARCIS (Netherlands)

    Woldman, M.; Heide, van der E.; Tinga, T.; Masen, M.A.

    2016-01-01

    Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model

  8. Biomechanical simulation of thorax deformation using finite element approach.

    Science.gov (United States)

    Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki

    2016-02-06

    The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced. Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification. Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.

  9. SENSITIVITY ANALYSIS OF CONCRETE PERFORMANCE USING FINITE ELEMENT APPROACH

    OpenAIRE

    Parjoko, Y. H.

    2012-01-01

    This study aims to understand the effect of applying several parameters: different axle load configuration, concrete properties, subgrade properties, slab thickness, joint characteristics, shoulder construction, bounded HMA overlay on concrete pavement, and bounded and unbounded CTB foundation over subgrade on the fatigue and erosion related distresses in concrete pavements. KENSLAB, an elaborate finite element program is used to determine the concrete pavement responses: stresses and deflect...

  10. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  11. Finite Element Approach for Coupled Striplines Embedded in Dielectric Material

    Directory of Open Access Journals (Sweden)

    Matthew N.O. Sadiku

    2013-03-01

    Full Text Available In this paper, we present finite element method (FEM to investigate the quasi-static analysis of two dimensional (2D shielded two coupled stripline structures for microelectronic devices.  In the proposed method, we specifically determine the values of capacitance per unit length and inductance per unit length of shielded two vertically coupled striplines and shielded two coupled striplines embedded in dielectric material.  Extensive simulation results are presented, and some comparative results are given by other methods and found them to be in excellent agreement. Furthermore, we determine the quasi-TEM spectral for the potential distribution of these shielded two coupled striplines.

  12. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    Science.gov (United States)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  13. Advanced finite element technologies

    CERN Document Server

    Wriggers, Peter

    2016-01-01

    The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

  14. A Computational Approach for Automated Posturing of a Human Finite Element Model

    Science.gov (United States)

    2016-07-01

    following: obtaining source geometries in the posture being tested, a so- called posturing “by hand” where geometries are moved to what “looks correct ...ARL-MR-0934• JULY 2016 US Army Research Laboratory A Computational Approach for Automated Posturing of a Human Finite ElementModel by Justin McKee...Automated Posturing of a Human Finite ElementModel by Justin McKee Bennett Aerospace, Inc., Cary, NC Adam Sokolow Weapons and Materials Research

  15. A new approach in cascade flow analysis using the finite element method

    Science.gov (United States)

    Baskharone, E.; Hamed, A.

    1980-01-01

    A new approach in analyzing the potential flow past cascades and single airfoils using the finite element method is developed. In this analysis the circulation around the airfoil is not externally imposed but is directly computed in the numerical solution. Different finite element discretization patterns, orders of piecewise approximation, and grid sizes are used in the solution. The results obtained are compared with existing experimental measurements and exact solutions in cascades and single airfoils.

  16. An approach to directional drilling simulation: finite element and finite segment methods with contact

    Science.gov (United States)

    Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad

    2016-06-01

    Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.

  17. A FINITE-ELEMENTS APPROACH TO THE STUDY OF FUNCTIONAL ARCHITECTURE IN SKELETAL-MUSCLE

    NARCIS (Netherlands)

    OTTEN, E; HULLIGER, M

    1994-01-01

    A mathematical model that simulates the mechanical processes inside a skeletal muscle under various conditions of muscle recruitment was formulated. The model is based on the finite-elements approach and simulates both contractile and passive elastic elements. Apart from the classic strategy of solv

  18. A FINITE-ELEMENTS APPROACH TO THE STUDY OF FUNCTIONAL ARCHITECTURE IN SKELETAL-MUSCLE

    NARCIS (Netherlands)

    OTTEN, E; HULLIGER, M

    1994-01-01

    A mathematical model that simulates the mechanical processes inside a skeletal muscle under various conditions of muscle recruitment was formulated. The model is based on the finite-elements approach and simulates both contractile and passive elastic elements. Apart from the classic strategy of solv

  19. A New Finite Element Approach for Prediction of Aerothermal Loads: Progress in Inviscid Flow Computations

    Science.gov (United States)

    Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.

    1985-01-01

    Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.

  20. A new finite element approach for prediction of aerothermal loads - Progress in inviscid flow computations

    Science.gov (United States)

    Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.

    1985-01-01

    Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commercially available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.

  1. A perturbation approach for geometrically nonlinear structural analysis using a general purpose finite element code

    NARCIS (Netherlands)

    Rahman, T.

    2009-01-01

    In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft

  2. Finite element procedures

    CERN Document Server

    Bathe, Klaus-Jürgen

    2015-01-01

    Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.

  3. Variance analysis for model updating with a finite element based subspace fitting approach

    Science.gov (United States)

    Gautier, Guillaume; Mevel, Laurent; Mencik, Jean-Mathieu; Serra, Roger; Döhler, Michael

    2017-07-01

    Recently, a subspace fitting approach has been proposed for vibration-based finite element model updating. The approach makes use of subspace-based system identification, where the extended observability matrix is estimated from vibration measurements. Finite element model updating is performed by correlating the model-based observability matrix with the estimated one, by using a single set of experimental data. Hence, the updated finite element model only reflects this single test case. However, estimates from vibration measurements are inherently exposed to uncertainty due to unknown excitation, measurement noise and finite data length. In this paper, a covariance estimation procedure for the updated model parameters is proposed, which propagates the data-related covariance to the updated model parameters by considering a first-order sensitivity analysis. In particular, this propagation is performed through each iteration step of the updating minimization problem, by taking into account the covariance between the updated parameters and the data-related quantities. Simulated vibration signals are used to demonstrate the accuracy and practicability of the derived expressions. Furthermore, an application is shown on experimental data of a beam.

  4. Finite element methods for engineering sciences. Theoretical approach and problem solving techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert

    2008-07-01

    This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)

  5. General and efficient parallel approach of finite element-boundary integral-multilevel fast multipole algorithm

    Institute of Scientific and Technical Information of China (English)

    Pan Xiaomin; Sheng Xinqing

    2008-01-01

    A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finite-element-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finite-element method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor-mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.

  6. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  7. Study of Delamination and Buckling of Paper during the Creping Process using Finite Element Method -- A Cohesive Element Approach

    Science.gov (United States)

    Gupta, Swapnil Sheelkumar

    Paper variants such as paper napkins, tissue paper are manufactured by a process called as creping during which a paper adhesively bonded to a rotating drum is continuously scraped off by a blade. Resulting low density paper provides critical attributes such as fluid absorbency, softness, and stretchiness to the final paper product. The macroscopic effect of creping is the formation of fine ridges called as " crepes". The quality of the final product is characterized by the length of the crepes. The process of creping has been hypothesized to be a periodic sequence of delamination, buckling and post-buckling compression of paper. A quasi-static comparison of a two dimensional finite element model implementing surface based cohesive zone theory and a critical stress criteria based fracture model is presented. The adhesive being a critical part of creping is represented by a zero thickness cohesive layer in the cohesive model . A comparison of a 1-D analytical model implementing an energy release rate approach and a Virtual Crack Closure Technique (VCCT) quasi-static finite element model is presented. An experimental investigation to quantitatively determine the adhesive fracture toughness during creping is conducted by an energy based approach. The influence of drum speed and adhesive concentration on the adhesive fracture energy is analyzed and comparison with a dynamic finite element model is obtained.

  8. quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    A. R. Bahadir

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  9. An approach to parameter estimation for breast tumor by finite element method

    Science.gov (United States)

    Xu, A.-qing; Yang, Hong-qin; Ye, Zhen; Su, Yi-ming; Xie, Shu-sen

    2009-02-01

    The temperature of human body on the surface of the skin depends on the metabolic activity, the blood flow, and the temperature of the surroundings. Any abnormality in the tissue, such as the presence of a tumor, alters the normal temperature on the skin surface due to increased metabolic activity of the tumor. Therefore, abnormal skin temperature profiles are an indication of diseases such as tumor or cancer. This study is to present an approach to detect the female breast tumor and its related parameter estimations by combination the finite element method with infrared thermography for the surface temperature profile. A 2D simplified breast embedded a tumor model based on the female breast anatomical structure and physiological characteristics was first established, and then finite element method was used to analyze the heat diffuse equation for the surface temperature profiles of the breast. The genetic optimization algorithm was used to estimate the tumor parameters such as depth, size and blood perfusion by minimizing a fitness function involving the temperature profiles simulated data by finite element method to the experimental data obtained by infrared thermography. This preliminary study shows it is possible to determine the depth and the heat generation rate of the breast tumor by using infrared thermography and the optimization analysis, which may play an important role in the female breast healthcare and diseases evaluation or early detection. In order to develop the proposed methodology to be used in clinical, more accurate anatomy 3D breast geometry should be considered in further investigations.

  10. Comparative Evaluation of Tractor Trolley Axle by Using Finite Element Analysis Approach

    Directory of Open Access Journals (Sweden)

    Sanjay Aloni

    2012-04-01

    Full Text Available Tractor trolley or trailers are very popular and cheaper mode of goods transport in rural as well as urban area. But these trailers are manufactured in small scale to moderate scale industry. Especially in the small- and middle-scale agricultural machinery industry, insufficient use of new technology and new design features can cause problems such as breakdowns and failures during field operations. In Present work finite element analysis approach is used to modify existing rear axle of tractor trolley. Fatigue failure of the rear axle finite element model was predicted after the dynamic load was imposed on it. For analysis, a 6.0 ton 2 wheeler tractor trolley i.e. semitrailer manufactured by Awachat Industries Ltd., Wardha is selected. The finite element analysis of existing rear axle of tractor trolley revealed the stresses distribution on rear axle. So, an effort is made to modify the design of existing rear axle along with change of material so that advantage of weight reduction along with safe stress can be obtained.

  11. Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools

    Energy Technology Data Exchange (ETDEWEB)

    Balima, O., E-mail: ofbalima@gmail.com [Département des Sciences Appliquées, Université du Québec à Chicoutimi, 555 bd de l’Université, Chicoutimi, QC, Canada G7H 2B1 (Canada); Favennec, Y. [LTN UMR CNRS 6607 – Polytech’ Nantes – La Chantrerie, Rue Christian Pauc, BP 50609 44 306 Nantes Cedex 3 (France); Rousse, D. [Chaire de recherche industrielle en technologies de l’énergie et en efficacité énergétique (t3e), École de technologie supérieure, 201 Boul. Mgr, Bourget Lévis, QC, Canada G6V 6Z3 (Canada)

    2013-10-15

    Highlights: •New strategies to improve the accuracy of the reconstruction through mesh and finite element parameterization. •Use of gradient filtering through an alternative inner product within the adjoint method. •An integral form of the cost function is used to make the reconstruction compatible with all finite element formulations, continuous and discontinuous. •Gradient-based algorithm with the adjoint method is used for the reconstruction. -- Abstract: Optical tomography is mathematically treated as a non-linear inverse problem where the optical properties of the probed medium are recovered through the minimization of the errors between the experimental measurements and their predictions with a numerical model at the locations of the detectors. According to the ill-posed behavior of the inverse problem, some regularization tools must be performed and the Tikhonov penalization type is the most commonly used in optical tomography applications. This paper introduces an optimized approach for optical tomography reconstruction with the finite element method. An integral form of the cost function is used to take into account the surfaces of the detectors and make the reconstruction compatible with all finite element formulations, continuous and discontinuous. Through a gradient-based algorithm where the adjoint method is used to compute the gradient of the cost function, an alternative inner product is employed for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameterization of the optical properties is performed. These regularization strategies are compared with the classical Tikhonov penalization one. It is shown that both the re-parameterization and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed inverse problem.

  12. A finite element approach to self-consistent field theory calculations of multiblock polymers

    CERN Document Server

    Ackerman, David M; Fredrickson, Glenn H; Ganapathysubramanian, Baskar

    2016-01-01

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for s...

  13. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  14. Finite Element Approach for Analyses of Flanking Noise Transmission within Lightweight Panel Structure

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Dickow, Kristoffer Ahrens; Andersen, Lars;

    2011-01-01

    This paper concerns the analysis of noise transmission in a lightweight panel structure. The analysis is based on Finite Element Analysis (FEA) employing solid elements for the structure. The analysis focuses on flanking noise transmission in panel structures of finite size. A parametric study...

  15. Stress analysis of composite spur gear using the finite element approach

    Science.gov (United States)

    Vijayarangan, S.; Ganesan, N.

    1993-03-01

    Engineering components made of composite materials find increasing applications ranging from spacecraft to small instruments. Many types of gear pump use composite gears, however little literature is available on their use. In this paper results obtained by static stress analysis of composite gears using a three-dimensional finite element approach are presented. Performance of two orthotropic material gears are presented and compared with mild steel gear. From the results it is concluded that composite material such as graphite/epoxy can be thought of as a material for power transmission gears.

  16. Finite element mesh generation

    CERN Document Server

    Lo, Daniel SH

    2014-01-01

    Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques

  17. Spectral-finite element approach to present-time mantle convection

    Science.gov (United States)

    Tosi, N.; Martinec, Z.

    2005-12-01

    We present a spectral-finite element approach to the forward modelling of present-time mantle convection. The differential Stokes problem for an incompressible viscous flow in a spherical shell is reformulated in weak sense by means of a variational principle. The integral equations obtained are then parametrized by vector and tensor spherical harmonics in the angular direction and by piecewise linear finite elements over the radial direction. The solution is obtained using the Galerkin method, that leads to the solution of a system of linear algebraic equations. The earth-viscosity structure is described using a two-dimensional spherical grid, that allows us to treat various kinds of lateral variation, with viscosity contrasts of several order of magnitude. The method is first tested for the case of a one-dimensional viscosity structure. After prescribing the internal load in the form of a Dirac-delta, Green's functions for the surface topography, core topography and geoid are computed and compared with those obtained by solving the problem with the traditional matrix propagator technique. The approach is then applied to two different axisymmetric viscosity structures consisting either of one or two highly viscous cratonic bodies embedded in the upper mantle. We compute the corresponding Green's functions, showing and discussing the non-linear coupling of various spherical-harmonic modes, and the resulting angular dependence of the flow velocity.

  18. Multiscale approach for bone remodeling simulation based on finite element and neural network computation

    CERN Document Server

    Hambli, Ridha

    2011-01-01

    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...

  19. Finite element modelling of woven composite failure modes at the mesoscopic scale: deterministic versus stochastic approaches

    Science.gov (United States)

    Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.

    2017-09-01

    Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.

  20. Finite element analysis

    CERN Document Server

    2010-01-01

    Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.

  1. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach.

    Science.gov (United States)

    Ou, Yangxin; Pardo, David; Chen, Yuntian

    2015-11-16

    We present a Fourier finite element modeling of light emission of dipolar emitters coupled to infinitely long waveguides. Due to the translational symmetry, the three-dimensional (3D) coupled waveguide-emitter system can be decomposed into a series of independent 2D problems (2.5D), which reduces the computational cost. Moreover, the reduced 2D problems can be extremely accurate, compared to its 3D counterpart. Our method can precisely quantify the total emission rates, as well as the fraction of emission rates into different modal channels for waveguides with arbitrary cross-sections. We compare our method with dyadic Green's function for the light emission in single mode metallic nanowire, which yields an excellent agreement. This method is applied in multi-mode waveguides, as well as multi-core waveguides. We further show that our method has the full capability of including dipole orientations, as illustrated via a rotating dipole, which leads to unidirectional excitation of guide modes. The 2.5D Finite Element Method (FEM) approach proposed here can be applied for various waveguides, thus it is useful to interface single-photon single-emitter in nano-structures, as well as for other scenarios involving coupled waveguide-emitters.

  2. Inside finite elements

    CERN Document Server

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  3. A finite element approach to self-consistent field theory calculations of multiblock polymers

    Science.gov (United States)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar

    2017-02-01

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  4. Cadaveric validation of a finite element modeling approach for studying scapular notching in reverse shoulder arthroplasty.

    Science.gov (United States)

    Permeswaran, Vijay N; Goetz, Jessica E; Rudert, M James; Hettrich, Carolyn M; Anderson, Donald D

    2016-09-06

    Cadaveric experiments were undertaken to validate a finite element (FE) modeling approach for studying impingement-related scapular notching in reverse shoulder arthroplasty (RSA). The specific focus of the validation was contact at the site of impingement between the humeral polyethylene component and the inferior aspect of the scapula during an adduction motion. Lateralization of the RSA center of rotation was varied because it has been advocated clinically to reduce impingement and presumably decrease the risk of scapular notching. Tekscan sensors were utilized to directly measure contact stress at the impingement site, and FE was used to compute contact stresses. Favorable agreement was seen between physically measured and FE-computed impingement site location (within one sensing element of the Tekscan sensor) and contact loads (mean absolute difference of 14.9%). Contact stresses and contact areas were difficult to compare directly due to the disparate spatial resolutions of the Tekscan sensor and the FE model. FE-computed contact at the impingement site was highly focal, with a total contact area comparable to the area of an individual Tekscan sensing element. The good agreement between the physically measured and FE-computed contact data (i.e., contact load and location) support the use of FE modeling as a tool for computationally testing the efficacy of changing various surgical variables associated with RSA.

  5. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    Science.gov (United States)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  6. A new approach to finite element modeling, analysis and post-processing

    Science.gov (United States)

    White, Gil

    1987-01-01

    Recent advances in both hardware and software have opened the door to a new generation of finite element modeling systems. INTERGRAPH CORP has combined an innovative programming concept with a stand alone workstation hardware platform to produce a new standard in finite element modeling called I/FEM. The system offers the COSMIC NASTRAN user full integration between design and analysis. I/FEM not only addresses the needs of the NASTRAN user of today, it also provides for continued evolution of the COSMIC NASTRAN product.

  7. An approach to probabilistic finite element analysis using a mixed-iterative formulation

    Science.gov (United States)

    Dias, J. B.; Nakazawa, S.

    1988-01-01

    An efficient algorithm for computing the response sensitivity of finite element problems based on a mixed-iterative formulation is proposed. This method does not involve explicit differentiation of the tangent stiffness array and can be used with formulations for which a consistent tangent stiffness is not readily available. The method has been successfully applied to probabilistic finite element analysis of problems using the proposed mixed formulation, and this exercise has provided valuable insights regarding the extension of the method to a more general class of problems to include material and geometric nonlinearities.

  8. A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails

    Science.gov (United States)

    Nilsson, C.-M.; Jones, C. J. C.; Thompson, D. J.; Ryue, J.

    2009-04-01

    Engineering methods for modelling the generation of railway rolling noise are well established. However, these necessarily involve some simplifying assumptions to calculate the sound powers radiated by the wheel and the track. For the rail, this involves using an average vibration together with a radiation efficiency determined for a two-dimensional (2D) problem. In this paper, the sound radiation from a rail is calculated using a method based on a combination of waveguide finite elements and wavenumber boundary elements. This new method allows a number of the simplifying assumptions in the established methods to be avoided. It takes advantage of the 2D geometry of a rail to provide an efficient numerical approach but nevertheless takes into account the three-dimensional nature of the vibration and sound field and the infinite extent of the rail. The approach is used to study a conventional 'open' rail as well as an embedded tram rail of the type used for street running. In the former case it is shown that the conventional approach gives correct results and the complexity of the new method is mostly not necessary. However, for the embedded rail it is found that it is important to take into account the radiation from several wave types in the rail and embedding material. The damping effect of the embedding material on the rail vibration is directly taken into account and, for the example shown, causes the embedded rail to radiate less sound than the open rail above about 600 Hz. The free surface of the embedding material amplifies the sound radiation at some frequencies, while at other frequencies it moves out of phase with the rail and reduces the radiation efficiency. At low frequencies the radiation from the embedded rail resembles a line monopole source which produces greater power than the 'open' rail which forms a line dipole.

  9. Analysis of ground vibrations due to underground trains by 2.5D finite/infinite element approach

    Institute of Scientific and Technical Information of China (English)

    Hsiao-Hui Hung; Y. B. Yang

    2010-01-01

    The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.

  10. A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids

    Energy Technology Data Exchange (ETDEWEB)

    Bungartz, H.J. [Technische Universitaet Muenchen (Germany)

    1996-12-31

    In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.

  11. Linearization of dynamic equations of flexible mechanisms - a finite element approach

    NARCIS (Netherlands)

    Jonker, Ben

    1991-01-01

    A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinate

  12. A finite element approach for the dynamic analysis of joint-dominated structures

    Science.gov (United States)

    Chang, Che-Wei; Wu, Shih-Chin

    1991-01-01

    A finite element method to model dynamic structural systems undergoing large rotations is presented. The dynamic systems are composed of rigid joint bodies and flexible beam elements. The configurations of these systems are subject to change due to the relative motion in the joints among interconnected elastic beams. A body fixed reference is defined for each joint body to describe the joint body's displacements. Using the finite element method and the kinematic relations between each flexible element and its corotational reference, the total displacement field of an element, which contains gross rigid as well as elastic effects, can be derived in terms of the translational and rotational displacements of the two end nodes. If one end of an element is hinged to a joint body, the joint body's displacements and the hinge degree of freedom at the end are used to represent the nodal displacements. This results in a highly coupled system of differential equations written in terms of hinge degrees of freedom as well as the rotational and translational displacements of joint bodies and element nodes.

  13. Finite element simulation of internal flows with heat transfer using a velocity correction approach

    Indian Academy of Sciences (India)

    B S Varaprasad Patnaik; Y T K Gowda; M S Ravisankar; P A Aswatha Narayana; K N Seetharamu

    2001-06-01

    This paper enumerates finite-element based prediction of internal flow problems, with heat transfer. The present numerical simulations employ a velocity correction algorithm, with a Galerkin weighted residual formulation. Two problems each in laminar and turbulent flow regimes are investigated, by solving full Navier-Stokes equations. Flow over a backward-facing step is studied with extensive validations. The robustness of the algorithm is demonstrated by solving a very complex problem viz. a disk and doughnut baffled heat exchanger, which has several obstructions in its flow path. The effect of wall conductivity in turbulent heat transfer is also studied by performing a conjugate analysis. Temporal evolution of flow in a channel due to circular, square and elliptic obstructions is investigated, to simulate the vortex dynamics. Flow past an in-line tube bank of a heat exchanger shell is numerically studied. Resulting heat and fluid flow patterns are analysed. Important design parameters of interest such as the Nusselt number, Strouhal number, skin friction coefficient, pressure drop etc. are obtained. It is successfully demonstrated that the velocity correction approach with a Galerkin weighted residual formulation is able to effectively simulate a wide range of fluid flow features.

  14. A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach

    KAUST Repository

    Espath, L. F R

    2015-02-03

    A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.

  15. Numerical computation of transonic flows by finite-element and finite-difference methods

    Science.gov (United States)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  16. An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design

    Science.gov (United States)

    Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.

    2003-01-01

    A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.

  17. A new approach to dissolution testing by UV imaging and finite element simulations

    DEFF Research Database (Denmark)

    Bøtker, Johan Peter; Rantanen, Jukka; Rades, Thomas

    2013-01-01

    PURPOSE: Most dissolution testing systems rely on analyzing samples taken remotely from the dissolving sample surface at different time points with poor time resolution and therefore provide relatively unresolved temporally and spatially information on the dissolution process. In this study......, a flexible numerical model was combined with a novel UV imaging system, allowing monitoring of the dissolution process with sub second time resolution. METHODS: The dissolution process was monitored by both effluent collection and UV imaging of compacts of paracetamol. A finite element model (FEM) was used...... to characterize the UV imaging system. RESULTS: A finite element model of the UV imaging system was successfully built. The dissolution of paracetamol was studied by UV imaging and by analysis of the effluent. The dissolution rates obtained from the collected effluent were in good agreement with the numerical...

  18. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  19. A finite-element approach to evaluating the size effects of complex nanostructures

    Science.gov (United States)

    Lu, Dingjie; Xie, Yi Min; Li, Qing; Huang, Xiaodong; Li, Yang Fan; Zhou, Shiwei

    2016-12-01

    The size effects that reveal the dramatic changes of mechanical behaviour at nanoscales have traditionally been analysed for regular beam systems. Here, the method of using finite-element analysis is explored with the intention of evaluating the size effects for complex nanostructures. The surface elasticity theory and generalized Young-Laplace equation are integrated into a beam element to account for the size effects in classical Euler-Bernoulli and Timoshenko beam theories. Computational results match well with the theoretical predictions on the size effect for a cantilever beam and a cubic unit cell containing 24 horizontal/vertical ligaments. For a simply supported nanowire, it is found that the results are very close to the experimental data. With the assumption that nanoporous gold is composed of many randomly connected beams, for the first time, the size effect of such a complex structure is numerically determined.

  20. Automatic finite elements mesh generation from planar contours of the brain: an image driven 'blobby' approach

    CERN Document Server

    Bucki, M; Bucki, Marek; Payan, Yohan

    2005-01-01

    In this paper, we address the problem of automatic mesh generation for finite elements modeling of anatomical organs for which a volumetric data set is available. In the first step a set of characteristic outlines of the organ is defined manually or automatically within the volume. The outlines define the "key frames" that will guide the procedure of surface reconstruction. Then, based on this information, and along with organ surface curvature information extracted from the volume data, a 3D scalar field is generated. This field allows a 3D reconstruction of the organ: as an iso-surface model, using a marching cubes algorithm; or as a 3D mesh, using a grid "immersion" technique, the field value being used as the outside/inside test. The final reconstruction respects the various topological changes that occur within the organ, such as holes and branching elements.

  1. Calculation of phonon dispersion in carbon nanotubes using a continuum-atomistic finite element approach

    Directory of Open Access Journals (Sweden)

    Michael J. Leamy

    2011-12-01

    Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.

  2. Piezoelectric materials selection for sensor applications using finite element and multiple attribute decision-making approaches

    Science.gov (United States)

    Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul; Chauhan, Vishal S.; Bowen, C. R.

    2015-03-01

    This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E), piezoelectric stress constants (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based sensor applications. An analytic hierarchy process (AHP) is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS) is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3-LiSbO3 (KNN-LS) materials family is important for sensor application. Young's modulus (E) is most influencing material's property followed by piezoelectric constant (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based piezoelectric sensor applications.

  3. Application of the Recursive Finite Element Approach on 2D Periodic Structures under Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Reem Yassine

    2016-12-01

    Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.

  4. Multi-Resolution Markov-Chain-Monte-Carlo Approach for System Identification with an Application to Finite-Element Models

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, G; Glaser, R E; Lee, C L; Nitao, J J; Hanley, W G

    2005-02-07

    Estimating unknown system configurations/parameters by combining system knowledge gained from a computer simulation model on one hand and from observed data on the other hand is challenging. An example of such inverse problem is detecting and localizing potential flaws or changes in a structure by using a finite-element model and measured vibration/displacement data. We propose a probabilistic approach based on Bayesian methodology. This approach does not only yield a single best-guess solution, but a posterior probability distribution over the parameter space. In addition, the Bayesian approach provides a natural framework to accommodate prior knowledge. A Markov chain Monte Carlo (MCMC) procedure is proposed to generate samples from the posterior distribution (an ensemble of likely system configurations given the data). The MCMC procedure proposed explores the parameter space at different resolutions (scales), resulting in a more robust and efficient procedure. The large-scale exploration steps are carried out using coarser-resolution finite-element models, yielding a considerable decrease in computational time, which can be a crucial for large finite-element models. An application is given using synthetic displacement data from a simple cantilever beam with MCMC exploration carried out at three different resolutions.

  5. 有限元离散区域的逼近性%On the Approaching Domain Obtained by Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    邹青松; 李永海

    2002-01-01

    The use of finite element method leads to replacing the initial domain byan approaching domain. Under some appropriate assumptions, we prove that thereexists a W1,+∞-diffeomorphism from theoriginal domain to the approaching domain.

  6. Solution of Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...

  7. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  8. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach

    CERN Document Server

    Ou, Yangxin; Chen, Yuntian

    2015-01-01

    We present a Fourier finite element modeling of light emission of dipolar emitters coupled to infinitely long waveguides. Due to the translational symmetry, the three-dimensional (3D) coupled waveguide-emitter system can be decomposed into a series of independent 2D problems (2.5D), which reduces the computational cost. Moreover, the reduced 2D problems can be extremely accurate, compared to its 3D counterpart. Our method can precisely quantify the total emission rates, as well as the fraction of emission rates into different modal channels for waveguides with arbitrary cross-sections. We compare our method with dyadic Green's function for the light emission in single mode metallic nanowire, which yields an excellent agreement. This method is applied in multi-mode waveguides, as well as multi-core waveguides. We further show that our method has the full capability of including dipole orientations, as illustrated via a rotating dipole, which leads to unidirectional excitation of guide modes. The 2.5D Finite El...

  9. Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave

    Science.gov (United States)

    Chen, Xiaoming; Li, Songsong

    2016-04-01

    The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.

  10. FINITE ELEMENT GALERKIN APPROACH FOR A COMPUTATIONAL STUDY OF ARTERIAL FLOW

    Institute of Scientific and Technical Information of China (English)

    G.C.Sharma(G.C.夏玛); Madhu Jain(马德胡·珍); Anil Kumar(阿尼尔·克乌玛)

    2001-01-01

    A finite element solution for the Navier-Stokes equations for steady flow through a double branched two dimensional section of three dimensional model of canine aorta is obtained. The numerical technique involves transformation of the physical coordinates to a curvilinear boundary fitted coordinate system. The shear stress at the wall is calculated for Reynolds number of 1000 with branch to main aortic flow rate ratio as a parameter. The results are compared with earlier works involving experimental data and it is observed that the results are very close to their solutions. This work in fact is an improvement of the work of Sharma and Kapoor (1995) in the sense that computations scheme is economic and Reynolds number is large.

  11. A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach

    Science.gov (United States)

    Gavrić, L.; Pavić, G.

    1993-06-01

    A method for numerical computation of structural intensity in thin-walled structures is presented. The method is based on structural finite elements (beam, plate and shell type) enabling computation of real eigenvalues and eigenvectors of the undamped structure which then serve in evaluation of complex response. The distributed structural damping is taken into account by using the modal damping concept, while any localized damping is treated as an external loading, determined by use of impedance matching conditions and eigenproperties of the structure. Emphasis is given to aspects of accuracy of the results and efficiency of the numerical procedures used. High requirements on accuracy of the structural response (displacements and stresses) needed in intensity applications are satisfied by employing the "swept static solution", which effectively takes into account the influence of higher modes otherwise inaccessible to numerical computation. A comparison is made between the results obtained by using analytical methods and the proposed numerical procedure to demonstrate the validity of the method presented.

  12. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  13. Australopithecus anamensis: a finite-element approach to studying the functional adaptations of extinct hominins.

    Science.gov (United States)

    Macho, Gabriele A; Shimizu, Daisuke; Jiang, Yong; Spears, Iain R

    2005-04-01

    Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.

  14. Finite element computational fluid mechanics

    Science.gov (United States)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  15. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    Science.gov (United States)

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot.

  16. Material Substitution For The Supporting Frame of Power Tiller With Finite Element Analysis Approach

    Directory of Open Access Journals (Sweden)

    Midian Shite

    2006-08-01

    Full Text Available Due to its advantageouse characteristic, aluminum is considered to substitute the existing steel as material of the supporting frame of power tiller to meet the strength and environment concerns. The investigation was emphasized on the comparison of both material in view of stress and deformation. In this study, both experimental test and finite element (FE analysis were employed to meet the research concem.comparison between the experimental test and numerical analysis result indicated acceptable differnces of about 7-33% wich is lower than the previouse research. Substitution with aluminum was confirmed using material index that aluminum has better performance in strength and stiffness than that of steel by prescibing minimum better performance in strength and stiffness than that of steel by prescibing minimum weight. FE analysis result revealed that aluminum model was capable of sustaining loads about equal to the steel model. It was based on its maximum von Mises stress wich was insignificatly lower than the steel model. In term of strength characteristic, strength ratio of the aluminum model was higher than the steel model. Furthemore, the substitution also resulted in redistrubuting stress into wider area and mass reduction for about 36%.

  17. Fluorescence-enhanced optical spectroscopy using early arriving photons in transmission mode: a finite element approach

    Science.gov (United States)

    Piron, Vianney; L'Huillier, Jean-Pierre

    2012-06-01

    Optical imaging of turbid media is a challenging problem mainly due to the scattering process that reduces image contrast and degrades spatial resolution. The development of fluorescent probes has recently improved the noninvasive optical technique. In this paper, we are interested in the time gating fluorescence signals. The diffusion approximation is used in order to describe the light propagation of a laser pulse in a turbid media that mimics breast like biological tissue. A numerical model based on a finite element method is proposed. Fluorescence time dependent numerical simulations are performed in order to compute time-gated intensities resulting from line scans across partially absorbing and scattering slab configurations. Optical properties of embedded objects are chosen to be the same as optical properties of breast tumor. Tacking into account two hidden objects, we investigate the lateral resolution aimed by fluorescence modality, and we also compared the results to thus obtained by photon propagation. Different widths of the time gate are computed and it is demonstrated that both lateral localization of one inclusion, and resolution of two inclusions, are enhanced when the time-gate width (▵t) is decreased. The overall computations confirm that fluorescent time-gating technique is very sensitive to local variations in optical properties that are due to breast-like tumors in turbid media.

  18. An ALE Finite Element Approach for Two-Phase Flow with Phase Change

    Science.gov (United States)

    Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team

    2016-11-01

    In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.

  19. Programming the finite element method

    CERN Document Server

    Smith, I M; Margetts, L

    2013-01-01

    Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c

  20. Second order tensor finite element

    Science.gov (United States)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  1. Quadrature representation of finite element variational forms

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...

  2. Finite element methods a practical guide

    CERN Document Server

    Whiteley, Jonathan

    2017-01-01

    This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

  3. Finite element methods for engineers

    CERN Document Server

    Fenner, Roger T

    2013-01-01

    This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...

  4. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities

    Institute of Scientific and Technical Information of China (English)

    Xue-cheng BIAN; Chang CHAO; Wan-feng JIN; Yun-min CHEN

    2011-01-01

    Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds.A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities.The one-quarter car model is used to represent the train as lumped masses connected by springs.The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency.The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number.The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface,including the irregularities on the track surface.Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation,using a conventional finite element procedure.The amplitude and wavelength are identified as two major parameters describing track irregularities.The irregularity amplitude has a direct impact on the vertical response for low-speed trains,both for short wavelength and long wavelength irregularities.Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases.For low-speed case,vibrations induced by track irregularities dominate far field responses.For high-speed case,the wavelength of track irregularities has very little effect on ground vibration at distances far from track center,and train's wheel axle weights becomes dominant.

  5. Orbital stress analysis, part V: systematic approach to validate a finite element model of a human orbit.

    Science.gov (United States)

    Al-sukhun, Jehad; Penttilä, Heikki; Ashammakhi, Nureddin

    2012-05-01

    The progress in computer technology and the increased use of finite element analysis in the medical field by nonengineers and medical researchers lead us to believe that there is a need to develop a systematic approach to validate a finite element model (FEM), of a human orbit, that simulates part of the maxillofacial skeleton and to investigate the effects and the clinical significance of changing the geometry, boundary conditions, that is, muscle forces, and orthotropic material properties on the predictive outcome of an FEM of a human orbit. Forty-seven variables affecting the material properties, boundary conditions, and the geometry of an FEM of a human orbit including the globe were systematically changed, creating a number of FEMs of the orbit. The effects of the variations were quantified as differences in the principal strain magnitudes modeled by the original FEM (criterion standard), before the sensitivity analyses, and those generated by the changed FEMs. The material properties that had the biggest impact on the predicted principal strains were the shear moduli (up to 21%) and the absence of fatty tissue (up to 75%). The boundary condition properties that had the biggest impact on the predicted principal strains were the superior rectus muscle and canthal ligaments (up to 18% and 23%, respectively). Alterations to the geometry of the orbit, such as an increase in its volume, had the greatest effect on principal strain magnitudes (up to 52%). Changes in geometry, boundary conditions, and orthotropic material properties can induce significant changes in strain patterns. These values must therefore be chosen with care when using finite element modeling techniques. This study also highlights the importance of restoring the orbital fat and volume when reconstructing the orbital floor following a blunt injury. The possibility that the unrestored increase in the orbital volume and the resulting stresses may be a source of globe injuries, causing diplopia

  6. A musculo-mechanical model of esophageal transport based on an immersed boundary-finite element approach

    Science.gov (United States)

    Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-11-01

    This work extends a fiber-based immersed boundary (IB) model of esophageal transport by incorporating a continuum model of the deformable esophageal wall. The continuum-based esophagus model adopts finite element approach that is capable of describing more complex and realistic material properties and geometries. The leakage from mismatch between Lagrangian and Eulerian meshes resulting from large deformations of the esophageal wall is avoided by careful choice of interaction points. The esophagus model, which is described as a multi-layered, fiber-reinforced nonlinear elastic material, is coupled to bolus and muscle-activation models using the IB approach to form the esophageal transport model. Cases of esophageal transport with different esophagus models are studied. Results on the transport characteristics, including pressure field and esophageal wall kinematics and stress, are analyzed and compared. Support from NIH grant R01 DK56033 and R01 DK079902 is gratefully acknowledged. BEG is supported by NSF award ACI 1460334.

  7. Infinite to finite: An overview of finite element analysis

    Directory of Open Access Journals (Sweden)

    Srirekha A

    2010-01-01

    Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.

  8. Finite elements of nonlinear continua

    CERN Document Server

    Oden, J T

    2000-01-01

    Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s

  9. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  10. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    Science.gov (United States)

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C

    2014-01-01

    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  11. An adaptive finite element approach to modelling sediment laden density currents

    Science.gov (United States)

    Parkinson, S.; Hill, J.; Allison, P. A.; Piggott, M. D.

    2012-04-01

    Modelling sediment-laden density currents at real-world scales is a challenging task. Here we present Fluidity, which uses dynamic adaptive re-meshing to reduce computational costs whilst maintaining sufficient resolution where and when it is required. This allows small-scale processes to be captured in large scale simulations. Density currents, also known as gravity or buoyancy currents, occur wherever two fluids with different densities meet. They can occur at scales of up to hundred kilometres in the ocean when continental shelves collapse. This process releases large quantities of sediment into the ocean which increase the bulk density of the fluid to form a density current. These currents can carry sediment hundreds of kilometres, at speeds of up to a hundred kilometres per hour, over the sea bed. They can be tsunamigenic and they have the potential to cause significant damage to submarine infrastructure, such as submarine telecommunications cables or oil and gas infrastructure. They are also a key process for movement of organic material into the depths of the ocean. Due to this, they play an important role in the global carbon cycle on the Earth, forming a significant component of the stratigraphic record, and their deposits can form useful sources of important hydrocarbons. Modelling large scale sediment laden density currents is a very challenging problem. Particles within the current are suspended by turbulence that occurs at length scales that are several orders of magnitude smaller than the size of the current. Models that resolve the vertical structure of the flow require a very large, highly resolved mesh, and substantial computing power to solve. Here, we verify our adaptive model by comparison with a set of laboratory experiments by Gladstone et al. [1998] on the propagation and sediment deposition of bidisperse gravity currents. Comparisons are also made with fixed mesh solutions, and it is shown that accuracy can be maintained with fewer elements

  12. Three-dimensional combined finite-discrete element approach for simulation of single layer powder compaction process

    Institute of Scientific and Technical Information of China (English)

    陈普庆; 夏伟; 周照耀; 朱权利; 李元元

    2004-01-01

    The application of a combined finite-discrete element modeling approach to simulate the three-dimensional microscopic compaction behavior of single-layer metal powder system was described. The process was treated as a static problem, with kinematical component being neglected. Due to ill condition, Cholesky's method failed to solve the system equations, while conjugate gradient method was tried and yielded good results. Deformation of the particles was examined and compared with the results of physical modeling experiments. In both cases, the inner particles were deformed from sphere to polygonal column, with the edges turning from arc to straight line. The edge number of a particle was equal to the number of particles surrounding it. And the experiments show that the ductile metal particles can be densified only by their plastic deformation without the occurrence of rearrangement phenomenon.

  13. The Relation of Finite Element and Finite Difference Methods

    Science.gov (United States)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  14. Numerical techniques for the improved performance of a finite element approach to wind turbine aeroelastics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)

    1996-09-01

    It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)

  15. DOLFIN: Automated Finite Element Computing

    CERN Document Server

    Logg, Anders; 10.1145/1731022.1731030

    2011-01-01

    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.

  16. Finite elements methods in mechanics

    CERN Document Server

    Eslami, M Reza

    2014-01-01

    This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...

  17. Automation of finite element methods

    CERN Document Server

    Korelc, Jože

    2016-01-01

    New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.

  18. Selective Smoothed Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.

  19. Numerical simulation of high-speed train induced ground vibrations using 2.5D finite element approach

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direction was applied to re-ducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction. In this study, the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface, while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements. Wave dissipation into the far field was dealt with the transmitting boundary constructed with fre-quency-dependent dashpots. Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction. The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system. It is found that, in the soft ground area, the high-speed train operations can enter the transonic range, which can lead to resonances of the track structure and the sup-porting ground. The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.

  20. Numerical simulation of high-speed train induced ground vibrations using 2.5D finite element approach

    Institute of Scientific and Technical Information of China (English)

    BIAN XueCheng; OHEN YunMin; HU Ting

    2008-01-01

    An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages.Fourier transform with respect to the coordinate in the track direction was applied to re-ducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction.In this study,the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface,while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements.Wave dissipation into the far field was dealt with the transmitting boundary constructed with fre-quency-dependent dashpots.Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction.The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system.It is found that,in the soft ground area,the high-speed train operations can enter the transonic range,which can lead to resonances of the track structure and the sup-porting ground.The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.

  1. Radial flow of slightly compressible fluids: A finite element-finite ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...

  2. Infinite Possibilities for the Finite Element.

    Science.gov (United States)

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  3. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  4. On Hybrid and mixed finite element methods

    Science.gov (United States)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  5. Biomechanical investigation of thoracolumbar spine in different postures during ejection using a combined finite element and multi-body approach.

    Science.gov (United States)

    Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo

    2014-11-01

    The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. Copyright © 2014 John Wiley & Sons, Ltd.

  6. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    Science.gov (United States)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  7. Finite element differential forms on cubical meshes

    CERN Document Server

    Arnold, Douglas N

    2012-01-01

    We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.

  8. Elements with Square Roots in Finite Groups

    Institute of Scientific and Technical Information of China (English)

    M.S. Lucido; M.R. Pournaki

    2005-01-01

    In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.

  9. Conforming finite elements with embedded strong discontinuities

    NARCIS (Netherlands)

    Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.

    2012-01-01

    The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi

  10. A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation

    CERN Document Server

    Aagaard, Brad T; Williams, Charles A

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  11. Finite element simulations with ANSYS workbench 16

    CERN Document Server

    Lee , Huei-Huang

    2015-01-01

    Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...

  12. Finite element modelling of SAW correlator

    Science.gov (United States)

    Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek

    2007-12-01

    Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.

  13. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach.

    Science.gov (United States)

    Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-12-28

    A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions.

  14. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  15. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  16. Unified Framework for Finite Element Assembly

    CERN Document Server

    Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160

    2012-01-01

    At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.

  17. A Comparison of Finite Element-Based Inversion Algorithms, Local Frequency Estimation, and Direct Inversion Approach Used in MRE.

    Science.gov (United States)

    Honarvar, Mohammad; Sahebjavaher, Ramin S; Rohling, Robert; Salcudean, Septimiu E

    2017-08-01

    In quantitative elastography, maps of the mechanical properties of soft tissue, or elastograms, are calculated from the measured displacement data by solving an inverse problem. The model assumptions have a significant effect on elastograms. Motivated by the high sensitivity of imaging results to the model assumptions for in vivo magnetic resonance elastography of the prostate, we compared elastograms obtained with four different methods. Two finite-element method (FEM)-based methods developed by our group were compared with two other commonly used methods, local frequency estimator (LFE) and curl-based direct inversion (c-DI). All the methods assume a linear isotropic elastic model, but the methods vary in their assumptions, such as local homogeneity or incompressibility, and in the specific approach used. We report results using simulations, phantom, and ex vivo and in vivo data. The simulation and phantom studies show, for regions with an inclusion, that the contrast to noise ratio (CNR) for the FEM methods is about three to five times higher than the CNR for the LFE and c-DI and the rms error is about half. The LFE method produces very smooth results (i.e., low CNR) and is fast. c-DI is faster than the FEM methods but it is only accurate in areas where elasticity variations are small. The artifacts resulting from the homogeneity assumption in c-DI is detrimental in regions with large variations. The ex vivo and in vivo results also show similar trends as the simulation and phantom studies. The c-FEM method is more sensitive to noise compared with the mixed-FEM due to higher orders derivatives. This is especially evident at lower frequencies, where the wave curvature is smaller and it is more prone to such error, causing a discrepancy in the absolute values between the mixed-FEM and c-FEM in our in vivo results. In general, the proposed FEMs use fewer simplifying assumptions and outperform the other methods but they are computationally more expensive.

  18. Superconvergence for rectangular serendipity finite elements

    Institute of Scientific and Technical Information of China (English)

    CHEN; Chuanmiao(陈传淼)

    2003-01-01

    Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.

  19. Finite elements and finite differences for transonic flow calculations

    Science.gov (United States)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  20. Continuous finite element methods for Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.

  1. Element-topology-independent preconditioners for parallel finite element computations

    Science.gov (United States)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  2. Element-topology-independent preconditioners for parallel finite element computations

    Science.gov (United States)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  3. Why do probabilistic finite element analysis ?

    CERN Document Server

    Thacker, B H

    2008-01-01

    The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.

  4. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  5. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  6. Finite element modeling methods for photonics

    CERN Document Server

    Rahman, B M Azizur

    2013-01-01

    The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron

  7. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    As a result of the increasing interest of constructing environmentally friendly lightweight buildings, analyses of vibrational and acoustical transmission in these buildings have become increasingly important. Structures where vibrational transmission may result in undesirable vibrations....... With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible...... of a similar construction without a skeleton. These parameters are selected in a way where decoupled pseudo-modes of the skeleton are avoided, alongside the insignificant influence of the overall structure achieved with a low mass, small profile, and a relatively low Young's modulus, approximately 1...

  8. Separation of Regional and Residual Components by Finite Element Analysis – A New Approach for Analysis of Water Level Data

    Directory of Open Access Journals (Sweden)

    K. K. SHARMA

    2010-12-01

    Full Text Available Trend surfaces are generally used in the study of water level data to understanding the causes and effects of various trend surfaces. In the present paper the separation of regional and residual components of water level data is attempted using a method based on the Finite Element Analysis techniques. The residual is obtained by calculating the difference between the computed value of the trend surface at a point and the value of observed actual surface at that point. If the trend surface is thought to be regional or large scale component representing the total aquifer then the residual value can be considered the local ore small scale component representing the local variations in the aquifer. Removal of the regional trend has the effect of isolating and emphasizing local components represented by the residual values. Various techniques have been proposed and are widely in use for the separation of regional and the residual components, specially for separating the geophysical data. But the main drawback of all these techniques is that the regional component, so computed, has always the remnance of the residual components. Hence, the regional and residual components do not give a clear picture of the variations. In the present paper a new technique is suggested, in which the regional and residual components are computed using finite element analysis technique. This technique requires the water level data at only eight or twelve points representing the aquifer boundaries for the computation of regional component. A case history is presented wherein the data from the literature is analyzed using the technique proposed. The paper gives the details of the method and its advantages over the other methods which are supported by its application on the field data.

  9. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  10. Finite element analysis of optical waveguides

    Science.gov (United States)

    Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.

    1981-06-01

    Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.

  11. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  12. Will Finite Elements Replace Structural Mechanics?

    Science.gov (United States)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  13. Superconvergence of tricubic block finite elements

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.

  14. Accurate finite element modeling of acoustic waves

    Science.gov (United States)

    Idesman, A.; Pham, D.

    2014-07-01

    In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.

  15. The effect of fixture neck design in a realistic model of dental implant: a finite element approach.

    Science.gov (United States)

    Necchi, Silvia; Migliavacca, Francesco; Gastaldi, Dario; Pizzagalli, Manuela; Del Fabbro, Massimo; Weinstein, Roberto; Pietrabissa, Riccardo; Dubini, Gabriele

    2003-01-01

    The aim of this work is to develop an accurate finite element model able to reproduce a standard experimental set-up for the evaluation of mechanical failure of a dental implant system. The considered system is composed of a fixture, an abutment and a connecting screw. We analysed the behaviour of the implant system considering three different designs of the fixture, in order to establish which one provides the better mechanical behaviour. After the definition of the numerical models, loading conditions were selected in order to reproduce the same stress state found in previous mechanical failure tests. Preloading and functional loading conditions were simulated. The analysis of the numerical results shows that the structure yielding is due to the fixture neck plastic deformation, that increases the load eccentricity and then the bending stress on the connecting screw. Only slight differences were found between the three implant systems in the amount and distribution of stress. The model reproduces properly the implant systems and the experimental set-up. The goodness of the model can be summarised as: realistic geometrical structure, elastoplastic model for the material description, correct definition of the contacts and the existing tolerance among the different system components, reproduction of the preloading stress condition. The present study permitted to define a valid procedure for the realization of numerical models of implant systems.

  16. Using an optimization approach to design an insole for lowering plantar fascia stress--a finite element study.

    Science.gov (United States)

    Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng

    2008-08-01

    Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.

  17. Moving Finite Elements in 2-D.

    Science.gov (United States)

    1984-08-06

    34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager

  18. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  19. Finite element modeling of corneal strip extensometry

    CSIR Research Space (South Africa)

    Botha, N

    2012-12-01

    Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...

  20. A survey of mixed finite element methods

    Science.gov (United States)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  1. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  2. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  3. Finite element modeling of the human pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  4. Surgery simulation using fast finite elements

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...

  5. The finite element method in electromagnetics

    CERN Document Server

    Jin, Jianming

    2014-01-01

    A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The

  6. A NOTE ON FINITE ELEMENT WAVELETS

    Institute of Scientific and Technical Information of China (English)

    谌秋辉; 陈翰麟

    2001-01-01

    The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.

  7. Integration of geometric modeling and advanced finite element preprocessing

    Science.gov (United States)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  8. Symmetric Matrix Fields in the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Gerard Awanou

    2010-07-01

    Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.

  9. Finite element analysis of flexible, rotating blades

    Science.gov (United States)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  10. Object localization within turbid slab media using time-resolved transillumination contrast functions: a finite element approach

    Science.gov (United States)

    Piron, V.; L'Huillier, J. P.; Mansouri, C.

    2007-07-01

    In the last few years, the propagation of diffuse photons in scattering media has become an important field of interest. This is mainly due to the possibility offered by the low absorption of light in the range 700 to 900nm. Indeed, this property leads to a potential deep penetration. But a non negligible limitation appears: the scattering processes strongly reduce both the contrast and the resolution. In this paper, the time-dependent light propagation in highly scattering media containing an inclusion is solved by means of a finite element method, tacking into account Robin type air-tissue boundary conditions. This study is devoted to the depth localization of a tumor enclosed into a breast-like slab. The tissue is modeled by a rectangular meshed domain that mimics a breast compressed between two transparent plates. Cartesian coordinates are used in order to solve the time-dependent diffusion approximation. A short laser pulse of 1ps is considered. The transillumination technique is able to laterally detect the object when the source and detector are moved together on the same axis. In order to perform the localization of the inclusion in this study, the optical properties of the object were varied. Knowing the lateral position of the inclusion, we derive interesting temporal contrast functions based on the mean time of flight of photons. These functions allow to localize in depth the inclusion under the assumption that the object is very diffusing. To conclude, our study demonstrates the possibility to detect laterally and axially a tumor-like inclusion enclosed in breast-like tissues.

  11. Analysis of fibre waviness effect through homogenization approach for the prediction of effective thermal conductivities of FRP composite using finite element method

    Indian Academy of Sciences (India)

    C MAHESH; K GOVINDARAJULU; V BALAKRISHNA MURTHY

    2016-06-01

    In this study, homogenization approach is proposed to analyse the fibre waviness in predicting the effective thermal conductivities of composite. Composites that have wavy fibre were analysed by finite element method toestablish equivalence between micro- and macro-mechanics principles, thereby, it is possible to minimize the computational efforts required to solve the problem through only micro-mechanics approach. In the present work, the influence of crest offset, wavy-span on the thermal conductivities of composite for different volume fractions and thermal conductivity mismatch ratios were also studied. It is observed that the homogenization results are in good agreement with minimal % error from those obtained through pure micro-mechanics approach at the cost of low computational facilities and less processing time for converged solutions.

  12. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  13. Finite Element Computational Dynamics of Rotating Systems

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.

  14. Error computation for adaptive finite element analysis

    CERN Document Server

    Khan, A A; Memon, I R; Ming, X Y

    2002-01-01

    The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)

  15. Thermo-coupled Surface Cauchy-Born Theory: An Engineering Finite Element Approach to Modeling of Nanowire Thermomechanical Response

    DEFF Research Database (Denmark)

    Esfahania, M. Nasr; Sonne, Mads Rostgaard; Hattel, J. Henri;

    2016-01-01

    There are remarkable studies geared towards developing thermomechanical analyses of nanowires based on quasiharmonic and Molecular Dynamics simulations. These methods exhibit limited applicability due to the associated computational cost. In this study an engineering finite-temperature model base...

  16. THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    李宏; 刘儒勋

    2001-01-01

    Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.

  17. Exact finite elements for conduction and convection

    Science.gov (United States)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  18. An iterative algorithm for finite element analysis

    Science.gov (United States)

    Laouafa, F.; Royis, P.

    2004-03-01

    In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.

  19. Modelling of Hybrid Materials and Interface Defects through Homogenization Approach for the Prediction of Effective Thermal Conductivity of FRP Composites Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    C. Mahesh

    2013-01-01

    Full Text Available Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i hybrid composite having two different fibres in alternate layers, (ii fibre-matrix interface debond in alternate layers, and (iii fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.

  20. Latest Trends in Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    L. S. Madhav

    1996-01-01

    Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.

  1. Finite Element Methods and Their Applications

    CERN Document Server

    Chen, Zhangxin

    2005-01-01

    This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.

  2. Finite element simulation of barge impact into a rigid wall

    Directory of Open Access Journals (Sweden)

    H.W. Leheta

    2014-03-01

    Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.

  3. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...

  4. Deciphering P-T-t Paths from Reaction Microstructures in Metamorphic Rocks: a New Approach by Means of Three-Dimensional Finite Element Modelling

    Science.gov (United States)

    Sassi, R.; Marcuzzi, F.; Mazzoli, C.

    2008-12-01

    One of the main goals of metamorphic petrology is to obtain information on the variations of metamorphic P-T conditions during orogenesis (P-T-t paths). For this purpose petrologists are aware of the potentiality of studying reaction microstructures, although results are not always satisfactory as in most cases qualitative approaches, failing on the real meaning of specific microstructral relationships, are often adopted. Thus, the present research aimed to study the petrogenetic meaning of reaction microstructure in metamorphic rocks through the formulation of a new true three-dimensional finite-element model. For this purpose, different petrologically well studied metamorphic microstructural situations have been selected, in order to identify information, variables and constraints fundamental for the development of the model. A generalised finite-elements model (FEM) has been developed, applicable to any microstructural situation, independently on grain-size and distribution of minerals in the matrix, and able to also consider growth anisotropies, intracrystalline diffusion, pressure solution, and possibly anisotropy of the strain field. This model is based on a combination of the usual diffusion linear equations used in current irreversible thermodynamic models, providing constraints on absolute values of diffusion coefficients of chemical components, chemical potential gradients and time of reactions during metamorphism, starting from information on textural anisotropies observed in metamorphic rocks. In the model, parameterization is given by diffusion, convection and reaction coefficients of each chemical species within each finite element, which dimension is equal to the spatial resolution of the experimentally measured input data (i.e. SEM elemental maps). Thus, parameterization is able to describe locally heterogeneous reaction phenomena although based on a basically linear partial derivative differential model. Such a discretization of the continuum model

  5. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    Science.gov (United States)

    Baqersad, Javad

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible

  6. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  7. FINITE ELEMENT IMPLEMENTATION OF DELAMINATION IN COMPOSITE PLATES

    Directory of Open Access Journals (Sweden)

    Milan Žmindák

    2012-12-01

    Full Text Available Modelling of composite structures by finite element (FE codes to effectively model certain critical failure modes such as delamination is limited. Previous efforts to model delamination and debonding failure modes using FE codes have typically relied on ad hoc failure criteria and quasi-static fracture data. Improvements to these modelling procedures can be made by using an approach based on fracture mechanics. A study of modelling delamination using the finite element code ANSYS was conducted. This investigation demonstrates the modelling of composites through improved delamination modelling. Further developments to this approach may be improved.

  8. Finite element simulation of wheel impact test

    Directory of Open Access Journals (Sweden)

    S.H. Yang

    2008-06-01

    Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel

  9. Finite element analysis of grain-matrix micro-cracking in shale within the context of a multiscale modeling approach for fracture (Invited)

    Science.gov (United States)

    Regueiro, R. A.; Yu, S.

    2010-12-01

    The paper models grain-scale micro-cracking in shale at grain-matrix interfaces, assuming constituents are composed of quart silt grains and compacted clay matrix for a typical shale. The influence of grain-matrix-grain interaction on micro-crack patterns is investigated. Elasto-plastic pressure-sensitive cohesive-surface models are inserted at grain-matrix interfaces and intra-clay-matrix finite element facets, while a bulk elasto-plasticity model with bifurcation is employed for the clay matrix to compare to the intra-clay-matrix cohesive-surface model. Numerical examples are presented under two-dimensional plane strain condition at small strains. A procedure is proposed to upscale grain-scale micro-cracking to predict macro-fracture nucleation and propagation in shale and other bound particulate materials. It is shown that using cohesive surface elements (CSEs) at all finite element facets in the clay matrix mesh to simulate micro-cracking in the clay matrix leads to mesh-dependent results. Using CSEs at grain-clay-matrix interfaces is physical and not mesh dependent. We also considered using bulk pressure-sensitive elasto-plasticity with bifurcation condition within the clay matrix to attempt to predict onset of localization around grains in the simulations. It was encouraging to see that for both the single grain and multiple grain simulations, the finite element region in the clay matrix meshes where bifurcation was first detected around the grains was nearly the same. This gives us confidence that once a proper post-bifurcation constitutive model is implemented within an embedded discontinuity formulation, micro-cracking nucleation and propagation at the grain-scale in shale can be properly simulated, which will provide the basis for up-scaling to macro-cracks within a multiscale method for fracture in shale. Other items to address in future research are: (i) include transverse isotropy (elastic and plastic) for the bulk clay matrix elasto-plasticity model

  10. Orthodontic treatment: Introducing finite element analysis

    NARCIS (Netherlands)

    Driel, W.D. van; Leeuwen, E.J. van

    1998-01-01

    The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e

  11. Interval Finite Element Analysis of Wing Flutter

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaojun; Qiu Zhiping

    2008-01-01

    The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.

  12. Fast finite elements for surgery simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...

  13. Behaviour of Lagrangian triangular mixed fluid finite elements

    Indian Academy of Sciences (India)

    S Gopalakrishnan; G Devi

    2000-02-01

    The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a close relationship between the penalty finite element approach that uses reduced/selective numerical integration to alleviate locking, and the mixed finite element approach. That is, performing reduced/selective integration in the penalty approach amounts to reducing the order of pressure interpolation in the mixed finite element approach for obtaining similar results. A number of numerical experiments are performed to determine the optimum degree of interpolation of both the mean pressure and the rotational pressure in order that the twin constraints are satisfied exactly. For this purpose, the benchmark solution of the rigid rectangular tank is used. It is found that, irrespective of the degree of mean and the rotational pressure interpolation, the linear triangle mesh, with or without central bubble function (incompatible mode), locks when both the constraints are enforced simultaneously. However, for quadratic triangle, linear interpolation of the mean pressure and constant rotational pressure ensures exact satisfaction of the constraints and the mesh does not lock. Based on the results obtained from the numerical experiments, a number of important conclusions are arrived at.

  14. Finite Dynamic Elements and Modal Analysis

    Directory of Open Access Journals (Sweden)

    N.J. Fergusson

    1993-01-01

    Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.

  15. Revolution in Orthodontics: Finite element analysis

    Science.gov (United States)

    Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush

    2016-01-01

    Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948

  16. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  17. Finite Element Modeling of the Buckling Response of Sandwich Panels

    Science.gov (United States)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  18. Intra Plate Stresses Using Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Jayalakshmi S.

    2016-10-01

    Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.

  19. A general finite element model for numerical simulation of structure dynamics

    Institute of Scientific and Technical Information of China (English)

    WANG Fujun; LI Yaojun; Han K.; Feng Y.T.

    2006-01-01

    A finite element model used to simulate the dynamics with continuum and discontinuum is presented. This new approach is conducted by constructing the general contact model. The conventional discrete element is treated as a standard finite element with one node in this new method. The one-node element has the same features as other finite elements, such as element stress and strain. Thus, a general finite element model that is consistent with the existed finite element model is set up. This new model is simple in mathematical concept and is straightforward to be combined into the existing standard finite element code. Numerical example demonstrates that this new approach is more effective to perform the dynamic process analysis in which the interactions among a large number of discrete bodies and continuum objects are included.

  20. Boundary control of parabolic systems - Finite-element approximation

    Science.gov (United States)

    Lasiecka, I.

    1980-01-01

    The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.

  1. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  2. Finite element estimation of acoustical response functions in HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2009-11-21

    High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

  3. The Finite Element Method An Introduction with Partial Differential Equations

    CERN Document Server

    Davies, A J

    2011-01-01

    The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co

  4. SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    G. Dziuk; C.M. Elliott

    2007-01-01

    In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.

  5. Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes

    Institute of Scientific and Technical Information of China (English)

    Lei-chao LIU; Xiang-huai DONG; Cong-xin LI

    2009-01-01

    An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.

  6. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    As a result of the increasing interest of constructing environmentally friendly lightweight buildings, analyses of vibrational and acoustical transmission in these buildings have become increasingly important. Structures where vibrational transmission may result in undesirable vibrations....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...

  7. Finite element modeling of permanent magnet devices

    Science.gov (United States)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  8. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan

    2001-02-01

    The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.

  9. Quantum Finite Elements for Lattice Field Theory

    CERN Document Server

    Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan

    2016-01-01

    Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.

  10. FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS

    Directory of Open Access Journals (Sweden)

    URDEA Mihaela

    2015-06-01

    Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.

  11. Finite Element Simulation of Metal Quenching

    Institute of Scientific and Technical Information of China (English)

    方刚; 曾攀

    2004-01-01

    The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.

  12. FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon

    2002-01-01

    A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.

  13. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  14. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...

  15. Multiphase Transformer Modelling using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Nor Azizah Mohd Yusoff

    2015-03-01

    Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.

  16. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  17. The finite element modeling of spiral ropes

    Institute of Scientific and Technical Information of China (English)

    Juan Wu

    2014-01-01

    Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.

  18. Finite element contact analysis of fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)

    2007-07-21

    The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.

  19. Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems

    OpenAIRE

    Zuliang Lu

    2011-01-01

    We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...

  20. Parallel finite element modeling of earthquake ground response and liquefaction

    Institute of Scientific and Technical Information of China (English)

    Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law

    2004-01-01

    Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.

  1. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  2. Finite Element Simulation for Interfacial Evolutions

    Institute of Scientific and Technical Information of China (English)

    JianmingHUANG; WeiYANG

    1998-01-01

    A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.

  3. FINITE-ELEMENT MODELING OF SALT TECTONICS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2012-09-01

    Full Text Available  The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.

  4. Finite element model of needle electrode sensitivity

    Science.gov (United States)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  5. Quick finite elements for electromagnetic waves

    CERN Document Server

    Pelosi, Giuseppe; Selleri, Stefano

    2009-01-01

    This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.

  6. EXODUS II: A finite element data model

    Energy Technology Data Exchange (ETDEWEB)

    Schoof, L.A.; Yarberry, V.R.

    1994-09-01

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  7. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  8. Finite Element Analysis of Reverberation Chambers

    Science.gov (United States)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  9. Nonlinear Finite Element Analysis of Ocean Cables

    Institute of Scientific and Technical Information of China (English)

    Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM

    2004-01-01

    This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.

  10. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  11. A Chiral-Bag Approach to Static Interaction between Two Baryons ---A Numerical Study with Use of the Finite Element Method---

    Science.gov (United States)

    Nawa, S.; Tamagaki, R.; Tatsumi, T.; Yoro, S.

    1990-12-01

    Static interaction between two spherical chiral bags is studied in a numerical way. In order to get the solutions of the confined quark states and the outside chiral-field which should satisfy the boundary conditions at both bag surfaces in the chiral bag model, the finite element method is utilized as numerical procedure. We extract the static interaction by calculating the energy change as the two bags approach from large separation to contact distance. Results obtained for three typical configurations indicate that such an approach is workable: We can see that the asymptotic behavior gives the OPEP-tail, and some nonperturbative effects are noticeable in the intermediate region. Although the deviation of the interaction energy from the OPEP value is not so remarkable beyond the pion Compton wavelength due to the cancellation between the energy change of the quark system and that of the chiral field, there arises a significant deviation of the quark wave function and the chiral field from those of the hedgehog solution in the single-baryon case. The procedure in numerical calculations adopted in this paper is explained in detail.

  12. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  13. Extracting the near surface stoichiometry of BiFe0.5Mn0.5O3 thin films; a finite element maximum entropy approach

    NARCIS (Netherlands)

    Song, F.; Monsen, A.; Li, Z. S.; Choi, E. -M.; MacManus-Driscoll, J. L.; Xiong, J.; Jia, Q. X.; Wahlstrom, E.; Wells, J. W.

    2012-01-01

    The surface and near-surface chemical composition of BiFe0.5Mn0.5O3 has been studied using a combination of low photon energy synchrotron photoemission spectroscopy, and a newly developed maximum entropy finite element model from which it is possible to extract the depth dependent chemical compositi

  14. A finite element parametric modeling technique of aircraft wing structures

    Institute of Scientific and Technical Information of China (English)

    Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu

    2013-01-01

    A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.

  15. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  16. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  17. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke

    2014-01-01

    Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.

  18. Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements

    Directory of Open Access Journals (Sweden)

    Logah Perumal

    2016-01-01

    Full Text Available As the geometry of a cell of carbon nanotube is hexagonal, a new approach is presented in modelling of single-walled carbon nanotubes using polyhedral finite elements. Effect of varying length, diameter, and thickness of carbon nanotubes on Young’s modulus is studied. Both armchair and zigzag configurations are modelled and simulated in Mathematica. Results from current approach found good agreement with the other published data.

  19. A direct implementation for influence lines in finite element software

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars

    2014-01-01

    The use of influence lines is a recognized method for determining the critical design load conditions and this paper shows a direct method for applying influence lines in any structural finite element software. The main idea is to equate displacement or angular discontinuities with nodal forces...... to consistent nodal forces, which makes it very suitable for implementation in finite element schemes and applicable for all element types, such as shell, plates, beams etc. This paper derives the consistent nodal forces for angular, lateral and axial displacement discontinuities for a Bernoulli-Euler beam......, and subsequently obtain the influence function only applying a single load case without changing the geometry or boundary conditions of the model. The new approach for determining Influence lines is based on the Müller-Breslau principle, but the discontinuous displacement fields are in the new approach equated...

  20. Stochastic finite elements: Where is the physics?

    Directory of Open Access Journals (Sweden)

    Ostoja-Starzewski Martin

    2011-01-01

    Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.

  1. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios.

    Science.gov (United States)

    Votta, Emiliano; Caiani, Enrico; Veronesi, Federico; Soncini, Monica; Montevecchi, Franco Maria; Redaelli, Alberto

    2008-09-28

    In the current scientific literature, particular attention is dedicated to the study of the mitral valve and to comprehension of the mechanisms that lead to its normal function, as well as those that trigger possible pathological conditions. One of the adopted approaches consists of computational modelling, which allows quantitative analysis of the mechanical behaviour of the valve by means of continuum mechanics theory and numerical techniques. However, none of the currently available models realistically accounts for all of the aspects that characterize the function of the mitral valve. Here, a new computational model of the mitral valve has been developed from in vivo data, as a first step towards the development of patient-specific models for the evaluation of annuloplasty procedures. A structural finite-element model of the mitral valve has been developed to account for all of the main valvular substructures. In particular, it includes the real geometry and the movement of the annulus and papillary muscles, reconstructed from four-dimensional ultrasound data from a healthy human subject, and a realistic description of the complex mechanical properties of mitral tissues. Preliminary simulations allowed mitral valve closure to be realistically mimicked and the role of annulus and papillary muscle dynamics to be quantified.

  2. Visualization of transient finite element analyses on large unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Dovey, D.

    1995-03-22

    Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).

  3. Finite rotation shells basic equations and finite elements for Reissner kinematics

    CERN Document Server

    Wisniewski, K

    2010-01-01

    This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.

  4. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  5. The serendipity family of finite elements

    CERN Document Server

    Arnold, Douglas N

    2011-01-01

    We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.

  6. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  7. Finite element modelingof spherical induction actuator

    OpenAIRE

    Galary, Grzegorz

    2005-01-01

    The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...

  8. A finite element model of ultrasonic extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  9. A finite element model of ultrasonic extrusion

    Science.gov (United States)

    Lucas, M.; Daud, Y.

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  10. Iterative methods for mixed finite element equations

    Science.gov (United States)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  11. Mixed finite elements for global tide models

    CERN Document Server

    Cotter, Colin J

    2014-01-01

    We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.

  12. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  13. An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

    Science.gov (United States)

    Xue, Cheng; Tang, Fuk-Hay

    2014-03-01

    A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

  14. A nonlinear truss finite element with varying stiffness

    Directory of Open Access Journals (Sweden)

    Ďuriš R.

    2007-11-01

    Full Text Available This contribution deals with a new truss element with varying stiffness intended to geometric and physically nonlinear analysis of composite structures. We present a two-node straight composite truss finite element derived by new nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the composite or/and functionally graded materials (FGM´s. Numerical examples were solved to verify the established relations. The accuracy of the new proposed finite truss element are compared and discused.

  15. Finite Element Analysis of the Crack Propagation for Solid Materials

    Directory of Open Access Journals (Sweden)

    Miloud Souiyah

    2009-01-01

    Full Text Available Problem statement: The use of fracture mechanics techniques in the assessment of performance and reliability of structure is on increase and the prediction of crack propagation in structure play important part. The finite element method is widely used for the evaluation of SIF for various types of crack configurations. Source code program of two-dimensional finite element model had been developed, to demonstrate the capability and its limitations, in predicting the crack propagation trajectory and the SIF values under linear elastic fracture analysis. Approach: Two different geometries were used on this finite element model in order, to analyze the reliability of this program on the crack propagation in linear and nonlinear elastic fracture mechanics. These geometries were namely; a rectangular plate with crack emanating from square-hole and Double Edge Notched Plate (DENT. Where, both geometries are in tensile loading and under mode I conditions. In addition, the source code program of this model was written by FORTRAN language. Therefore, a Displacement Extrapolation Technique (DET was employed particularly, to predict the crack propagations directions and to, calculate the Stress Intensity Factors (SIFs. Furthermore, the mesh for the finite elements was the unstructured type; generated using the advancing front method. And, the global h-type adaptive mesh was adopted based on the norm stress error estimator. While, the quarter-point singular elements were uniformly generated around the crack tip in the form of a rosette. Moreover, make a comparison between this current study with other relevant and published research study. Results: The application of the source code program of 2-D finite element model showed a significant result on linear elastic fracture mechanics. Based on the findings of the two different geometries from the current study, the result showed a good agreement. And, it seems like very close compare to the other published

  16. Finite element analysis of bolted flange connections

    Science.gov (United States)

    Hwang, D. Y.; Stallings, J. M.

    1994-06-01

    A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.

  17. Impeller deflection and modal finite element analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  18. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  19. Total quality management of forged products through finite element simulation

    Science.gov (United States)

    Chandra, U.; Rachakonda, S.; Chandrasekharan, S.

    The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.

  20. A variational H(div) finite element discretisation for perfect incompressible fluids

    OpenAIRE

    Natale, Andrea; Cotter, Colin J.

    2016-01-01

    We propose a finite element discretisation approach for the incompressible Euler equations which mimics their geometric structure and their variational derivation. In particular, we derive a finite element method that arises from a nonholonomic variational principle and an appropriately defined Lagrangian, where finite element H(div) vector fields are identified with advection operators; this is the first successful extension of the structure-preserving discretisation of Pavlov et al. (2009) ...

  1. Finite element modeling of plasmon based single-photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;

    2011-01-01

    A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...... waveguides with different geometries, as long as only one guided plasmonic mode is predominantly excited....

  2. ON THE ANISOTROPIC ACCURACY ANALYSIS OF ACM'S NONCONFORMING FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Dong-yang Shi; Shi-peng Mao; Shao-chun Chen

    2005-01-01

    The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h2). Lastly, some numerical tests are presented to verify the theoretical analysis.

  3. Stochastic Finite Element Analysis of Plate and Shell Construction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).

  4. Wave Transformation Modeling with Effective Higher-Order Finite Elements

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2016-01-01

    Full Text Available This study introduces a finite element method using a higher-order interpolation function for effective simulations of wave transformation. Finite element methods with a higher-order interpolation function usually employ a Lagrangian interpolation function that gives accurate solutions with a lesser number of elements compared to lower order interpolation function. At the same time, it takes a lot of time to get a solution because the size of the local matrix increases resulting in the increase of band width of a global matrix as the order of the interpolation function increases. Mass lumping can reduce computation time by making the local matrix a diagonal form. However, the efficiency is not satisfactory because it requires more elements to get results. In this study, the Legendre cardinal interpolation function, a modified Lagrangian interpolation function, is used for efficient calculation. Diagonal matrix generation by applying direct numerical integration to the Legendre cardinal interpolation function like conducting mass lumping can reduce calculation time with favorable accuracy. Numerical simulations of regular, irregular and solitary waves using the Boussinesq equations through applying the interpolation approaches are carried out to compare the higher-order finite element models on wave transformation and examine the efficiency of calculation.

  5. An hybrid finite volume finite element method for variable density incompressible flows

    Science.gov (United States)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.

  6. Probabilistic Approach for Determining the Material Properties of Meniscal Attachments In Vivo Using Magnetic Resonance Imaging and a Finite Element Model.

    Science.gov (United States)

    Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Chun, Heoung-Jae

    2015-12-01

    The material properties of in vivo meniscal attachments were evaluated using a probabilistic finite element (FE) model and magnetic resonance imaging (MRI). MRI scans of five subjects were collected at full extension and 30°, 60°, and 90° flexion. One subject with radiographic evidence of no knee injury and four subjects with Kellgren-Lawrence score of 1 or 2 (two each) were recruited. Isovoxel sagittal three-dimensional cube sequences of the knee were acquired in extension and flexion. Menisci movement in flexion was investigated using sensitivity analysis based on the Monte Carlo method in order to generate a subject-specific FE model to evaluate significant factors. The material properties of horn attachment in the five-subject FE model were optimized to minimize the differences between meniscal movements in the FE model and MR images in flexion. We found no significant difference between normal and patient knees in flexion with regard to movement of anterior, posterior, medial, and lateral menisci or changes in height morphology. At 90° flexion, menisci movement was primarily influenced by posterior horn stiffness, followed by anterior horn stiffness, the transverse ligament, and posterior cruciate ligament. The optimized material properties model predictions for menisci motion were more accurate than the initial material properties model. The results of this approach suggest that the material properties of horn attachment, which affects the mobile characteristics of menisci, could be determined in vivo. Thus, this study establishes a basis for a future design method of attachment for tissue-engineered replacement menisci.

  7. Assessing performance and validating finite element simulations using probabilistic knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, Ronald M.; Rodriguez, E. A. (Edward A.)

    2002-01-01

    Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.

  8. Integrated thermal-structural finite element analysis. [for applications to hypersonic transport design

    Science.gov (United States)

    Thornton, E. A.; Decahaumphai, P.; Wieting, A. R.

    1980-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. An integrated thermal-structural rod element is developed and used in four thermal-structural applications; the accuracy of this integrated approach is illustrated by comparisons with the customary approach of finite difference thermal-finite element structural analyses. Results show that integrated thermal-structural analysis of structures modeled with rod elements is more accurate than conventional analysis, and that its further development promises significant results.

  9. Diagonal multi-soliton matrix elements in finite volume

    CERN Document Server

    Pálmai, T

    2012-01-01

    We consider diagonal matrix elements of local operators between multi-soliton states in finite volume in the sine-Gordon model, and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Tak\\'acs which were only valid for diagonal scattering. In order to test the conjecture we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.

  10. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS

    Institute of Scientific and Technical Information of China (English)

    Dong-yang Shi; Shi-peng Mao; Shao-chun Chen

    2005-01-01

    The main aim of this paper is to study the error estimates of a nonconforming finite element with some superconvergence results under anisotropic meshes. The anisotropic interpolation error and consistency error estimates are obtained by using some novel approaches and techniques, respectively. Furthermore, the superclose and a superconvergence estimate on the central points of elements are also obtained without the regularity assumption and quasi-uniform assumption requirement on the meshes. Finally, a numerical test is carried out, which coincides with our theoretical analysis.

  11. Recent advances in hybrid/mixed finite elements

    Science.gov (United States)

    Pian, T. H. H.

    1985-01-01

    In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.

  12. Test Simulation using Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.

  13. Finite-Element Modelling of Biotransistors

    Directory of Open Access Journals (Sweden)

    Selvaganapathy PR

    2010-01-01

    Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.

  14. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  15. Finite element methods in resistivity logging

    Science.gov (United States)

    Lovell, J. R.

    1993-09-01

    Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.

  16. Optimizing the Evaluation of Finite Element Matrices

    CERN Document Server

    Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824

    2012-01-01

    Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.

  17. Nonlinear Finite Element Analysis of Sloshing

    Directory of Open Access Journals (Sweden)

    Siva Srinivas Kolukula

    2013-01-01

    Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.

  18. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  19. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris

    2010-08-23

    Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.

  20. A finite element method for growth in biological development.

    Science.gov (United States)

    Murea, Cornel M; Hentschel, H G E

    2007-04-01

    We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a "tissue pressure" whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in de tail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.

  1. A multi-mesh finite element method for Lagrange elements of arbitrary degree

    CERN Document Server

    Witkowski, Thomas

    2010-01-01

    We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...

  2. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  3. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  4. Convergence of adaptive finite element methods for eigenvalue problems

    OpenAIRE

    Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos

    2008-01-01

    In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.

  5. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  6. Finite Element Program Generator and Its Application in Engineering

    Institute of Scientific and Technical Information of China (English)

    WANShui; HUHong; CHENJian-pin

    2004-01-01

    A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.

  7. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  8. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  9. Impact of new computing systems on finite element computations

    Science.gov (United States)

    Noor, A. K.; Storassili, O. O.; Fulton, R. E.

    1983-01-01

    Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.

  10. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    Science.gov (United States)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  11. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).

  12. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  13. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  14. An Assessment of Compressive Size Effect of Plane Concrete Using Combination of Micro-Plane Damage Based Model and 3D Finite Elements Approach

    Directory of Open Access Journals (Sweden)

    A. Labibzadeh

    2008-01-01

    Full Text Available In recent years, the material behavior dependence of laboratory concrete specimens built with the same concrete mixture under the same load conditions to their geometrical sizes is well established. This phenomenon which is observed not only in concrete but also in most quasi-brittle materials such as rock, ceramic or composite materials is now called as size effect. Many of the existing structural analyzing codes are not able to consider this important feature of concrete structures especially under compressive loadings. However we know that the main purpose of concrete application in structural members is to resist compression. The aim of this study is to show the ability of author's recently developed 3D finite elements code equipped with the proposed author's newly micro-planes damage based model for considering of compressive size effect of plane concrete. To do so, two different sizes of cubic concrete specimens are modeled with mentioned code under the uniaxial compressive test and their fracture mechanisms, pre-peak and post-peak strain-stress paths are investigated. Obtained results reveal the good coincidence with experimental evidences. In fact, the combination of proposed micro-planes damage based model and developed presented 3D finite elements technique creates a powerful numerical tool to capture and predict precisely strain localization and fracture mechanism in the specimens and consequently to assess properly the compressive size effect of plane concrete in analysis and design.

  15. An improved optimal elemental method for updating finite element models

    Institute of Scientific and Technical Information of China (English)

    Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)

    2004-01-01

    The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.

  16. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  17. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.

    Science.gov (United States)

    Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R

    2011-08-11

    Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.

  18. Coupling nonlinear Stokes and Darcy flow using mortar finite elements

    KAUST Repository

    Ervin, Vincent J.

    2011-11-01

    We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.

  19. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  20. Finite Element Analysis (FEA) in Design and Production.

    Science.gov (United States)

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  1. A Finite Element Analysis of Optimal Variable Thickness Sheets

    DEFF Research Database (Denmark)

    Petersson, Joakim S

    1996-01-01

    A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill...

  2. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...

  3. Finite Element Simulation for Springback Prediction Compensation

    Directory of Open Access Journals (Sweden)

    Agus Dwi Anggono

    2011-01-01

    Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of  Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It  is  this  second  step  of  springback compensation that is addressed in the current work. This paper presents an  evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a  part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.

  4. Studying a dental pathology by finite elements

    Directory of Open Access Journals (Sweden)

    Fernando Mejía Umaña

    2010-04-01

    Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.

  5. Finite element modeling of retinal prosthesis mechanics

    Science.gov (United States)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  6. Finite Element Analysis of Deformed Legs of Offshore Platform Structures

    Institute of Scientific and Technical Information of China (English)

    柳春图; 秦太验; 段梦兰

    2002-01-01

    The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.

  7. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  8. Vibration Analysis of Beams by Spline Finite Element

    Institute of Scientific and Technical Information of China (English)

    YANG Hao; SUN Li

    2011-01-01

    In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.

  9. Finite Element Model of Cardiac Electrical Conduction.

    Science.gov (United States)

    Yin, John Zhihao

    1994-01-01

    In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very

  10. Finite element analysis for general elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.

  11. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  12. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  13. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  14. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.

  15. A geometric toolbox for tetrahedral finite element partitions

    NARCIS (Netherlands)

    Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

    2011-01-01

    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Spec

  16. Discontinuous finite element method for vector radiative transfer

    Science.gov (United States)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  17. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty.

    Science.gov (United States)

    Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko

    2016-02-01

    Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty.

  18. ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS

    Institute of Scientific and Technical Information of China (English)

    江成顺; 刘蕴贤; 沈永明

    2004-01-01

    This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.

  19. OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +

    Institute of Scientific and Technical Information of China (English)

    马永其; 冯伟

    2002-01-01

    The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.

  20. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  1. The Iris biometric feature segmentation using finite element method

    Directory of Open Access Journals (Sweden)

    David Ibitayo LANLEGE

    2015-05-01

    Full Text Available This manuscript presents a method for segmentation of iris images based on a deformable contour (active contour paradigm. The deformable contour is a novel approach in image segmentation. A type of active contour is the Snake. Snake is a parametric curve defined within the domain of the image. Snake properties are specified through a function called energy functional. This means they consist of packets of energy which expressed as partial Differential Equations. The partial Differential Equation is the controlling engine of the active contour since this project, the Finite Element Method (Standard Galerkin Method implementation for deformable model is presented.

  2. Galerkin finite-element simulation of a geothermal reservoir

    Science.gov (United States)

    Mercer, J.W.; Pinder, G.F.

    1973-01-01

    The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.

  3. A LOW ORDER NONCONFORMING ANISOTROPIC FINITE ELEMENT APPROXIMATION TO PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Wei GONG

    2009-01-01

    A low order nonconforming finite element is applied to the parabolic problem with anisotropic meshes. Both the semidiscrete and fully discrete forms are studied. Some superclose properties and superconvergence are obtained through some novel approaches and techniques.

  4. Finite element simulation of thick sheet thermoforming

    Science.gov (United States)

    Mercier, Daniel

    This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.

  5. Finite element analysis of posterior cervical fixation.

    Science.gov (United States)

    Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q

    2015-02-01

    Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

    CERN Document Server

    Motamarri, Phani; Leiter, Kenneth; Knap, Jaroslaw; Gavini, Vikram

    2012-01-01

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT).To this end, we develop an \\emph{a priori} mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings---of the order of $1000-$fold---can be realized, for both all-electron and pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems stu...

  7. Thermal Analysis of Thin Plates Using the Finite Element Method

    Science.gov (United States)

    Er, G. K.; Iu, V. P.; Liu, X. L.

    2010-05-01

    The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.

  8. Finite Element Analysis of Fluid-Conveying Timoshenko Pipes

    Directory of Open Access Journals (Sweden)

    Chih-Liang Chu

    1995-01-01

    Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.

  9. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    Science.gov (United States)

    Hurtado, Daniel E.; Rojas, Guillermo

    2017-08-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  10. Finite element modeling of nanotube structures linear and non-linear models

    CERN Document Server

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  11. PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linbo

    2011-01-01

    @@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.

  12. Galerkin finite element scheme for magnetostrictive structures and composites

    Science.gov (United States)

    Kannan, Kidambi Srinivasan

    The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin

  13. Finite element method for thermal analysis of concentrating solar receivers

    OpenAIRE

    Shtrakov, Stanko; Stoilov, Anton

    2006-01-01

    Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...

  14. PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Yun-qing Huang; Shi Shu; Xi-jun Yu

    2006-01-01

    We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.

  15. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Motamarri, P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Nowak, M.R. [Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Leiter, K.; Knap, J. [U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21001 (United States); Gavini, V., E-mail: vikramg@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688

  16. Finite Element Simulation of Blanking Process

    Directory of Open Access Journals (Sweden)

    Afzal Ahmed

    2012-10-01

    daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui  eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing

  17. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  18. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.

  19. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  20. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  1. Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Mota, A; Knap, J; Ortiz, M

    2006-10-18

    An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.

  2. Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices

    CERN Document Server

    Avron, Haim

    2011-01-01

    We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...

  3. A hybrid transfinite element approach for nonlinear transient thermal analysis

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    A new computational approach for transient nonlinear thermal analysis of structures is proposed. It is a hybrid approach which combines the modeling versatility of contemporary finite elements in conjunction with transform methods and classical Bubnov-Galerkin schemes. The present study is limited to nonlinearities due to temperature-dependent thermophysical properties. Numerical test cases attest to the basic capabilities and therein validate the transfinite element approach by means of comparisons with conventional finite element schemes and/or available solutions.

  4. Essentials of finite element modeling and adaptive refinement

    CERN Document Server

    Dow, John O

    2012-01-01

    Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t

  5. A mixed finite element for the analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1983-01-01

    A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.

  6. A finite volume approach to the problem of heat transfer in axisymmetric annulus geometry with internal heating element using local analytical solution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Salama, A. [Atomic Energy Authority (AEA), Cairo (Egypt). Nuclear Research Center

    2014-11-15

    In this paper we implement the local analytical solution technique to the problem of heat transfer in axisymmetric annulus geometry with internal heating element. This method has shown to be very accurate in estimating the temperature field for axisymmetric problems even for coarse mesh. It is shown that this method reduces to the analytical solution for unidirectional heat transfer in the radial direction in homogeneous media. The technique is based on finding an analytical expression for the temperature field in the radial direction within each grid cell. This means that the temperature field in each cell is allowed to change in a nonlinear fashion along the radial direction. We compare this technique with the traditional finite volume technique and show that; with only few cells in the radial direction, this technique arrives at the mesh-independent solution quite accurately whereas it required denser mesh to arrive closer to this solution using traditional techniques. This method is proposed to the 1D codes that are currently being used to simulate thermalhydraulic characteristics of reactor systems. Furthermore, we also implement the experimental temperature field algorithm in which the governing equations are approximated for each cell as it would without extra manipulation to the governing equations. This technique is very simple and separates the physics from the solving part.

  7. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    Science.gov (United States)

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-09-28

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.

    2013-10-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  9. Steady-state solution of the PTC thermistor problem using a quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    Bahadir A. R.

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  10. Mortar Upwind Finite Volume Element Method with Crouzeix-Raviart Element for Parabolic Convection Diffusion Problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.

  11. Finite element model approach of a cylindrical lithium ion battery cell with a focus on minimization of the computational effort and short circuit prediction

    Science.gov (United States)

    Raffler, Marco; Sevarin, Alessio; Ellersdorfer, Christian; Heindl, Simon F.; Breitfuss, Christoph; Sinz, Wolfgang

    2017-08-01

    In this research, a parameterized beam-element-based mechanical modeling approach for cylindrical lithium ion batteries is developed. With the goal to use the cell model in entire vehicle crash simulations, focus of development is on minimizing the computational effort whilst simultaneously obtaining accurate mechanical behavior. The cylindrical cell shape is approximated by radial beams connected to each other in circumferential and longitudinal directions. The discrete beam formulation is used to define an anisotropic material behavior. An 18650 lithium ion cell model constructed in LS-Dyna is used to show the high degree of parameterization of the approach. A criterion which considers the positive pole deformation and the radial deformation of the cell is developed for short circuit prediction during simulation. An abuse testing program, consisting of radial crush, axial crush, and penetration is performed to evaluate the mechanical properties and internal short circuit behavior of a commercially available 18650 lithium cell. Additional 3-point-bending tests are performed to verify the approach objectively. By reducing the number of strength-related elements to 1600, a fast and accurate cell model can be created. Compared to typical cell models in technical literature, simulation time of a single cell load case can be reduced by approx. 90%.

  12. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  13. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  14. Partitions of nonzero elements of a finite field into pairs

    CERN Document Server

    Karasev, R N

    2010-01-01

    In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.

  15. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...

  16. Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements

    Institute of Scientific and Technical Information of China (English)

    Bahattin Kanber; O.Yavuz Bozkurt

    2006-01-01

    In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.

  17. Finite Element Crash Simulations and Impact-Induced Injuries

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  18. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  19. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  20. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...

  1. Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...

  2. Structural analysis with the finite element method linear statics

    CERN Document Server

    Oñate, Eugenio

    2013-01-01

    STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...

  3. Finite Element Crash Simulations and Impact-Induced Injuries

    OpenAIRE

    Mackerle, Jaroslav

    1999-01-01

    This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  4. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  5. Finite element model updating using bayesian framework and modal properties

    CSIR Research Space (South Africa)

    Marwala, T

    2005-01-01

    Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...

  6. Accurate Parallel Algorithm for Adini Nonconforming Finite Element

    Institute of Scientific and Technical Information of China (English)

    罗平; 周爱辉

    2003-01-01

    Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.

  7. COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey

    2009-01-01

    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  8. SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION

    Institute of Scientific and Technical Information of China (English)

    MeiLiquan

    1999-01-01

    In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.

  9. On mixed finite element techniques for elliptic problems

    Directory of Open Access Journals (Sweden)

    M. Aslam Noor

    1983-01-01

    mildly nonlinear elliptic problems by means of finite element methods of mixed type. The technique is based on an extended variational principle, in which the constraint of interelement continuity has been removed at the expense of introducing a Lagrange multiplier.

  10. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    Science.gov (United States)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  11. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  12. Finite Element Meshes Auto-Generation for the Welted Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YUANMei; LIYa-ping

    2004-01-01

    In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.

  13. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    Science.gov (United States)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  14. Superaccurate finite element eigenvalues via a Rayleigh quotient correction

    Science.gov (United States)

    Fried, Isaac; Leong, Kaiwen

    2005-11-01

    The consistent finite element formulation of the vibration problem generates upper bounds on the corresponding exact eigenvalues but requires the solution of the highly expensive general algebraic eigenproblem Kx=λMx with a global matrix M that is of the same sparsity pattern as the global stiffness K. The lumped, diagonal, mass matrix finite element formulation is no longer variationally correct but results in a simplified algebraic eigenproblem of comparable accuracy. We may write the mass matrix as a linear matrix function, M(γ)=M1+γM2, of parameter γ such that M(γ=1) is the (diagonal) lumped mass matrix and M(γ=0) is the consistent mass matrix. It has been shown that an optimal γ exists between these two states which results in superaccurate eigenvalues. What detracts from the appeal of this approach is that the superior accuracy thus achieved comes at the hefty price of having to solve the still general algebraic eigenproblem with a nondiagonal mass matrix. In this note we show that the same superior accuracy can be had by first computing an eigenvector u from Ku=λDu, in which D=M1+M2 is the lumped, diagonal, mass matrix, and then obtaining the corresponding, superaccurate, eigenvalue from the Rayleigh quotient R[u]=uTKu/uTM(γ)u, M(γ)=M1+γM2 for an optimal γ.

  15. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    Science.gov (United States)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  16. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  17. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    Science.gov (United States)

    2007-11-02

    used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element

  18. On the error bounds of nonconforming finite elements

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.

  19. Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hai-hong; GUO Cheng

    2008-01-01

    An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.

  20. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  1. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  2. THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE FOR FINITE ELEMENT APPROXIMATIONS

    Institute of Scientific and Technical Information of China (English)

    TieZhang; Yan-pingLin; R.J.Tait

    2004-01-01

    A derivative patch interpolating recovery technique is analyzed for the finite element approximation to the second order elliptic boundary value problems in two dimensional case.It is shown that the convergence rate of the recovered gradient admits superc onvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate (ultracovergence) at an internal node point when even order finite element spaces and local uniform meshes are used.

  3. Finite element analysis to model complex mitral valve repair.

    Science.gov (United States)

    Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent

    2016-01-01

    Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.

  4. Determination of a synchronous generator characteristics via Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kolondzovski Zlatko

    2005-01-01

    Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.

  5. Applications of finite element simulation in orthopedic and trauma surgery.

    Science.gov (United States)

    Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis

    2012-04-18

    Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints

  6. A finite element primer for beginners the basics

    CERN Document Server

    Zohdi, Tarek I

    2014-01-01

    The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th

  7. Finite Element Model Updating Using Response Surface Method

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...

  8. Enhanced patch test of finite element methods

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wanji

    2006-01-01

    Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.

  9. Time domain simulation of piezoelectric excitation of guided waves in rails using waveguide finite elements

    CSIR Research Space (South Africa)

    Loveday, PW

    2007-03-01

    Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...

  10. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  11. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo

  12. Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; FENG Hui

    2005-01-01

    The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.

  13. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex

  14. IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE

    Institute of Scientific and Technical Information of China (English)

    陈蔚

    2003-01-01

    The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.

  15. Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation

    Directory of Open Access Journals (Sweden)

    W. Kanok-Nukulchai

    2009-01-01

    Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.

  16. Finite element method for solving geodetic boundary value problems

    Science.gov (United States)

    Fašková, Zuzana; Čunderlík, Róbert; Mikula, Karol

    2010-02-01

    The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth’s surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth’s potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.

  17. Nonlinear Finite Element Analysis of Nanoindentation of Viral Capsids

    CERN Document Server

    Gibbons, M M; Gibbons, Melissa M.; Klug, William S.

    2006-01-01

    Recent Atomic Force Microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick shell models are proposed for two capsids: the spherical Cowpea Chlorotic Mottle Virus (CCMV), and the ellipsocylindrical bacteriophage $\\phi 29$. As analyzed by the finite element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive details, and greatly influenced by geometry. Nonlinear stiffening and softening of the force response is dependent on ...

  18. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  19. Mixed finite element formulation for frictionless contact problems

    Science.gov (United States)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational procedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large-rotation theory of the structure with the effect of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (or stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. Numerical examples of axisymmetric deformations of a hemispherical shell and planar deformations of a circular ring are presented. Both structures are pressed against a rigid plate. Detailed information about the response of the structures is presented. The numerical studies demonstrate the high accuracy of the mixed models and the effectiveness of the computational procedure based on combining the geometrically nonlinear terms and the contact conditions in one iteration loop.

  20. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  1. An implicit discontinuous Galerkin finite element model for water waves

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno

    2005-01-01

    We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent

  2. Finite Element Vibration Analysis of Beams, Plates and Shells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.

  3. A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Tian-xiao Zhou; Xiao-ping Xie

    2003-01-01

    In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.

  4. Efficient Finite Element Methods for Transient Analysis of Shells.

    Science.gov (United States)

    1985-04-01

    Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J

  5. Numerical simulation of mechatronic sensors and actuators finite elements for computational multiphysics

    CERN Document Server

    Kaltenbacher, Manfred

    2015-01-01

    Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets mode...

  6. Research of Stamp Forming Simulation Based on Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    SU Xaio-ping; XU Lian

    2008-01-01

    We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.

  7. Finite element analysis of two disk rotor system

    Science.gov (United States)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  8. Preconditioned CG-solvers and finite element grids

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  9. Adaptive grid finite element model of the tokamak scrapeoff layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  10. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...

  11. Footbridge between finite volumes and finite elements with applications to CFD

    Science.gov (United States)

    Pascal, Frédéric; Ghidaglia, Jean-Michel

    2001-12-01

    The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright

  12. ELASTO-PLASTIC FINITE ELEMENT ANALYSIS OF HOOK'S JOINT

    Directory of Open Access Journals (Sweden)

    Adnan ATICI

    1996-03-01

    Full Text Available In this study, stress analysis has been done in Hooke's joint by the finite element method. In finite element meshing, isoparametric quadrilateral elements with four nodes has been chosen and Lagrange polynomial has been used as the interpolation function. The special computer program has been written for the automatic mesh generation. In addition the other program has been developed to solve the finite element problems. Elastoplastic stress analysis is done to calculate the residual stresses in hooke's joint. Elasto-plastic stress values are calculated under loading from 400 daN to 1000 daN with increment of 100 daN. In this analysis "The initial stress method" is used.

  13. Finite element analysis of piezoelectric underwater transducers for acoustic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)

    2009-02-15

    This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering

  14. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    Science.gov (United States)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  15. Effective Finite Elements for Shell Analysis.

    Science.gov (United States)

    1984-02-20

    conjunction with a shallow shell theory . It 2 should be noteJ that contrary to the results of earlier investigators [12,19], use of a shallow shell theory in...the inadequacy of the shallow shell theory for the relatively deep element emerging from such a coarse mesh. A considerable improvement is obtained

  16. FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Junping Wang; Xiaoshen Wang; Xiu Ye

    2008-01-01

    We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.

  17. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units.

    Science.gov (United States)

    Taylor, Z A; Cheng, M; Ourselin, S

    2008-05-01

    The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation.

  18. Adaptive implicit-explicit finite element algorithms for fluid mechanics problems

    Science.gov (United States)

    Tezduyar, T. E.; Liou, J.

    1988-01-01

    The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.

  19. Variational formulation of high performance finite elements: Parametrized variational principles

    Science.gov (United States)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  20. New triangular and quadrilateral plate-bending finite elements

    Science.gov (United States)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  1. On Using Particle Finite Element for Hydrodynamics Problems Solving

    Directory of Open Access Journals (Sweden)

    E. V. Davidova

    2015-01-01

    Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \

  2. Finite Element Analysis of Circular Plate using SolidWorks

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeo Jin; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts

  3. COUPLING OF ASSUMED STRESS FINITE ELEMENT AND BOUNDARY ELEMENT METHODS WITH STRESS-TRACTION EQUILIBRIUM

    Institute of Scientific and Technical Information of China (English)

    GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah

    2004-01-01

    In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.

  4. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  5. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  6. A Finite Element Method for Cracked Components of Structures

    Institute of Scientific and Technical Information of China (English)

    刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星

    2003-01-01

    In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.

  7. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J M

    2004-08-12

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  8. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  9. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  10. Finite element modeling for volume phantom in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    I. O. Rybina

    2011-10-01

    Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.

  11. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  12. Probabilistic finite elements for transient analysis in nonlinear continua

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  13. EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Shipeng Mao; Zhong-Ci Shi

    2009-01-01

    In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an ex-plicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex-tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.

  14. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  15. Finite element analysis of magnetization reversal in granular thin films

    CERN Document Server

    Spargo, A W

    2002-01-01

    This thesis develops a Galerkin finite element model of magnetisation dynamics in granular thin films. The governing equations of motion are the Gilbert equations with an effective magnetic field taking contributions from exchange interactions, magnetocrystalline anisotropy, applied magnetic field as well as the magnetostatic field given by Maxwells equations. The magnetostatic field is formulated as a scalar potential described by Poissons equation which is solved using a second order finite element method. The Gilbert equations are discretized in time using an implicit midpoint method which naturally conserves the magnitude of the magnetisation vector. An infinite thin film is approximated using periodic boundary conditions with material microstructure represented using the Voronoi tessellation. The effects of thermal fluctuations are modelled by the stochastic Langevin-Gilbert equations, again solved by a Galerkin finite element method. The implicit midpoint time-stepping scheme ensures that solutions conv...

  16. INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    郭书祥; 吕震宙

    2001-01-01

    When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.

  17. Automated muscle wrapping using finite element contact detection.

    Science.gov (United States)

    Favre, Philippe; Gerber, Christian; Snedeker, Jess G

    2010-07-20

    Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general

  18. Straightened cervical lordosis causes stress concentration: a finite element model study.

    Science.gov (United States)

    Wei, Wei; Liao, Shenhui; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue

    2013-03-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24-33 %, but the stress increased by 5-95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  19. Finite Element - Artificial Transmitting Boundary Method for Acoustical Field on Tapered Waveguide

    Institute of Scientific and Technical Information of China (English)

    J.; S.; Yang; G; F.; Fan; J.; P.; Zhu; C.K.; Sun; Y.; H.; Zhu

    2003-01-01

    In earlier approach, the 2-D acoustical field profiles on the substrate region are often calculated with BPM. In this paper, we present a new approach based on the finite element -artificial transmitting boundary method and calculate acoustical field on the substrate region.

  20. Artificial intelligence and finite element modelling for monitoring flood defence structures

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.; Kusherbaeva, V.; Melnikova, N.B.; Krzhizhanovskaya, V.V.; Meijer, R.J.

    2011-01-01

    We present a hybrid approach to monitoring the stability of flood defence structures equipped with sensors. This approach combines the finite element modelling with the artificial intelligence for real-time signal processing and anomaly detection. This combined method has been developed for the Urba

  1. A finite element-based perturbation method for nonlinear free vibration analysis of composite cylindrical shells

    NARCIS (Netherlands)

    Rahman, T.; Jansen, E.L.; Tiso, P.

    2011-01-01

    In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation an

  2. A finite element-based perturbation method for nonlinear free vibration analysis of composite cylindrical shells

    NARCIS (Netherlands)

    Rahman, T.; Jansen, E.L.; Tiso, P.

    2011-01-01

    In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation

  3. Image segmentation with a finite element method

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    The Mumford-Shah functional for image segmentation is an original approach of the image segmentation problem, based on a minimal energy criterion. Its minimization can be seen as a free discontinuity problem and is based on \\Gamma-convergence and bounded variation functions theories.Some new regu...

  4. Evaluation of coupled finite element/meshfree method for a robust full-scale crashworthiness simulation of railway vehicles

    Directory of Open Access Journals (Sweden)

    Zhao Tang

    2016-04-01

    Full Text Available The crashworthiness of a railway vehicle relates to its passive safety performance. Due to mesh distortion and difficulty in controlling the hourglass energy, conventional finite element methods face great challenges in crashworthiness simulation of large-scale complex railway vehicle models. Meshfree methods such as element-free Galerkin method offer an alternative approach to overcome those limitations but have proved time-consuming. In this article, a coupled finite element/meshfree method is proposed to study the crashworthiness of railway vehicles. A representative scenario, in which the leading vehicle of a high-speed train impacts to a rigid wall, is simulated with the coupled finite element/element-free Galerkin method in LS-DYNA. We have compared the conventional finite element method and the coupled finite element/element-free Galerkin method with the simulation results of different levels of discretization. Our work showed that coupled finite element/element-free Galerkin method is a suitable alternative of finite element method to handle the nonlinear deformation in full-size railway vehicle crashworthiness simulation. The coupled method can reduce the hourglass energy in finite element simulation, to produce robust simulation.

  5. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  6. Splitting extrapolation based on domain decomposition for finite element approximations

    Institute of Scientific and Technical Information of China (English)

    吕涛; 冯勇

    1997-01-01

    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  7. Compatible finite element spaces for geophysical fluid dynamics

    CERN Document Server

    Natale, Andrea

    2016-01-01

    Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.

  8. Least-squares finite-element lattice Boltzmann method.

    Science.gov (United States)

    Li, Yusong; LeBoeuf, Eugene J; Basu, P K

    2004-06-01

    A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.

  9. NURBS-enhanced finite element method for Euler equations

    OpenAIRE

    Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.

    2008-01-01

    This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...

  10. Substructure System Identification for Finite Element Model Updating

    Science.gov (United States)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  11. THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Dongying Hua; Lieheng Wang

    2007-01-01

    We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.

  12. Matlab and C programming for Trefftz finite element methods

    CERN Document Server

    Qin, Qing-Hua

    2008-01-01

    Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th

  13. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  14. Two-dimensional finite-element temperature variance analysis

    Science.gov (United States)

    Heuser, J. S.

    1972-01-01

    The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.

  15. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  16. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  17. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  18. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  19. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    Science.gov (United States)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  20. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  1. Local and Parallel Finite Element Algorithms for Eigenvalue Problems

    Institute of Scientific and Technical Information of China (English)

    Jinchao Xu; Aihui Zhou

    2002-01-01

    Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.

  2. Diffusive mesh relaxation in ALE finite element numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  3. Discontinuous Galerkin finite element methods for gradient plasticity.

    Energy Technology Data Exchange (ETDEWEB)

    Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.

    2010-10-01

    In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.

  4. Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms

    CERN Document Server

    Takacs, G

    2011-01-01

    The standard numerical approach to determining matrix elements of local operators and width of resonances uses the finite volume dependence of energy levels and matrix elements. Finite size corrections that decay exponentially in the volume are usually neglected or taken into account using perturbation expansion in effective field theory. Using two-dimensional sine-Gordon field theory as "toy model" it is shown that some exponential finite size effects could be much larger than previously thought, potentially spoiling the determination of matrix elements in frameworks such as lattice QCD. The particular class of finite size corrections considered here are mu-terms arising from bound state poles in the scattering amplitudes. In sine-Gordon model, these can be explicitly evaluated and shown to explain the observed discrepancies to high precision. It is argued that the effects observed are not special to the two-dimensional setting, but rather depend on general field theoretic features that are common with model...

  5. A class of hybrid finite element methods for electromagnetics: A review

    Science.gov (United States)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  6. The finite element method for the global gravity field modelling

    Science.gov (United States)

    Kollár, Michal; Macák, Marek; Mikula, Karol; Minarechová, Zuzana

    2014-05-01

    We present a finite element approach for solving the fixed gravimetric boundary-value problem on a global level. To that goal, we have defined the computational domain bounded by the real topography and a chosen satellite level. The boundary-value problem consists of the Laplace equation for the disturbing potential and the Neumann boundary condition given by the gravity disturbances applied on the bottom boundary, and the Dirichlet boundary condition given by the disturbing potential applied on the upper boundary. Afterwards, the computational domain is meshed with several different meshes chosen to avoid the problem of simple spherical meshes that contain a singularity at poles. Our aim has been to show how the right mesh can improve results as well as significantly reduce the computational time. The practical implementation has been done in the FEM software ANSYS using 3D linear elements SOLID70 and for solving the linear system of equations, the preconditioned conjugate gradients method has been chosen. The obtained disturbing potential has been applied to calculate the geopotential value W0.

  7. Finite layer and triangular prism element method to subsidence prediction and stress analysis in underground mining

    Institute of Scientific and Technical Information of China (English)

    LIU Li-min(刘立民); LIU Han-long(刘汉龙); LIAN Chuan-jie(连传杰)

    2003-01-01

    The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.

  8. SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Qi-ding Zhu

    2000-01-01

    In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.

  9. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  10. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    Science.gov (United States)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  11. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  12. A new formulation of hybrid/mixed finite element

    Science.gov (United States)

    Pian, T. H. H.; Kang, D.; Chen, D.-P.

    1983-01-01

    A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.

  13. An explicit Lagrangian finite element method for free-surface weakly compressible flows

    Science.gov (United States)

    Cremonesi, Massimiliano; Meduri, Simone; Perego, Umberto; Frangi, Attilio

    2017-07-01

    In the present work, an explicit finite element approach to the solution of the Lagrangian formulation of the Navier-Stokes equations for weakly compressible fluids or fluid-like materials is investigated. The introduction of a small amount of compressibility is shown to allow for the formulation of a fast and robust explicit solver based on a particle finite element method. Newtonian and Non-Newtonian Bingham laws are considered. A barotropic equation of state completes the model relating pressure and density fields. The approach has been validated through comparison with experimental tests and numerical simulations of free surface fluid problems involving water and water-soil mixtures.

  14. Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M

    2006-10-06

    We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.

  15. Design of Finite Element Tools for Coupled Surface and Volume Meshes

    Institute of Scientific and Technical Information of China (English)

    Daniel K(o)ster; Oliver Kriessl; Kunibert G. Siebert

    2008-01-01

    Many problems with underlying variational structure involve a coupling of volume with surface effects. A straight-forward approach in a finite element discretization is to make use of the surface triangulation that is naturally induced by the volume triangulation. In an adaptive method one wants to facilitate "matching" local mesh modifications, i.e., local refinement and/or coarsening, of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA. We also present several important applications of the mesh coupling.

  16. Development of Generic Field Classes for Finite Element and Finite Difference Problems

    Directory of Open Access Journals (Sweden)

    Diane A. Verner

    1993-01-01

    Full Text Available This article considers the development of a reusable object-oriented array library, as well as the use of this library in the construction of finite difference and finite element codes. The classes in this array library are also generic enough to be used to construct other classes specific to finite difference and finite element methods. We demonstrate the usefulness of this library by inserting it into two existing object-oriented scientific codes developed at Sandia National Laboratories. One of these codes is based on finite difference methods, whereas the other is based on finite element methods. Previously, these codes were separately maintained across a variety of sequential and parallel computing platforms. The use of object-oriented programming allows both codes to make use of common base classes. This offers a number of advantages related to optimization and portability. Optimization efforts, particularly important in large scientific codes, can be focused on a single library. Furthermore, by encapsulating machine dependencies within this library, the optimization of both codes on different architec-tures will only involve modification to a single library.

  17. Finite Element Estimation of Meteorite Structural Properties

    Science.gov (United States)

    Hart, Kenneth Arthur

    2015-01-01

    The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.

  18. A transputer based finite element solver

    Science.gov (United States)

    Favenesi, J. A.; Danial, A. N.; Bower, M. V.

    1987-01-01

    The feasibility of performing FEM structural-mechanics analyses on transputer systems is investigated experimentally. Transputers are programmable microprocessors equipped with local memory and point-to-point communication links; they can be joined in a large concurrent system via a programming language which supports distributed processing; this permits parallel processing at relatively low hardware cost. The computational tasks required by FEM programs are reviewed; the hardware (one PC, one master transputer, and 12 slave transputers) employed in the test calculations is described; and results demonstrating the speed and efficiency of the transputer array in assembling a global stiffness matrix and performing Gauss-Jordan matrix inversion are presented in graphs. It is predicted that larger transputer networks could approach the power of supercomputers at minicomputer costs.

  19. Calibration of a finite element composite delamination model by experiments

    DEFF Research Database (Denmark)

    Gaiotti, M.; Rizzo, C.M.; Branner, Kim;

    2013-01-01

    distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...... modes related to the production methods is presented in this paper. A microscopic analysis of the fracture surfaces was carried out in order to better understand the failure mechanisms. © 2013 Taylor & Francis Group....

  20. Finite Element Models for Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  1. Generalized multiscale finite element method for elasticity equations

    KAUST Repository

    Chung, Eric T.

    2014-10-05

    In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.

  2. Finite element based simulation of dry sliding wear

    Science.gov (United States)

    Hegadekatte, V.; Huber, N.; Kraft, O.

    2005-01-01

    In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.

  3. A generalized layerwise finite element for multi-layer damping treatments

    Science.gov (United States)

    Moreira, R. A. S.; Rodrigues, J. D.; Ferreira, A. J. M.

    2006-04-01

    This paper presents a 4-node facet type quadrangular shell finite element, based on a layerwise theory, developed for dynamic modelling of laminated structures with viscoelastic damping layers. The bending stiffness of the facet shell element is based on the Reissner-Mindlin assumptions and the plate theory is enriched with a shear locking protection adopting the MITC approach. The membrane component is corrected by using incompatible quadratic modes and the drilling degrees of freedom are introduced through a fictitious stiffness stabilization matrix. Linear static tests, using several pathological tests, showed good and convergent results. Dynamic analysis evaluation is provided by using two eigenproblems with exact analytical solution, as well as a conical sandwich shell with a closed-form analytical solution and a semi-analytical ring finite element solution. The applicability of the proposed finite element to viscoelastic core sandwich plates is assessed through experimental validation.

  4. A two-scale finite element formulation for the dynamic analysis of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, Axinte [Los Alamos National Laboratory

    2008-01-01

    In the analysis of heterogeneous materials using a two-scale Finite Element Method (FEM) the usual assumption is that the Representative Volume Element (RVE) of the micro-scale is much smaller than the finite element discretization of the macro-scale. However there are situations in which the RVE becomes comparable with, or even bigger than the finite element. These situations are considered in this article from the perspective of a two-scale FEM dynamic analysis. Using the principle of virtual power, new equations for the fluctuating fields are developed in terms of velocities rather than displacements. To allow more flexibility in the analysis, a scaling deformation tensor is introduced together with a procedure for its determination. Numerical examples using the new approach are presented.

  5. A PETSc-Based Parallel Implementation of Finite Element Method for Elasticity Problems

    Directory of Open Access Journals (Sweden)

    Jianfei Zhang

    2015-01-01

    Full Text Available Starting a parallel code from scratch is not a good choice for parallel programming finite element analysis of elasticity problems because we cannot make full use of our existing serial code and the programming work is painful for developers. PETSc provides libraries for various numerical methods that can give us more flexibility in migrating our serial application code to a parallel implementation. We present the approach to parallelize the existing finite element code within the PETSc framework. Our approach permits users to easily implement the formation and solution of linear system arising from finite element discretization of elasticity problem. The main PETSc subroutines are given for the main parallelization step and the corresponding code fragments are listed. Cantilever examples are used to validate the code and test the performance.

  6. ON FINITE ELEMENT METHODS FOR INHOMOGENEOUS DIELECTRIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    Zhiming Chen; Jian-hua Yuan

    2004-01-01

    We investigate the problem of computing electromagnetic guided waves in a closed,inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form associated with the eigenvalue problem, we provide a new convergence analysis for the finite element approximations. Numerical results are reported to illustrate the performance of the method.

  7. A Finite Element Solution for Barrel Dynamic Stress

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen

    2007-01-01

    With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.

  8. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  9. Surface processing methods for point sets using finite elements

    NARCIS (Netherlands)

    Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru

    2004-01-01

    We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs

  10. Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing

    Directory of Open Access Journals (Sweden)

    Merve Yavuz ERKEK

    2015-03-01

    Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.

  11. Implicit extrapolation methods for multilevel finite element computations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  12. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  13. Finite-Element Analysis of Forced Convection and Conduction

    Science.gov (United States)

    Wieting, A. R.

    1982-01-01

    TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.

  14. A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    芮洪兴

    2004-01-01

    Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given.

  15. DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Abdellatif Agouzal

    2000-01-01

    A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.

  16. MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Xue-jun Xu; Jin-ru Chen

    2003-01-01

    In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, I.e, the convergence rate is independent of the mesh size L and the time step parameter т.

  17. An Eulerean finite element model for penetration in layered soil

    NARCIS (Netherlands)

    Berg, van den Peter; Borst, de Rene; Huetink, Han

    1996-01-01

    An Eulerean large-strain finite element formulation is presented to simulate static soil penetration. The method is an extension of the Updated Lagrangean description to an Eulerean formulation taking into account convection of deformation-history-dependent properties as well as material properties.

  18. Closed Loop Finite Element Modeling of Piezoelectric Smart Structures

    Directory of Open Access Journals (Sweden)

    Guang Meng

    2006-01-01

    Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.

  19. Finite element analysis of bone loss around failing implants

    NARCIS (Netherlands)

    Wolff, J.; Narra, N.; Antalainen, A.K.; Valášek, J.; Kaiser, J.; Sandór, G.K.; Marcián, P.

    2014-01-01

    Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A

  20. An Orthogonal Residual Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.

    A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...

  1. Space-time discontinuous Galerkin finite element methods

    NARCIS (Netherlands)

    Vegt, van der J.J.W.; Deconinck, H.; Ricchiuto, M.

    2006-01-01

    In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and stabilizati

  2. THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    SHI Dongyang; ZHU Huiqing

    2005-01-01

    This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.

  3. Finite element analysis of boron diffusion in wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2004-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  4. Hands on applied finite element analysis application with ANSYS

    CERN Document Server

    Arslan, Mehmet Ali

    2015-01-01

    Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.

  5. Finite Element Analysis of Boron Diffusion in Wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2004-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  6. A Dual Orthogonality Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.; Hededal, O.

    In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...

  7. Finite Element Analysis of Boron Diffusion in Wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, P.; Bechgaard, C.;

    2003-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  8. (AJST) FINITE ELEMENT ANALYSIS OF A FLUID-STRUCTURE ...

    African Journals Online (AJOL)

    3 Unité de Mécanique des fluides appliquée et Modélisation B.P W 3038 Sfax, Tunisie ... Key words : Fluid-structure interaction, flexible pipe, rubber, finite element method. INTRODUCTION ...... membrane and thin fluid layer, 1999. Journal of ...

  9. Finite Groups with Three Conjugacy Class Sizes of some Elements

    Indian Academy of Sciences (India)

    Qingjun Kong

    2012-08-01

    Let be a finite group. We prove as follows: Let be a -solvable group for a fixed prime . If the conjugacy class sizes of all elements of primary and biprimary orders of are $\\{1,p^a,n\\}$ with and two positive integers and (,)=1, then is -nilpotent or has abelian Sylow -subgroups.

  10. Finite Element Studies Of Tangent Mounted Conical Optics

    Science.gov (United States)

    Stoneking, J.; Casstevens, J.; Stillman, D.

    1982-12-01

    This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.

  11. A review of flexibility-based finite element method for beam-column elements

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; ZHAI Changhai; XIE Lili

    2009-01-01

    For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.

  12. Topological Optimization of the Evaluation of Finite Element Matrices

    CERN Document Server

    Kirby, Robert C; Scott, L Ridgway; Terrel, Andy R; 10.1137/050635547

    2012-01-01

    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization.

  13. NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-ming; SONG Shun-cheng

    2005-01-01

    Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.

  14. Discontinuous dual-primal mixed finite elements for elliptic problems

    Science.gov (United States)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  15. Vibration Behaviour of Single Walled Carbon Nanotube using Finite Element

    Directory of Open Access Journals (Sweden)

    Ashirbad Swain

    2013-12-01

    Full Text Available The flexural vibration of single walled carbon nanotube has analyzed by finite element method. Timoshenko beam element formulation has been used for this purpose. Axial deformation has also been taken into account apart from shear deformation for formulation of the element. Results from multi-scale modeling for free vibration analysis have been found to be in good agreement with the literatures available. Effects of chirality and aspect ratio on vibration characteristics are presented. More over effect of initial axial strain or stress on natural frequency have been analysed and found to have significant effect on the natural frequency of the nanotube.

  16. Finite element and discontinuous Galerkin methods for transient wave equations

    CERN Document Server

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  17. Streamline upwind finite element method for conjugate heat transfer problems

    Institute of Scientific and Technical Information of China (English)

    Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen

    2005-01-01

    This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.

  18. Finite element dynamic analysis on CDC STAR-100 computer

    Science.gov (United States)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  19. Experimental and three-dimensional finite element investigation of fatigue

    Science.gov (United States)

    Bomidi, John A. R.

    Materials often fail at cyclic loads that are lower than their ultimate strength or even their yield strength due to progressive internal material degradation; commonly known as fatigue. Moreover, there is a wide scatter in observed fatigue lives of mechanical components operating under identical loading conditions. The randomness of fatigue failure is considered to be linked to basic microstructural effects such as random microstructure topology and the initiation/growth of cracks along inter/transgranular planes. Several modeling approaches have been previously presented ranging from 2D discrete element to 3D Finite Element methods with explicit representation of microstructure topology and continuum damage mechanics to capture dispersion in rolling contact fatigue life and fatigue spalling. There is, however, a need to compare the modeling approach with experimental fatigue test conditions in order to verify and as required enhance the modeling approach to capture observed fatigue failure. This dissertation presents experimental test results and three-dimensional modeling approach that capture fatigue failure. The three-dimensional modeling approach is enhanced according to the experimental observations to consider inter/trans granular failure, different modes of fatigue initiation and propagation and finally for considering effect of plasticity in fatigue of rolling contacts. The following phenomena have been investigated: (1) Fatigue of microbeams: (a )Results of fatigue life and failure from 3D modeling of intergranular fatigue in microbeams are compared with experimental observations reported in literature (2) Tensile fatigue of thin sheets: (a) A test rig with a new grip and alignment system is developed to address the challenges associated with thin sheet testing and conduct fatigue experiments. (b) The 3D fatigue model is enhanced to capture the dominant transgranular fatigue observed in the experiments. The observed and modeled fatigue life and failure

  20. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Science.gov (United States)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.