WorldWideScience

Sample records for finite element-based deformable

  1. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    Penjweini, R [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kim, M [University of Pennsylvania, Philadelphia, PA (United States); Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative light fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.

  2. Development of Multiorgan Finite Element-Based Prostate Deformation Model Enabling Registration of Endorectal Coil Magnetic Resonance Imaging for Radiotherapy Planning

    Hensel, Jennifer M.; Menard, Cynthia; Chung, Peter W.M.; Milosevic, Michael F.; Kirilova, Anna; Moseley, Joanne L.; Haider, Masoom A.; Brock, Kristy K.

    2007-01-01

    Purpose: Endorectal coil (ERC) magnetic resonance imaging (MRI) provides superior visualization of the prostate compared with computed tomography at the expense of deformation. This study aimed to develop a multiorgan finite element deformable method, Morfeus, to accurately co-register these images for radiotherapy planning. Methods: Patients with prostate cancer underwent fiducial marker implantation and computed tomography simulation for radiotherapy planning. A series of axial MRI scans were acquired with and without an ERC. The prostate, bladder, rectum, and pubic bones were manually segmented and assigned linear elastic material properties. Morfeus mapped the surface of the bladder and rectum between two imaged states, calculating the deformation of the prostate through biomechanical properties. The accuracy of deformation was measured as fiducial marker error and residual surface deformation between the inferred and actual prostate. The deformation map was inverted to deform from 100 cm 3 to no coil. Results: The data from 19 patients were analyzed. Significant prostate deformation occurred with the ERC (mean intrapatient range, 0.88 ± 0.25 cm). The mean vector error in fiducial marker position (n = 57) was 0.22 ± 0.09 cm, and the mean vector residual surface deformation (n = 19) was 0.15 ± 0.06 cm for deformation from no coil to 100-cm 3 ERC, with an image vector resolution of 0.22 cm. Accurately deformed MRI scans improved soft-tissue resolution of the anatomy for radiotherapy planning. Conclusions: This method of multiorgan deformable registration enabled accurate co-registration of ERC-MRI scans with computed tomography treatment planning images. Superior structural detail was visible on ERC-MRI, which has potential for improving target delineation

  3. Finite element based electric motor design optimization

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  4. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  5. Finite element based composite solution for neutron transport problems

    Mirza, A.N.; Mirza, N.M.

    1995-01-01

    A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)

  6. Some practical considerations in finite element-based digital image correlation

    Wang, Bo

    2015-04-20

    As an alternative to subset-based digital image correlation (DIC), finite element-based (FE-based) DIC method has gained increasing attention in the experimental mechanics community. However, the literature survey reveals that some important issues have not been well addressed in the published literatures. This work therefore aims to point out a few important considerations in the practical algorithm implementation of the FE-based DIC method, along with simple but effective solutions that can effectively tackle these issues. First, to better accommodate the possible intensity variations of the deformed images practically occurred in real experiments, a robust zero-mean normalized sum of squared difference criterion, instead of the commonly used sum of squared difference criterion, is introduced to quantify the similarity between reference and deformed elements in FE-based DIC. Second, to reduce the bias error induced by image noise and imperfect intensity interpolation, low-pass filtering of the speckle images with a 5×5 pixels Gaussian filter prior to correlation analysis, is presented. Third, to ensure the iterative calculation of FE-based DIC converges correctly and rapidly, an efficient subset-based DIC method, instead of simple integer-pixel displacement searching, is used to provide accurate initial guess of deformation for each calculation point. Also, the effects of various convergence criteria on the efficiency and accuracy of FE-based DIC are carefully examined, and a proper convergence criterion is recommended. The efficacy of these solutions is verified by numerical and real experiments. The results reveal that the improved FE-based DIC offers evident advantages over existing FE-based DIC method in terms of accuracy and efficiency. © 2015 Elsevier Ltd. All rights reserved.

  7. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  8. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali

    2015-01-01

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  9. Finite element based bladder modeling for image-guided radiotherapy of bladder cancer

    Chai, Xiangfei; van Herk, Marcel; van de Kamer, Jeroen B.; Hulshof, Maarten C. C. M.; Remeijer, Peter; Lotz, Heidi T.; Bel, Arjan

    2011-01-01

    Purpose: A biomechanical model was constructed to give insight into pelvic organ motion as a result of bladder filling changes. Methods: The authors used finite element (FE) modeling to simulate bladder wall deformation caused by urine inflow. For ten volunteers, a series of MRI scans of the pelvic

  10. Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation

    Tao, Ran

    2016-02-11

    Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains) across interfaces between dissimilar materials, where the deformation gradient is known to be large. This can become an issue when a high level of accuracy is needed, for example, in the interfacial region of composites or joints. In this work, we described the application of global conforming finite-element-based DIC technique to obtain precise kinematic fields at interfaces between dissimilar materials. Speckle images from both numerical and actual experiments processed by the described global DIC technique better captured sharp strain gradient at the interface than local subset-based DIC. © 2016 Elsevier Ltd. All rights reserved.

  11. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  12. The Finite Deformation Dynamic Sphere Test Problem

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  13. Finite Element Based Design Optimization of WENDELSTEIN 7-X Divertor Targets

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.; Greuner, H.

    2006-01-01

    deformations, and strains are compared to results of high heat flux tests with reasonable agreement being found. Thus, the calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure. Based on the experimentally confirmed model, the finite element analysis resulted in an optimized design. (author)

  14. Predictions of total deformations in Jebba main dam by finite ...

    This paper examined the deformations of the Jebba Main Dam, Jebba Nigeria using the finite element method. The study also evaluated the predicted deformations and compared them with the actual deformations in the dam to identify possible causes of the observed longitudinal crack at the dam crest. The Jebba dam is a ...

  15. Development of polygon elements based on the scaled boundary finite element method

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  16. Some practical considerations in finite element-based digital image correlation

    Wang, Bo; Pan, Bing; Lubineau, Gilles

    2015-01-01

    effectively tackle these issues. First, to better accommodate the possible intensity variations of the deformed images practically occurred in real experiments, a robust zero-mean normalized sum of squared difference criterion, instead of the commonly used sum

  17. Development of a finite-element-based design sensitivity analysis for buckling and postbuckling of composite plates

    Guo Ruijiang

    1995-01-01

    Full Text Available A finite element based sensitivity analysis procedure is developed for buckling and postbuckling of composite plates. This procedure is based on the direct differentiation approach combined with the reference volume concept. Linear elastic material model and nonlinear geometric relations are used. The sensitivity analysis technique results in a set of linear algebraic equations which are easy to solve. The procedure developed provides the sensitivity derivatives directly from the current load and responses by solving the set of linear equations. Numerical results are presented and are compared with those obtained using finite difference technique. The results show good agreement except at points near critical buckling load where discontinuities occur. The procedure is very efficient computationally.

  18. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  19. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  20. A Smoothed Finite Element-Based Elasticity Model for Soft Bodies

    Juan Zhang

    2017-01-01

    Full Text Available One of the major challenges in mesh-based deformation simulation in computer graphics is to deal with mesh distortion. In this paper, we present a novel mesh-insensitive and softer method for simulating deformable solid bodies under the assumptions of linear elastic mechanics. A face-based strain smoothing method is adopted to alleviate mesh distortion instead of the traditional spatial adaptive smoothing method. Then, we propose a way to combine the strain smoothing method and the corotational method. With this approach, the amplitude and frequency of transient displacements are slightly affected by the distorted mesh. Realistic simulation results are generated under large rotation using a linear elasticity model without adding significant complexity or computational cost to the standard corotational FEM. Meanwhile, softening effect is a by-product of our method.

  1. Finite element based design optimization of WENDELSTEIN 7-X divertor components under high heat flux loading

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.-H.; Greuner, H.

    2007-01-01

    In the divertor of the nuclear fusion experiment WENDELSTEIN 7-X (W7-X) plasma facing high heat flux target elements have to withstand severe loading conditions. The thermally induced mechanical stressing turns out to be most critical with respect to lifetime predictions of the target elements. Therefore, different design variants of those CFC flat tile armoured high heat flux components have been analysed via the finite element package ABAQUS aiming at derivation of an optimized component design under high heat flux conditions. The investigated design variants comprise also promising alterations in the cooling channel design and castellation of the CFC flat tiles which, however, from a system integration and manufacturing standpoint of view, respectively, are evaluated to be critical. Therefore, the numerical study as presented here mainly comprises a reference variant that is comparatively studied with a variant incorporating a bi-layer-type AMC-Cu/OF-Cu interlayer at the CFC/Cu-interface. The thermo-mechanical material characteristics are accounted for in the finite element models with elastic-plastic properties being assigned to the metallic sections CuCrZr, AMC-Cu and OF-Cu, respectively, and orthotropic nonlinear-elastic properties being used for the CFC sections. The calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure of CFC and the CFC/Cu-interface, respectively. This way the finite element analysis allows to numerically derive an optimized design variant within the framework of expected operating conditions in W7-X

  2. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing

    2015-01-01

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  3. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    Kou, Jisheng

    2015-10-11

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  4. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    Wong, C.; Gehrchen, P.M.; Kiaer, T.

    2008-01-01

    STUDY DESIGN: A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws. OBJECTIVE......: The validity of 2 bone remodeling algorithms was evaluated by comparing against prospective bone mineral content measurements. Also, the potential stress shielding effect was examined using the 2 bone remodeling algorithms and the experimental bone mineral data. SUMMARY OF BACKGROUND DATA: In previous studies...... operated on with pedicle screws between L4 and L5. The stress shielding effect was also examined. The bone remodeling results were compared with prospective bone mineral content measurements of 4 patients. They were measured after surgery, 3-, 6- and 12-months postoperatively. RESULTS: After 1 year...

  5. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  6. Finite element-based limit load of piping branch junctions under combined loadings

    Xuan Fuzhen; Li Peining

    2004-01-01

    The limit load is an important input parameter in engineering defect-assessment procedures and strength design. In the present work, a total of 100 different piping branch junction models for the limit load calculation were performed under combined internal pressure and moments in use of non-linear finite element (FE) method. Three different existing accumulation rules for limit load, i.e., linear equation, parabolic equation and quadratic equation were discussed on the basis of FE results. A novel limit load solution was developed based on detailed three-dimensional FE limit analyses which accommodated the geometrical parameter influence, together with analytical solutions based on equilibrium stress fields. Finally, six experimental results were provided to justify the presented equation. According to the FE limit analysis, limit load interaction of the piping tees under combined pressure and moments has a relationship with the geometrical parameters, especially with the diameter ratio d/D. The predicted limit loads from the presented formula are very close to the experimental data. The resulting limit load solution is given in a closed form, and thus can be easily used in practice

  7. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  8. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  9. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  10. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    McWilliam, Michael K; Crawford, Curran

    2014-01-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane

  11. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently

  12. Geometry of finite deformations and time-incremental analysis

    Fiala, Zdeněk

    2016-01-01

    Roč. 81, May (2016), s. 230-244 ISSN 0020-7462 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * time-incremental analysis * Lagrangian system * evolution equation of Lie type Subject RIV: BE - Theoretical Physics Impact factor: 2.074, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020746216000330

  13. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    Tao, Ran

    2015-01-01

    is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in

  14. Optimization of deformation monitoring networks using finite element strain analysis

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  15. Dynamic visual cryptography on deformable finite element grids

    Aleksiene, S.; Vaidelys, M.; Aleksa, A.; Ragulskis, M.

    2017-07-01

    Dynamic visual cryptography scheme based on time averaged moiré fringes on deformable finite element grids is introduced in this paper. A predefined Eigenshape function is used for the selection of the pitch of the moiré grating. The relationship between the pitch of moiré grating, the roots of the zero order Bessel function of the first kind and the amplitude of harmonic oscillations is derived and validated by computational experiments. Phase regularization algorithm is used in the entire area of the cover image in order to embed the secret image and to avoid large fluctuations of the moiré grating. Computational simulations are used to demonstrate the efficiency and the applicability of the proposed image hiding technique.

  16. Soft tissue deformation using a Hierarchical Finite Element Model.

    Faraci, Alessandro; Bello, Fernando; Darzi, Ara

    2004-01-01

    Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.

  17. A nonaffine network model for elastomers undergoing finite deformations

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  18. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    Tao, Ran

    2015-05-01

    Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  19. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  20. Role of inertia in the rheology of amorphous sys- tems: a finite element based elasto plastic model

    Karimi, Kamran; Barrat, Jean-Louis

    A simple Finite Element analysis with varying damping strength is used to model the athermal shear rheology of densely packed glassy systems at a continuum level. We focus on the influence of dissipation mechanism on bulk rheological properties. Our numerical studies, done over a wide range of damping coefficients, identify two well-separated rheological regimes along with a cross-over region controlled by a critical damping. In the overdamped limit, inertial effects are negligible and the rheological response is well described by the commonly observed Herschel-Bulkley equation. In stark contrast, inertial vibrations in the underdamped regime prompt a significant drop in the mean-stress level, leading to a non-monotonic constitutive relation. The observed negative slope in the flow curve, which is a signature of mechanical instability and thus permanent shear-banding, arises from the sole influence of inertia, in qualitative agreement with the recent molecular dynamics study of Nicolas et al. (arXiv preprint arXiv:1508.06067, 2015).

  1. Finite Element Based Pelvic Injury Metric Creation and Validation in Lateral Impact for a Human Body Model.

    Weaver, Caitlin; Baker, Alexander; Davis, Matthew; Miller, Anna; Stitzel, Joel D

    2018-02-20

    Pelvic fractures are serious injuries resulting in high mortality and morbidity. The objective of this study is to develop and validate local pelvic anatomical, cross-section-based injury risk metrics for a finite element (FE) model of the human body. Cross-sectional instrumentation was implemented in the pelvic region of the Global Human Body Models Consortium (GHBMC M50-O) 50th percentile detailed male FE model (v4.3). In total, 25 lateral impact FE simulations were performed using input data from cadaveric lateral impact tests performed by Bouquet et al. The experimental force-time data was scaled using five normalization techniques, which were evaluated using log rank, Wilcoxon rank sum, and correlation and analysis (CORA) testing. Survival analyses with Weibull distribution were performed on the experimental peak force (scaled and unscaled) and the simulation test data to generate injury risk curves (IRCs) for total pelvic injury. Additionally, IRCs were developed for regional injury using cross-sectional forces from the simulation results and injuries documented in the experimental autopsies. These regional IRCs were also evaluated using the receiver operator characteristic (ROC) curve analysis. Based on the results of the all the evaluation methods, the Equal Stress Equal Velocity (ESEV) and ESEV using effective mass (ESEV-EM) scaling techniques performed best. The simulation IRC shows slight under prediction of injury in comparison to these scaled experimental data curves. However, this difference was determined to not be statistically significant. Additionally, the ROC curve analysis showed moderate predictive power for all regional IRCs.

  2. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  3. On the all-order perturbative finiteness of the deformed N=4 SYM theory

    Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.

    2006-01-01

    We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6

  4. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  5. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  6. Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites

    Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.

    1984-01-01

    The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.

  7. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analysis of the finite deformation response of shape memory polymers: II. 1D calibration and numerical implementation of a finite deformation, thermoelastic model

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part II of this work presents the calibration of a previously developed thermoelastic constitutive model which is capable of handling finite deformations. The model is proposed in a general three-dimensional framework; however, this work focuses on reducing the model to one dimension and subsequently calibrating the model using experimental data obtained in part I. The one-dimensional numerical implementation of the model is presented, including the handling of the system of nonlinear equations and the integral term resulting from the constitutive model. The model is then used to predict the uniaxial shape memory effect. Results indicate good agreement between the model predictions and the experimental results, but the predictions do not capture the irrecoverable deformation present at the end of recovery

  9. Finite element analysis of large elasto-plastic deformation for sealing ring in nuclear pressure vessel

    Xiao Xuejian; Chen Ruxin

    1995-02-01

    Based on the R. Hills incremental virtual power principle and the elasto-plastic constitution equation for large deformation and by considering physical nonlinear, geometric nonlinear and thermal effects, a plane and axisymmetric finite element equation for thermal large elasto-plastic deformation has been established in the Euler description. The corresponding analysis program ATLEPD has been also complied for thermal large elasto-plastic deformation process of O-ring in RPV. The variations of stress, strain, contact specific pressure, mesh deformation and the aspects of spring back in upsetting and spring back process have been also investigated. Numerical results are fairly consistent with experimental ones. (5 figs., 4 tabs.)

  10. Analysis of acoustic resonator with shape deformation using finite ...

    G M KALMSEa, AJAY CHAUDHARIb and P B PATILb a Science College, PB No. 62, Nanded 431603, India b Department of Physics, Dr B A M University, Aurangabad 431 004, India e-mail: bamuaur@bom4.vsnl.net.in. MS received 23 September 1999. Abstract. An acoustic resonator with shape deformation has been ...

  11. Volume changes in hydrogels subjected to finite deformations

    Drozdov, Aleksey; Christiansen, Jesper de Claville

    2013-01-01

    Constitutive equations are derived for the elastic response of hydrogels under an arbitrary deformationwith finite strains. An expression is proposed for the free energy density of a hydrogel based on the Floryconcept of a network of flexible chains with constrained junctions whose reference conf...

  12. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach

    Moraleda, Joaquín; Segurado, Javier; LLorca, Javier

    2009-09-01

    The in-plane finite deformation of incompressible fiber-reinforced elastomers was studied using computational micromechanics. Composite microstructure was made up of a random and homogeneous dispersion of aligned rigid fibers within a hyperelastic matrix. Different matrices (Neo-Hookean and Gent), fibers (monodisperse or polydisperse, circular or elliptical section) and reinforcement volume fractions (10-40%) were analyzed through the finite element simulation of a representative volume element of the microstructure. A successive remeshing strategy was employed when necessary to reach the large deformation regime in which the evolution of the microstructure influences the effective properties. The simulations provided for the first time "quasi-exact" results of the in-plane finite deformation for this class of composites, which were used to assess the accuracy of the available homogenization estimates for incompressible hyperelastic composites.

  13. Partitioning of elastic energy in open-cell foams under finite deformations

    Harb, Rani; Taciroglu, Ertugrul; Ghoniem, Nasr

    2013-01-01

    The challenges associated with the computational modeling and simulation of solid foams are threefold—namely, the proper representation of an intricate geometry, the capability to accurately describe large deformations, and the extremely arduous numerical detection and enforcement of self-contact during crushing. The focus of this study is to assess and accurately quantify the effects of geometric nonlinearities (i.e. finite deformations, work produced under buckling-type motions) on the predicted mechanical response of open-cell foams of aluminum and polyurethane prior to the onset of plasticity and contact. Beam elements endowed with three-dimensional finite deformation kinematics are used to represent the foam ligaments. Ligament cross-sections are discretized through a fiber-based formulation that provides accurate information regarding the onset of plasticity, given the uniaxial yield stress–strain data for the bulk material. It is shown that the (hyper-) elastic energy partition within ligaments is significantly influenced by kinematic nonlinearities, which frequently cause strong coupling between the axial, bending, shear and torsional deformation modes. This deformation mode-coupling is uniquely obtained as a result of evaluating equilibrium in the deformed configuration, and is undetectable when small deformations are assumed. The relationship between the foam topology and energy partitioning at various stages of moderate deformation is also investigated. Coupled deformation modes are shown to play an important role, especially in perturbed Kelvin structures where over 70% of the energy is stored in coupled axial-shear and axial-bending modes. The results from this study indicate that it may not always be possible to accurately simulate the onset of plasticity (and the response beyond this regime) if finite deformation kinematics are neglected

  14. Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation

    Goudreau, G.L.; Hallquist, J.O.

    1979-08-01

    Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications

  15. Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients

    Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang

    2018-03-01

    Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0  ±  1.3, 1.0  ±  1.2, 0.8  ±  1.3, 1.1  ±  1.5 for the B-Spline, B-Spline  +  FEM, Demons and Demons  +  FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.

  16. A finite deformation theory of higher-order gradient crystal plasticity

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  17. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    An, Yonghao; Jiang, Hanqing

    2013-01-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)

  18. Finite Deformation of Materials with an Ensemble of Defects

    J.K. Dienes

    2003-01-01

    The theory of large deformations developed here is closely related to continuum mechanics but it differs in several major respects, especially in considering the deformation associated with various types of physical behavior, making it possible to synthesize a general approach to formulating constitutive laws. One goal is to derive general concepts of strain, strain rate, stress, and stress rate that are somewhat more physics-based than in most standard works on continuum mechanics, and to demonstrate some new relations between these quantities. With these concepts it is possible to develop a generalized principle of superposition of strain rates (GSSR) that accounts for damage as well as plastic flow. The traditional superposition of strain rates allows for addition of elastic and plastic strain rates and is commonly thought to be valid only for small strains. The GSSR allows us to compute deformations involving plastic flow and, in addition, brittle failure, fragmentation, high-pressure effects and other types of behavior as necessary, and the theory is valid for arbitrarily large deformations. In fact, GSSR is derived from more basic ideas and has broader application than the standard superposition of strain rates. The physical basis for calculations of complex material response is developed in a separate report. The implementation into the SCRAM computer program is documented separately. The polar decomposition theorem is taken as a starting point for the theory of large deformation, an approach somewhat different from that usually taken in continuum mechanics. Two sets of orthogonal axes are distinguished, space axes that are fixed in ambient space, and polar axes that are related to material deformation. This clarifies several concepts; for example, it is shown that the Signorini and Green-St. Venant strains are actually measures of the same physical entity, one in space axes and the other in polar axes. It follows that they are not competing measures, as is

  19. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  20. A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures

    Lee, L.H.N.; Horng, J.T.

    1975-01-01

    The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained

  1. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  2. Comparative Analysis of Bulge Deformation between 2D and 3D Finite Element Models

    Qin Qin

    2014-02-01

    Full Text Available Bulge deformation of the slab is one of the main factors that affect slab quality in continuous casting. This paper describes an investigation into bulge deformation using ABAQUS to model the solidification process. A three-dimensional finite element analysis model of the slab solidification process has been first established because the bulge deformation is closely related to slab temperature distributions. Based on slab temperature distributions, a three-dimensional thermomechanical coupling model including the slab, the rollers, and the dynamic contact between them has also been constructed and applied to a case study. The thermomechanical coupling model produces outputs such as the rules of bulge deformation. Moreover, the three-dimensional model has been compared with a two-dimensional model to discuss the differences between the two models in calculating the bulge deformation. The results show that the platform zone exists in the wide side of the slab and the bulge deformation is affected strongly by the ratio of width-to-thickness. The indications are also that the difference of the bulge deformation for the two modeling ways is little when the ratio of width-to-thickness is larger than six.

  3. Fluid boundary of a viscoplastic Bingham flow for finite solid deformations

    Thual , Olivier; Lacaze , Laurent

    2010-01-01

    International audience; The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a "plastic rule function" often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deform...

  4. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  5. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  6. Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation

    Hussein, Bassam A.; Weed, David; Shabana, Ahmed A.

    2009-01-01

    In the finite element absolute nodal coordinate formulation (ANCF), the elimination of the relative translations and rotations at a point does not necessarily define a fully clamped joint, particularly in the case of fully parameterized ANCF finite elements that allow for the deformation of the cross section. In this investigation, the formulations and results of two different sets of clamped end conditions that define two different joints are compared. The first joint, called the partially clamped joint, eliminates only the translations and rotations at a point on the cross section. The second joint, called the fully clamped joint, eliminates all the translation, rotation and deformation degrees of freedom at a point on the cross section. The kinematic equations that define the partially and fully clamped joints are developed, and the dynamic equations used in the comparative numerical study presented in this paper are shown. As discussed in this investigation, the fully clamped joint does not allow for the deformation of the cross section at the joint node since the gradient vectors remain orthogonal unit vectors. The partially clamped joint, on the other hand, allows for the deformation of the cross section. Nanson's formula is used as a measure of the deformation of the cross section in the case of the partially clamped joint. A very flexible pendulum that has a rigid body attached to its free end is used to compare the results of the partially and fully clamped joints. The numerical results obtained using this very flexible pendulum example show that, while the type of joint (partially or fully clamped) does not significantly affect the gross reference motion of the system, there are fundamental differences between the two joints since the partially clamped joint allows for the cross section deformations at the joint node

  7. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  8. Hybrid High-Order methods for finite deformations of hyperelastic materials

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  9. Finite Element Method in the Three Dimensions Deformation Computation ofKartini Reactor Stack

    Supriyono; Syarip; Wibisono, I

    2000-01-01

    The calculation of the Kartini reactor stack i.e. one of the nuclearinstallations in P3TM-BATAN Yogyakarta by using SAP 90 software have beendone. The calculation is done as a safety review of building towards theearthquake style in Yogyakarta. The 3-dimension deformation calculation isperformed by the numeric method i.e. finite element method with the form ofelements is the shell. The result obtained showed that the construction oftower safe to the existing earthquake, where the moment exerted as a resultof earthquake style was different under the moment having been kept by thebuilding structure. By knowing the deformation on the stack it is expectedcould be used for concluding the strength of the whole reactor building.(author)

  10. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  11. Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique

    Nagata, Keitro; Nishimura, Jun; Shimasaki, Shinji

    2018-03-01

    We study QCD at finite density and low temperature by using the complex Langevin method. We employ the gauge cooling to control the unitarity norm and intro-duce a deformation parameter in the Dirac operator to avoid the singular-drift problem. The reliability of the obtained results are judged by the probability distribution of the magnitude of the drift term. By making extrapolations with respect to the deformation parameter using only the reliable results, we obtain results for the original system. We perform simulations on a 43 × 8 lattice and show that our method works well even in the region where the reweighing method fails due to the severe sign problem. As a result we observe a delayed onset of the baryon number density as compared with the phase-quenched model, which is a clear sign of the Silver Blaze phenomenon.

  12. Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element

    Akinlabi, Stephen; Akinlabi, Esther

    2017-08-01

    Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.

  13. Finite element modeling of ground deformation and gravity field at Mt. Etna

    G. Ganci

    2008-06-01

    Full Text Available An elastic 3-D axi-symmetric model based on Finite Element Method (FEM is proposed to compute ground deformation and gravity changes caused by overpressure sources in volcanic areas. The numerical computations are focused on the modeling of a complex description of Mt Etna in order to evaluate the effect of topography, medium heterogeneities and source geometries. Both ground deformation and gravity changes are investigated by solving a coupled numerical problem considering a simplified ground surface profile and a multi-layered crustal structure inferred from seismic tomography. The role of the source geometry is also explored taking into account spherical and ellipsoidal volumetric sources. The comparison between numerical results and those predicted by analytical solutions disclosed significant discrepancies. These differences constrain the applicability of simple spherical source and homogeneous half-space hypotheses, which are usually implicitly assumed when analytical solutions are applied.

  14. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2018-01-01

    Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.

  15. Finite element modelling of the creep deformation of T91 steel weldments at 600 C

    Bhadrui, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Gaudig, W. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Theofel, H. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Maile, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1996-05-01

    Finite element modelling of the creep deformation of T91 steel weldments, welded using the manual metal arc (MMA) and submerged arc (SA) welding processes, was carried out to predict creep curves for both of the weldments under different stresses and compared with the experimental data. The stress and strain redistribution across the length of the transverse-weld specimens has also been predicted. Data of creep tests at 600 C at stresses between 90-130 MPa for the base metal, the MMA and SA weld metals, and the simulated heat-affected zone were used to determine Garofalo`s equation for creep strain. Finite element meshes for both of the weldments were constructed after calculating the HAZ locations using Rosenthal`s heat flow equation. (orig.)

  16. Definition of Availability Index of Deformed Building Constructions Using the Finite - Element Analysis Package

    Shutova, M. N.; Skibin, G. M.; Evtushenko, S. I.

    2017-11-01

    The paper is devoted to the problem of definition of availability index of deforming building construction in atypical cases. The authors revealed a real applicability of the finite-elements analyses package, such as ANSYS, for engineering testing calculations of building constructions and determination of the sites of increased stresses. It was determined that stresses increased up to 7.75 times in the sites with mechanical defects (for steel crane girder); also, the authors revealed the convergence of the calculation results between the finite element method and a usual decision using the strength of materials (in the limits 2-14% for steel truss frame). The equivalent stresses don’t exceed the maximum permissible tension for this type of steel. The building constructions have a limited availability index.

  17. On the stress calculation within phase-field approaches: a model for finite deformations

    Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta

    2017-08-01

    Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.

  18. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study.

    Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M

    2012-03-01

    Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  20. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    Pathmanathan, P

    2009-05-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  1. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    Pathmanathan, P; Gavaghan, D; Whiteley, J

    2009-01-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  2. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  3. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  4. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  5. Diverse Geological Applications For Basil: A 2d Finite-deformation Computational Algorithm

    Houseman, Gregory A.; Barr, Terence D.; Evans, Lynn

    Geological processes are often characterised by large finite-deformation continuum strains, on the order of 100% or greater. Microstructural processes cause deformation that may be represented by a viscous constitutive mechanism, with viscosity that may depend on temperature, pressure, or strain-rate. We have developed an effective com- putational algorithm for the evaluation of 2D deformation fields produced by Newto- nian or non-Newtonian viscous flow. With the implementation of this algorithm as a computer program, Basil, we have applied it to a range of diverse applications in Earth Sciences. Viscous flow fields in 2D may be defined for the thin-sheet case or, using a velocity-pressure formulation, for the plane-strain case. Flow fields are represented using 2D triangular elements with quadratic interpolation for velocity components and linear for pressure. The main matrix equation is solved by an efficient and compact conjugate gradient algorithm with iteration for non-Newtonian viscosity. Regular grids may be used, or grids based on a random distribution of points. Definition of the prob- lem requires that velocities, tractions, or some combination of the two, are specified on all external boundary nodes. Compliant boundaries may also be defined, based on the idea that traction is opposed to and proportional to boundary displacement rate. In- ternal boundary segments, allowing fault-like displacements within a viscous medium have also been developed, and we find that the computed displacement field around the fault tip is accurately represented for Newtonian and non-Newtonian viscosities, in spite of the stress singularity at the fault tip. Basil has been applied by us and colleagues to problems that include: thin sheet calculations of continental collision, Rayleigh-Taylor instability of the continental mantle lithosphere, deformation fields around fault terminations at the outcrop scale, stress and deformation fields in and around porphyroblasts, and

  6. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  7. Finite element simulations of internal stresses generated during the ferroelastic deformation of NiTi bodies

    Manach, P.Y.; Favier, D.; Rio, G.

    1996-01-01

    The aim of this paper is to analyse the generation of internal stresses during the predeformation of NiTi shape memory alloys in the martensitic state. This allows to determine the initial stress state in which the material will transform during the shape memory effect due to heating consecutively to this prestrain. In that way a three-dimensional finite element model of the deformation of shape memory alloys has been developed, the constitutive law being defined using an elastohysteresis tensor model. The influence of behavioural and geometrical factors are illustrated considering the numerical simulation of different cases of practical importance for industrial applications : the study of the bending behaviour of a NiTi cantilever beam as well as the study of the swelling of a pipe connection under both uniform and non uniform internal displacement fields. (orig.)

  8. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  9. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  10. The Application Research of Inverse Finite Element Method for Frame Deformation Estimation

    Yong Zhao

    2017-01-01

    Full Text Available A frame deformation estimation algorithm is investigated for the purpose of real-time control and health monitoring of flexible lightweight aerospace structures. The inverse finite element method (iFEM for beam deformation estimation was recently proposed by Gherlone and his collaborators. The methodology uses a least squares principle involving section strains of Timoshenko theory for stretching, torsion, bending, and transverse shearing. The proposed methodology is based on stain-displacement relations only, without invoking force equilibrium. Thus, the displacement fields can be reconstructed without the knowledge of structural mode shapes, material properties, and applied loading. In this paper, the number of the locations where the section strains are evaluated in the iFEM is discussed firstly, and the algorithm is subsequently investigated through a simple supplied beam and an experimental aluminum wing-like frame model in the loading case of end-node force. The estimation results from the iFEM are compared with reference displacements from optical measurement and computational analysis, and the accuracy of the algorithm estimation is quantified by the root-mean-square error and percentage difference error.

  11. INSAR AND FINITE ELEMENT ANALYSIS OF GROUND DEFORMATION AT LAKE URMIA CAUSEWAY (LUC, NORTHWEST IRAN

    R. Shamshiri

    2013-09-01

    Full Text Available Precise long-term deformation monitoring of causeways and bridges is of vital task for maintenance and management work related to transportation safety. In this study, we analyse the settlement of Lake Urmia Causeway (LUC, northwest Iran, using observations from InSAR and Finite Element Model (FEM simulation. For InSAR processing, we analyse 58 SAR images of ENVISAT, ALOS and TerraSAR-X (TSX using the SBAS technique to assess the settlement of embankments in the years 2003–2013. The InSAR results show deflation on both embankments with a peak velocity of > 5 cm/year in the satellite Line Of Sight (LOS direction. The InSAR observations are then used to construct a settlement compaction model for the cross section at the distance of 4 km from the most western edge of the causeway, using a 2D Finite Element Model. Our FEM results suggest that settlement of the embankments will continue in the future due to consolidation phenomenon.

  12. Coupled distinct element-finite element numerical modelling of fluid circulation in deforming sedimentary basins.

    Hindle, D.; Malz, A.; Donndorf, S.; Kley, J.; Kopp, H.

    2012-04-01

    We develop a coupled numerical model for fluid flow in deforming sedimentary basins. We combine a distinct element method for large deformations of crustal materials, with a finite element method for fluid flow according to a diffusion type equation. The key question in such a model is how to simulate evolving permeabilities due to upper and possibly middle crustal deformation, and the coupled issue of how localisation of deformation in faults and shear zones is itself influenced by fluid flow and fluid pressure and vice versa. Currently our knowledge of these issues is restricted, even sketchy. There are a number of hypotheses, based partly on geological and isotope geochemical observations, such as "seismic pumping" models, and fluid induced weak décollement models for thrust sheet transport which have gained quite wide acceptance. Observations around thrusts at the present day have also often been interpreted as showing deformation induced permeability. However, combining all the physics of these processes into a numerical simulation is a complicated task given the ranges of, in particular time scales of the processes we infer to be operating based on our various observations. We start this task by using an elastic fracture relationship between normal stresses across distinct element contacts (which we consider to be the equivalent of discrete, sliding fractures) and their openness and hence their transmissivity. This relates the mechanical state of the distinct element system to a discrete permeability field. Further than that, the geometry of the mechanical system is used to provide boundary conditions for fluid flow in a diffusion equation which also incorporates the permeability field. The next question we address is how to achieve a feedback between fluid pressures and deformation. We try two approaches: one treats pore space in the DEM as real, and calculates the force exerted locally by fluids and adds this to the force balance of the model; another

  13. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  14. A voxel-based finite element model for the prediction of bladder deformation

    Xiangfei, Chai; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan [Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Radiation Oncology Department, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Radiation Oncology Department, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  15. A voxel-based finite element model for the prediction of bladder deformation

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-01

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  16. Finite

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  17. Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis.

    Morales-Orcajo, Enrique; Bayod, Javier; Becerro-de-Bengoa-Vallejo, Ricardo; Losa-Iglesias, Marta; Doblare, Manuel

    2015-07-01

    Hallux abducto valgus (HAV), one of the most common forefoot deformities, occurs primarily in elderly women. HAV is a complex disease without a clearly identifiable cause for its higher prevalence in women compared with men. Several studies have reported various skeletal parameters related to HAV. This study examined the geometry of the proximal phalanx of the hallux (PPH) as a potential etiologic factor in this deformity. A total of 43 cadaver feet (22 males and 21 females) were examined by means of cadaveric dissection. From these data, ten representative PPHs for both genders were selected, corresponding to five percentiles for males (0, 25, 50, 75, and 100%) and five for females. These ten different PPHs were modeled and inserted in ten foot models. Stress distribution patterns within these ten PPH models were qualitatively compared using finite element analysis. In the ten cases analyzed, tensile stresses were larger on the lateral side, whereas compressive stresses were larger on the medial side. The bones of males were larger than female bones for each of the parameters examined; however, the mean difference between lateral and medial sides of the PPH (mean ± SD) was larger in women. Also the shallower the concavity at the base of the PPH, the larger the compressive stresses predicted. Internal forces on the PPH, due to differences in length between its medial and lateral sides, may force the PPH into a less-stressful position. The geometry of the PPH is a significant factor in HAV development influencing the other reported skeletal parameters and, thus, should be considered during preoperative evaluation. Clinical assessment should evaluate the first ray as a whole and not as isolated factors.

  18. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  19. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  20. Finite-size effect of η-deformed AdS5×S5 at strong coupling

    Changrim Ahn

    2017-04-01

    Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.

  1. Finite-size giant magnons on η-deformed AdS{sub 5}×S{sup 5}

    Ahn, Changrim, E-mail: ahn@ewha.ac.kr; Bozhilov, Plamen, E-mail: bozhilov@inrne.bas.bg

    2014-10-07

    We consider strings moving in the R{sub t}×S{sub η}{sup 3} subspace of the η-deformed AdS{sub 5}×S{sup 5} and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  2. Finite-size giant magnons on η-deformed AdS5×S5

    Changrim Ahn

    2014-10-01

    Full Text Available We consider strings moving in the Rt×Sη3 subspace of the η-deformed AdS5×S5 and obtain a class of solutions depending on several parameters. They are characterized by the string energy and two angular momenta. Finite-size dyonic giant magnon belongs to this class of solutions. Further on, we restrict ourselves to the case of giant magnon with one nonzero angular momentum, and obtain the leading finite-size correction to the dispersion relation.

  3. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  5. Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity

    Frija, M.; Hassine, T.; Fathallah, R.; Bouraoui, C.; Dogui, A.

    2006-01-01

    This paper presents a numerical simulation of the shot peening process using finite element method. The majority of the controlling parameters of the process have been taken into account. The shot peening loading has been characterised by using energy equivalence between the dynamic impact and a static indentation of a peening shot in the treated surface. The behaviour of the subjected material is supposed to be elastic plastic with damage. An integrated law of the damage proposed by Lemaitre and Chaboche has been used. The proposed model leads to obtain the residual stress, the plastic deformation profiles and the surface damage. An application on a shot peened Ni-based super alloy Waspaloy has been carried out. The comparison of the residual stresses, obtained by X-ray diffraction method and by finite element calculation, shows a good correlation. The in-depth profile of the plastic deformations and the superficial damage values are in good agreement with the experimental observations

  6. Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm

    Reed, K. W.; Atluri, S. N.

    1983-01-01

    A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.

  7. Finite element historical deformation analysis in piecewise linear plasticity by mathematical programming

    De Donato, O.; Parisi, M.A.

    1977-01-01

    When loads increase proportionally beyond the elastic limit in the presence of elastic-plastic piecewise-linear constitutive laws, the problem of finding the whole evolution of the plastic strain and displacements of structures was recently shown to be amenable to a parametric linear complementary problem (PLCP) in which the parameter is represented by the load factor, the matrix is symmetric positive definite or at least semi-definite (for perfect plasticity) and the variables with a direct mechanical meaning are the plastic multipliers. With reference to plane trusses and frames with elastic-plastic linear work-hardening material behaviour numerical solutions were also fairly efficiently obtained using a recent mathematical programming algorithm (due to R.W. Cottle) which is able to provide the whole deformation history of the structure and, at the same time to rule out local unloadings along the given proportional loading process by means of 'a priori' checks carried out before each pivotal step of the procedure. Hence it becomes possible to use the holonomic (reversible, path-independent) constitutive laws in finite terms and to benefit by all the relevant numerical and computational advantages despite the non-holonomic nature of plastic behaviour. In the present paper the method of solution is re-examined in view to overcome an important drawback of the algorithm deriving from the size of PLCP fully populated matrix when structural problems with large number of variables are considered and, consequently, the updating, the storing or, generally, the handling of the current tableau may become prohibitive. (Auth.)

  8. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  9. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    Mark Driscoll

    2013-01-01

    Full Text Available A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.

  10. Stress analysis in pressure vessels by mixed finite element methods taking into account shear deformation

    Franca, L.P.; Toledo, E.M.; Loula, A.F.D.; Garcia, E.L.M.

    1988-12-01

    A new finite element method is employed to approximate axisymmetric shell problems. This formulation enhances stability and accuracy, from thin to moderately thick shells, compared to the correspondent Galerkin finite element approximations. Numerical results illustrate the good performance of the present method on some typical pressure vessels aplications. (author) [pt

  11. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  12. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method

    Konkol Jakub

    2017-03-01

    Full Text Available In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL and Updated Lagrangian (UL. Numerical study consists of installation process, consolidation phase and following pile static load test (SLT. The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12. The results of numerical analysis are compared with corresponding field tests and with so-called “wish-in-place” numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  13. Finite-element analysis of the deformation of thin Mylar films due to measurement forces.

    Baker, Michael Sean; Robinson, Alex Lockwood; Tran, Hy D.

    2012-01-01

    Significant deformation of thin films occurs when measuring thickness by mechanical means. This source of measurement error can lead to underestimating film thickness if proper corrections are not made. Analytical solutions exist for Hertzian contact deformation, but these solutions assume relatively large geometries. If the film being measured is thin, the analytical Hertzian assumptions are not appropriate. ANSYS is used to model the contact deformation of a 48 gauge Mylar film under bearing load, supported by a stiffer material. Simulation results are presented and compared to other correction estimates. Ideal, semi-infinite, and constrained properties of the film and the measurement tools are considered.

  14. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    Schwarm, Samuel C.; Mburu, Sarah; Ankem, Sreeramamurthy

    2016-01-01

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in the γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).

  15. Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-05-01

    During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the curvature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b) small deformation holds. Here, we demonstrate that the change in elastic properties can influence the measurement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the Stoney-equation for in-situ stress measurements of thin film electrodes.

  16. GPU-based acceleration of computations in nonlinear finite element deformation analysis.

    Mafi, Ramin; Sirouspour, Shahin

    2014-03-01

    The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.

  17. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  18. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  19. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-01-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.

  20. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  1. Deformations of a pre-stretched and lubricated finite elastic membrane driven by non-uniform external forcing

    Boyko, Evgeniy; Gat, Amir; Bercovici, Moran

    2017-11-01

    We study viscous-elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip). E.B. is supported by the Adams Fellowship Program.

  2. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  3. Vibrations And Deformations Of Moderately Thick Plates In Stochastic Finite Element Method

    Grzywiński Maksym

    2015-12-01

    Full Text Available The paper deals with some chosen aspects of stochastic dynamical analysis of moderately thick plates. The discretization of the governing equations is described by the finite element method. The main aim of the study is to provide the generalized stochastic perturbation technique based on classical Taylor expansion with a single random variable.

  4. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  5. Investigations on thermal properties, stress and deformation of Al/SiC metal matrix composite based on finite element method

    K. A. Ramesh Kumar

    2014-09-01

    Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.

  6. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  7. Finite element modeling of the vocal folds with deformable interface tracking

    Granados Corsellas, Alba; Brunskog, Jonas; Misztal, Marek Krzysztof

    2014-01-01

    Continuous and prolonged use of the sp eaking voice may lead to functional sp eech disorders that are not apparent for voice clinicians from high-sp eed imaging of the vo cal folds' vibration. However, it is hyp othesized that time dep endent tissue prop erties provide some insight into the injury...... pro cess. To infer material parameters via an inverse optimization problem from recorded deformation, a self sustained theoretical mo del of the vo cal folds is needed. With this purp ose, a transversely isotropic three-dimensional nite element mo del is prop osed and investigated. Sp ecial attention...

  8. Finite element modelling of moisture related and visco-elastic deformations in inhomogeneous timber beams

    Ormarsson, Sigurdur; Dahlblom, Ola

    2013-01-01

    Wood is a hygro-mechanical, non-isotropic and inhomogeneous material concerning both modulus of elasticity (MOE) and shrinkage properties. In stress calculations associated with ordinary timber design, these matters are often not dealt with properly. The main reason for this is that stress...... and the longitudinal shrinkage coefficient vary considerably from pith to bark. The question is how much these variations affect the stress distribution in wooden structures exposed to variable moisture climate. The paper presents a finite element implementation of a beam element with the aim of studying how wooden...

  9. Residual Stress Analysis of Severe Plastic Deformed Materials using the Finite Element Method and the Neutron Diffraction Method

    Kang, Mi Hyun; Seong, Back Suck; Kim, Hyoung Seop

    2009-01-01

    Severe plastic deformation (SPD) is one of the most promising top-down techniques, moving towards industrialization to fabricate bulk ultrafine grain materials. The strain distribution and deformation behavior during the ECAP (equal channel angular pressing), influenced by tool angles, friction and material behavior, was studied through experimental and numerical analyses. The residual stress of work piece which was straight before ECAP produces many serious problems in the next processing e.g. input of the work piece for the next ECAP. The bent work piece needs additional straightening or surface polishing even if the amount of bending is small, and residual stress need to be released before service applications. Residual stress, particularly tensile residual stress can be a very important factor in affecting the reliability and integrity of working parts. The formation of tensile residual stress may result in initiation of fatigue cracks, stress corrosion cracking, or other types of fracture. Hence, residual stress and resulting bending need to be controlled during ECAP. Thus, in current study the bending behavior and the residual stress of the work piece in ECAP are analyzed through experimental and finite element analyses by considering the effects of material, geometric, and processing parameters individually. The stress states in the ECAP processed work piece were measured by the non-destructive way using neutron diffraction. Efforts were made to suggest the alternate routes to reduce the residual stress and bending of work piece in ECAP

  10. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  12. Finite element analysis of ground deformation due to dike intrusion with applications to Mt. Etna volcano

    G. La Rosa

    2004-06-01

    Full Text Available A 2D finite elements study was carried out to analyse the effects caused by dike intrusion inside a heterogeneous medium and with a realistic topography of Mt. Etna volcano. Firstly, the method (dimension domain, elements type was calibrated using plane strain models in elastic half-spaces; the results were compared with those obtained from analytical dislocation models. Then the effects caused both by the topographic variations and the presence of multi-layered medium on the surface, were studied. In particular, an application was then considered to Mt. Etna by taking into account the real topography and the stratification deduced from seismic tomography. In these conditions, the effects expected by the dike, employed to model the 2001 eruption under simple elastic half-space medium conditions, were computed, showing that topography is extremely important, at least in the near field.

  13. Analysis of Tire Tractive Performance on Deformable Terrain by Finite Element-Discrete Element Method

    Nakashima, Hiroshi; Takatsu, Yuzuru

    The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.

  14. An Analytical Finite-Strain Parameterization for Texture Evolution in Deformed Olivine Polycrystals

    Ribe, N. M.; Castelnau, O.

    2017-12-01

    Current methods for calculating the evolution of flow-induced seismic anisotropy in the upper mantle describe crystal preferred orientation (CPO) using ensembles of 103-104 individual grains, and are too computationally expensive to be used in three-dimensional time-dependent convection models. We propose a much faster method based on the hypothesis that CPO of olivine polycrystals is a unique function of the finite strain. Our goal is then to determine how the CPO depends on the ratios r12 and r23 of the axes of the finite strain ellipsoid and on the two independent ratios p12 and p23 of the strengths (critical resolved shear stresses) of the three independent slip systems of olivine. To do this, we introduce a new analytical representation of olivine CPO in terms of three `structured basis functions' (SBFs) Fs(g, r12, r23) (s = 1, 2, 3), where g is the set of three Eulerian angles that describe the orientation of a crystal lattice relative to an external reference frame. Each SBF represents the virtual CPO that would be produced by the action of only one of the slip systems of olivine, and can be determined analytically to within an unknown time-dependent amplitude. The amplitudes are then determined by fitting the SBFs to the predictions of the second-order self-consistent (SOSC) model of Ponte-Castaneda (2002). To implement the SBF representation, we express the orientation distribution function (ODF) f(g) of the polycrystal approximately as a linear superposition of SBFs with weighting coefficients Cs. Substituting the superposition into the general evolution equation for the ODF and minimizing the residual error, we find that the weighting coefficients Cs(t) satisfy coupled evolution equations of the form αisCs + βisCs + γs = 0 where the coefficients αis, βis and γs can be calculated in advance from the expressions for the SBFs. These equations are solved numerically for different values of p12 and p23, yielding numerical values of Cs(r12, r23, p12, p23

  15. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  16. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads

    A. E. Alshorbagy

    2013-01-01

    Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.

  17. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.

    2016-01-01

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step

  18. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  19. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  20. An investigation of deformation and fluid flow at subduction zones using newly developed instrumentation and finite element modeling

    Labonte, Alison Louise

    Detecting seafloor deformation events in the offshore convergent margin environment is of particular importance considering the significant seismic hazard at subduction zones. Efforts to gain insight into the earthquake cycle have been made at the Cascadia and Costa Rica subduction margins through recent expansions of onshore GPS and seismic networks. While these studies have given scientists the ability to quantify and locate slip events in the seismogenic zone, there is little technology available for adequately measuring offshore aseismic slip. This dissertation introduces an improved flow meter for detecting seismic and aseismic deformation in submarine environments. The value of such hydrologic measurements for quantifying the geodetics at offshore margins is verified through a finite element modeling (FEM) study in which the character of deformation in the shallow subduction zone is determined from previously recorded hydrologic events at the Costa Rica Pacific margin. Accurately sensing aseismic events is one key to determining the stress state in subduction zones as these slow-slip events act to load or unload the seismogenic zone during the interseismic period. One method for detecting seismic and aseismic strain events is to monitor the hydrogeologic response to strain events using fluid flow meters. Previous instrumentation, the Chemical Aqueous Transport (CAT) meter which measures flow rates through the sediment-water interface, can detect transient events at very low flowrates, down to 0.0001 m/yr. The CAT meter performs well in low flow rate environments and can capture gradual changes in flow rate, as might be expected during ultra slow slip events. However, it cannot accurately quantify high flow rates through fractures and conduits, nor does it have the temporal resolution and accuracy required for detecting transient flow events associated with rapid deformation. The Optical Tracer Injection System (OTIS) developed for this purpose is an

  1. A finite element study on the effects of toughness and permanent out-of-plane deformation on post-impact compressive strength

    Bull, Daniel; Spearing, Simon; Sinclair, Ian

    2015-01-01

    This study applies mechanisms observed from previous work (the undamaged cone, toughness and extent of permanent out-of-plane deformation) to parametrically study their effects on residual compression after impact (CAI) strength using finite element models. Based on previous experimental work, tougher material systems exhibited up to 30% greater CAI strength for a given damage area. Based on this, it is necessary to understand what other parameters, beyond damage area, contribute to a loss in...

  2. Finite Element Analysis of High Heat Load Deformation and Mechanical Bending Correction of a Beamline Mirror for the APS Upgrade

    Goldring, Nicholas

    The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second

  3. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  4. Computer Simulation and Experimental Study of Deformation in a Radial Tire under Different Static Loads Using Finite Element Method

    Mir Hamid Reza Ghoreishy

    2014-10-01

    Full Text Available This research work is devoted to the simulation of a steel-belted radial tire under different static loads. The nonlinear finite element calculations were performed using the MSC.MARC code, installed on a computer system equipped with a parallel processing technology. Hybrid elements in conjunction with two hyperelastic models, namely Marlow and Yeoh, and rebar layer implemented in surface elements were used for the modeling of rubbery and reinforcing parts, respectively. Linear elastic material models were also used for the modeling of the reinforcing elements including steel cord in belts, polyester cord in carcass and nylon cord in cap ply section. Two-dimensional axisymmetric elements were used for the modeling of rim-mounting and inflation and three-dimensional models were developed for the application of the radial, tangential, lateral and torsional loads. Different finite element models were developed, in which both linear and quadratic elements were used in conjunction with different mesh densities in order to find the optimum finite element model. Based on the results of the load deflection (displacement data, the tire stiffness under radial, tangential, lateral and torsional loads were calculated and compared with their corresponding experimentally measured values. The comparison was verified by the accuracy of the measured radial stiffness. However, due to the neglecting of the stiffness in shear and bending modes in cord-rubber composites, modeled with rebar layer methodology, the difference between computed values and real data are not small enough so that a more robust material models and element formulation are required to be developed.

  5. Fractional Order Element Based Impedance Matching

    Radwan, Ahmed Gomaa; Salama, Khaled N.; Shamim, Atif

    2014-01-01

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha

  6. Viscoplastic equations incorporated into a finite element model to predict deformation behavior of irradiated reduced activation ferritic/martensitic steel

    Wang, Yuanyuan, E-mail: 630wyy@163.com [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Zhang, Chi [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • The initial internal variable in the Anand model is modified by considering both temperature and irradiation dose. • The tensile stress-strain response is examined and analyzed under different temperatures and irradiation doses. • Yield strengths are predicted as functions of strain rate, temperature and irradiation dose. - Abstract: The viscoplastic equations with a modified initial internal variable are implemented into the finite element code to investigate stress-strain response and irradiation hardening of the materials under increased temperature and at different levels of irradiated dose. We applied this model to Mod 9Cr-1Mo steel. The predicted results are validated by the experimentally measured data. Furthermore, they show good agreement with the previous data from a constitutive crystal plasticity model in account of dislocation and interstitial loops. Three previous hardening models for predicting the yield strength of the material are discussed and compared with our simulation results.

  7. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Ghadyani, HR [SUNY Farmingdale State College, Farmingdale, NY (United States); Bastien, AD; Lutz, NN [Univeristy Massachusetts Lowell, Lowell, MA (United States); Hepel, JT [Rhode Island Hospital, Providence, RI (United States)

    2015-06-15

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  8. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    Rivard, MJ; Ghadyani, HR; Bastien, AD; Lutz, NN; Hepel, JT

    2015-01-01

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  9. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation

    Choi, E.; Tan, E.; Lavier, L. L.; Calo, Victor M.

    2013-01-01

    Many tectonic problems require to treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, two-dimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. An implementation of this methodology is released to the public with the publication of this paper and is named DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2). The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature. These results allow us to verify and validate our software framework and show its improved performance by an order of magnitude compared against an earlier implementation of the Fast Lagrangian Analysis of Continua algorithm.

  10. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation

    Choi, E.

    2013-05-01

    Many tectonic problems require to treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, two-dimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. An implementation of this methodology is released to the public with the publication of this paper and is named DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2). The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature. These results allow us to verify and validate our software framework and show its improved performance by an order of magnitude compared against an earlier implementation of the Fast Lagrangian Analysis of Continua algorithm.

  11. Evaluation of a pulsed phase-locked loop system for noninvasive tracking of bone deformation under loading with finite element and strain analysis

    Serra-Hsu, Frederick; Cheng, Jiqi; Qin, Yi-Xian; Lynch, Ted

    2011-01-01

    Ultrasound has been widely used to nondestructively evaluate various materials, including biological tissues. Quantitative ultrasound has been used to assess bone quality and fracture risk. A pulsed phase-locked loop (PPLL) method has been proven for very sensitive tracking of ultrasound time-of-flight (TOF) changes. The objective of this work was to determine if the PPLL TOF tracking is sensitive to bone deformation changes during loading. The ability to noninvasively detect bone deformations has many implications, including assessment of bone strength and more accurate osteoporosis diagnostics and fracture risk prediction using a measure of bone mechanical quality. Fresh sheep femur cortical bone shell samples were instrumented with three 3-element rosette strain gauges and then tested under mechanical compression with eight loading levels using an MTS machine. Samples were divided into two groups based on internal marrow cavity content: with original marrow, or replaced with water. During compressive loading ultrasound waves were measured through acoustic transmission across the mid-diaphysis of bone. Finite element analysis (FEA) was used to describe ultrasound propagation path length changes under loading based on µCT-determined bone geometry. The results indicated that PPLL output correlates well to measured axial strain, with R 2 values of 0.70 ± 0.27 and 0.62 ± 0.29 for the marrow and water groups, respectively. The PPLL output correlates better with the ultrasound path length changes extracted from FEA. For the two validated FEA tests, correlation was improved to R 2 = 0.993 and R 2 = 0.879 through cortical path, from 0.815 and 0.794 via marrow path, respectively. This study shows that PPLL readings are sensitive to displacement changes during external bone loading, which may have potential to noninvasively assess bone strain and tissue mechanical properties

  12. Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane

    Selby, John C.; Shannon, Mark A.

    2007-01-01

    Details are given for the design, calibration, and operation of an apparatus for measuring the finite load-deformation behavior of a sheet of living epithelial cells cultured on a mesoscopic freestanding elastomer membrane, 10 μm thick and 5 mm in diameter. Although similar in concept to bulge tests used to investigate the mechanical properties of micromachined thin films, cell-elastomer composite diaphragm inflation tests pose a unique set of experimental challenges. Composite diaphragm (CD) specimens are extremely compliant (E MIN =0 μl, V MAX ≤40 μl) while simultaneously recording the inflation pressure acting at the fixed boundary of the specimen, p(r=a). Using a carefully prescribed six-cycle inflation test protocol, the apparatus is shown to be capable of measuring the [V,p(r=a)] inflation response of a cell-elastomer CD with random uncertainties estimated at ±0.45 μl and ±2.5 Pa, respectively

  13. Three-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements, direct solvers and data space Gauss-Newton, parallelized on SMP computers

    Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.

    2014-12-01

    We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic

  14. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  15. Fluidic Elements based on Coanda Effect

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  16. Fractional Order Element Based Impedance Matching

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  17. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    Gorb, Yuliya; Walton, Jay R.

    2010-01-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging

  18. Quantitative research on microscopic deformation behavior of Ti-6Al-4V two-phase titanium alloy based on finite element method

    Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong

    2018-04-01

    The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.

  19. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  20. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  1. Finite element and finite difference methods in electromagnetic scattering

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  2. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  3. Finite element analysis of a finite-strain plasticity problem

    Crose, J.G.; Fong, H.H.

    1984-01-01

    A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)

  4. Non-linear elastic deformations

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  5. FEM-based evaluation of deformable image registration for radiation therapy

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  6. Application of finite element analysis in pre-operative planning for deformity correction of abnormal hip joints--a case series.

    Rhyu, K H; Kim, Y H; Park, W M; Kim, K; Cho, T-J; Choi, I H

    2011-09-01

    In experimental and clinical research, it is difficult to directly measure responses in the human body, such as contact pressure and stress in a joint, but finite element analysis (FEA) enables the examination of in vivo responses by contact analysis. Hence, FEA is useful for pre-operative planning prior to orthopaedic surgeries, in order to gain insight into which surgical options will result in the best outcome. The present study develops a numerical simulation technique based on FEA to predict the surgical outcomes of osteotomy methods for the treatment of slipped capital femoral epiphyses. The correlation of biomechanical parameters including contact pressure and stress, for moderate and severe cases, is investigated. For severe slips, a base-of-neck osteotomy is thought to be the most reliable and effective surgical treatment, while any osteotomy may produce dramatic improvement for moderate slips. This technology of pre-operative planning using FEA can provide information regarding biomechanical parameters that might facilitate the selection of optimal osteotomy methods and corresponding surgical options.

  7. Modeling and Finite Element Analysis for the Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Near β Titanium Alloy During Hot Deformation

    Lv, Ya-ping; Li, Shao-jun; Zhang, Xiao-yong; Li, Zhi-you; Zhou, Ke-chao

    2018-04-01

    Evolution for the dynamic recrystallization (DRX) volume fraction of Ti-5Al-5Mo-5V-3Cr-1Zr near β titanium alloy during hot deformation was characterized by using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. To determine the equation parameters, a series of thermal simulation experiments at the temperature of 1023-1098 K and strain rate of 0.001-1 s‒1 to the true strain of 0.7 were conducted to obtain the essential data about stress σ and strain ɛ. By further transforming the relationship of σ versus ɛ into the relationship of strain hardening rate dσ/dɛ versus σ, two characteristic strains at the beginning of DRX (critical strain ɛc) and at the peak stress (peak strain ɛp) were identified from the dσ/dɛ-σ curves. Sequentially, the parameters in the JMAK equation were determined from the linear fitting of the different relationships among critical strain ɛc, peak strain ɛp and deformation conditions (including temperature T, strain rate \\dot ɛ and strain ɛ). The as-obtained JMAK equation was expressed as XDRX=1-exp[-0.0053((ɛ-ɛc)/ɛc)2.1], where ɛc=0.6053ɛp and ɛp=0.0031 \\dot ɛ .0081exp(28,781/RT). Finally, the JMAK equation was implanted into finite element program to simulate the hot compression of thermal simulation experiments. The simulation predictions and experimental results about the DRX volume fraction distribution showed a good consistency.

  8. Finite element based stress analysis of BWR internals exposed to accident loads

    Altstadt, E; Weiss, F P; Werner, M; Willschuetz, H G

    1998-10-01

    During a hypothetical accident the reactor pressure vessel internals of boiling water reactors can be exposed to considerable loads resulting from temperature gradients and pressure waves. Three dimensional FE models were developed for the core shroud, the upper and the lower core supporting structure, the steam separator pipes and the feed water distributor. The models of core shroud, upper core structure and lower core structure were coupled by means of the substructure technique. All FE models can be used for thermal and for structural mechanical analyses. As an example the FE analysis for the case of a station black-out scenario (loss of power supply for the main circulating pumps) with subsequent emergency core cooling is demonstrated. The transient temperature distributions within the core shroud and within the steam dryer pipes as well were calculated based on the fluid temperatures and the heat transfer coefficients provided by thermo-hydraulic codes. At the maximum temperature gradients in the core shroud, the mechanical stress distribution was computed in a static analysis with the actual temperature field being the load. (orig.)

  9. New finite element-based modeling of reactor core support plate failure

    Pandazis, Peter; Lovasz, Liviusz [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Garching (Germany). Forschungszentrum; Babcsany, Boglarka [Budapest Univ. of Technology and Economics, Budapest (Hungary). Inst. of Nuclear Techniques; Hajas, Tamas

    2017-12-15

    ATHLET-CD is the severe accident module of the code system AC{sup 2} that is designed to simulate the core degradation phenomena including fission product release and transport in the reactor circuit, as well as the late phase processes in the lower plenum. In case of a severe accident degradation of the reactor core occurs, the fuel assemblies start to melt. The evolution of such processes is usually accompanied with the failure of the core support plate and relocation of the molten core to the lower plenum. Currently, the criterion for the failure of the support plate applied by ATHLET-CD is a user-defined signal which can be a specific time or process variable like mass, temperature, etc. A new method, based on FEM approach, was developed that could lead in the future to a more realistic criterion for the failure of the core support plate. This paper presents the basic idea and theory of this new method as well as preliminary verification calculations and an outlook on the planned future development.

  10. Finite Element Based Optimization of Material Parameters for Enhanced Ballistic Protection

    Ramezani, Arash; Huber, Daniel; Rothe, Hendrik

    2013-06-01

    The threat imposed by terrorist attacks is a major hazard for military installations, vehicles and other items. The large amounts of firearms and projectiles that are available, pose serious threats to military forces and even civilian facilities. An important task for international research and development is to avert danger to life and limb. This work will evaluate the effect of modern armor with numerical simulations. It will also provide a brief overview of ballistic tests in order to offer some basic knowledge of the subject, serving as a basis for the comparison of simulation results. The objective of this work is to develop and improve the modern armor used in the security sector. Numerical simulations should replace the expensive ballistic tests and find vulnerabilities of items and structures. By progressively changing the material parameters, the armor is to be optimized. Using a sensitivity analysis, information regarding decisive variables is yielded and vulnerabilities are easily found and eliminated afterwards. To facilitate the simulation, advanced numerical techniques have been employed in the analyses.

  11. Advanced Electronic Structure Calculations For Nanoelectronics Using Finite Element Bases and Effective Mass Theory.

    Gamble, John King [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baczewski, Andrew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moussa, Jonathan Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Xujiao [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinger, Andrew G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.

  12. Development of a finite element based thermal cracking performance prediction model.

    2009-09-15

    Low-temperature cracking of hot-mix asphalt (HMA) pavements continues to be a leading cause of : premature pavement deterioration in regions of cold climate and/or where significant thermal cycling : occurs. Recent advances in fracture testing and mo...

  13. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  14. A finite element based substructuring procedure for design analysis of large smart structural systems

    Ashwin, U; Raja, S; Dwarakanathan, D

    2009-01-01

    A substructuring based design analysis procedure is presented for large smart structural system using the Craig–Bampton method. The smart structural system is distinctively characterized as an active substructure, modelled as a design problem, and a passive substructure, idealized as an analysis problem. Furthermore, a novel thought has been applied by introducing the electro–elastic coupling into the reduction scheme to solve the global structural control problem in a local domain. As an illustration, a smart composite box beam with surface bonded actuators/sensors is considered, and results of the local to global control analysis are presented to show the potential use of the developed procedure. The present numerical scheme is useful for optimally designing the active substructures to study their locations, coupled structure–actuator interaction and provide a solution to the global design of large smart structural systems

  15. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  16. Unstructured grids and an element based conservative approach for a black-oil reservoir simulation

    Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail: andre@ifce.edu.br; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br

    2010-07-01

    Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)

  17. Development of a partitioned finite volume-finite element fluid-structure interaction scheme for strongly-coupled problems

    Suliman, Ridhwaan

    2012-07-01

    Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...

  18. A finite element thermohydrodynamic analyis of profile bore bearing

    Shah Nor bin Basri

    1994-01-01

    A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained

  19. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

    Beheshti, Alireza

    2018-03-01

    The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

  20. Nonlinear finite element modeling of corrugated board

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  1. A geometrically exact beam element based on the absolute nodal coordinate formulation

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  2. Plastic deformation

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  3. A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

    Litesh N. Sulbhewar

    Full Text Available Abstract The conventional Timoshenko piezoelectric beam finite elements based on First-order Shear Deformation Theory (FSDT do not maintain the accuracy and convergence consistently over the applicable range of material and geometric properties. In these elements, the inaccuracy arises due to the induced potential effects in the transverse direction and inefficiency arises due to the use of independently assumed linear polynomial interpolation of the field variables in the longitudinal direction. In this work, a novel FSDT-based piezoelectric beam finite element is proposed which is devoid of these deficiencies. A variational formulation with consistent through-thickness potential is developed. The governing equilibrium equations are used to derive the coupled field relations. These relations are used to develop a polynomial interpolation scheme which properly accommodates the bending-extension, bending-shear and induced potential couplings to produce accurate results in an efficient manner. It is noteworthy that this consistently accurate and efficient beam finite element uses the same nodal variables as of conventional FSDT formulations available in the literature. Comparison of numerical results proves the consistent accuracy and efficiency of the proposed formulation irrespective of geometric and material configurations, unlike the conventional formulations.

  4. Using Finite Element Method

    M.H.R. Ghoreishy

    2008-02-01

    Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.

  5. Deformation microstructures

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  6. Highly accurate symplectic element based on two variational principles

    Qing, Guanghui; Tian, Jia

    2018-02-01

    For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.

  7. Optical strain measurements and its finite element analysis of cold ...

    International Journal of Engineering, Science and Technology ... Online video images of square grid were recorded during the deformation ... Finite element software ANSYS has been applied for the analysis of the upset forming process.

  8. Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation

    Tao, Ran; Moussawi, Ali; Lubineau, Gilles; Pan, Bing

    2016-01-01

    Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains

  9. Differential Calculus on h-Deformed Spaces

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  10. Isogeometric finite element analysis of poroelasticity

    Irzal, F.; Remmers, J.J.C.; Verhoosel, C.V.; Borst, de R.

    2013-01-01

    We present an alternative numerical approach for predicting the behaviour of a deformable fluid-saturated porous medium. The conventional finite element technology is replaced by isogeometric analysis that uses non-uniform rational B-splines. The ability of these functions to provide higher-order

  11. Fast finite elements for surgery simulation

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...

  12. Tacón de torque. Análisis tensional y deformacional utilizando el Método de Elementos Finitos. // Torque heel: Tensional and deformational analysis using the Finite Elements Method.

    R. A. González Carbonell

    2007-05-01

    Full Text Available En este trabajo se aborda la problemática del tratamiento en menores que presentan torsión tibial y la necesidad de undispositivo ortopédico para su corrección. En particular, se presentan los elementos necesarios para el diseño de un tacón detorque. Se estudiaron los fenómenos no lineales presentes en el diseño mecánico de piezas que no cumplen con la ley deHooke, específicamente para materiales hiperelásticos. El modelo de las cargas que actúan sobre el tacón de torque fuedefinido teniendo en cuenta la acción dinámica de las cargas producto de la marcha. Para realizar los cálculos de tensionesy visualizar las deformaciones durante su funcionamiento se utilizó el Método de los Elementos Finitos. Finalmente con losresultados obtenidos fue propuesto un diseño del tacón de torque.Palabras claves: Torsión tibial, dispositivo ortopédico, elastómeros, elementos finitos, tensión, diseñomecánico, análisis no lineal.______________________________________________________________________________Abstract:In this work a problem of treatment of the internal tibial torsion and the necessity of an orthopedic device werestudied. The needed knowledge for design the torque heel was mentioned. The study of non lineal phenomena inmechanical design of elastomers was carried out. The load model of the torque heels was defined taken into accountthe action of dynamic loads. The Stress and Strain of the torque heel were obtained using the Finite Elements Method.Finally, the results were analyzed and the definitive design of the torque heel was obtained.Key words: Tibial torsion, orthopedic device, elastomers, finite elements, stress, mechanic design, nonlinear analysis.

  13. Bunionette deformity.

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  14. Adaptive Method Using Controlled Grid Deformation

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  15. Remeshing in analysis of large plastic deformations

    Pedersen, Thomas Ø

    1998-01-01

    Very distorted elements in a finite element computation will affect the results in a negative way. In applications where large plastic deformations are present, the mesh often deteriorates so badly, that remeshing is the only option to avoid a breakdown in the numerical computations. In the present...

  16. Twist operators in N=4 beta-deformed theory

    de Leeuw, M.; Łukowski, T.

    2010-01-01

    In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as

  17. Groebner Finite Path Algebras

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  18. Locally Finite Root Supersystems

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  19. The Integration of Geotechnologies in the Evaluation of a Wine Cellar Structure through the Finite Element Method

    Alberto Villarino

    2014-11-01

    Full Text Available This paper presents a multidisciplinary methodology to evaluate an underground wine cellar structure using non-invasive techniques. In particular, a historical subterranean wine cellar that presents a complex structure and whose physical properties are unknown is recorded and analyzed using geomatics and geophysics synergies. To this end, an approach that integrates terrestrial laser scanning and ground penetrating radar is used to properly define a finite element-based structural model, which is then used as a decision tool to plan architectural restoration actions. The combination of both techniques implies the registration of external and internal information that eases the construction of structural models. Structural simulation for both stresses and deformations through FEM allowed identifying critical structural elements under great stress or excessive deformations. In this investigation, the ultimate limit state of cracking was considered to determine allowable loads due to the brittle nature of the material. This allowed us to set limit values of loading on the cellar structure in order to minimize possible damage.

  20. Deformation analysis of rotary combustion engine housings

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  1. Deformation retracts of Stein spaces

    Hamm, H.; Mihalache, N.

    1995-01-01

    If X is an n-dimensional Stein space, it was proved that X has the homotopy type of a CW-complex of dimension≤n and in the algebraic case this was proved with the additional conclusion that the CW-complex is finite. In this paper the authors give an answer to the question if there exists a subset Q of X with the same topological properties as X, for instance Q is a strong deformation retract of X, and Q is a CW-complex of dimension≤n. 15 refs

  2. A novel deformation mechanism for superplastic deformation

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  3. On fracture in finite strain gradient plasticity

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  4. On quantum deformation of the Schwarzschild solution

    Kazakov, D.I.; Solodukhin, S.N.

    1993-01-01

    We consider the deformation of the Schwarzschild solution in general relativity due to spherically symmetric quantum fluctuations of the metric and the matter fields. In this case, the 4 D theory of gravity with Einstein action reduces to the effective two-dimensional dilaton gravity. We have found that the Schwarzschild singularity at r=0 is shifted to the finite radius r min ∼ r PL , where the scalar curvature is finite, so that the space-time looks regular and consists of two asymptotically flat sheets glued at the hypersurface of constant radius. (author). 17 refs.; 4 figs

  5. A four-element based transposon system for allele specific tagging ...

    The four-element based construct would include both Ds and dSpm along with relevant marker genes and .... subsequent generations after transposition has taken place so as to ..... Cardon G H, Frey M, Seadler H and Gierl A 1993 Definition.

  6. A finite landscape?

    Acharya, B.S.; Douglas, M.R.

    2006-06-01

    We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)

  7. Nilpotent -local finite groups

    Cantarero, José; Scherer, Jérôme; Viruel, Antonio

    2014-10-01

    We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

  8. Basic Finite Element Method

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  9. Composite Finite Sums

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  10. Composite Finite Sums

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  11. Deformation of two-phase aggregates using standard numerical methods

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  12. Finite element analysis of inelastic structural behavior

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1977-01-01

    The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model

  13. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  14. Finite strain analyses of deformations in polymer specimens

    Tvergaard, Viggo

    2016-01-01

    Analyses of the stress and strain state in test specimens or structural components made of polymer are discussed. This includes the Izod impact test, based on full 3D transient analyses. Also a long thin polymer tube under internal pressure has been studied, where instabilities develop, such as b...

  15. Fundamental issues in finite element analyses of localization of deformation

    Borst, de R.; Sluys, L.J.; Mühlhaus, H.-B.; Pamin, J.

    1993-01-01

    Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain-softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi-brittle failure. In this contribution

  16. Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects

    2010-02-08

    fTÞ þ 1 6 EEab 6C abvde/ 0 E E vdE E e/ð1 fTÞ b ab 0 E E abðh h0Þð1 fTÞ þ Xw j¼1 1 2 EEab 4C abvd j E E vd þ 1 6 EEab 6C abvde/ j E E vdE E e/ b...E vd þ 1 2 6C abvde/ 0 E E vdE E e/ b ab 0 ðh h0Þ ð1 fTÞ þ Xw j¼1 4C abvd j E E vd þ 1 2 6C abvde/ j E E vdE E e/ b ab j ðh h0Þ f j

  17. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)]: 1. Typical representations at generic q

    Nguyen Anh Ky.

    1993-05-01

    In the present paper we construct all typical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] at generic deformation parameter q. As in the non-deformed case the finite-dimensional U q [gl(2/2)]-module W q obtained is irreducible and can be decomposed into finite-dimensional irreducible U q [l(2)+gl(2)]submodules V i q . (authohor). 32 refs

  18. Predicting Hot Deformation of AA5182 Sheet

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  19. Seismic anisotropy in deforming salt bodies

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  20. Characterization of residual stresses generated during inhomogeneous plastic deformation

    Lorentzen, T.; Faurholdt, T.; Clausen, B.

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...

  1. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model

    Marx, Vera M.; Toth, Florian; Wiesinger, Andreas; Berger, Julia; Kirchlechner, Christoph; Cordill, Megan J.; Fischer, Franz D.; Rammerstorfer, Franz G.; Dehm, Gerhard

    2015-01-01

    Thin metal films deposited on polymer substrates are used in flexible electronic devices such as flexible displays or printed memories. They are often fabricated as complicated multilayer structures. Understanding the mechanical behavior of the interface between the metal film and the substrate as well as the process of crack formation under global tension is important for producing reliable devices. In the present work, the deformation behavior of copper films (50–200 nm thick), bonded to polyimide directly or via a 10 nm chromium interlayer, is investigated by experimental analysis and computational simulations. The influence of the various copper film thicknesses and the usage of a brittle interlayer on the crack density as well as on the stress magnitude in the copper after saturation of the cracking process are studied with in situ tensile tests in a synchrotron and under an atomic force microscope. From the computational point of view, the evolution of the crack pattern is modeled as a stochastic process via finite element based cohesive zone simulations. Both, experiments and simulations show that the chromium interlayer dominates the deformation behavior. The interlayer forms cracks that induce a stress concentration in the overlying copper film. This behavior is more pronounced in the 50 nm than in the 200 nm copper films

  2. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    Wheeler, Mary; Xue, Guangri; Yotov, Ivan

    2013-01-01

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method

  3. A finite element method for netting application to fish cages and fishing gear

    Priour, Daniel

    2014-01-01

    This book describes a finite element method for netting that describes the relation between forces and deformation of the netting and takes into account forces due to the twine elasticity, the hydrodynamic forces, the catch effect, the mesh opening stiffness.

  4. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  5. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  6. Stability analysis and finite element simulations of superplastic forming in the presence of hydrostatic pressure

    Nazzal, M. A.

    2018-04-01

    It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.

  7. Corneal biomechanical properties from air-puff corneal deformation imaging

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  8. Fully coupled heat conduction and deformation analyses of nonlinear viscoelastic composites

    Khan, Kamran; Muliana, Anastasia Hanifah

    2012-01-01

    This study presents an integrated micromechanical model-finite element framework for analyzing coupled heat conduction and deformations of particle-reinforced composite structures. A simplified micromechanical model consisting of four sub-cells, i

  9. Fractional finite Fourier transform.

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  10. Finite quantum field theories

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  11. Deformation Characteristics of Composite Structures

    Theddeus T. AKANO

    2016-08-01

    Full Text Available The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoing the arbitrarily large displacements and rotations, but small strains, is a common problem in the application of these engineering composite systems. This paper presents a nonlinear finite element model which is able to estimate the deformations of the fibre-reinforced epoxy composite beams. The governing equations are based on the Euler-Bernoulli beam theory (EBBT with a von Kármán type of kinematic nonlinearity. The anisotropic elasticity is employed for the material model of the composite material. Moreover, the characterization of the mechanical properties of the composite material is achieved through a tensile test, while a simple laboratory experiment is used to validate the model. The results reveal that the composite fibre orientation, the type of applied load and boundary condition, affect the deformation characteristics of the composite structures. The nonlinearity is an important factor that should be taken into consideration in the analysis of the fibre-reinforced epoxy composites.

  12. An efficient finite element solution for gear dynamics

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  13. Deformations of superconformal theories

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  14. Possibilities of Particle Finite Element Methods in Industrial Forming Processes

    Oliver, J.; Cante, J. C.; Weyler, R.; Hernandez, J.

    2007-04-01

    The work investigates the possibilities offered by the particle finite element method (PFEM) in the simulation of forming problems involving large deformations, multiple contacts, and new boundaries generation. The description of the most distinguishing aspects of the PFEM, and its application to simulation of representative forming processes, illustrate the proposed methodology.

  15. The future of the finite element method in geotechnics

    Brinkgreve, R.B.J.

    2012-01-01

    In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been

  16. Quantum deformed magnon kinematics

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  17. Mechanics of deformable bodies

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  18. Linear deformations of discrete groups and constructions of multivalued groups

    Yagodovskii, Petr V

    2000-01-01

    We construct deformations of discrete multivalued groups described as special deformations of their group algebras in the class of finite-dimensional associative algebras. We show that the deformations of ordinary groups producing multivalued groups are defined by cocycles with coefficients in the group algebra of the original group and obtain classification theorems on these deformations. We indicate a connection between the linear deformations of discrete groups introduced in this paper and the well-known constructions of multivalued groups. We describe the manifold of three-dimensional associative commutative algebras with identity element, fixed basis, and a constant number of values. The group algebras of n-valued groups of order three (three-dimensional n-group algebras) form a discrete set in this manifold

  19. Finite Boltzmann schemes

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  20. Designs and finite geometries

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  1. Supersymmetric theories and finiteness

    Helayel-Neto, J.A.

    1989-01-01

    We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)

  2. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  3. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel

  4. Simple Finite Sums

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  5. Simple Finite Sums

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  6. Finite fields and applications

    Mullen, Gary L

    2007-01-01

    This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...

  7. Projectile deformation effects in the breakup of 37Mg

    Shubhchintak

    2016-01-01

    Full Text Available We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  8. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  9. Large Deformation Dynamic Bending of Composite Beams

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  10. Thermomechanical characterization of a membrane deformable mirror

    Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

    2008-01-01

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C

  11. Actuators of 3-element unimorph deformable mirror

    Fu, Tianyang; Ning, Yu; Du, Shaojun

    2016-10-01

    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  12. Bridging effective stress and soil water retention equations in deforming unsaturated porous media : A Thermodynamic Approach

    Huyghe, J. M.; Nikooee, E.; Hassanizadeh, S. M.

    The finite deformation of an unsaturated porous medium is analysed from first principles of mixture theory. An expression for Bishop’s effective stress is derived from (1) the deformation-dependent Brooks and Corey’s water retention curve and (2) the restrictions on the constitutive relationships of

  13. Modeling and simulation of the deformation process of PTFE flexiblestamps for nanoimprint lithography on curved surfaces

    Sonne, Mads Rostgaard; Smistrup, K.; Hannibal, Morten

    2015-01-01

    -viscoplastic. This behavior was described in a temperature dependent constitutive model consisting of a Zenerbody for the viscoelastic deformation and the Johnson-Cook model for the description of the viscoplastic deformation. The constitutive model was implemented in the general purpose finite element software ABAQUS...

  14. Intracrystalline deformation of calcite

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  15. The Spherical Deformation Model

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  16. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements

    Duddu, Ravindra

    2011-10-05

    We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.

  17. Hybrid finite difference/finite element immersed boundary method.

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  18. Finite elements and approximation

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  19. The physics of large deformation of crystalline solids

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  20. Complex finite element sensitivity method for creep analysis

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  1. An analysis of heat field of metal sheet during elastic-plastic deformation

    Li, S.X.; Huang, Y.; Shih, C.H.

    1985-08-01

    This paper describes the application of the finite element analysis to calculate the temperature distribution generated during the process of elastic-plastic deformation. A better agreement is found between the results of heat field computed by use of the finite element analysis and that measured by use of an infrared camera. The results indicate that the method of finite element analysis used for heat field evaluation is reliable. (author)

  2. Finite Amplitude Ocean Waves

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  3. Finite Discrete Gabor Analysis

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  4. Finite size scaling theory

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  5. Supersymmetry at finite temperature

    Clark, T.E.; Love, S.T.

    1983-01-01

    Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

  6. Is nucleon deformed?

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  7. Pressure sensing element based on the BN-graphene-BN heterostructure

    Li, Mengwei; Wu, Chenggen; Zhao, Shiliang; Deng, Tao; Wang, Junqiang; Liu, Zewen; Wang, Li; Wang, Gao

    2018-04-01

    In this letter, we report a pressure sensing element based on the graphene-boron nitride (BN) heterostructure. The heterostructure consists of monolayer graphene sandwiched between two layers of vertically stacked dielectric BN nanofilms. The BN layers were used to protect the graphene layer from oxidation and pollution. Pressure tests were performed to investigate the characteristics of the BN-graphene-BN pressure sensing element. A sensitivity of 24.85 μV/V/mmHg is achieved in the pressure range of 130-180 kPa. After exposing the BN-graphene-BN pressure sensing element to the ambient environment for 7 days, the relative resistance change in the pressure sensing element is only 3.1%, while that of the reference open-faced graphene device without the BN protection layers is 15.7%. Thus, this strategy is promising for fabricating practical graphene pressure sensors with improved performance and stability.

  8. Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes

    Meunier, Vincent; Kalinin, Sergei V.; Sumpter, Bobby G.

    2007-02-01

    We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a local gating effect of the molecule on the electronic properties of the nanotube host, is studied using density functional theory. The mechanisms of reversible reading and writing of information are illustrated with a F4TCNQ molecule encapsulated inside a metallic carbon nanotube. Our results suggest that this new type of nonvolatile memory element is robust, fatigue-free, and can operate at room temperature.

  9. Pneumatic tyres interacting with deformable terrains

    Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.

    2016-09-01

    In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.

  10. Integral finite element analysis of turntable bearing with flexible rings

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  11. Extremely deformable structures

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  12. Diffeomorphic Statistical Deformation Models

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  13. The Spherical Deformation Model

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  14. 6. International FIG-symposium on deformation measurements. Proceedings

    Pelzer, H; Heer, R [eds.

    1997-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  15. 6. International FIG-symposium on deformation measurements. Proceedings

    Pelzer, H.; Heer, R. [eds.

    1996-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  16. Creep deformations of shells of revolution under asymmetrical loading

    Takezono, S.

    1975-01-01

    The numerical analysis of creep deformations of shells of revolution under unsymmetrical loads is described with application to a cylindrical shell. The analytical formulation of the creep of axisymmetric undergoing unsymmetrical deformations is developed for two hardening laws: the time hardening law and the strain hardening law. The method is based on the creep power law, and on the assumption of plane stress condition and the Euler-Bernoulli hypothesis used in the ordinary thin shell theory. The basic differential equations derived for incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by integration of the incremental values. In conclusion the computer programs are developed which can be used to predict the creep deformations of arbitrary axisymmetrical shells. As a numerical example the creep deformation of cylindrical shell of importance in practical use is treated, and the variations of displacements and internal forces with the lapse of time are discussed

  17. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  18. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  19. Finite element design procedure for correcting the coining die profiles

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  20. Finite-dimensional calculus

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  1. Finite temperature field theory

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  2. Generalized finite elements

    Wachspress, E.

    2009-01-01

    Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)

  3. Coulomb breakup of 31Ne using finite range DWBA

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  4. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  5. Finite element formulation for dynamics of planar flexible multi-beam system

    Liu Zhuyong; Hong Jiazhen; Liu Jinyang

    2009-01-01

    In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation

  6. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  7. Detecting Different Road Infrastructural Elements Based on the Stochastic Characterization of Speed Patterns

    Mario Muñoz-Organero

    2017-01-01

    Full Text Available The automatic detection of road related information using data from sensors while driving has many potential applications such as traffic congestion detection or automatic routable map generation. This paper focuses on the automatic detection of road elements based on GPS data from on-vehicle systems. A new algorithm is developed that uses the total variation distance instead of the statistical moments to improve the classification accuracy. The algorithm is validated for detecting traffic lights, roundabouts, and street-crossings in a real scenario and the obtained accuracy (0.75 improves the best results using previous approaches based on statistical moments based features (0.71. Each road element to be detected is characterized as a vector of speeds measured when a driver goes through it. We first eliminate the speed samples in congested traffic conditions which are not comparable with clear traffic conditions and would contaminate the dataset. Then, we calculate the probability mass function for the speed (in 1 m/s intervals at each point. The total variation distance is then used to find the similarity among different points of interest (which can contain a similar road element or a different one. Finally, a k-NN approach is used for assigning a class to each unlabelled element.

  8. Structure and magnetism in novel group IV element-based magnetic materials

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  9. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  10. Near BPS Wilson loop in β-deformed theories

    Chu, C-S; Giataganas, Dimitrios

    2007-01-01

    We propose a definition of the Wilson loop operator in the N = 1 β-deformed supersymmetric Yang-Mills theory. Although the operator is not BPS, it has a finite expectation value at least up to order (g 2 N) 2 . This does not happen generally for a generic non-BPS Wilson loop whose expectation value is UV divergent. For this reason we call this a near-BPS Wilson loop. We derive the general form of the boundary condition satisfied by the dual string worldsheet and find that it is deformed. Finiteness of the expectation value of the Wilson loop fixes the boundary condition to be one which is characterized by the vielbein of the deformed supergravity metric. The Wilson loop operators provide natural candidates as dual descriptions to some of the existing D-brane configurations in the Lunin-Maldacena background. We also construct the string dual configuration for a near-1/4 BPS circular Wilson loop operator. The string lies on a deformed three-sphere instead of a two-sphere as in the undeformed case. The expectation value of the Wilson loop operator is computed using the AdS/CFT correspondence and is found to be independent of the deformation. We conjecture that the exact expectation value of the Wilson loop is given by the same matrix model as in the undeformed case

  11. A finite quantum gravity

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  12. Finite lattice extrapolation algorithms

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  13. Finite unified models

    Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)

    1993-09-01

    We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)

  14. Finite unified models

    Kapetanakis, D.; Mondragon, M.; Zoupanos, G.

    1993-01-01

    We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)

  15. Finiteness and GUTs

    Kapetanakis, D.; Mondragon, M.

    1993-01-01

    It is shown how to obtain phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. A very interesting feature of the models with three families is that they predict the top quark mass to be around 178 GeV. 16 refs

  16. Robust RBF Finite Automata

    Šorel, Michal; Šíma, Jiří

    2004-01-01

    Roč. 62, - (2004), s. 93-110 ISSN 0925-2312 R&D Projects: GA AV ČR IAB2030007; GA MŠk LN00A056 Keywords : radial basis function * neural network * finite automaton * Boolean circuit * computational power Subject RIV: BA - General Mathematics Impact factor: 0.641, year: 2004

  17. Inside finite elements

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  18. Autogenous Deformation of Concrete

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  19. Interfacial Bubble Deformations

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  20. Efficient Variational Approaches for Deformable Registration of Images

    Mehmet Ali Akinlar

    2012-01-01

    Full Text Available Dirichlet, anisotropic, and Huber regularization terms are presented for efficient registration of deformable images. Image registration, an ill-posed optimization problem, is solved using a gradient-descent-based method and some fundamental theorems in calculus of variations. Euler-Lagrange equations with homogeneous Neumann boundary conditions are obtained. These equations are discretized by multigrid and finite difference numerical techniques. The method is applied to the registration of brain MR images of size 65×65. Computational results indicate that the presented method is quite fast and efficient in the registration of deformable medical images.

  1. Nuclear deformation in the configuration-interaction shell model

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  2. Deforestation of Peano continua and minimal deformation retracts☆

    Conner, G.; Meilstrup, M.

    2012-01-01

    Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120

  3. Co2 injection into oil reservoir associated with structural deformation

    El-Amin, Mohamed

    2012-01-01

    In this work, the problem of structural deformation with two-phase flow of carbon sequestration is presented. A model to simulate miscible CO2 injection with structural deformation in the aqueous phase is established. In the first part of this paper, we developed analytical solution for the problem under consideration with certain types of boundary conditions, namely, Dirichlet and Neumann boundary conditions. The second part concerns to numerical simulation using IMPDES scheme. A simulator based on cell-centered finite difference method is used to solve this equations system. Distributions of CO2 saturation, and horizontal and vertical displacements have been introduced.

  4. Joining by plastic deformation

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  5. Fluid-Structure Interaction Analysis of Parachute Finite Mass Inflation

    Xinglong Gao

    2016-01-01

    Full Text Available Parachute inflation is coupled with sophisticated fluid-structure interaction (FSI and flight mechanic behaviors in a finite mass situation. During opening, the canopy often experiences the largest deformation and loading. To predict the opening phase of a parachute, a computational FSI model for the inflation of a parachute, with slots on its canopy fabric, is developed using the arbitrary Lagrangian-Euler coupling penalty method. In a finite mass situation, the fluid around the parachute typically has an unsteady flow; therefore, a more complex opening phase and FSI dynamics of a parachute are investigated. Navier-Stokes (N-S equations for uncompressible flow are solved using an explicit central difference method. The three-dimensional visualization of canopy deformation as well as the evolution of dropping velocity and overload is obtained and compared with the experimental results. This technique could be further applied in the airdrop test of a parachute for true prediction of the inflation characteristics.

  6. Development library of finite elements for computer-aided design system of reed sensors

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  7. Comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates

    Reddy, J N; Chao, W C [Virginia Polytechnic Inst. and State Univ., Blacksburg (USA). Dept. of Engineering Science and Mechanics

    1981-04-01

    In this study the effects of reduced integration, mesh size, and element type (i.e. linear or quadratic) on the accuracy of a penalty-finite element based on the theory governing thick, laminated, anisotropic composite plates are investigated. In order to assess the accuracy of the present finite element, exact closed-form solutions are developed for cross-ply and antisymmetric angle-ply rectangular plates simply supported and subjected to sinusoidally distributed mechanical and/or thermal loadings, and free vibration.

  8. A General Finite Element Scheme for Limit State Analysis and Optimization

    Damkilde, Lars

    1999-01-01

    Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...

  9. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  10. A comparison of 100 human genes using an alu element-based instability model.

    George W Cook

    Full Text Available The human retrotransposon with the highest copy number is the Alu element. The human genome contains over one million Alu elements that collectively account for over ten percent of our DNA. Full-length Alu elements are randomly distributed throughout the genome in both forward and reverse orientations. However, full-length widely spaced Alu pairs having two Alus in the same (direct orientation are statistically more prevalent than Alu pairs having two Alus in the opposite (inverted orientation. The cause of this phenomenon is unknown. It has been hypothesized that this imbalance is the consequence of anomalous inverted Alu pair interactions. One proposed mechanism suggests that inverted Alu pairs can ectopically interact, exposing both ends of each Alu element making up the pair to a potential double-strand break, or "hit". This hypothesized "two-hit" (two double-strand breaks potential per Alu element was used to develop a model for comparing the relative instabilities of human genes. The model incorporates both 1 the two-hit double-strand break potential of Alu elements and 2 the probability of exon-damaging deletions extending from these double-strand breaks. This model was used to compare the relative instabilities of 50 deletion-prone cancer genes and 50 randomly selected genes from the human genome. The output of the Alu element-based genomic instability model developed here is shown to coincide with the observed instability of deletion-prone cancer genes. The 50 cancer genes are collectively estimated to be 58% more unstable than the randomly chosen genes using this model. Seven of the deletion-prone cancer genes, ATM, BRCA1, FANCA, FANCD2, MSH2, NCOR1 and PBRM1, were among the most unstable 10% of the 100 genes analyzed. This algorithm may lay the foundation for comparing genetic risks posed by structural variations that are unique to specific individuals, families and people groups.

  11. A comparison of 100 human genes using an alu element-based instability model.

    Cook, George W; Konkel, Miriam K; Walker, Jerilyn A; Bourgeois, Matthew G; Fullerton, Mitchell L; Fussell, John T; Herbold, Heath D; Batzer, Mark A

    2013-01-01

    The human retrotransposon with the highest copy number is the Alu element. The human genome contains over one million Alu elements that collectively account for over ten percent of our DNA. Full-length Alu elements are randomly distributed throughout the genome in both forward and reverse orientations. However, full-length widely spaced Alu pairs having two Alus in the same (direct) orientation are statistically more prevalent than Alu pairs having two Alus in the opposite (inverted) orientation. The cause of this phenomenon is unknown. It has been hypothesized that this imbalance is the consequence of anomalous inverted Alu pair interactions. One proposed mechanism suggests that inverted Alu pairs can ectopically interact, exposing both ends of each Alu element making up the pair to a potential double-strand break, or "hit". This hypothesized "two-hit" (two double-strand breaks) potential per Alu element was used to develop a model for comparing the relative instabilities of human genes. The model incorporates both 1) the two-hit double-strand break potential of Alu elements and 2) the probability of exon-damaging deletions extending from these double-strand breaks. This model was used to compare the relative instabilities of 50 deletion-prone cancer genes and 50 randomly selected genes from the human genome. The output of the Alu element-based genomic instability model developed here is shown to coincide with the observed instability of deletion-prone cancer genes. The 50 cancer genes are collectively estimated to be 58% more unstable than the randomly chosen genes using this model. Seven of the deletion-prone cancer genes, ATM, BRCA1, FANCA, FANCD2, MSH2, NCOR1 and PBRM1, were among the most unstable 10% of the 100 genes analyzed. This algorithm may lay the foundation for comparing genetic risks posed by structural variations that are unique to specific individuals, families and people groups.

  12. Finite elements for the thermomechanical calculation of massive structures

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1978-01-01

    The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de

  13. Numerical modeling of the Indo-Australian intraplate deformation

    Brandon, Vincent; Royer, Jean-Yves

    2014-05-01

    The Indo-Australian plate is perhaps the best example of wide intraplate deformation within an oceanic plate. The deformation is expressed by an unusual level of intraplate seismicity, including magnitude Mw > 8 events, large-scale folding and deep faulting of the oceanic lithosphere and reactivation of extinct fracture zones. The deformation pattern and kinematic data inversions suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries undergoing either extensional or compressional deformation. We tested this model using the SHELLS numerical code (Kong & Bird, 1995). The Indo-Australian plate is modeled by a mesh of 5281 spherical triangular finite elements. Mesh edges parallel the major extinct fracture zones so that they can be reactivated by reducing their friction rates. Strength of the plate is defined by the age of the lithosphere and seafloor topography. Model boundary conditions are only defined by the plate velocities predicted by the rotation vectors between rigid components of the Indo-Australian plate and their neighboring plates. Since the mesh limits all belong to rigid plates with fully defined Euler vectors, no conditions are imposed on the location, extent and limits of the diffuse and deforming zones. Using MORVEL plate velocities (DeMets et al., 2010), predicted deformation patterns are very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses most of the extensional deformation between the Indian and Capricorn plates. Agreement between models and observation improves by weakening fossil fracture zones relative to the surrounding crust; however only limited sections of FZ's accommodate deformation. The reactivation of the Eocene FZ's in the Central Indian Basin (CIB) and Wharton Basin (WB) explains the

  14. Marginally Deformed Starobinsky Gravity

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  15. Transfer involving deformed nuclei

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  16. Advanced Curvature Deformable Mirrors

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  17. Application of a diffractive element-based sensor for detection of latent fingerprints from a curved smooth surface

    Kuivalainen, Kalle; Peiponen, Kai-Erik; Myller, Kari

    2009-01-01

    An optical measurement device, which is a diffractive element-based sensor, is presented for the detection of latent fingerprints on curved objects such as a ballpoint pen. The device provides image and gloss information on the ridges of a fingerprint. The device is expected to have applications in forensic studies. (technical design note)

  18. Strong interaction at finite temperature

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  19. Finite element analysis of the cyclic indentation of bilayer enamel

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  20. Finite element analysis of the cyclic indentation of bilayer enamel

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  1. Supersymmetry at finite temperature

    Oliveira, M.W. de.

    1986-01-01

    The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt

  2. Probabilistic finite elements

    Belytschko, Ted; Wing, Kam Liu

    1987-01-01

    In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.

  3. Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws

    Chen, Gui-Qiang; Torres, Monica

    2005-02-01

    Divergence-measure fields in L∞ over sets of finite perimeter are analyzed. A notion of normal traces over boundaries of sets of finite perimeter is introduced, and the Gauss-Green formula over sets of finite perimeter is established for divergence-measure fields in L∞. The normal trace introduced here over a class of surfaces of finite perimeter is shown to be the weak-star limit of the normal traces introduced in Chen & Frid [6] over the Lipschitz deformation surfaces, which implies their consistency. As a corollary, an extension theorem of divergence-measure fields in L∞ over sets of finite perimeter is also established. Then we apply the theory to the initial-boundary value problem of nonlinear hyperbolic conservation laws over sets of finite perimeter.

  4. Large deformation frictional contact analysis with immersed boundary method

    Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José

    2018-01-01

    This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.

  5. Simulation of quasistatic deformations using discrete rod models

    Linn, J.; Stephan, T.

    2008-01-01

    Recently we developed a discrete model of elastic rods with symmetric cross section suitable for a fast simulation of quasistatic deformations [33]. The model is based on Kirchhoff’s geometrically exact theory of rods. Unlike simple models of “mass & spring” type typically used in VR applications, our model provides a proper coupling of bending and torsion. The computational approach comprises a variational formulation combined with a finite difference discretization of the continuum model. A...

  6. q-Deformed nonlinear maps

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  7. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  8. Exponentiation and deformations of Lie-admissible algebras

    Myung, H.C.

    1982-01-01

    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  9. Fast free-form deformable registration via calculus of variations

    Lu Weiguo; Chen Mingli; Olivera, Gustavo H; Ruchala, Kenneth J; Mackie, Thomas R

    2004-01-01

    In this paper, we present a fully automatic, fast and accurate deformable registration technique. This technique deals with free-form deformation. It minimizes an energy functional that combines both similarity and smoothness measures. By using calculus of variations, the minimization problem was represented as a set of nonlinear elliptic partial differential equations (PDEs). A Gauss-Seidel finite difference scheme is used to iteratively solve the PDE. The registration is refined by a multi-resolution approach. The whole process is fully automatic. It takes less than 3 min to register two three-dimensional (3D) image sets of size 256 x 256 x 61 using a single 933 MHz personal computer. Extensive experiments are presented. These experiments include simulations, phantom studies and clinical image studies. Experimental results show that our model and algorithm are suited for registration of temporal images of a deformable body. The registration of inspiration and expiration phases of the lung images shows that the method is able to deal with large deformations. When applied to the daily CT images of a prostate patient, the results show that registration based on iterative refinement of displacement field is appropriate to describe the local deformations in the prostate and the rectum. Similarity measures improved significantly after the registration. The target application of this paper is for radiotherapy treatment planning and evaluation that incorporates internal organ deformation throughout the course of radiation therapy. The registration method could also be equally applied in diagnostic radiology

  10. Multiscale Finite Element Methods for Flows on Rough Surfaces

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  11. Superalgebras, their quantum deformations and the induced representation method

    Nguyen Anh Ky.

    1996-08-01

    In this paper some introductory concepts and basic definitions of the Lie superalgebras and their quantum deformations are exposed. Especially the induced representation methods in both cases are described. Up to now, based on the Kac representation theory we have succeeded in constructing representations of several higher rank superalgebras. When representations of quantum superalgebras are concerned, we develop a method which can be applied not only to the one-parametric quantum deformations but also to the multi-parametric ones. Here, being illustrations of the above-mentioned methods, the superalgebra gl(2/1) and its (one-parametric) quantum deformation U q [gl(2/1)] are considered as their finite-dimensional representations are investigated in detail and constructed explicitly. Also, it is shown that the finite-dimensional representations obtained constitute classes of all irreducible (typical and non-typical) finite-dimensional representations of gl(2/1) and U q [gl(2/1)]. Some of the detailed results may be simple but they are given for the first time. (author). 64 refs

  12. Modeling of 3D Aluminum Polycrystals during Large Deformations

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  13. A comparison study on the performance of lower order solid finite element for elastic analysis of plate and shell structures

    Lee, Young Jung; Lee, Sang Jin; Choun, Young Sun; Seo, Jeong Moon

    2003-05-01

    The objective of this research is to assess the performance of lower order solid finite elements which will be ultimately applied into the safety analysis of nuclear containment building. For the safety analysis of large structures such as nuclear containment building, efficient lower order finite element is necessarily required to calculate the structural response of containment building with low computational cost. In this study, the state of the art formulations of lower order solid finite element are throughly reviewed and the best possible solid finite element is adopted into the development of nuclear containment analysis system. Three 8-node solid finite elements based on standard strain-displacement relationship, B-bar method and EAS method are implemented as computer modules and completely tested with various plate and shell structures. The present results can be directly applied into the analysis code development for general reinforced concrete structures

  14. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    Soba, Alejandro; Denis, Alicia C.

    1999-01-01

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  15. q-Deformed Kink solutions

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  16. Cosmetic and Functional Nasal Deformities

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  17. [Babies with cranial deformity].

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  18. Deformed supersymmetric mechanics

    Ivanov, E.; Sidorov, S.

    2013-01-01

    Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry

  19. Real analytic solutions for marginal deformations in open superstring field theory

    Okawa, Yuji

    2007-01-01

    We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction

  20. Real analytic solutions for marginal deformations in open superstring field theory

    Okawa, Y.

    2007-04-01

    We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction. (orig.)

  1. Ground deformation at collapse calderas: influence of host rock lithology and reservoir multiplicity

    Geyer, A; Gottsmann, J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen' s Road, BS8 1RJ, Bristol (United Kingdom)], E-mail: A.GeverTraver@bristol.ac.uk

    2008-10-01

    A variety of source mechanisms have been proposed to account for observed caldera deformation. Here we present a systematic set of new results from numerical forward modelling using a Finite Element Method. which provides a link between measured ground deformation and the inaccessible deformation source. We simulate surface displacements due to pressure changes in a shallow oblate reservoir overlain by host rock with variable mechanical properties. We find that the amplitude and wavelength of resultant ground deformation is dependent on the distribution of mechanically stiff and soft lithologies and their relative distribution above a reservoir. In addition, we note an influence of layering on the critical ratio of horizontal over vertical displacements, a criterion employed to discriminate between different finite source geometries.

  2. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  3. Finite element modeling of nanotube structures linear and non-linear models

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  4. Mass deformations of 5d SCFTs via holography

    Gutperle, Michael; Kaidi, Justin; Raj, Himanshu

    2018-02-01

    Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.

  5. CUDA accelerated simulation of needle insertions in deformable tissue

    Patriciu, Alexandru

    2012-01-01

    This paper presents a stiff needle-deformable tissue interaction model. The model uses a mesh-less discretization of continuum; avoiding thus the expensive remeshing required by the finite element models. The proposed model can accommodate both linear and nonlinear material characteristics. The needle-deformable tissue interaction is modeled through fundamental boundaries. The forces applied by the needle on the tissue are divided in tangent forces and constraint forces. The constraint forces are adaptively computed such that the material is properly constrained by the needle. The implementation is accelerated using NVidia CUDA. We present detailed analysis of the execution timing in both serial and parallel case. The proposed needle insertion model was integrated in a custom software that loads DICOM images, generate the deformable model, and can simulate different insertion strategies.

  6. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  7. Deformation Theory ( Lecture Notes )

    Doubek, M.; Markl, Martin; Zima, P.

    2007-01-01

    Roč. 43, č. 5 (2007), s. 333-371 ISSN 0044-8753. [Winter School Geometry and Physics/27./. Srní, 13.01.2007-20.01.2007] R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : deformation * Mauerer-Cartan equation * strongly homotopy Lie algebra Subject RIV: BA - General Mathematics

  8. Deformations of fractured rock

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  9. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    Zhang, Wei [University of Tennessee (UT); Gao, Yanfei [ORNL; Nieh, T. G. [University of Tennessee, Knoxville (UTK)

    2018-01-01

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

  10. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  11. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-01-01

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  12. Increasing the efficiency of designing hemming processes by using an element-based metamodel approach

    Kaiser, C.; Roll, K.; Volk, W.

    2017-09-01

    In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.

  13. Optical Finite Element Processor

    Casasent, David; Taylor, Bradley K.

    1986-01-01

    A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.

  14. Combinatorics of finite sets

    Anderson, Ian

    2011-01-01

    Coherent treatment provides comprehensive view of basic methods and results of the combinatorial study of finite set systems. The Clements-Lindstrom extension of the Kruskal-Katona theorem to multisets is explored, as is the Greene-Kleitman result concerning k-saturated chain partitions of general partially ordered sets. Connections with Dilworth's theorem, the marriage problem, and probability are also discussed. Each chapter ends with a helpful series of exercises and outline solutions appear at the end. ""An excellent text for a topics course in discrete mathematics."" - Bulletin of the Ame

  15. A finite element perturbation method for computing fluid-induced forces on a certrifugal impeller rotating and whirling in a volute casing

    Jonker, Jan B.; van Essen, T.G.; van Essen, T.G.

    1997-01-01

    A finite element based method has been developed for computing time-averaged fluid-induced radial excitation forces and rotor dynamic forces on a two-dimensional centrifugal impeller rotating and whirling in a volute casing. In this method potential flow theory is used, which implies the assumption

  16. Finiteness of corner vortices

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  17. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    Angela Mihai, L.; Goriely, Alain

    2013-01-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects

  18. A case study in finite groups

    Bauer, M.; Itzykson, C.

    1990-01-01

    Recent investigations on the classification of rational conformal theories have suggested relations with finite groups. It is not known at present if this is more than a happy coincidence in simple cases or possibly some more profound link exploiting the analogy between fusion rules and decompositions of tensor products of group representations or even in a more abstract context q-deformations of Lie algebras for roots of unity. Although finite group theory is a very elaborate subject the authors review on a slightly non-trivial example some of its numerous aspects, in particular those related to rings of invariants. The hope was to grasp, if possible, some properties which stand a chance of being related to conformal theories. Subgroups of SU(2) were found to be related to the A-D-E classification of Wess-Zumino-Witten models based on the corresponding affine Lie algebra. Extending the investigations to SU(3) the authors have picked one of its classical subgroups as a candidate of interest

  19. Three dimensional mathematical model of tooth for finite element analysis

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  20. Recent progress in modelling 3D lithospheric deformation

    Kaus, B. J. P.; Popov, A.; May, D. A.

    2012-04-01

    Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of

  1. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  2. Study beryllium microplastic deformation

    Papirov, I.I.; Ivantsov, V.I.; Nikolaenko, A.A.; Shokurov, V.S.; Tuzov, Yu.V.

    2015-01-01

    Microplastic flow characteristics systematically studied for different varieties beryllium. In isostatically pressed beryllium it decreased with increasing particle size of the powder, increasing temperature and increasing the pressing metal purity. High initial values of the limit microelasticity and microflow in some cases are due a high level of internal stresses of thermal origin and over time it can relax slowly. During long-term storage of beryllium materials with high initial resistance values microplastic deformation microflow limit and microflow stress markedly reduced, due mainly to the relaxation of thermal microstrain

  3. Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods

    Nikoleta Mikušová

    2017-12-01

    Full Text Available The finite element methods are used in many disciplines by the development of products, typically in mechanical engineering (for example in automotive industry, biomechanics, etc.. Some modern programs of the finite element's methods have specific tools (electromagnetic, fluid and structural simulations. The finite elements methods allow detailed presentation of structures by bending or torsion, complete design, testing and optimization before the prototype production. The aims of this paper were to the model of conveyor belt passage by driving drum. The model was created by the program Abaqus CAE. The created model presented data about forces, pressures, and deformation of the belt conveyor.

  4. Inelastic analysis of finite length and depth cracked tubes

    Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.

    1977-01-01

    Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdown. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behaviour and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional as well as three-dimensional finite element analyses, were performed. The analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions. (Auth.)

  5. On Using Particle Finite Element for Hydrodynamics Problems Solving

    E. V. Davidova

    2015-01-01

    Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \

  6. The Determining Finite Automata Process

    M. S. Vinogradova

    2017-01-01

    Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.

  7. Finite energy electroweak dyon

    Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)

    2015-02-01

    The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)

  8. Probabilistic fracture finite elements

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  9. Finite element modelling

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  10. Deformation behavior of large, high-pressure vessel flanges

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  11. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  12. Moisture movement in nonisothermal deformable media

    Edgar, T.V.

    1983-01-01

    Many inactive uranium mill tailings impoundments currently exist in the United States. One facet of the Department of Energy's reclamation plan for these sites is to enclose the impoundments with a cover. Placement of any cover material could cause the water content of the tailings to change due to changes in the evaporation and infiltration rates. This report investigates the effects of changing mechanical and fluid stresses on deformable media. A set of one dimensional equilibrium and balance equations for both two and three phase soils are developed based on a coordinate system which is defined by the soil solids. A finite difference model was developed to solve the three coupled nonlinear partial differential equations which permits the study of the effects of liquid, gas and heat flows on the deformation of the soil. A series of example problems were selected to analyze the effects of varying the soil and environmental parameters. Four significant cases were: (1) Drainage of an originally saturated soil, (2) Consolidation of a partially saturated soil due to placement of a cover, (3) the effect of a low permeability layer on drainage, and (4) the effects of soil drying and crusting on evaporation

  13. Inelastic analysis of finite length and depth cracked tubes

    Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.

    1977-01-01

    Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behavior and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional, as well as three-dimensional finite element analyses, were performed. The two-dimensional element and its formulations are similar to those of NONSAP. The three-dimensional isoparametric element with elastic-plastic material characteristics together with the large deformation formulations used in NFAP are described in the Report BNL-20684. The numerical accuracy of the program was investigated and checked with known solutions of benchmark problems. In addition to the three-dimensional element which was specifically inserted into NFAP for this problem, other features such as direct pressure inputs for isoparametric elements, automatic load increment adjustments for convergent non-linear solutions, and automatic bandwidth reduction schemes are incorporated into the program thus allowing for a more economical evaluation of three-dimensional inelastic analysis. In summary the analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions

  14. Exponentially-convergent Monte Carlo via finite-element trial spaces

    Morel, Jim E.; Tooley, Jared P.; Blamer, Brandon J.

    2011-01-01

    Exponentially-Convergent Monte Carlo (ECMC) methods, also known as adaptive Monte Carlo and residual Monte Carlo methods, were the subject of intense research over a decade ago, but they never became practical for solving the realistic problems. We believe that the failure of previous efforts may be related to the choice of trial spaces that were global and thus highly oscillatory. As an alternative, we consider finite-element trial spaces, which have the ability to treat fully realistic problems. As a first step towards more general methods, we apply piecewise-linear trial spaces to the spatially-continuous two-stream transport equation. Using this approach, we achieve exponential convergence and computationally demonstrate several fundamental properties of finite-element based ECMC methods. Finally, our results indicate that the finite-element approach clearly deserves further investigation. (author)

  15. Nuclear fuel deformation phenomena

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  16. Axial anomaly at finite temperature and finite density

    Qian Zhixin; Su Rukeng; Yu, P.K.N.

    1994-01-01

    The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)

  17. Deformation mechanism of the Cryostat in the CADS Injector II

    Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan

    2018-01-01

    Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.

  18. Neutron halo in deformed nuclei

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  19. Rotary deformity in degenerative spondylolisthesis

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  20. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.

  1. q-deformed Brownian motion

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  2. Holographic interferometric and correlation-based laser speckle metrology for 3D deformations in dentistry

    Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter

    2017-03-01

    The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.

  3. MESOSCALE SIMULATIONS OF MICROSTRUCTURE AND TEXTURE EVOLUTION DURING DEFORMATION OF COLUMNAR GRAINS

    Sarma, G.

    2001-01-01

    In recent years, microstructure evolution in metals during deformation processing has been modeled at the mesoscale by combining the finite element method to discretize the individual grains with crystal plasticity to provide the constitutive relations. This approach allows the simulations to capture the heterogeneous nature of grain deformations due to interactions with neighboring grains. The application of this approach to study the deformations of columnar grains present in solidification microstructures is described. The microstructures are deformed in simple compression, assuming the easy growth direction of the columnar grains to be parallel to the compression axis in one case, and perpendicular in the other. These deformations are similar to those experienced by the columnar zones of a large cast billet when processed by upsetting and drawing, respectively. The simulations show that there is a significant influence of the initial microstructure orientation relative to the loading axis on the resulting changes in grain shape and orientation

  4. On the validation of the particle finite element method (PFEM) for complex engineering fluid flow problems

    Larese De Tetto, Antonia; Rossi, Riccardo; Idelsohn Barg, Sergio Rodolfo; Oñate Ibáñez de Navarra, Eugenio

    2006-01-01

    Several comparisons between experiments and computational models are presented in the following pages. The objective is to verify the ability of Particle Finite Elements Methods (PFEM) [1] [2] to reproduce hydraulic phenomena involving large deformation of the fluid domain [4]. Peer Reviewed

  5. Proof of ultraviolet finiteness for a planar non-supersymmetric Yang-Mills theory

    Ananth, Sudarshan; Kovacs, Stefano; Shimada, Hidehiko

    2007-01-01

    This paper focuses on a three-parameter deformation of N=4 Yang-Mills that breaks all the supersymmetry in the theory. We show that the resulting non-supersymmetric gauge theory is scale invariant, in the planar approximation, by proving that its Green functions are ultraviolet finite to all orders in light-cone perturbation theory

  6. Rigid body displacement fields of an in-plane-deformable curved beam based on conventional strain definition

    Moon, Won Joo; Min, Oak Key; Kim, Yong Woo

    1998-01-01

    To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory

  7. q-deformed Minkowski space

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  8. Deformable paper origami optoelectronic devices

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  9. Deformation behaviour of turbine foundations

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  10. Mechanics of deformations in terms of scalar variables

    Ryabov, Valeriy A.

    2017-05-01

    Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.

  11. Axial anomaly at finite temperature

    Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.

    1985-01-01

    The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)

  12. Large inelastic deformation analysis of steel pressure vessels at high temperature

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  13. Finite flavour groups of fermions

    Grimus, Walter; Ludl, Patrick Otto

    2012-01-01

    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)

  14. On finite quantum field theories

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  15. Massively Parallel Finite Element Programming

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  16. Massively Parallel Finite Element Programming

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  17. Modelling bucket excavation by finite element

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  18. Deformed chiral nucleons

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  19. Deformations of surface singularities

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  20. IBA in deformed nuclei

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  1. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...

  2. Finite discrete field theory

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  3. Mimetic finite difference method

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  4. CANDU fuel bundle deformation modelling with COMSOL multiphysics

    Bell, J.S.; Lewis, B.J.

    2012-01-01

    Highlights: ► The deformation behaviour of a CANDU fuel bundle was modelled. ► The model has been developed on a commercial finite-element platform. ► Pellet/sheath interaction and end-plate restraint effects were considered. ► The model was benchmarked against the BOW code and a variable-load experiment. - Abstract: A model to describe deformation behaviour of a CANDU 37-element bundle has been developed under the COMSOL Multiphysics finite-element platform. Beam elements were applied to the fuel elements (composed of fuel sheaths and pellets) and endplates in order to calculate the bowing behaviour of the fuel elements. This model is important to help assess bundle-deformation phenomena, which may lead to more restrictive coolant flow through the sub-channels of the horizontally oriented bundle. The bundle model was compared to the BOW code for the occurrence of a dry-out patch, and benchmarked against an out-reactor experiment with a variable load on an outer fuel element.

  5. A new (in)finite-dimensional algebra for quantum integrable models

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  6. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  7. Fraktalnist deformational relief polycrystalline aluminum

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  8. Deformation of Man Made Objects

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  9. Deformable Registration for Longitudinal Breast MRI Screening.

    Mehrabian, Hatef; Richmond, Lara; Lu, Yingli; Martel, Anne L

    2018-04-13

    MRI screening of high-risk patients for breast cancer provides very high sensitivity, but with a high recall rate and negative biopsies. Comparing the current exam to prior exams reduces the number of follow-up procedures requested by radiologists. Such comparison, however, can be challenging due to the highly deformable nature of breast tissues. Automated co-registration of multiple scans has the potential to aid diagnosis by providing 3D images for side-by-side comparison and also for use in CAD systems. Although many deformable registration techniques exist, they generally have a large number of parameters that need to be optimized and validated for each new application. Here, we propose a framework for such optimization and also identify the optimal input parameter set for registration of 3D T 1 -weighted MRI of breast using Elastix, a widely used and freely available registration tool. A numerical simulation study was first conducted to model the breast tissue and its deformation through finite element (FE) modeling. This model generated the ground truth for evaluating the registration accuracy by providing the deformation of each voxel in the breast volume. An exhaustive search was performed over various values of 7 registration parameters (4050 different combinations of parameters were assessed) and the optimum parameter set was determined. This study showed that there was a large variation in the registration accuracy of different parameter sets ranging from 0.29 mm to 2.50 mm in median registration error and 3.71 mm to 8.90 mm in 95 percentile of the registration error. Mean registration errors of 0.32 mm, 0.29 mm, and 0.30 mm and 95 percentile errors of 3.71 mm, 5.02 mm, and 4.70 mm were obtained by the three best parameter sets. The optimal parameter set was applied to consecutive breast MRI scans of 13 patients. A radiologist identified 113 landmark pairs (~ 11 per patient) which were used to assess registration accuracy. The results demonstrated that

  10. Deformed special relativity as an effective flat limit of quantum gravity

    Girelli, Florian; Livine, Etera R.; Oriti, Daniele

    2005-01-01

    We argue that a (slightly) curved space-time probed with a finite resolution, equivalently a finite minimal length, is effectively described by a flat non-commutative space-time. More precisely, a small cosmological constant (so a constant curvature) leads the κ-deformed Poincare flat space-time of deformed special relativity (DSR) theories. This point of view eventually helps understanding some puzzling features of DSR. It also explains how DSR can be considered as an effective flat (low energy) limit of a (true) quantum gravity theory. This point of view leads us to consider a possible generalization of DSR to arbitrary curvature in momentum space and to speculate about a possible formulation of an effective quantum gravity model in these terms. It also leads us to suggest a doubly deformed special relativity framework for describing particle kinematics in an effective low energy description of quantum gravity

  11. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  12. Finite spatial volume approach to finite temperature field theory

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  13. Automatic Construction of Finite Algebras

    张健

    1995-01-01

    This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

  14. Photon propagators at finite temperature

    Yee, J.H.

    1982-07-01

    We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)

  15. Sound radiation from finite surfaces

    Brunskog, Jonas

    2013-01-01

    A method to account for the effect of finite size in acoustic power radiation problem of planar surfaces using spatial windowing is developed. Cremer and Heckl presents a very useful formula for the power radiating from a structure using the spatially Fourier transformed velocity, which combined...... with spatially windowing of a plane waves can be used to take into account the finite size. In the present paper, this is developed by means of a radiation impedance for finite surfaces, that is used instead of the radiation impedance for infinite surfaces. In this way, the spatial windowing is included...

  16. Observations on finite quantum mechanics

    Balian, R.; Itzykson, C.

    1986-01-01

    We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr

  17. Assessment of Slope Stability and Interference of Structures Considering Seismity in Complex Engineering-Geological Conditions Using the Method of Finite Elements

    Menabdishvili, Papuna; Eremadze, Nelly

    2008-01-01

    There is elaborated the calculation model of slope deformation mode stability and the methodic of calculation considering the interference of structures to be built on it using the method of finite elements. There is examined the task of slope stability using the soil physically nonlinear finite element considering the seismicity 8. The deformation mode and field of coefficients of stability are obtained and slope supposed sliding curve is determined. The elaborated calculation methodic allows to determine the slope deformation mode, stability and select the optimum version of structure foundation at any slant and composition of slope layers

  18. TAURUS, Post-processor of 3-D Finite Elements Plots

    Brown, B.E.; Hallquist, J.O.; Kennedy, T.

    2002-01-01

    Description of program or function: TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (NESC 9725), DYNA3D (NESC 9909), TACO3D (NESC 9838), TOPAZ3D (NESC9599) and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing

  19. Finite element simulation of the T-shaped ECAP processing of round samples

    Shaban Ghazani, Mehdi; Fardi-Ilkhchy, Ali; Binesh, Behzad

    2018-05-01

    Grain refinement is the only mechanism that increases the yield strength and toughness of the materials simultaneously. Severe plastic deformation is one of the promising methods to refine the microstructure of materials. Among different severe plastic deformation processes, the T-shaped equal channel angular pressing (T-ECAP) is a relatively new technique. In the present study, finite element analysis was conducted to evaluate the deformation behavior of metals during T-ECAP process. The study was focused mainly on flow characteristics, plastic strain distribution and its homogeneity, damage development, and pressing force which are among the most important factors governing the sound and successful processing of nanostructured materials by severe plastic deformation techniques. The results showed that plastic strain is localized in the bottom side of sample and uniform deformation cannot be possible using T-ECAP processing. Friction coefficient between sample and die channel wall has a little effect on strain distributions in mirror plane and transverse plane of deformed sample. Also, damage analysis showed that superficial cracks may be initiated from bottom side of sample and their propagation will be limited due to the compressive state of stress. It was demonstrated that the V shaped deformation zone are existed in T-ECAP process and the pressing load needed for execution of deformation process is increased with friction.

  20. Multiphase poroelastic finite element models for soft tissue structures

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  1. A particle finite element method for machining simulations

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  2. Finite element simulations of two rock mechanics tests

    Dahlke, H.J.; Lott, S.A.

    1986-04-01

    Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature

  3. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  4. Finite difference computation of Casimir forces

    Pinto, Fabrizio

    2016-01-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  5. On infinitesimal conformai deformations of surfaces

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  6. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  7. Deformation localization at the tips of shear fractures: An analytical approach

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  8. Perceptual transparency from image deformation.

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  9. Quantifying the Erlenmeyer flask deformity

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  10. Finite element computational fluid mechanics

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  11. The state of deformation in earthlike self-gravitating objects

    Müller, Wolfgang H

    2016-01-01

    This book presents an in-depth continuum mechanics analysis of the deformation due to self-gravitation in terrestrial objects, such as the inner planets, rocky moons and asteroids. Following a brief history of the problem, modern continuum mechanics tools are presented in order to derive the underlying field equations, both for solid and fluid material models. Various numerical solution techniques are discussed, such as Runge-Kutta integration, series expansion, finite differences, and (adaptive) FE analysis. Analytical solutions for selected special cases, which are worked out in detail, are also included. All of these methods are then applied to the problem, quantitative results are compared, and the pros and cons of the analytical solutions and of all the numerical methods are discussed. The book culminates in a multi-layer model for planet Earth according to the PREM Model (Preliminary Earth Model) and in a viscoelastic analysis of the deformation problem, all from the viewpoint of rational continuum theo...

  12. Modeling the behaviour of shape memory materials under large deformations

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  13. Integrated analysis of rock mass deformation within shaft protective pillar

    Ewa Warchala

    2016-01-01

    Full Text Available The paper presents an analysis of the rock mass deformation resulting from mining in the vicinity of the shaft protection pillar. A methodology of deformation prediction is based on a deterministic method using Finite Element Method (FEM. The FEM solution is based on the knowledge of the geomechanical properties of the various geological formations, tectonic faults, types of mining systems, and the complexity of the behaviour of the rock mass. The analysis gave the stress and displacement fields in the rock mass. Results of the analysis will allow for design of an optimal mining system. The analysis is illustrated by an example of the shaft R-VIII Rudna Mine KGHM Polish Copper SA.

  14. On the deformation twinning of Mg AZ31B

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    and grain volumes are used to construct various 3D microstructures and model them with a Crystal Plasticity Finite Element (CPFE) code. It is observed that the average grain-resolved stress did not always select the highest ranked Schmid factor twin variant. In fact, the contribution of lower ranked......Crystals with a hexagonal close-packed (HCP) structure are inherently anisotropic, and have a limited number of independent slip systems, which leads to strong deformation textures and reduced formability in polycrystalline products. Tension along the c-axis of the crystal ideally activates......-ray diffraction (3DXRD) was used to map the center-of-mass positions, volumes, orientations, elastic strains, and stress tensors of over 1400 grains in-situ up to a true strain of 1.4%. More than 700 tensile twins were observed to form in the mapped volume under deformation. The measured center-of-mass positions...

  15. Deformation twinning in a creep-deformed nanolaminate structure

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  16. Deformation twinning in a creep-deformed nanolaminate structure

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  17. Programming the finite element method

    Smith, I M; Margetts, L

    2013-01-01

    Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c

  18. Finite Size Scaling of Perceptron

    Korutcheva, Elka; Tonchev, N.

    2000-01-01

    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  19. Incompleteness in the finite domain

    Pudlák, Pavel

    2017-01-01

    Roč. 23, č. 4 (2017), s. 405-441 ISSN 1079-8986 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : finite domain Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016 https://www.cambridge.org/core/journals/bulletin-of-symbolic-logic/article/incompleteness-in-the-finite-domain/D239B1761A73DCA534A4805A76D81C76

  20. Symbolic computation with finite biquandles

    Creel, Conrad; Nelson, Sam

    2007-01-01

    A method of computing a basis for the second Yang-Baxter cohomology of a finite biquandle with coefficients in Q and Z_p from a matrix presentation of the finite biquandle is described. We also describe a method for computing the Yang-Baxter cocycle invariants of an oriented knot or link represented as a signed Gauss code. We provide a URL for our Maple implementations of these algorithms.

  1. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...

  2. Deforming tachyon kinks and tachyon potentials

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  3. Reducing uncertainties in volumetric image based deformable organ registration

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  4. Non-uniform plastic deformation of micron scale objects

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  5. Deformations of infrared-conformal theories in two dimensions

    Akerlund, Oscar

    2014-01-01

    We study two exactly solvable two-dimensional conformal models, the critical Ising model and the Sommerfield model, on the lattice. We show that finite-size effects are important and depend on the aspect ratio of the lattice. In particular, we demonstrate how to obtain the correct massless behavior from an infinite tower of finite-size-induced masses and show that it is necessary to first take the cylindrical geometry limit in order to get correct results. In the Sommerfield model we also introduce a mass deformation to measure the mass anomalous dimension, $\\gamma_m$. We find that the explicit scale breaking of the lattice setup induces corrections which must be taken into account in order to reproduce $\\gamma_m$ at the infrared fixed point. These results can be used to improve the methodology in the search for the conformal window in QCD-like theories with many flavors.

  6. Modeling and Simulation of Grasping of Deformable Objects

    Fugl, Andreas Rune

    Automated robot solutions have for decades been increasing productivity around the world. They are attractive for being fast, accurate and able to work in dangerous and repetitive environments. In traditional applications the grasped object is kinematically attached to the Tool Center Point....... The purpose of this thesis is to address the modeling and simulation of deformable objects, as applied to robotic grasping and manipulation. The main contributions of this work are: An evaluation of 3D linear elasticity used for robot grasping as implemented by a Finite Difference Method supporting regular...

  7. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets

    Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E.

    2014-11-01

    The current study has two objectives: to validate the ability of the Atena finite-element software to estimate the deformations of reinforced concrete (RC) elements strengthened with fiber-reinforced polymer (FRP) sheets and to assess the effect of FRP-to-concrete bond strength on the results of numerical simulation. It is shown that the bond strength has to be selected according to the overall stiffness of the composite element. The numerical results found are corroborated experimentally by tensile tests of RC elements strengthened with basalt FRP sheets.

  8. Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH)

    Bui, H. H.; Kodikara, J. A.; Pathegama, R.; Bouazza, A.; Haque, A.

    2015-01-01

    Numerical methods are extremely useful in gaining insights into the behaviour of reinforced soil retaining walls. However, traditional numerical approaches such as limit equilibrium or finite element methods are unable to simulate large deformation and post-failure behaviour of soils and retaining wall blocks in the reinforced soil retaining walls system. To overcome this limitation, a novel numerical approach is developed aiming to predict accurately the large deformation and post-failure be...

  9. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  10. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    Li Hu

    2017-10-01

    Full Text Available Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM. Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  11. M theory on deformed superspace

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  12. Nonlinear Deformable-body Dynamics

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  13. Deformable paper origami optoelectronic devices

    He, Jr-Hau; Lin, Chun-Ho

    2017-01-01

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a

  14. Capillary Deformations of Bendable Films

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-01-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical

  15. Anisotropic Ripple Deformation in Phosphorene.

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  16. Finite amplitude, horizontal motion of a load symmetrically supported between isotropic hyperelastic springs.

    Beatty, Millard F; Young, Todd R

    2012-03-01

    The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.

  17. Influence of specimen design on the deformation and failure of zircaloy cladding

    Bates, D.W.; Koss, D.A.; Motta, A.T.; Majumdar, S.

    2000-01-01

    Experimental as well as computational analyses have been used to examine the deformation and failure behavior of ring-stretch specimens of Zircaloy-4 cladding tubes. The results show that, at least for plastically anisotropic unirradiated cladding, specimens with a small gauge length l to width w ratio (l/w ∼ 1) exhibit pronounced non-uniform deformation along their length. As a result, specimen necking occurs upon yielding when the specimen is fully plastic. Finite element analysis indicates a minimum l/w of 4 before a significant fraction of the gauge length deforms homogeneously. A brief examination of the contrasting deformation and failure behavior between uniaxial and plane-strain ring tension tests further supports the use of the latter geometry for determining cladding failure ductility data that are relevant to certain reactivity-initiated accident conditions

  18. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  19. Infinitesimal deformations of Poisson bi-vectors using the Kontsevich graph calculus

    Buring, Ricardo; Kiselev, Arthemy V.; Rutten, Nina

    2018-02-01

    Let \\mathscr{P} be a Poisson structure on a finite-dimensional affine real manifold. Can \\mathscr{P} be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach - with respect to all affine Poisson manifolds - to finding a class of solutions to this deformation problem. For that reasoning, several types of graphs are needed. In this paper we outline the algorithms to generate those graphs. The graphs that encode deformations are classified by the number of internal vertices k; for k ≤ 4 we present all solutions of the deformation problem. For k ≥ 5, first reproducing the pentagon-wheel picture suggested at k = 6 by Kontsevich and Willwacher, we construct the heptagon-wheel cocycle that yields a new unique solution without 2-loops and tadpoles at k = 8.

  20. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  1. Influences of rolling method on deformation force in cold roll-beating forming process

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  2. Crystal-plastic deformation of zircon : effects on microstructures, textures, microchemistry and the retention of radiogenic isotopes

    Kovaleva, E.

    2015-01-01

    Dating of deep-crustal deformation events potentially can be achieved by using plastically-deformed accessory minerals found in high-temperature shear zones. Deformation microstructures, such as dislocations and low-angle boundaries, form due to plastic deformation in the crystal lattice and act as fluid migration pathways and trace element (e.g. Pb, Ti, U, Th, REE) diffusion pathways through so-called “pipe diffusion”. Deformation microstructures can alter the chemical and isotopic composition of certain grain parts and may lead to complete or partial isotopic resetting of certain geochronometers (e.g. U/Th/Pb, K/Ar, Rb/Sr) in the mineral domains. This work aims to better understand the processes of crystal-plastic deformation and associated trace element redistribution and the resetting of isotopic systems in zircon. This study finds that: a) there are three general finite deformation patterns in deformed zircons; b) suggests that it is possible to reconstruct the macroscopic kinematic framework of the shear zone based on the orientation of deformed zircon grains and the operating misorientation axes; c) and demonstrates the effect of deformation microstructures on trace elements and Pb isotopes in zircon. The final goal of this project is to develop a tool for isotopic dating of high-temperature deformation events in the deep crust. In addition to these results, zircon grains with planar deformation bands have been discovered in paleo-seismic zones; these deformation features have been described in detail and a possible mechanism of their origin and formation is suggested. The effect of planar deformation bands on trace element and isotopic behavior has also been investigated. (author) [de

  3. Finiteness of quantum field theories and supersymmetry

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  4. Generalization of mixed multiscale finite element methods with applications

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  5. Finite element and analytical models for twisted and coiled actuator

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  6. Nonlinear finite element analyses: advances and challenges in dental applications.

    Wakabayashi, N; Ona, M; Suzuki, T; Igarashi, Y

    2008-07-01

    To discuss the development and current status of application of nonlinear finite element method (FEM) in dentistry. The literature was searched for original research articles with keywords such as nonlinear, finite element analysis, and tooth/dental/implant. References were selected manually or searched from the PUBMED and MEDLINE databases through November 2007. The nonlinear problems analyzed in FEM studies were reviewed and categorized into: (A) nonlinear simulations of the periodontal ligament (PDL), (B) plastic and viscoelastic behaviors of dental materials, (C) contact phenomena in tooth-to-tooth contact, (D) contact phenomena within prosthodontic structures, and (E) interfacial mechanics between the tooth and the restoration. The FEM in dentistry recently focused on simulation of realistic intra-oral conditions such as the nonlinear stress-strain relationship in the periodontal tissues and the contact phenomena in teeth, which could hardly be solved by the linear static model. The definition of contact area critically affects the reliability of the contact analyses, especially for implant-abutment complexes. To predict the failure risk of a bonded tooth-restoration interface, it is essential to assess the normal and shear stresses relative to the interface. The inclusion of viscoelasticity and plastic deformation to the program to account for the time-dependent, thermal sensitive, and largely deformable nature of dental materials would enhance its application. Further improvement of the nonlinear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.

  7. Toward finite quantum field theories

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  8. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  9. Deformed configurations, band structures and spectroscopic ...

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  10. Interactive Character Deformation Using Simplified Elastic Models

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  11. Associative and Lie deformations of Poisson algebras

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  12. Selfconsistent calculations at finite temperatures

    Brack, M.; Quentin, P.

    1975-01-01

    Calculations have been done for the spherical nuclei 40 Ca, 208 Pb and the hypothetical superheavy nucleus with Z=114, A=298, as well as for the deformed nucleus 168 Yb. The temperature T was varied from zero up to 5 MeV. For T>3 MeV, some numerical problems arise in connection with the optimization of the basis when calculating deformed nuclei. However, at these high temperatures the occupation numbers in the continuum are sufficiently large so that the nucleus starts evaporating particles and no equilibrium state can be described. Results are obtained for excitation energies and entropies. (Auth.)

  13. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  14. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  15. Finite element analysis-based design of a fluid-flow control nano-valve

    Grujicic, M.; Cao, G.; Pandurangan, B.; Roy, W.N.

    2005-01-01

    A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction of such nano-devices and utilizes spatially varying nodal forces to represent electrostatic interactions between the charged groups of the functionalizing molecules. The procedure is next applied to the design of a fluid-flow control nano-valve. The results obtained suggest that the finite element-based procedure yields the results, which are very similar to their molecular modeling counterparts for small-size nano-valves, for which both types of analyses are feasible. The procedure is finally applied to optimize the design of a larger-size nano-valve, for which the molecular modeling approach is not practical

  16. Stability analysis of internally damped rotating composite shafts using a finite element formulation

    Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed

    2018-04-01

    This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.

  17. On characters of finite groups

    Broué, Michel

    2017-01-01

    This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).

  18. Finite and profinite quantum systems

    Vourdas, Apostolos

    2017-01-01

    This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...

  19. Preservation theorems on finite structures

    Hebert, M.

    1994-09-01

    This paper concerns classical Preservation results applied to finite structures. We consider binary relations for which a strong form of preservation theorem (called strong interpolation) exists in the usual case. This includes most classical cases: embeddings, extensions, homomorphisms into and onto, sandwiches, etc. We establish necessary and sufficient syntactic conditions for the preservation theorems for sentences and for theories to hold in the restricted context of finite structures. We deduce that for all relations above, the restricted theorem for theories hold provided the language is finite. For the sentences the restricted version fails in most cases; in fact the ''homomorphism into'' case seems to be the only possible one, but the efforts to show that have failed. We hope our results may help to solve this frustrating problem; in the meantime, they are used to put a lower bound on the level of complexity of potential counterexamples. (author). 8 refs

  20. Bilateral cleft lip nasal deformity

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  1. Deformation of second and third quantization

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  2. Large scale deformation of the oceanic lithosphere: insights from numerical modeling of the Indo-Australian intraplate deformation

    Royer, J.; Brandon, V.

    2011-12-01

    The large-scale deformation observed in the Indo-Australian plate seems to challenge tenets of plate tectonics: plate rigidity and narrow oceanic plate boundaries. Its distribution along with kinematic data inversions however suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries either extensional or compressional. We tested this model using the SHELLS numerical code (Kong & Bird, 1995) where the Indo-Australian plate was meshed into 5281 spherical triangular finite elements. Model boundary conditions are defined only by the plate velocities of the rigid parts of the Indo-Australian plate relative to their neighboring plates. Different plate velocity models were tested. From these boundary conditions, and taking into account the age of the lithosphere, seafloor topography, and assumptions on the rheology of the oceanic lithosphere, SHELLS predicts strain rates within the plate. We also tested the role of fossil fracture zones as potential lithospheric weaknesses. In a first step, we considered different component plate pairs (India/Capricorn, Capricorn/Australia, India/Australia). Since the limits of their respective diffuse boundary (i.e. the limits of the rigid component plates) are not known, we let the corresponding edge free. In a second step, we merged the previous meshes to consider the whole Indo-Australian plate. In this case, the velocities on the model boundaries are all fully defined and were set relative to the Capricorn plate. Our models predict deformation patterns very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses the extensional deformation between the Indian and Capricorn plates. Reactivation of fossil fracture zones may accommodate large part of the deformation both in extensional areas, off

  3. FINITE ELEMENT ANALYSIS OF STRUCTURES

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  4. Variational collocation on finite intervals

    Amore, Paolo; Cervantes, Mayra; Fernandez, Francisco M

    2007-01-01

    In this paper, we study a set of functions, defined on an interval of finite width, which are orthogonal and which reduce to the sinc functions when the appropriate limit is taken. We show that these functions can be used within a variational approach to obtain accurate results for a variety of problems. We have applied them to the interpolation of functions on finite domains and to the solution of the Schroedinger equation, and we have compared the performance of the present approach with others

  5. Finite elements of nonlinear continua

    Oden, John Tinsley

    1972-01-01

    Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s

  6. Finite connectivity attractor neural networks

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  7. Finite element analysis for prediction of the residual stresses induced by shot peening II

    Kim, Cheol; Seok, Chang Sung; Yang, Won Ho; Ryu, Myung Hai

    2002-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of metal parts and welded details subjected to fatigue loading, contact fatigue, stress corrosion and other damage mechanisms. The better performance of the peened parts is mainly due to the residual stresses resulting from the plastic deformation of the surface layers of the material caused by the impact of the shot. In this paper the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of finite element analysis

  8. Frost heave modelling of buried pipelines using non-linear Fourier finite elements

    Wan, R. G.; You, R.

    1998-01-01

    Numerical analysis of the response of a three-dimensional soil-pipeline system in a freezing environment using non-linear Fourier finite elements was described as an illustration of the effectiveness of this technique in analyzing plasticity problems. Plastic deformations occur when buried pipeline is under the action of non-uniform frost heave. The three-dimensional frost heave which develops over time including elastoplastic deformations of the soil and pipe are computed. The soil heave profile obtained in the numerical analysis was consistent with experimental findings for similar configurations. 8 refs., 8 figs

  9. Stochastic deformation of a thermodynamic symplectic structure

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  10. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    Wheeler, Mary

    2013-11-16

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.

  11. A sliding point contact model for the finite element structures code EURDYN

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  12. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  13. Volcanic deformation in the Andes

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  14. Plastic deformation of indium nanostructures

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  15. Static response of deformable microchannels

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  16. Dynamics and rheology of finitely extensible polymer coils: An overview

    Yao, Donggang

    2017-05-01

    One contemporary research issue in non-Newtonian fluid mechanics is to accurately and effectively model viscoelastic polymer flow of practical relevance. In the past several years, we have been working on the formulation of a finitely extensible coil model for polymer flow, particularly including these elements: (1) decoupled equations for kinematical and dynamical variables, (2) logarithmic relaxation at large deformation, (3) rotational retardation, (4) controllable straining, and (5) finite stretch. In this paper, we provide a constructive overview of this nonlinear coil formulation focusing on integration of these elements in a single, unified constitutive model with a minimal number of model parameters that are linked with corresponding physical processes. We also use this opportunity to share the rationale and thought process in the model development. In one particular implement of the general formulation, three parameters are used to tackle with the principal dynamics of a deforming polymer coil: one for finite stretch dictated by a ceiling stretch of the coil, the second one for rotational recovery/retardation, and the third one for adjusting stretch hardening of the rubbery coil. The new model, even in a single mode, is able to simultaneously predict practical material functions in simple shear and coaxial extension and to fit well to representative experimental data. Particularly in the steady-state (or quasi-steady state) flow case, a nearly closed-form stress to velocity gradient relationship can be derived with which shear thinning and elongational thickening can be simultaneously considered while computational advantages of a classical GNF model is retained. The model also fits reasonably well to representative experimental transient data for both shear and extension.

  17. Crustal deformation mechanism in southeastern Tibetan Plateau: Insights from numerical modeling

    Li, Y.; Liu, S.; Chen, L.

    2017-12-01

    The Indo-Asian collision developed the complicated crustal deformation around the southeastern Tibetan plateau. Numerous models have proposed to explain the crustal deformation, but the mechanism remains controversial, especially the increasing multi-geophysics data, which demonstrate the existence of lower velocity, lower resistivity and high conductivity, implying that lower crustal flow is responsible for the crustal deformation, arguing for the lower crust flow model. To address the relations between the crust flow and the surface deformation, we employ a three-dimensional viscoelastic finite model to investigate the possible influence on the surface deformation, and discuss the stress field distribution under the model. Our preliminary results suggest that lower crustal flow plays an important role in crustal deformation in southeastern Tibetan plateau. The best fitting is achieved when the flow velocity of the lower crust is approximately 10-11 mm/a faster than that of the upper crust. Crustal rheological properties affect regional crustal deformation, when the viscosity of the middle and lower crust in the South China block reaches 1022 and 1023 Pa.s, respectively; the predicted match observations well, especially for the magnitude within the South China block. The maximum principal stress field exhibits clear zoning, gradually shifting from an approximately east-west orientation in the northern Bayan Har block to southeast in the South China block, southwest in the western Yunnan block, and a radially divergent distribution in the Middle Yunnan and Southern Yunnan blocks.

  18. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  19. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  20. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.