Finite Element Simulation for Springback Prediction Compensation
Directory of Open Access Journals (Sweden)
Agus Dwi Anggono
2011-01-01
Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It is this second step of springback compensation that is addressed in the current work. This paper presents an evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.
Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project
National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...
Prediction of residual stress using explicit finite element method
Directory of Open Access Journals (Sweden)
W.A. Siswanto
2015-12-01
Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
A finite-element model predicts thermal damage in cutaneous contact burns.
Orgill, D P; Solari, M G; Barlow, M S; O'Connor, N E
1998-01-01
Thermal injury results from exposure of skin elements to an externally applied heat source. Finite-element analysis of heat transfer in cutaneous burns allows for an accurate prediction of tissue time-temperature relationships throughout the exposed tissue. A two-dimensional, axisymmetric, finite-element model of a contact burn was constructed, and damage integrals were calculated by applying the Arrhenius equation to the time-temperature profiles at each point. The epidermis, dermis, and subcutaneous fat were modeled as uniform elements with distinct thermal properties. Heated aluminum blocks were applied to Yorkshire pigs for 10 to 80 seconds to produce contact burns. Wound biopsies taken at 1, 24, and 48 hours were examined histologically and measured for the depth of burn. A significant deepening of the gelatinized tissue was observed in tissue taken from 1 hour to 24 hours. The finite-element prediction of cutaneous contact burn damage correlated well with histologic observations in this porcine model.
STRESS-STRAIN FINITE ELEMENT ANALYSIS AND FATIGUE LIFE PREDICTION FOR BOLTED CONNECTIONS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A cyclic plasticity model is used into finite element (FE) method to obtain the details of elastic-plastic stress-strain in the bolts under cyclic axial loading. Two criteria in multiaxial fatigue are employed to predict fatigue lives of bolts. The predicted fatigue lives are in favorable agreement with the experimental results for machined bolts.
Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project
National Aeronautics and Space Administration — Prediction and enhancement of vehicle interior noise due to high frequency excitation, based on computer simulation, allows the application of the technology at the...
Institute of Scientific and Technical Information of China (English)
Liu Yadong; Li Congxin; Ruan Xueyu
2003-01-01
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
Institute of Scientific and Technical Information of China (English)
LIU Li-min(刘立民); LIU Han-long(刘汉龙); LIAN Chuan-jie(连传杰)
2003-01-01
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
vibratoire est traité d’une manière analogue au traitement du flux d’énergie thermique en régime stationnaire. RDDC a travaillé pendant plusieurs années à...previous phases of the PFFEA development, a hybrid energy method was developed for predicting high-frequency radiated sound power from a vibrating surface ...where the velocity on the surface of the radiating structure is known but the surface pressure is not. Fortunately, AVAST has algorithms appropriate
Jacob, Anaïs; Mehmanparast, Ali
2016-07-01
The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commercially available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Black, Paul Randall
2007-01-01
Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines Design and prediction of thermoacoustic instabilities is a major challenge in aerospace propulsion and the operation of power generating gas turbine engines. This is a complex problem in which multiple physical systems couple together. Traditionally, thermoacoustic models can be reduced to dominant physics which depend only on flame dynamics and acoustics. Th...
Directory of Open Access Journals (Sweden)
Ahad Zeinali
2007-12-01
Full Text Available Introduction: Because of the importance of vertebral compressive fracture (VCF role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite element method is used for predicting vertebral compressive strength. Material and Methods: Four thoracolumbar vertebrae were excised from 3 cadavers with an average age of 42 years. They were then put in a water phantom and were scanned using the QCT. Using a computer program prepared in MATLAB, detailed voxel based geometry and mechanical characteristics of the vertebra were extracted from the CT images. The three dimensional finite element models of the samples were created using ANSYS computer program. The compressive strength of each vertebra body was calculated based on a linearly elastic-linearly plastic model and large deformation analysis in ANSYS and was compared to the value measured experimentally for that sample. Results: Based on the obtained results the QCT-voxel based nonlinear finite element method (FEM can predict vertebral compressive strength more effectively and accurately than the common QCT-voxel based linear FEM. The difference between the predicted strength values using this method and the measured ones was less than 1 kN for all the samples. Discussion and Conclusion: It seems that the QCT-voxel based nonlinear FEM used in this study can predict more effectively and accurately the vertebral strengths based on every vertebrae specification by considering their detailed geometric and densitometric characteristics.
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Evaluation of damage models by finite element prediction of fracture in cylindrical tensile test.
Eom, Jaegun; Kim, Mincheol; Lee, Seongwon; Ryu, Hoyeun; Joun, Mansoo
2014-10-01
In this research, tensile tests of cylindrical specimens of a mild steel are predicted via the finite element method, with emphasis on the fracture predictions of various damage models. An analytical model is introduced for this purpose. An iterative material identification procedure is used to obtain the flow stress, making it possible to exactly predict a tensile test up to the fracture point, in the engineering sense. A node-splitting technique is used to generate the cracks on the damaged elements. The damage models of McClintock, Rice-Tracey, Cockcroft-Latham, Freudenthal, Brozzo et al. and Oyane et al. are evaluated by comparing their predictions from the tensile test perspective.
Finite Element Modelling and Residual Stress Prediction in End Milling of Ti6Al4Valloy
Krishnakumar, P.; Sripathi, J.; Vijay, P.; Ramachandran, K. I.
2016-09-01
Titanium and its alloys are materials that exhibit unique combination of mechanical and physical properties that enable their usage in various fields. In spite of having a lot of advantages, their usage is limited because they are difficult to machine due to their inherent properties of high specific heat capacity, reactivity with tool and low thermal conductivity thereby causing excessive tool wear. To facilitate the process of machining, it becomes necessary to find out and relieve the residual stress caused during machining. Since experiments cannot be performed for each instance, creation of an FE model is desirable. In this paper a finite element analysis (FEA) of the machining of Ti6Al4V for different cutting speeds is presented. A 3D finite element model is developed with the Titanium alloy (Ti6Al4V) as the workpiece and a four flute carbide tip end mill cutter as the tool to predict the residual stress developed within the titanium alloy after machining. The finite element model utilises the Johnson-Cook model to depict the plasticity and the damage criteria and implements the Arbitrary Lagrangian Eulerian (ALE) formulation to increase the accuracy of the model. The FE model has been developed and the findings are presented. The results indicate that residual stresses are maximum at the surface and decrease linearly along the depth and increase as the cutting speed and depth of cut are increased.
Influence of Finite Element Size in Residual Strength Prediction of Composite Structures
Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid
2012-01-01
The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.
Luboz, V; Swider, P; Payan, Y; Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan
2005-01-01
This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific Finite Element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the Mesh-Matching method, followed by a process that corrects mesh irregularities. The Mesh-Matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to Computer-Assisted maxillofacial surgery, and more precisely to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven F...
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Energy Technology Data Exchange (ETDEWEB)
Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-04-23
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).
Machining Deformation Prediction of Thin-Walled Part Based on Finite Element Analysis
Institute of Scientific and Technical Information of China (English)
Hongxiang Wang; Yabin Tang; Zhanshan Liu; Shi Gao
2015-01-01
For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin⁃walled part, this paper starts from the analysis of initial stress state in material preparation process, the change process of residual stress within aluminum alloy pre⁃stretching plate is researched, and the distribution law of residual stress is indirectly obtained by delamination measurement methods, so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress, dynamic milling force and clamping force on machining distortion, a three⁃dimensional dynamic finite element simulation model is established, and the whole cutting process is simulated from the blank material to finished product, a novel prediction method is proposed, which can availably predict the machining distortion accurately. The machining distortion state of the thin⁃walled part is achieved at different processing steps, the machining distortion of the thin⁃walled part is detected with three coordinate measuring machine tools, show that the simulation results are in good agreement with experimental data.
A finite element model of the human buttocks for prediction of seat pressure distributions.
Verver, M M; van Hoof, J; Oomens, C W J; Wismans, J S H M; Baaijens, F P T
2004-08-01
Seating comfort is becoming increasingly important for the automotive industry. Car manufacturers use seating comfort to distinguish their products from those of competitors. However, the development and design of a new, more comfortable seat is time consuming and costly. The introduction of computer models of human and seat will accelerate this process. The contact interaction between human and seat is an important factor in the comfort sensation of subjects. This paper presents a finite element (FE) model of the human buttocks, able to predict the pressure distribution between human and seating surface by its detailed and realistic geometric description. A validation study based on volunteer experiments shows reasonable correlation in pressure distributions between the buttocks model and the volunteers. Both for simulations on a rigid and a soft cushion, the model predicts realistic seat pressure distributions. A parameter study shows that a pressure distribution at the interface between human and seat strongly depends on variations in human flesh and seat cushion properties.
Triedman, John K.; Jolley, Matthew; Stinstra, Jeroen; Brooks, Dana H.; MacLeod, Rob
2008-01-01
ICD implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies is lacking, we have developed image-based finite element models (FEMs) to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this paper, we review recently published studies by our group using such models, and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in DFTs with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation prior to clinical or industrial utilization. PMID:18817926
Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.
Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing
2015-03-01
The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently.
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Huo, Jinxing; Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-Michaél; Gamstedt, E Kristofer
2015-09-01
In order to reconstruct a patient with a bone defect in the mandible, a porous scaffold attached to a plate, both in a titanium alloy, was designed and manufactured using additive manufacturing. Regrettably, the implant fractured in vivo several months after surgery. The aim of this study was to investigate the failure of the implant and show a way of predicting the mechanical properties of the implant before surgery. All computed tomography data of the patient were preprocessed to remove metallic artefacts with metal deletion technique before mandible geometry reconstruction. The three-dimensional geometry of the patient's mandible was also reconstructed, and the implant was fixed to the bone model with screws in Mimics medical imaging software. A finite element model was established from the assembly of the mandible and the implant to study stresses developed during mastication. The stress distribution in the load-bearing plate was computed, and the location of main stress concentration in the plate was determined. Comparison between the fracture region and the location of the stress concentration shows that finite element analysis could serve as a tool for optimizing the design of mandible implants.
Fatigue life prediction of casing welded pipes by using the extended finite element method
National Research Council Canada - National Science Library
Ljubica Lazi; Aleksandar Raji; Aleksandar Grbovi; Aleksandar Sedmak; e Sarko
2016-01-01
The extended finite element (XFEM) method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life...
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2011-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.
Predicting mouse vertebra strength with micro-computed tomography-derived finite element analysis.
Nyman, Jeffry S; Uppuganti, Sasidhar; Makowski, Alexander J; Rowland, Barbara J; Merkel, Alyssa R; Sterling, Julie A; Bredbenner, Todd L; Perrien, Daniel S
2015-01-01
As in clinical studies, finite element analysis (FEA) developed from computed tomography (CT) images of bones are useful in pre-clinical rodent studies assessing treatment effects on vertebral body (VB) strength. Since strength predictions from microCT-derived FEAs (μFEA) have not been validated against experimental measurements of mouse VB strength, a parametric analysis exploring material and failure definitions was performed to determine whether elastic μFEAs with linear failure criteria could reasonably assess VB strength in two studies, treatment and genetic, with differences in bone volume fraction between the control and the experimental groups. VBs were scanned with a 12-μm voxel size, and voxels were directly converted to 8-node, hexahedral elements. The coefficient of determination or R (2) between predicted VB strength and experimental VB strength, as determined from compression tests, was 62.3% for the treatment study and 85.3% for the genetic study when using a homogenous tissue modulus (E t) of 18 GPa for all elements, a failure volume of 2%, and an equivalent failure strain of 0.007. The difference between prediction and measurement (that is, error) increased when lowering the failure volume to 0.1% or increasing it to 4%. Using inhomogeneous tissue density-specific moduli improved the R (2) between predicted and experimental strength when compared with uniform E t=18 GPa. Also, the optimum failure volume is higher for the inhomogeneous than for the homogeneous material definition. Regardless of model assumptions, μFEA can assess differences in murine VB strength between experimental groups when the expected difference in strength is at least 20%.
Alani, Amir M; Faramarzi, Asaad
2015-06-10
In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes.
Directory of Open Access Journals (Sweden)
2009-11-01
Full Text Available This paper has investigated theoretically the influence of sliding speed and temperature on the hysteretic friction in case of a smooth, reciprocating steel ball sliding on smooth rubber plate by finite element method (FEM. Generalized Maxwell-models combined with Mooney-Rivlin model have been used to describe the material behaviour of the ethylenepropylene-diene-monomer (EPDM rubber studied. Additionally, the effect of the technique applied at the parameter identification of the material model and the number of Maxwell elements on the coefficient of friction (COF was also investigated. Finally, the open parameter of the Greenwood-Tabor analytical model has been determined from a fit to the FE results. By fitting, as usual, the Maxwell-model to the storage modulus master curve the predicted COF, in a broad frequency range, will be underestimated even in case of 40-term Maxwell-model. To obtain more accurate numerical prediction or to provide an upper limit for the hysteretic friction, in the interesting frequency range, the Maxwell parameters should be determined, as proposed, from a fit to the measured loss factor master curve. This conclusion can be generalized for all the FE simulations where the hysteresis plays an important role.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling
Pratap, Tej; Patra, Karali
2017-02-01
Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.
Effects of dose reduction on bone strength prediction using finite element analysis
Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas
2016-12-01
This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2 = 0.997, p analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.
Nikolić, Dalibor; Radović, Miloš; Aleksandrić, Srđan; Tomašević, Miloje; Filipović, Nenad
2014-11-01
This study was performed to evaluate the influences of the myocardial bridges on the plaque initializations and progression in the coronary arteries. The wall structure is changed due to the plaque presence, which could be the reason for multiple heart malfunctions. Using simplified parametric finite element model (FE model) of the coronary artery having myocardial bridge and analyzing different mechanical parameters from blood circulation through the artery (wall shear stress, oscillatory shear index, residence time), we investigated the prediction of "the best" position for plaque progression. We chose six patients from the angiography records and used data from DICOM images to generate FE models with our software tools for FE preprocessing, solving and post-processing. We found a good correlation between real positions of the plaque and the ones that we predicted to develop at the proximal part of the myocardial bridges with wall shear stress, oscillatory shear index and residence time. This computer model could be additional predictive tool for everyday clinical examination of the patient with myocardial bridge.
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Rouillard, Andrew D; Holmes, Jeffrey W
2014-08-01
Following myocardial infarction, damaged muscle is gradually replaced by collagenous scar tissue. The structural and mechanical properties of the scar are critical determinants of heart function, as well as the risk of serious post-infarction complications such as infarct rupture, infarct expansion, and progression to dilated heart failure. A number of therapeutic approaches currently under development aim to alter infarct mechanics in order to reduce complications, such as implantation of mechanical restraint devices, polymer injection, and peri-infarct pacing. Because mechanical stimuli regulate scar remodeling, the long-term consequences of therapies that alter infarct mechanics must be carefully considered. Computational models have the potential to greatly improve our ability to understand and predict how such therapies alter heart structure, mechanics, and function over time. Toward this end, we developed a straightforward method for coupling an agent-based model of scar formation to a finite-element model of tissue mechanics, creating a multi-scale model that captures the dynamic interplay between mechanical loading, scar deformation, and scar material properties. The agent-based component of the coupled model predicts how fibroblasts integrate local chemical, structural, and mechanical cues as they deposit and remodel collagen, while the finite-element component predicts local mechanics at any time point given the current collagen fiber structure and applied loads. We used the coupled model to explore the balance between increasing stiffness due to collagen deposition and increasing wall stress due to infarct thinning and left ventricular dilation during the normal time course of healing in myocardial infarcts, as well as the negative feedback between strain anisotropy and the structural anisotropy it promotes in healing scar. The coupled model reproduced the observed evolution of both collagen fiber structure and regional deformation following coronary
Hayashi, Yoshihiro; Miura, Takahiro; Shimada, Takuya; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2013-10-01
Tablet characteristics of tensile strength and disintegration time were predicted using residual stress distribution, simulated by the finite element method (FEM). The Drucker-Prager Cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC). The DPC model was calibrated using a direct shear test and analysis of the hardening law of the powder. The constructed DPC model was fed into the analysis using the FEM, and the mechanical behavior of pharmaceutical powders during compaction was analyzed using the FEM. The results revealed that the residual stress distribution of the tablets was uniform when the compression force increased. In particular, the residual stress distribution of tablets composed of equal amounts of LAC, CS, and MCC was more uniform than the tablets composed of 67% LAC and 33% CS, with no MCC. The tensile strength and disintegration time were predicted accurately from the residual stress distribution of tablets using multiple linear regression analysis and partial least squares regression analysis. This suggests that the residual stress distribution of tablets is related closely to the tensile strength and disintegration time.
Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin; Sadleir, Rosalind J.
2016-12-01
Objective. In this study, we determined efficient head model sizes relative to predicted current densities in transcranial direct current stimulation (tDCS). Approach. Efficiency measures were defined based on a finite element (FE) simulations performed using nine human head models derived from a single MRI data set, having extents varying from 60%-100% of the original axial range. Eleven tissue types, including anisotropic white matter, and three electrode montages (T7-T8, F3-right supraorbital, Cz-Oz) were used in the models. Main results. Reducing head volume extent from 100% to 60%, that is, varying the model’s axial range from between the apex and C3 vertebra to one encompassing only apex to the superior cerebellum, was found to decrease the total modeling time by up to half. Differences between current density predictions in each model were quantified by using a relative difference measure (RDM). Our simulation results showed that {RDM} was the least affected (a maximum of 10% error) for head volumes modeled from the apex to the base of the skull (60%-75% volume). Significance. This finding suggested that the bone could act as a bioelectricity boundary and thus performing FE simulations of tDCS on the human head with models extending beyond the inferior skull may not be necessary in most cases to obtain reasonable precision in current density results.
Weld distortion prediction of the ITER Vacuum Vessel using Finite Element simulations
Energy Technology Data Exchange (ETDEWEB)
Caixas, Joan, E-mail: joan.caixas@f4e.europa.eu [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Guirao, Julio [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Bayon, Angel; Jones, Lawrence; Arbogast, Jean François [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Barbensi, Andrea [Ansaldo Nucleare, Corso F.M. Perrone, 25, I-16152 Genoa (Italy); Dans, Andres [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Facca, Aldo [Mangiarotti, Pannellia di Sedegliano, I-33039 Sedegliano (UD) (Italy); Fernandez, Elena; Fernández, José [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Iglesias, Silvia [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Jimenez, Marc; Jucker, Philippe; Micó, Gonzalo [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Ordieres, Javier [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Pacheco, Jose Miguel [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Paoletti, Roberto [Walter Tosto, Via Erasmo Piaggio, 72, I-66100 Chieti Scalo (Italy); Sanguinetti, Gian Paolo [Ansaldo Nucleare, Corso F.M. Perrone, 25, I-16152 Genoa (Italy); Stamos, Vassilis [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Tacconelli, Massimiliano [Walter Tosto, Via Erasmo Piaggio, 72, I-66100 Chieti Scalo (Italy)
2013-10-15
Highlights: ► Computational simulations of the weld processes can rapidly assess different sequences. ► Prediction of welding distortion to optimize the manufacturing sequence. ► Accurate shape prediction after each manufacture phase allows to generate modified procedures and pre-compensate distortions. ► The simulation methodology is improved using condensed computation techniques with ANSYS in order to reduce computation resources. ► For each welding process, the models are calibrated with the results of coupons and mock-ups. -- Abstract: The as-welded surfaces of the ITER Vacuum Vessel sectors need to be within a very tight tolerance, without a full-scale prototype. In order to predict welding distortion and optimize the manufacturing sequence, the industrial contract includes extensive computational simulations of the weld processes which can rapidly assess different sequences. The accurate shape prediction, after each manufacturing phase, enables actual distortions to be compared with the welding simulations to generate modified procedures and pre-compensate distortions. While previous mock-ups used heavy welded-on jigs to try to restrain the distortions, this method allows the use of lightweight jigs and yields important cost and rework savings. In order to enable the optimization of different alternative welding sequences, the simulation methodology is improved using condensed computation techniques with ANSYS in order to reduce computational resources. For each welding process, the models are calibrated with the results of coupons and mock-ups. The calibration is used to construct representative models of each segment and sector. This paper describes the application to the construction of the Vacuum Vessel sector of the enhanced simulation methodology with condensed Finite Element computation techniques and results of the calibration on several test pieces for different types of welds.
2010-01-01
Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.
Suhendra, N.; Gustiono, D.; Nugroho, E. A.; Masmui; Yuliani, H.
2017-02-01
The effect of micromotion on the shear shielding and size of yielding region in the bone asperity in contact with metal of femoral stem was investigated. The main objective of this work was to gain an understanding of bone wear particleformation mechanism from the two-dimensional finite element model of cementless femoral stem type. To assess the influence of the parameters of interest, different friction coefficients and sliding distance (micromotion)were used in the numerical simulations. Results from the finite element analysis showed that the increase ofthe yielding region is strongly influenced by the rise in sliding distance (micromotion), which is related to the generation of bone wear particle formations. Finite element bone wearparticle formation model, based on strain discontinuities, was therefore proposed for further works. The results obtained in this study can lead to the development of an accurate finite element wearparticle formation mechanism model that would be of use in the assessment of an artificial implant performance and their development.
An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines
Traidia, Abderrazak
2012-11-01
This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure build-up mechanism related to the recombination of atomic hydrogen into hydrogen gas within the crack cavity. In addition, the strong couplings between non-Fickian hydrogen diffusion, pressure build-up and crack extension are accounted for. In order to enhance the predictive capabilities of the proposed model, problem boundary conditions are based on actual in-field operating parameters, such as pH and partial pressure of H 2S. The computational results reported herein show that, during the extension phase, the propagating crack behaves like a trap attracting more hydrogen, and that the hydrostatic stress field at the crack tip speed-up HIC related crack initiation and growth. In addition, HIC is reduced when the pH increases and the partial pressure of H2S decreases. Furthermore, the relation between the crack growth rate and (i) the initial crack radius and position, (ii) the pipe wall thickness and (iii) the fracture toughness, is also evaluated. Numerical results agree well with experimental data retrieved from the literature. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph
2015-03-18
Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.
Directory of Open Access Journals (Sweden)
Amir M. Alani
2015-06-01
Full Text Available In this paper, a stochastic finite element method (SFEM is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes.
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
PREDICTION FOR FORMING LIMIT OF AL2024T3 SHEET BASED ON DAMAGE THEORY USING FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
Tang C.Y.; Fan Jianping; Tsui C.P.
2006-01-01
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of Al2024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.
Li, Saiyi; Van Houtte, Paul; Kalidindi, Surya R.
2004-09-01
Crystal plasticity finite element (CPFE) models are useful tools in modelling the anisotropic stress-strain responses in large deformation of polycrystalline metals. In this study, a CPFE model is applied to simulate the evolution of crystallographic textures during cold rolling of hot-rolled aluminium plates and during uniaxial tensile, uniaxial compression and simple shear tests of annealed aluminium sheets. The performance of the model is critically evaluated through quantitative comparisons of the simulated textures with those predicted by the full constraints (FC) Taylor model and the experimentally measured textures. It is shown that the CPFE model performs better than the FC Taylor model in all the cases. However, the quality of the texture predictions deteriorates with increasing strain values. The CPFE model gives better texture predictions in the moderately deformed tensile and compression samples (~20% strain), compared to the more heavily deformed simple shear (0.85-0.95 shear strain) and cold-rolled (40-98% thickness reduction) samples. It is also shown that the CPFE predictions for cold rolling can be improved with finer discretization, i.e. by assigning multiple elements per grain instead of one element per grain in the finite element model. The improvement is mainly reflected in an improved prediction of the copper component and, in some cases, an improved prediction of the brass component. Inspection of the local deformation gradients reveals that these texture changes can be attributed to the increase of shear relaxations in the RD-ND and RD-TD planes.
Fatigue life prediction of casing welded pipes by using the extended finite element method
2016-01-01
The extended finite element (XFEM) method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life. Based on the critical value of stress intensity factor KIc, measured in different regions of welded joint, the crack was located in the base metal as the region with the lowest resistance to crack initiation and propagation. The XFEM was first applied to the 3 point bending specimens to...
Prediction of fluid flow in curved pipe using the finite element method
Maitin, Christopher B.
1987-04-01
An analysis of turbulent flow through curved pipes was attempted using the finite element method. A commercial finite element code, FIDAP, which employs the kappa-epsilon model was used. Mesh configurations were developed for three curved pipes with varying bend angles. A pipe with a 180 deg bend was modeled after an experiment to verify the results of the computer code. A 90 deg and 45 deg pipe were modeled at a bend radius of 1 pipe diameter, to simulate standard pipes in ventilation systems. The intent of the study was to examine the flow profiles exiting the bend. The results should give some explanation of the effect of bends on the poor performance of fans placed downstream of bends. The turbulent model failed to converge for a steady-state analysis of the curved pipe flow, so a laminar flow analysis was done. The results show the expected distortion in the velocity profiles exiting from the bends. Also some conclusions were drawn about attaining better convergence with curved pipe flow.
Fatigue life prediction of casing welded pipes by using the extended finite element method
Directory of Open Access Journals (Sweden)
Ljubica Lazić Vulićević
2016-03-01
Full Text Available The extended finite element (XFEM method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life. Based on the critical value of stress intensity factor KIc, measured in different regions of welded joint, the crack was located in the base metal as the region with the lowest resistance to crack initiation and propagation. The XFEM was first applied to the 3 point bending specimens to verify numerical results with the experimental ones. After successful verification, the XFEM was used to simulate fatigue crack growth, position axially in the pipe, and estimate its remaining life.
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-01-16
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Efficient thermal error prediction in a machine tool using finite element analysis
Mian, Naeem S.; Fletcher, Simon; Longstaff, Andrew P.; Myers, Alan
2011-08-01
Thermally induced errors have a major significance on the positional accuracy of a machine tool. Heat generated during the machining process produces thermal gradients that flow through the machine structure causing linear and nonlinear thermal expansions and distortions of associated complex discrete structures, producing deformations that adversely affect structural stability. The heat passes through structural linkages and mechanical joints where interfacial parameters such as the roughness and form of the contacting surfaces affect the thermal resistance and thus the heat transfer coefficients. This paper presents a novel offline technique using finite element analysis (FEA) to simulate the effects of the major internal heat sources such as bearings, motors and belt drives of a small vertical milling machine (VMC) and the effects of ambient temperature pockets that build up during the machine operation. Simplified models of the machine have been created offline using FEA software and evaluated experimental results applied for offline thermal behaviour simulation of the full machine structure. The FEA simulated results are in close agreement with the experimental results ranging from 65% to 90% for a variety of testing regimes and revealed a maximum error range of 70 µm reduced to less than 10 µm.
Energy Technology Data Exchange (ETDEWEB)
Huh, Nam Su; Kim, Jong Wook; Choi, Suhn; Kim, Tae Wan [KAERI, Daejeon (Korea, Republic of)
2008-07-01
The Primary Water Stress Corrosion Cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.
Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis
2015-05-01
The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.
Ali, Azhar A; Shalhoub, Sami S; Cyr, Adam J; Fitzpatrick, Clare K; Maletsky, Lorin P; Rullkoetter, Paul J; Shelburne, Kevin B
2016-01-25
Healthy patellofemoral (PF) joint mechanics are critical to optimal function of the knee joint. Patellar maltracking may lead to large joint reaction loads and high stresses on the articular cartilage, increasing the risk of cartilage wear and the onset of osteoarthritis. While the mechanical sources of PF joint dysfunction are not well understood, links have been established between PF tracking and abnormal kinematics of the tibiofemoral (TF) joint, specifically following cruciate ligament injury and repair. The objective of this study was to create a validated finite element (FE) representation of the PF joint in order to predict PF kinematics and quadriceps force across healthy and pathological specimens. Measurements from a series of dynamic in-vitro cadaveric experiments were used to develop finite element models of the knee for three specimens. Specimens were loaded under intact, ACL-resected and both ACL and PCL-resected conditions. Finite element models of each specimen were constructed and calibrated to the outputs of the intact knee condition, and subsequently used to predict PF kinematics, contact mechanics, quadriceps force, patellar tendon moment arm and patellar tendon angle of the cruciate resected conditions. Model results for the intact and cruciate resected trials successfully matched experimental kinematics (avg. RMSE 4.0°, 3.1mm) and peak quadriceps forces (avg. difference 5.6%). Cruciate resections demonstrated either increased patellar tendon loads or increased joint reaction forces. The current study advances the standard for evaluation of PF mechanics through direct validation of cruciate-resected conditions including specimen-specific representations of PF anatomy.
Woldtvedt, Daniel J; Womack, Wesley; Gadomski, Benjamin C; Schuldt, Dieter; Puttlitz, Christian M
2011-06-01
Current finite element modeling techniques utilize geometrically inaccurate cartilage distribution representations in the lumbar spine. We hypothesize that this shortcoming severely limits the predictive fidelity of these simulations. Specifically, it is unclear how these anatomically inaccurate cartilage representations alter range of motion and facet contact predictions. In the current study, cadaveric vertebrae were serially sectioned, and images were taken of each slice in order to identify the osteochondral interface and the articulating surface. A series of custom-written algorithms were utilized in order to quantify each facet joint's three-dimensional cartilage distribution using a previously developed methodology. These vertebrae-dependent thickness cartilage distributions were implemented on an L1 through L5 lumbar spine finite element model. Moments were applied in three principal planes of motion, and range of motion and facet contact predictions from the variable thickness and constant thickness distribution models were determined. Initial facet gap thickness dimensions were also parameterized. The data indicate that the mean and maximum cartilage thickness increased inferiorly from L1 to L5, with an overall mean thickness value of 0.57 mm. Cartilage distribution and initial facet joint gap thickness had little influence on the lumbar range of motion in any direction, whereas the mean contact pressure, total contact force, and total contact area predictions were altered considerably. The data indicate that range of motion predictions alone are insufficient to establish model validation intended to predict mechanical contact parameters. These data also emphasize the need for the careful consideration of the initial facet joint gap thickness with respect to the spinal condition being studied.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite element models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young’s modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young’s moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be acceptable to predict the Young’s moduli of the grafted closed-cell PP foams with short-fiber reinforcement.
Institute of Scientific and Technical Information of China (English)
WANG Bo; WANG RongXiu; WU Yong
2009-01-01
The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite ele-ment models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young's modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young's moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be ac-ceptable to predict the Young's moduli of the grafted closed-cell PP foams with short-fiber reinforce-ment.
Solution of Finite Element Equations
DEFF Research Database (Denmark)
Krenk, Steen
An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Institute of Scientific and Technical Information of China (English)
Xue-cheng BIAN; Chang CHAO; Wan-feng JIN; Yun-min CHEN
2011-01-01
Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds.A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities.The one-quarter car model is used to represent the train as lumped masses connected by springs.The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency.The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number.The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface,including the irregularities on the track surface.Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation,using a conventional finite element procedure.The amplitude and wavelength are identified as two major parameters describing track irregularities.The irregularity amplitude has a direct impact on the vertical response for low-speed trains,both for short wavelength and long wavelength irregularities.Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases.For low-speed case,vibrations induced by track irregularities dominate far field responses.For high-speed case,the wavelength of track irregularities has very little effect on ground vibration at distances far from track center,and train's wheel axle weights becomes dominant.
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).
National Research Council Canada - National Science Library
Ljubica Lazic Vulicevic; Aleksandar Grbovic; Aleksandar Sedmak; Aleksandar Rajic
2015-01-01
This paper presents an application of the extended finite element method (XFEM) in the modeling and analysis of simultaneous cracks propagations in a seam casing pipe made of API J55 steel by high-frequency...
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Finite element computational fluid mechanics
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Directory of Open Access Journals (Sweden)
Bernardo Innocenti
2014-11-01
Full Text Available Ultra-high molecular weight polyethylene (UHMWPE wear in total knee arthroplasty (TKA components is one of the main reasons of the failure of implants and the consequent necessity of a revision procedure. Experimental wear tests are commonly used to quantify polyethylene wear in an implant, but these procedures are quite expensive and time consuming. On the other hand, numerical models could be used to predict the results of a wear test in less time with less cost. This requires, however, that such a model is not only available, but also validated. Therefore, the aim of this study is to develop and validate a finite element methodology to be used for predicting polyethylene wear in TKAs. Initially, the wear model was calibrated using the results of an experimental roll-on-plane wear test. Afterwards, the developed wear model was applied to predict patello-femoral wear. Finally, the numerical model was validated by comparing the numerically-predicted wear, with experimental results achieving good agreement.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D
2017-01-01
Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm(3) density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Second order tensor finite element
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Lee, Wookjin; Won, Byeong Hee; Cho, Seong Wook
2017-01-01
In this paper, we generated finite element (FE) models to predict the contact pressure between a foam mattress and the human body in a supine position. Twenty-year-old males were used for three-dimensional scanning to produce the FE human models, which was composed of skin and muscle tissue. A linear elastic isotropic material model was used for the skin, and the Mooney-Rivlin model was used for the muscle tissue because it can effectively represent the nonlinear behavior of muscle. The contact pressure between the human model and the mattress was predicted by numerical simulation. The human models were validated by comparing the body pressure distribution obtained from the same human subject when he was lying on two different mattress types. The experimental results showed that the slope of the lower part of the mattress caused a decrease in the contact pressure at the heels, and the effect of bone structure was most pronounced in the scapula. After inserting a simple structure to function as the scapula, the contact pressure predicted by the FE human models was consistent with the experimental body pressure distribution for all body parts. These results suggest that the models proposed in this paper will be useful to researchers and designers of products related to the prevention of pressure ulcers.
Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria
2012-01-01
This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122
Directory of Open Access Journals (Sweden)
E. Çelebi
2012-11-01
Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
Saito, A.; Kuroishi, M.; Nakai, H.
2016-09-01
This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges.
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Park, Gwansik; Kim, Taewung; Forman, Jason; Panzer, Matthew B; Crandall, Jeff R
2017-08-01
The goal of this study was to predict the structural response of the femoral shaft under dynamic loading conditions using subject-specific finite element (SS-FE) models and to evaluate the prediction accuracy of the models in relation to the model complexity. In total, SS-FE models of 31 femur specimens were developed. Using those models, dynamic three-point bending and combined loading tests (bending with four different levels of axial compression) of bare femurs were simulated, and the prediction capabilities of five different levels of model complexity were evaluated based on the impact force time histories: baseline, mass-based scaled, structure-based scaled, geometric SS-FE, and heterogenized SS-FE models. Among the five levels of model complexity, the geometric SS-FE and the heterogenized SS-FE models showed statistically significant improvement on response prediction capability compared to the other model formulations whereas the difference between two SS-FE models was negligible. This result indicated the geometric SS-FE models, containing detailed geometric information from CT images with homogeneous linear isotropic elastic material properties, would be an optimal model complexity for prediction of structural response of the femoral shafts under the dynamic loading conditions. The average and the standard deviation of the RMS errors of the geometric SS-FE models for all the 31 cases was 0.46 kN and 0.66 kN, respectively. This study highlights the contribution of geometric variability on the structural response variation of the femoral shafts subjected to dynamic loading condition and the potential of geometric SS-FE models to capture the structural response variation of the femoral shafts.
Peery, Jeffrey T; Klute, Glenn K; Blevins, Joanna J; Ledoux, William R
2006-09-01
Amputees who wear prosthetic limbs often experience discomfort from blisters and sores due to mechanical insult; these skin conditions are exacerbated by elevated skin temperatures and excessive perspiration within the prosthetic socket. The goal of this study was to create a tool for developing new prostheses that accommodate varying thermal loads arising from everyday activities. A three-dimensional thermal model of a transtibial residual limb and prosthesis was constructed using the finite element (FE) method. Transverse computerized tomography (CT) scans were used to specify the geometry of the residual limb and socket. Thermal properties from the literature were assigned to both biological tissue and prosthetic socket elements. The purpose of this work was to create a model that would aid in testing the effect of new prosthesis designs on skin temperature. To validate its output, the model was used to predict the skin temperature distribution in a common prosthetic socket system (silicone liner, wool sock, and carbon fiber socket) at rest with no mechanical loading. Skin temperatures were generally elevated near muscle and decreased anteriorly and at the distal end. Experimental temperature measurements taken at the skin-prosthesis interface of five human subjects were used to validate the model. Data extracted from the thermal model at anterior, posterior, lateral, and medial locations were typically within one standard deviation of experimental results; the mean temperatures were within 0.3 degree C for each section and were within 0.1 degree C overall.
DEFF Research Database (Denmark)
Christiansen, Christian Kim; Klit, Peder; Walther, Jens Honore;
2015-01-01
influencing the load carrying capacity and ultimately the chances of fatal shaft-sleeve contact. By solving Reynolds equation numerically using finite elements and incorporating a cavitation algorithm, the dynamic coefficients can be used to establish the journal orbit for a given bearing and load pattern...
Boubaker, Mohamed Bader; Haboussi, Mohamed; Ganghoffer, Jean-François; Aletti, Pierre
2009-08-25
The setting up of predictive models of the pelvic organ motion and deformation may prove an efficient tool in the framework of prostate cancer radiotherapy, in order to deliver doses more accurately and efficiently to the clinical target volume (CTV). A finite element (FE) model of the prostate, rectum and bladder motion has been developed, investigating more specifically the influence of the rectum and bladder repletions on the gland motion. The required organ geometries are obtained after processing the computed tomography (CT) images, using specific softwares. Due to their structural characteristics, a 3D shell discretization is adopted for the rectum and the bladder, whereas a volume discretization is adopted for the prostate. As for the mechanical behavior modelling, first order Ogden hyperelastic constitutive laws for both the rectum and bladder are identified. The prostate is comparatively considered as more rigid and is accordingly modelled as an elastic tissue undergoing small strains. A FE model is then created, accounting for boundary and contact conditions, internal and applied loadings being selected as close as possible to available anatomic data. The order of magnitude of the prostate motion predicted by the FE simulations is similar to the measurements done on a deceased person, accounting for the delineation errors, with a relative error around 8%. Differences are essentially due to uncertainties in the constitutive parameters, pointing towards the need for the setting up of direct measurement of the organs mechanical behavior.
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
Energy Technology Data Exchange (ETDEWEB)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.
Ko, William L.
1995-01-01
Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.
Finite elements of nonlinear continua
Oden, J T
2000-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Jackman, Timothy M; DelMonaco, Alex M; Morgan, Elise F
2016-01-25
Finite element (FE) models built from quantitative computed tomography (QCT) scans can provide patient-specific estimates of bone strength and fracture risk in the spine. While prior studies demonstrate accurate QCT-based FE predictions of vertebral stiffness and strength, the accuracy of the predicted failure patterns, i.e., the locations where failure occurs within the vertebra and the way in which the vertebra deforms as failure progresses, is less clear. This study used digital volume correlation (DVC) analyses of time-lapse micro-computed tomography (μCT) images acquired during mechanical testing (compression and anterior flexion) of thoracic spine segments (T7-T9, n=28) to measure displacements occurring throughout the T8 vertebral body at the ultimate point. These displacements were compared to those simulated by QCT-based FE analyses of T8. We hypothesized that the FE predictions would be more accurate when the boundary conditions are based on measurements of pressure distributions within intervertebral discs of similar level of disc degeneration vs. boundary conditions representing rigid platens. The FE simulations captured some of the general, qualitative features of the failure patterns; however, displacement errors ranged 12-279%. Contrary to our hypothesis, no differences in displacement errors were found when using boundary conditions representing measurements of disc pressure vs. rigid platens. The smallest displacement errors were obtained using boundary conditions that were measured directly by DVC at the T8 endplates. These findings indicate that further work is needed to develop methods of identifying physiological loading conditions for the vertebral body, for the purpose of achieving robust, patient-specific FE analyses of failure mechanisms.
González, Amparo; Graciani, Enrique; París, Federico
2009-01-01
Prediction of in-plane stiffness properties of Non-Crimp Fabric laminates by means of 3D Finite Element analysis correspondance: Corresponding author. Tel.: +34 954 487 300; fax: +34 954 461 637 . (Graciani, Enrique) (Graciani, Enrique) Grupo de Elasticidad y Resistencia de Materiales--> , Escuela Superior de Ingenieros--> , Universidad de Sevilla--> - (Gonzalez, Amparo) Grupo de Elasticidad y...
Spruijt, Sander; van der Linden, Jacqueline C.; Dijkstra, P. D. Sander; Wiggers, Theo; Oudkerk, Mathijs; Snijders, Chris J.; van Keulen, Fred; Verhaar, Jan A. N.; Weinans, Harrie; Swierstra, Bart A.
2006-01-01
Background In metastatic bone disease, prophylactic fixation of impending long bone fracture is preferred over surgical treatment of a manifest fracture. There are no reliable guidelines for prediction of pathological fracture risk, however. We aimed to determine whether finite element (FE) models c
S. Spruijt (Sander); J.C. van der Linden (Jacqueline); P.D.S. Dijkstra (Sander); T. Wiggers (Theo); M. Oudkerk (Matthijs); C.J. Snijders (Chris); F. van Keulen (Fred); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie); B.A. Swierstra (Bart)
2006-01-01
textabstractBACKGROUND: In metastatic bone disease, prophylactic fixation of impending long bone fracture is preferred over surgical treatment of a manifest fracture. There are no reliable guidelines for prediction of pathological fracture risk, however. We aimed to determine whether finite element
Pianigiani, Silvia; Ruggiero, Leonardo; Innocenti, Bernardo
2015-01-01
The large deformation of the human breast threatens proper nodules tracking when the subject mammograms are used as pre-planning data for biopsy. However, techniques capable of accurately supporting the surgeons during biopsy are missing. Finite element (FE) models are at the basis of currently investigated methodologies to track nodules displacement. Nonetheless, the impact of breast material modeling on the mechanical response of its tissues (e.g., tumors) is not clear. This study proposes a subject-specific FE model of the breast, obtained by anthropometric measurements, to predict breast large deformation. A healthy breast subject-specific FE parametric model was developed and validated by Cranio-caudal (CC) and Medio-Lateral Oblique (MLO) mammograms. The model was successively modified, including nodules, and utilized to investigate the effect of nodules size, typology, and material modeling on nodules shift under the effect of CC, MLO, and gravity loads. Results show that a Mooney–Rivlin material model can estimate healthy breast large deformation. For a pathological breast, under CC compression, the nodules displacement is very close to zero when a linear elastic material model is used. Finally, when nodules are modeled, including tumor material properties, under CC, or MLO or gravity loads, nodules shift shows ~15% average relative difference. PMID:26734604
The Relation of Finite Element and Finite Difference Methods
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.
2009-01-01
A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.
Directory of Open Access Journals (Sweden)
Toralf eNeuling
2012-09-01
Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientiﬁc studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial speciﬁcity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current ﬂow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current ﬂow during tDCS. These simulations have demonstrated that the current ﬂow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current ﬂow induced by tDCS and transcranial alternating current stimulation (tACS, we used a reﬁned realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode conﬁguration with regard to theirusability. We were able to demonstrate that the lateral conﬁgurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current ﬂow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only oﬀer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also oﬀer a better interpretation of observed eﬀects.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
DOLFIN: Automated Finite Element Computing
Logg, Anders; 10.1145/1731022.1731030
2011-01-01
We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Selective Smoothed Finite Element Method
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.
Infinite Possibilities for the Finite Element.
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Energy Technology Data Exchange (ETDEWEB)
Tang, Ziqiao; Yuan, Maodan; Wu, Hu; Zhang, Jianjai; Kim, Hak Joon; Song, Sung Jin [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)
2014-02-15
A 3D model based on the finite element method (FEM) was built to simulate the infrared thermography (IRT) inspection process. Thermal contrast is an important parameter in IRT and was proven to be a function of defect parameters. Parametric studies were conducted on internal defects with different depths, thicknesses, and orientations. Thermal contrast evolution profiles with respect to the time of the defect and host material were obtained through numerical simulation. The thermal contrast decreased with defect depth and slightly increased with defect thickness. Different orientations of thin defects were detected with IRT, but doing so for thick defects was difficult. These thermal contrast variations with the defect depth, thickness, and orientation can help in optimizing the experimental process and interpretation of data from IRT.
Ranjbar-Far, M.; Absi, J.; Mariaux, G.; Shahidi, S.
2010-09-01
This work is focused on the effect of the residual stresses resulting from the coating process and thermal cycling on the failure mechanisms within the thermal barrier coating (TBC) system. To reach this objective, we studied the effect of the substrate preheating and cooling rate on the coating process conditions. A new thermomechanical finite element model (FEM) considering a nonhomogeneous temperature distribution has been developed. In the results, we observed a critical stress corresponding to a low substrate temperature and high cooling rate during spraying of the top-coat material. Moreover, the analysis of the stress distribution after service shows that more critical stresses are obtained in the case where residual stresses are taken into account.
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Finite Element Simulation of Metal Quenching
Institute of Scientific and Technical Information of China (English)
方刚; 曾攀
2004-01-01
The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...
Elements with Square Roots in Finite Groups
Institute of Scientific and Technical Information of China (English)
M.S. Lucido; M.R. Pournaki
2005-01-01
In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.
Conforming finite elements with embedded strong discontinuities
Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.
2012-01-01
The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
Finite element model updating using bayesian framework and modal properties
CSIR Research Space (South Africa)
Marwala, T
2005-01-01
Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...
Superconvergence for rectangular serendipity finite elements
Institute of Scientific and Technical Information of China (English)
CHEN; Chuanmiao(陈传淼)
2003-01-01
Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.
Finite elements and finite differences for transonic flow calculations
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Continuous finite element methods for Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Why do probabilistic finite element analysis ?
Thacker, B H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
Symmetric Matrix Fields in the Finite Element Method
Directory of Open Access Journals (Sweden)
Gerard Awanou
2010-07-01
Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.
Finite element analysis of optical waveguides
Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.
1981-06-01
Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Will Finite Elements Replace Structural Mechanics?
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Superconvergence of tricubic block finite elements
Institute of Scientific and Technical Information of China (English)
2009-01-01
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.
Indian Academy of Sciences (India)
C MAHESH; K GOVINDARAJULU; V BALAKRISHNA MURTHY
2016-06-01
In this study, homogenization approach is proposed to analyse the fibre waviness in predicting the effective thermal conductivities of composite. Composites that have wavy fibre were analysed by finite element method toestablish equivalence between micro- and macro-mechanics principles, thereby, it is possible to minimize the computational efforts required to solve the problem through only micro-mechanics approach. In the present work, the influence of crest offset, wavy-span on the thermal conductivities of composite for different volume fractions and thermal conductivity mismatch ratios were also studied. It is observed that the homogenization results are in good agreement with minimal % error from those obtained through pure micro-mechanics approach at the cost of low computational facilities and less processing time for converged solutions.
Directory of Open Access Journals (Sweden)
Wołowicz Marcin
2015-09-01
Full Text Available The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Sapin-de Brosses, Emilie; Jolivet, Erwan; Travert, Christophe; Mitton, David; Skalli, Wafa
2012-02-01
A finite element analysis on osteoporotic vertebrae. This study aims to validate subject-specific finite element models (FEMs) derived from a low-dose imaging system (EOS, Biospace Med, France) for the prediction of vertebral strength. The vertebrae are submitted to an eccentric compression force leading to compression and anterior bending. Given the aging population, osteoporosis and vertebral fractures are a major public health issue. A low bone mineral density (BMD) does not always explain incident fractures, and multifactorial analyses are required. In this context, FEMs based on quantitative computed tomography (QCT) have been proposed to predict vertebral strength in vitro or quantify effects of treatments. However, the clinical use of such a model for the in vivo follow-up of the whole spine is limited by the high-radiation dose induced by QCT and the lying position, which does not allow postural assessment with the same modality. Fourteen vertebrae were modeled using a parametric meshing method. The mesh was subject-specific using geometric parameters computed on the 3-dimensional (3D) reconstructions obtained from the EOS biplanar radiographs. The contribution of cortical bone was taken into account by modeling a cortico-cancellous shell whose properties were derived from experimental data. The effect of subject-specific bone Young's moduli derived from EOS vertebral areal BMD was quantified. The 3D position of the point-of-load application and the 3D orientation of the force was faithfully reproduced in the model to compare the predicted strength and experimental strength under the same loading conditions. The relative error of prediction decreased from 43% to 16% (2.5 times) when subject-specific mechanical properties, derived from EOS areal BMD, were implemented in the FEM compared with averaged material properties. The resulting subject-specific FEMs predicted vertebral strength with a level of significance close to the QCT-based models (r adjusted = 0
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Moving Finite Elements in 2-D.
1984-08-06
34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Finite element modeling of corneal strip extensometry
CSIR Research Space (South Africa)
Botha, N
2012-12-01
Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...
A survey of mixed finite element methods
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Infinite to finite: An overview of finite element analysis
Directory of Open Access Journals (Sweden)
Srirekha A
2010-01-01
Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.
Finite element modeling of the human pelvis
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
A NOTE ON FINITE ELEMENT WAVELETS
Institute of Scientific and Technical Information of China (English)
谌秋辉; 陈翰麟
2001-01-01
The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.
Two-dimensional finite-element temperature variance analysis
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
Finite element analysis of flexible, rotating blades
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Finite Element Computational Dynamics of Rotating Systems
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.
Error computation for adaptive finite element analysis
Khan, A A; Memon, I R; Ming, X Y
2002-01-01
The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)
Experimental Finite Element Approach for Stress Analysis
Directory of Open Access Journals (Sweden)
Ahmet Erklig
2014-01-01
Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.
Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and
Energy Technology Data Exchange (ETDEWEB)
Bauer, Jan S., E-mail: jsb@tum.de [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Sidorenko, Irina [Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Mueller, Dirk [Department of Radiology, Universität Köln (Germany); Baum, Thomas [Department of Radiology, Technische Universität München, Munich (Germany); Department of Radiology, University of California, San Francisco, CA (United States); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Issever, Ahi Sema [Department of Radiology, University of California, San Francisco, CA (United States); Department of Radiology, Charite, Berlin (Germany); Eckstein, Felix [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg (Austria); Rummeny, Ernst J. [Department of Radiology, Technische Universität München, Munich (Germany); Link, Thomas M. [Department of Radiology, University of California, San Francisco, CA (United States); Raeth, Christoph W. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)
2014-01-15
Objectives: Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. Materials and methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15–20 mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ∼2000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. Results: The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (ε{sub eff} < 0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r = 0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. Conclusion: When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in
Höch, Andreas; Peldschus, Steffen
2017-01-01
Introduction. The main purpose of this study is to develop an efficient technique for generating FE models of pelvic ring fractures that is capable of predicting possible failure regions of osteosynthesis with acceptable accuracy. Methods. Patient-specific FE models of two patients with osteoporotic pelvic fractures were generated. A validated FE model of an uninjured pelvis from our previous study was used as a master model. Then, fracture morphologies and implant positions defined by a trauma surgeon in the preoperative CT were manually introduced as 3D splines to the master model. Four loading cases were used as boundary conditions. Regions of high stresses in the models were compared with actual locations of implant breakages and loosening identified from follow-up X-rays. Results. Model predictions and the actual clinical outcomes matched well. For Patient A, zones of increased tension and maximum stress coincided well with the actual locations of implant loosening. For Patient B, the model predicted accurately the loosening of the implant in the anterior region. Conclusion. Since a significant reduction in time and labour was achieved in our mesh generation technique, it can be considered as a viable option to be implemented as a part of the clinical routine to aid presurgical planning and postsurgical management of pelvic ring fracture patients. PMID:28255332
Directory of Open Access Journals (Sweden)
Vickie Shim
2017-01-01
Full Text Available Introduction. The main purpose of this study is to develop an efficient technique for generating FE models of pelvic ring fractures that is capable of predicting possible failure regions of osteosynthesis with acceptable accuracy. Methods. Patient-specific FE models of two patients with osteoporotic pelvic fractures were generated. A validated FE model of an uninjured pelvis from our previous study was used as a master model. Then, fracture morphologies and implant positions defined by a trauma surgeon in the preoperative CT were manually introduced as 3D splines to the master model. Four loading cases were used as boundary conditions. Regions of high stresses in the models were compared with actual locations of implant breakages and loosening identified from follow-up X-rays. Results. Model predictions and the actual clinical outcomes matched well. For Patient A, zones of increased tension and maximum stress coincided well with the actual locations of implant loosening. For Patient B, the model predicted accurately the loosening of the implant in the anterior region. Conclusion. Since a significant reduction in time and labour was achieved in our mesh generation technique, it can be considered as a viable option to be implemented as a part of the clinical routine to aid presurgical planning and postsurgical management of pelvic ring fracture patients.
Exact finite elements for conduction and convection
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Liu, X Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X Edward
2013-07-01
Although high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (µFE) prediction of yield strength using a HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using an individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high-resolution micro-computed tomography (HR-µCT) voxel model of 19 trabecular subvolumes from human cadaveric tibia samples. Both the Young's modulus and yield strength of HR-pQCT PR models strongly correlated with those of µCT voxel models (r² = 0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and computer central processing unit (CPU) time (>1200-fold). Then, we applied PR model µFE analysis to HR-pQCT images of 60 postmenopausal women with (n = 30) and without (n = 30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young's modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for areal bone mineral density (aBMD) T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against µCT voxel models and demonstrated its ability to discriminate vertebral fracture
Finite element simulation of wheel impact test
Directory of Open Access Journals (Sweden)
S.H. Yang
2008-06-01
Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel
Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.
2014-11-01
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.
Latest Trends in Finite Element Analysis
Directory of Open Access Journals (Sweden)
L. S. Madhav
1996-01-01
Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Directory of Open Access Journals (Sweden)
López Enrique
2012-11-01
Full Text Available Abstract Background Osteoporotic hip fractures represent major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture, from BMD measurements. The combination of biomechanical models with clinical studies could better estimate bone strength and supporting the specialists in their decision. Methods A model to assess the probability of fracture, based on the Damage and Fracture Mechanics has been developed, evaluating the mechanical magnitudes involved in the fracture process from clinical BMD measurements. The model is intended for simulating the degenerative process in the skeleton, with the consequent lost of bone mass and hence the decrease of its mechanical resistance which enables the fracture due to different traumatisms. Clinical studies were chosen, both in non-treatment conditions and receiving drug therapy, and fitted to specific patients according their actual BMD measures. The predictive model is applied in a FE simulation of the proximal femur. The fracture zone would be determined according loading scenario (sideway fall, impact, accidental loads, etc., using the mechanical properties of bone obtained from the evolutionary model corresponding to the considered time. Results BMD evolution in untreated patients and in those under different treatments was analyzed. Evolutionary curves of fracture probability were obtained from the evolution of mechanical damage. The evolutionary curve of the untreated group of patients presented a marked increase of the fracture probability, while the curves of patients under drug treatment showed variable decreased risks, depending on the therapy type. Conclusion The FE model allowed to obtain detailed maps of damage and fracture probability, identifying high-risk local zones at femoral neck and intertrochanteric and subtrochanteric areas, which are the typical locations of
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Hussain, Mozammil; Natarajan, Raghu N; Chaudhary, Gulafsha; An, Howard S; Andersson, Gunnar B J
2011-05-01
Disc swelling pressure (P(swell)) facilitated by fixed charged density (FCD) of proteoglycans (P(fcd)) and strain-dependent permeability (P(strain)) are of critical significance in the physiological functioning of discs. FCD of proteoglycans prevents any excessive matrix deformation by tissue stiffening, whereas strain-dependent permeability limits the rate of stress transfer from fluid to solid skeleton. To date, studies involving the modeling of FCD of proteoglycans and strain-dependent permeability have not been reported for the cervical discs. The current study objective is to compare the relative contributions of strain-dependent permeability and FCD of proteoglycans in predicting cervical disc biomechanics. Three-dimensional finite element models of a C5-C6 segment with three different disc compositions were analyzed: an SPFP model (strain-dependent permeability and FCD of proteoglycans), an SP model (strain-dependent permeability alone), and an FP model (FCD of proteoglycans alone). The outcomes of the current study suggest that the relative contributions of strain-dependent permeability and FCD of proteoglycans were almost comparable in predicting the physiological behavior of the cervical discs under moment loads. However, under compression, strain-dependent permeability better predicted the in vivo disc response than that of the FCD of proteoglycans. Unlike the FP model (least stiff) in compression, motion behavior of the three models did not vary much from each other and agreed well within the standard deviations of the corresponding in vivo published data. Flexion was recorded with maximum P(fcd) and P(strain), whereas minimum values were found in extension. The study data enhance the understanding of the roles played by the FCD of proteoglycans and strain-dependent permeability and porosity in determining disc tissue swelling behavior. Degenerative changes involving strain-dependent permeability and/or loss of FCD of proteoglycans can further be
Numerical computation of transonic flows by finite-element and finite-difference methods
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Finite Unification: Theory and Predictions
Directory of Open Access Journals (Sweden)
Sven Heinemeyer
2010-06-01
Full Text Available All-loop Finite Unified Theories (FUTs are very interesting N=1 supersymmetric Grand Unified Theories (GUTs which not only realise an old field theoretic dream but also have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensionless couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory too. Based on the above theoretical framework phenomenologically consistent FUTS have been constructed. Here we present FUT models based on the SU(5 and SU(3^3 gauge groups and their predictions. Of particular interest is the Higgs mass prediction of one of the models which is expected to be tested at the LHC.
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Takeshi [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.
1996-05-01
A two-dimensional steady-state distributed parameter code SPOTBOW has been developed for predicting the fine structure of cladding temperature in an liquid metal fast breeder reactor (LMFBR) fuel assembly where the deformation of fuel pins is induced by irradiation swelling, creep and thermal distortion under high burn-up operating condition. When the deformed fuel pin approaches adjacent pins and wrapper tube and comes in contact with those, the peak temperature, known as the hot spot temperature, can appear somewhere on the outer surface of the cladding. The temperature rise across the film is an important consideration in the cladding temperature analysis. Fully developed turbulent momentum and heat transfer equations based on the empirical turbulent model are solved by using the Galerkin finite element method which is suitable for the problem of the complicated boundary shape, such as the wire-wrapped fuel pin bundle. A new iteration procedure has been developed for solving the above equations by using the rise in coolant temperature, which is obtained with subchannel analysis codes, as a boundary condition. Calculated results are presented for local temperature distribution in normal and bowing pin bundle geometry, as compared with experiments. (author).
Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan
2016-04-01
This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.
Yang, Lang; Palermo, Lisa; Black, Dennis M; Eastell, Richard
2014-12-01
A bone fractures only when loaded beyond its strength. The purpose of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of dual-energy X-ray absorptiometry (DXA) scans, with incident hip fracture in comparison to hip bone mineral density (BMD), Fracture Risk Assessment Tool (FRAX), and hip structure analysis (HSA) variables. This prospective case-cohort study included a random sample of 1941 women and 668 incident hip fracture cases (295 in the random sample) during a mean ± SD follow-up of 12.8 ± 5.7 years from the Study of Osteoporotic Fractures (n = 7860 community-dwelling women ≥67 years of age). We analyzed the baseline DXA scans (Hologic 1000) of the hip using a validated plane-stress, linear-elastic finite element (FE) model of the proximal femur and estimated the femoral strength during a simulated sideways fall. Cox regression accounting for the case-cohort design assessed the association of estimated femoral strength with hip fracture. The age-body mass index (BMI)-adjusted hazard ratio (HR) per SD decrease for estimated strength (2.21; 95% CI, 1.95-2.50) was greater than that for total hip (TH) BMD (1.86; 95% CI, 1.67-2.08; p 0.05), FRAX scores (range, 1.32-1.68; p hip BMD or FRAX scores. The association of estimated strength with incident hip fracture was strong (Harrell's C index 0.770), significantly better than TH BMD (0.759; p 0.05). Similar findings were obtained for intracapsular and extracapsular fractures. In conclusion, the estimated femoral strength from FE analysis of DXA scans is an independent predictor and performs at least as well as FN BMD in predicting incident hip fracture in postmenopausal women. © 2014 American Society for Bone and Mineral Research.
A Finite Element Approach to Modeling Abrasive Wear Modes
Woldman, M.; Heide, van der E.; Tinga, T.; Masen, M.A.
2016-01-01
Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e
Interval Finite Element Analysis of Wing Flutter
Institute of Scientific and Technical Information of China (English)
Wang Xiaojun; Qiu Zhiping
2008-01-01
The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...
Energy Technology Data Exchange (ETDEWEB)
Deng, Dean, E-mail: deandeng@cqu.edu.c [College of Materials Science and Engineering, Chongqing University, Shazheng Street 174, Shapingba, Chongqing 400044 (China); Kiyoshima, Shoichi [Research Center of Computational Mechanics, Inc., Togoshi NI-Bldg., 1-7-1 Togoshi, Shinagawa-ku, Tokyo 142-0041 (Japan); Ogawa, Kazuo [Japan Nuclear Energy Safety Organization, TOKYU REIT Toranomon Bldg, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Yanagida, Nobuyoshi [Hitachi Ltd. 1-1, Saiwa-cho 3-chome, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Saito, Koichi [Hitachi-GE Nuclear Energy, Ltd. 2-2, Omika-cho, 5-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)
2011-01-15
Research highlights: Welding residual stresses have asymmetrical distributions in the dissimilar metal pipe. Variable length heat source model can largely save computing time. Besides welding, other thermal processes also affect residual stresses. - Abstract: Dissimilar metal welds are commonly used in nuclear power plants to connect low alloy steel components and austenitic stainless steel piping systems. The integrity assessment and life estimation for such welded structures require consideration of residual stresses induced by manufacturing processes. Because the fabrication process of dissimilar metal weld joints is considerably complex, it is very difficult to accurately predict residual stresses. In this study, both numerical simulation technology and experimental method were used to investigate welding residual stress distribution in a dissimilar metal pipe joint with a medium diameter, which were performed by a multi-pass welding process. Firstly, an experimental mock-up was fabricated to measure the residual stress distributions on the inside and the outside surfaces. Then, a time-effective 3-D finite element model was developed to simulate welding residual stresses through using a simplified moving heat source. The simplified heat source method could complete the thermo-mechanical analysis in an acceptable time, and the simulation results generally matched the measured data near the weld zone. Through comparing the simulation results and the experimental measurements, we can infer that besides the multi-pass welding process other key manufacturing processes such as cladding, buttering and heat treatment should also be taken into account to accurately predict residual stresses in the whole range of the dissimilar metal pipe.
Finite element modeling of retinal prosthesis mechanics
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite Dynamic Elements and Modal Analysis
Directory of Open Access Journals (Sweden)
N.J. Fergusson
1993-01-01
Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
G. Dziuk; C.M. Elliott
2007-01-01
In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.
Sidorenko, Irina; Bauer, Jan; Monetti, Roberto; Mueller, Dirk; Rummeny, Ernst; Eckstein, Felix; Raeth, Christoph
2010-03-01
The assessment of trabecular bone microarchitecture by numerical analysis of high resolution magnetic resonance (HRMR) images provides global and local structural characteristics, which improve the understanding of the progression of osteoporosis and its diagnosis. In the present work we apply the finite elements method (FEM), which models the biomechanical behaviour of the bone, the scaling index method (SIM), which describes the topology of the structure on a local level, and Minkowski Functionals (MF), which are global topological characteristics, for analysing 3D HRMR images of 48 distal radius specimens in vitro. Diagnostic performance of texture measures derived from the numerical methods is compared with regard to the prevalence of vertebral fractures. Both topological methods show significantly better results than those obtained using bone mineral density (BMD) measurement and the failure load estimated by FEM. The receiver operating characteristic analysis for differentiating subjects with and without fractures reveals area under the curve of 0.63 for BMD, 0.66 for maximum compressive strength as determined in a biomechanical test, 0.72 for critical load estimated by FEM, 0.79 for MF4 and 0.86 for SIM, i.e. local topological characteristics derived by SIM suit best for diagnosing osteoporosis. The combination of FEM and SIM on tissue level shows that in both weak and strong bones the plate-like substructure of the trabecular network are the main load bearing part of the inner bone and that the relative amount of plates to rods is the most important characteristic for the prediction of bone strength.
Finite Element Modeling of the Buckling Response of Sandwich Panels
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Finite element modeling of permanent magnet devices
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan
2001-02-01
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
Finite element modelling of SAW correlator
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS
Directory of Open Access Journals (Sweden)
URDEA Mihaela
2015-06-01
Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS
Institute of Scientific and Technical Information of China (English)
Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon
2002-01-01
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Multiphase Transformer Modelling using Finite Element Method
Directory of Open Access Journals (Sweden)
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
The finite element modeling of spiral ropes
Institute of Scientific and Technical Information of China (English)
Juan Wu
2014-01-01
Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.
Finite element contact analysis of fractal surfaces
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)
2007-07-21
The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Finite Element Simulation for Interfacial Evolutions
Institute of Scientific and Technical Information of China (English)
JianmingHUANG; WeiYANG
1998-01-01
A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.
FINITE-ELEMENT MODELING OF SALT TECTONICS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2012-09-01
Full Text Available The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.
Finite element model of needle electrode sensitivity
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
EXODUS II: A finite element data model
Energy Technology Data Exchange (ETDEWEB)
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Analysis of Reverberation Chambers
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite Element Analysis of the Crack Propagation for Solid Materials
Directory of Open Access Journals (Sweden)
Miloud Souiyah
2009-01-01
Full Text Available Problem statement: The use of fracture mechanics techniques in the assessment of performance and reliability of structure is on increase and the prediction of crack propagation in structure play important part. The finite element method is widely used for the evaluation of SIF for various types of crack configurations. Source code program of two-dimensional finite element model had been developed, to demonstrate the capability and its limitations, in predicting the crack propagation trajectory and the SIF values under linear elastic fracture analysis. Approach: Two different geometries were used on this finite element model in order, to analyze the reliability of this program on the crack propagation in linear and nonlinear elastic fracture mechanics. These geometries were namely; a rectangular plate with crack emanating from square-hole and Double Edge Notched Plate (DENT. Where, both geometries are in tensile loading and under mode I conditions. In addition, the source code program of this model was written by FORTRAN language. Therefore, a Displacement Extrapolation Technique (DET was employed particularly, to predict the crack propagations directions and to, calculate the Stress Intensity Factors (SIFs. Furthermore, the mesh for the finite elements was the unstructured type; generated using the advancing front method. And, the global h-type adaptive mesh was adopted based on the norm stress error estimator. While, the quarter-point singular elements were uniformly generated around the crack tip in the form of a rosette. Moreover, make a comparison between this current study with other relevant and published research study. Results: The application of the source code program of 2-D finite element model showed a significant result on linear elastic fracture mechanics. Based on the findings of the two different geometries from the current study, the result showed a good agreement. And, it seems like very close compare to the other published
Nonlinear Finite Element Analysis of Ocean Cables
Institute of Scientific and Technical Information of China (English)
Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM
2004-01-01
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
A finite element parametric modeling technique of aircraft wing structures
Institute of Scientific and Technical Information of China (English)
Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu
2013-01-01
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Interpreting finite element results for brittle materials in endodontic restorations.
Pérez-González, Antonio; Iserte-Vilar, José L; González-Lluch, Carmen
2011-06-02
Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test.
Stochastic finite elements: Where is the physics?
Directory of Open Access Journals (Sweden)
Ostoja-Starzewski Martin
2011-01-01
Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.
Energy Technology Data Exchange (ETDEWEB)
R.W. Carpick; M.E. Plesha
2007-03-03
This report describes the accomplishments of the DOE BES grant entitled "Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems". Key results are: the determination of nanoscale frictional properties of MEMS surfaces, self-assembled monolayers, and novel carbon-based films, as well as the development of models to describe this behavior.
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Finite element analysis of thermal stresses in optical storage media
Evans, K. E.; Nkansah, M. A.; Abbott, S. J.
1988-10-01
Finite element techniques are used to calculate the thermal stresses generated in single-layer, optical storage thin films. The calculations predict that the thermal stresses generated by laser heating may reach values well beyond the strength of the media in times much less than that for pit formation by melting. Both dye-polymer and metal-based systems are considered with either air or substrate incident laser sources.
Better Finite-Element Analysis of Composite Shell Structures
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Swain, Lindsay A.
1978-01-01
From 1936 to 1974, water levels declined more than 100 feet in the Palm Springs area and 60 feet in the Palm Desert area of the upper Coachella Valley, Calif. Water from the Colorado River Aqueduct is presently being recharged to the basin. The dissolved-solids concentration of native ground water in the recharge area is about 210 mg/liter and that of recharge water ranges from 600 to 750 mg/liter. A finite-element model indicates that without recharge the 1974 water levels in the Palm Springs area will decline 200 feet by the year 2000 because of pumpage. If the aquifer is recharged at a rate from about 7 ,500 acre-feet per year in 1973 increasing to 61,200 acre-feet per year in 1990 and thereafter, the water level in the Palm Springs area will decline about 20 feet below the 1974 level by 1991 and recover to the 1974 level by 2000. The solute-transport finite-element model of the recharge area indicates that the artificial recharge plume (bounded by the 300-mg/liter line) will move about 1.1 miles downgradient of the recharge ponds by 1981 and about 4.5 miles from the ponds by 2000. (Woodard-USGS)
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
The serendipity family of finite elements
Arnold, Douglas N
2011-01-01
We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Finite element modelingof spherical induction actuator
Galary, Grzegorz
2005-01-01
The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...
A finite element model of ultrasonic extrusion
Energy Technology Data Exchange (ETDEWEB)
Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
A finite element model of ultrasonic extrusion
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Iterative methods for mixed finite element equations
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Mixed finite elements for global tide models
Cotter, Colin J
2014-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Finite element methodology for transient conduction/forced-convection thermal analysis
Thornton, E. A.; Wieting, A. R.
1979-01-01
Finite element methodology for steady state thermal analysis of convectively cooled structures has been extended for transient analysis. The finite elements are based on representing the fluid passages by fluid bulk-temperature nodes and fluid-solid interface nodes. The formulation of the finite element equations for a typical flow passage is based on the weighted residual method with upwind weighting functions. Computer implementation of the convective finite element methodology using explicit and implicit time integration algorithms is described. Accuracy and efficiency of the methodology is evaluated by comparisons with analytical solutions and finite-difference lumped-parameter analyses. The comparative analyses demonstrate that finite element conduction/conduction methodology may be used to predict transient temperatures with an accuracy equal or superior to the lumped-parameter finite-difference method.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of bolted flange connections
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Impeller deflection and modal finite element analysis.
Energy Technology Data Exchange (ETDEWEB)
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Accurate finite element modeling of acoustic waves
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
Finite Element Modeling, Simulation, Tools, and Capabilities at Superform
Raman, Hari; Barnes, A. J.
2010-06-01
Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.
Directory of Open Access Journals (Sweden)
C. Mahesh
2013-01-01
Full Text Available Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i hybrid composite having two different fibres in alternate layers, (ii fibre-matrix interface debond in alternate layers, and (iii fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.
Finite elements modeling of delaminations in composite laminates
DEFF Research Database (Denmark)
Gaiotti, m.; Rizzo, C.M.; Branner, Kim;
2011-01-01
The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.e., d...... by finite elements using different techniques. Results obtained with different finite element models are compared and discussed.......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i...... of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled...
Arc-length technique for nonlinear finite element analysis
Institute of Scientific and Technical Information of China (English)
MEMON Bashir-Ahmed; SU Xiao-zu(苏小卒)
2004-01-01
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, Received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
Assessing performance and validating finite element simulations using probabilistic knowledge
Energy Technology Data Exchange (ETDEWEB)
Dolin, Ronald M.; Rodriguez, E. A. (Edward A.)
2002-01-01
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.
Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure
Directory of Open Access Journals (Sweden)
Dr.Ragbe.M.Abdusslam
2016-08-01
Full Text Available This paper described the results of a nonlinear static mode within ANSYS of elastic and elastic-plastic behaviour of thin petroleum pipe that is subjected to an internal pressure and therefore a linear stress analysis performed using ANSYS 9.0 finite element software Such an analysis is important because the shape of most structures under internal pressure is cylindrical[1]. In this paper is considered only. Elastic and elastic-plastic finite element analysis is used to predict the principle stresses, effective stress results are compared with those obtained from theatrical equations in order to predict the limit and failure loads for this type of loading also the relationships between redial, hoop stresses and displacement has been used to develop a through understanding. The analysis was completed using ANAYS Version 9.0. (a finite element program for Microsoft Windows NT. The program allows pre-processing, analysis and post-processing stages to be completed within a single application. The program can be used to model a large number of situations including buckling, plastic deformation, forming and stress analysis problems. r mm (In this study ,a thin pipe of internal radiu ri 596 .9 mmand of externalo 609 .6objected to aninternal pressure 2 i 4 .83 / mm which is gradually increased to near the ultimate load that may be sustained by the pipe. The pipe is modelled as an elasto-plastic material using the Von Mises yield criterion which is normally used for metallic materials[2]. The specification of the load in several increments enables the spread of the plasticity to occur gradually and its effect on the stress distribution to be assessed. Key words: finite element analysis, elastic-plastic behavior, thin walled pipe equivalent stress, TWT.
Test Simulation using Finite Element Method
Energy Technology Data Exchange (ETDEWEB)
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Friction welding; Magnesium; Finite element; Shear test.
Directory of Open Access Journals (Sweden)
Leonardo Contri Campanelli
2013-06-01
Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.
Finite element methods in resistivity logging
Lovell, J. R.
1993-09-01
Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.
Optimizing the Evaluation of Finite Element Matrices
Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824
2012-01-01
Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.
Nonlinear Finite Element Analysis of Sloshing
Directory of Open Access Journals (Sweden)
Siva Srinivas Kolukula
2013-01-01
Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos
2008-01-01
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Finite Element Program Generator and Its Application in Engineering
Institute of Scientific and Technical Information of China (English)
WANShui; HUHong; CHENJian-pin
2004-01-01
A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
Impact of new computing systems on finite element computations
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
Radial flow of slightly compressible fluids: A finite element-finite ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Ablative Thermal Response Analysis Using the Finite Element Method
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
An improved optimal elemental method for updating finite element models
Institute of Scientific and Technical Information of China (English)
Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)
2004-01-01
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
Gao, Yongchang; Jin, Zhongmin; Wang, Ling; Wang, Manyi
2015-06-01
An explicit finite element method was developed to predict the dynamic behavior of the contact mechanics for a hip implant under normal walking conditions. Two key parameters of mesh sensitivity and time steps were examined to balance the accuracy and computational cost. Both the maximum contact pressure and accumulated sliding distance showed good agreement with those in the previous studies using the implicit finite element analysis and analytical methods. Therefore, the explicit finite element method could be used to predict the contact pressure and accumulated sliding distance for an artificial hip joint simultaneously in dynamic manner.
2-D Finite Element Analysis of Massive RC Structures
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1982-01-01
Nonlinear analysis of concrete structures using finite elements is discussed. The applications include a thick-walled top-closure for a pressure vessel as well as the delicate problems of beams failing in shear. The top-closure analysis evaluates the effect of two different failure criteria...... and modeling of a realistic post-failure behavior is demonstrated to be mandatory for accurate structural predictions. For shear beams it is shown that the primary cause of failure is strain softening adjacent to the load point....
2D - Finite element model of a CIGS module
Energy Technology Data Exchange (ETDEWEB)
Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)
2012-09-15
The performance of thin-film CIGS modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is demonstrated that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.
MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Chun-jia Bi; Li-kang Li
2004-01-01
In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.
Finite Element Analysis (FEA) in Design and Production.
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
A Finite Element Analysis of Optimal Variable Thickness Sheets
DEFF Research Database (Denmark)
Petersson, Joakim S
1996-01-01
A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill...
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...
An iterative algorithm for finite element analysis
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Studying a dental pathology by finite elements
Directory of Open Access Journals (Sweden)
Fernando Mejía Umaña
2010-04-01
Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.
Intra Plate Stresses Using Finite Element Modelling
Directory of Open Access Journals (Sweden)
Jayalakshmi S.
2016-10-01
Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.
Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Ellegaard, Peter
2006-01-01
The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... area over the joint lines. The finite-element model is based on the Foschi model, but with further improvements. After the theory of the model is described, results from experimental tests with two types of nail plate joints are compared with predictions given by the model. The model estimates...
Finite Element Analysis of Deformed Legs of Offshore Platform Structures
Institute of Scientific and Technical Information of China (English)
柳春图; 秦太验; 段梦兰
2002-01-01
The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.
Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis
Directory of Open Access Journals (Sweden)
T.S. Viswanathan
2014-09-01
Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Vibration Analysis of Beams by Spline Finite Element
Institute of Scientific and Technical Information of China (English)
YANG Hao; SUN Li
2011-01-01
In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.
Finite Element Model of Cardiac Electrical Conduction.
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.
1985-01-01
It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.
Finite element analysis for general elastic multi-structures
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Viscoelastic finite-element analysis of human skull - dura mater ...
African Journals Online (AJOL)
SERVER
2008-03-18
Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Spec
Raffler, Marco; Sevarin, Alessio; Ellersdorfer, Christian; Heindl, Simon F.; Breitfuss, Christoph; Sinz, Wolfgang
2017-08-01
In this research, a parameterized beam-element-based mechanical modeling approach for cylindrical lithium ion batteries is developed. With the goal to use the cell model in entire vehicle crash simulations, focus of development is on minimizing the computational effort whilst simultaneously obtaining accurate mechanical behavior. The cylindrical cell shape is approximated by radial beams connected to each other in circumferential and longitudinal directions. The discrete beam formulation is used to define an anisotropic material behavior. An 18650 lithium ion cell model constructed in LS-Dyna is used to show the high degree of parameterization of the approach. A criterion which considers the positive pole deformation and the radial deformation of the cell is developed for short circuit prediction during simulation. An abuse testing program, consisting of radial crush, axial crush, and penetration is performed to evaluate the mechanical properties and internal short circuit behavior of a commercially available 18650 lithium cell. Additional 3-point-bending tests are performed to verify the approach objectively. By reducing the number of strength-related elements to 1600, a fast and accurate cell model can be created. Compared to typical cell models in technical literature, simulation time of a single cell load case can be reduced by approx. 90%.
Finite element modeling of blast lung injury in sheep.
Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon
2015-04-01
A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.
ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS
Institute of Scientific and Technical Information of China (English)
江成顺; 刘蕴贤; 沈永明
2004-01-01
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.
OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +
Institute of Scientific and Technical Information of China (English)
马永其; 冯伟
2002-01-01
The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...
Finite element simulation of thick sheet thermoforming
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite element analysis of posterior cervical fixation.
Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q
2015-02-01
Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Thermal Analysis of Thin Plates Using the Finite Element Method
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
Finite Element Analysis of Fluid-Conveying Timoshenko Pipes
Directory of Open Access Journals (Sweden)
Chih-Liang Chu
1995-01-01
Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.
Multiscale finite-element method for linear elastic geomechanics
Castelletto, Nicola; Hajibeygi, Hadi; Tchelepi, Hamdi A.
2017-02-01
The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.
PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs
Institute of Scientific and Technical Information of China (English)
ZHANG Linbo
2011-01-01
@@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.
Applications of finite element simulation in orthopedic and trauma surgery.
Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis
2012-04-18
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints
Finite element method for thermal analysis of concentrating solar receivers
Shtrakov, Stanko; Stoilov, Anton
2006-01-01
Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...
PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS
Institute of Scientific and Technical Information of China (English)
Yun-qing Huang; Shi Shu; Xi-jun Yu
2006-01-01
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
A vortex model for Darrieus turbine using finite element techniques
Energy Technology Data Exchange (ETDEWEB)
Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)
2001-09-01
Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)
Finite Element Simulation of Blanking Process
Directory of Open Access Journals (Sweden)
Afzal Ahmed
2012-10-01
daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices
Avron, Haim
2011-01-01
We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...
FIESTA ROC: A new finite element analysis program for solar cell simulation
Clark, Ralph O.
1991-08-01
The Finite Element Semiconductor Three-dimensional Analyzer by Ralph O. Clark (FIESTA ROC) is a computational tool for investigating in detail the performance of arbitrary solar cell structures. As its name indicates, it uses the finite element technique to solve the fundamental semiconductor equations in the cell. It may be used for predicting the performance (thereby dictating the design parameters) of a proposed cell or for investigating the limiting factors in an established design.
FIESTA ROC: A new finite element analysis program for solar cell simulation
Clark, Ralph O.
1991-01-01
The Finite Element Semiconductor Three-dimensional Analyzer by Ralph O. Clark (FIESTA ROC) is a computational tool for investigating in detail the performance of arbitrary solar cell structures. As its name indicates, it uses the finite element technique to solve the fundamental semiconductor equations in the cell. It may be used for predicting the performance (thereby dictating the design parameters) of a proposed cell or for investigating the limiting factors in an established design.
Essentials of finite element modeling and adaptive refinement
Dow, John O
2012-01-01
Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t
A mixed finite element for the analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1983-01-01
A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.
Hambli, Ridha
2011-01-01
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals,Taylor-type and finite element polycrystai models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finte element modeling,based on the rate dependent crystal constitutive equations.Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the development of rolling texture of interstitial-flee steel (IF steel) at various reductions.The modeled results show a good agreement with the experimental results.With increasing reduction,the predicted and experimental rolling textures tend to sharper,and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.Conclusions are obtained that rolling textures calculated with 48 {110}+{ 112}+{123} slip systems are more approximate to EBSD results.
Validation of a finite element model of the human metacarpal.
Barker, D S; Netherway, D J; Krishnan, J; Hearn, T C
2005-03-01
Implant loosening and mechanical failure of components are frequently reported following metacarpophalangeal (MCP) joint replacement. Studies of the mechanical environment of the MCP implant-bone construct are rare. The objective of this study was to evaluate the predictive ability of a finite element model of the intact second human metacarpal to provide a validated baseline for further mechanical studies. A right index human metacarpal was subjected to torsion and combined axial/bending loading using strain gauge (SG) and 3D finite element (FE) analysis. Four different representations of bone material properties were considered. Regression analyses were performed comparing maximum and minimum principal surface strains taken from the SG and FE models. Regression slopes close to unity and high correlation coefficients were found when the diaphyseal cortical shell was modelled as anisotropic and cancellous bone properties were derived from quantitative computed tomography. The inclusion of anisotropy for cortical bone was strongly influential in producing high model validity whereas variation in methods of assigning stiffness to cancellous bone had only a minor influence. The validated FE model provides a tool for future investigations of current and novel MCP joint prostheses.
Finite element simulation of food transport through the esophageal body
Institute of Scientific and Technical Information of China (English)
Wei Yang; Tat Ching Fung; Kerm Sim Chian; Chuh Khiun Chong
2007-01-01
The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structuremechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore,the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.
3D Finite Element Analysis of Particle-Reinforced Aluminum
Shen, H.; Lissenden, C. J.
2002-01-01
Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.
Li, Jianying; Li, Haiyan; Fok, Alex S L; Watts, David C
2012-09-01
The aim of this study was to numerically evaluate the effects of filler contents and resin properties on the material properties of dental composites utilizing realistic 3D micromechanical finite element models. 3D micromechanical finite element models of dental composites containing irregular fillers with non-uniform sizes were created based on a large-scale, surrogate mixture fabricated from irregularly shaped stones and casting resin. The surrogate mixture was first scanned with a micro-CT scanner, and the images reassembled to produce a 3D finite element model. Different filler fractions were achieved by adjusting the matrix volume while keeping the fillers unchanged. Polymerization shrinkage, Young's modulus, Poisson's ratio and viscosity of the model composites were predicted using the finite element models, and their dependence on the filler fraction and material properties of the resin matrix were considered. Comparison of the numerical predictions with available experimental data and analytical models from the literature was performed. Increased filler fraction resulted in lower material shrinkage, higher Young's modulus, lower Poisson's ratio and higher viscosity in the composite. Predicted shrinkage and Young's modulus agreed well with the experimental data and analytical predictions. The McGee-McCullough model best fit the shrinkage and Young's modulus predicted by the finite element method. However, a new parameter, used as the exponent of the filler fraction, had to be introduced to the McGee-McCullough model to better match the predicted viscosity and Poisson's ratio with those from the finite element analysis. Realistic micro-structural finite element models were successfully applied to study the effects of filler fraction and matrix properties on a wide range of mechanical properties of dental composites with irregular fillers. The results can be used to direct the design of such materials to achieve the desired mechanical properties. Published by
Partitions of nonzero elements of a finite field into pairs
Karasev, R N
2010-01-01
In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...
Institute of Scientific and Technical Information of China (English)
Bahattin Kanber; O.Yavuz Bozkurt
2006-01-01
In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.
Finite Element Crash Simulations and Impact-Induced Injuries
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
Finite Element Crash Simulations and Impact-Induced Injuries
Mackerle, Jaroslav
1999-01-01
This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Accurate Parallel Algorithm for Adini Nonconforming Finite Element
Institute of Scientific and Technical Information of China (English)
罗平; 周爱辉
2003-01-01
Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES
Institute of Scientific and Technical Information of China (English)
Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey
2009-01-01
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION
Institute of Scientific and Technical Information of China (English)
MeiLiquan
1999-01-01
In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.
On mixed finite element techniques for elliptic problems
Directory of Open Access Journals (Sweden)
M. Aslam Noor
1983-01-01
mildly nonlinear elliptic problems by means of finite element methods of mixed type. The technique is based on an extended variational principle, in which the constraint of interelement continuity has been removed at the expense of introducing a Lagrange multiplier.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Finite Element Meshes Auto-Generation for the Welted Bifurcation
Institute of Scientific and Technical Information of China (English)
YUANMei; LIYa-ping
2004-01-01
In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.
Finite element method for one-dimensional rill erosion simulation on a curved slope
Directory of Open Access Journals (Sweden)
Lijuan Yan
2015-03-01
Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element
On the error bounds of nonconforming finite elements
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.
Anisotropic rectangular nonconforming finite element analysis for Sobolev equations
Institute of Scientific and Technical Information of China (English)
SHI Dong-yang; WANG Hai-hong; GUO Cheng
2008-01-01
An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.
THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE FOR FINITE ELEMENT APPROXIMATIONS
Institute of Scientific and Technical Information of China (English)
TieZhang; Yan-pingLin; R.J.Tait
2004-01-01
A derivative patch interpolating recovery technique is analyzed for the finite element approximation to the second order elliptic boundary value problems in two dimensional case.It is shown that the convergence rate of the recovered gradient admits superc onvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate (ultracovergence) at an internal node point when even order finite element spaces and local uniform meshes are used.
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
Determination of a synchronous generator characteristics via Finite Element Analysis
Directory of Open Access Journals (Sweden)
Kolondzovski Zlatko
2005-01-01
Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
Finite Element Model Updating Using Response Surface Method
Marwala, Tshilidzi
2007-01-01
This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...
Enhanced patch test of finite element methods
Institute of Scientific and Technical Information of China (English)
CHEN; Wanji
2006-01-01
Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
Studying apple bruise using a finite element method analysis
Pascoal-Faria, P.; Alves, N.
2017-07-01
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in a loss of profits for the entire fruit industry. Bruising is defined as damage and discoloration of fruit flesh, usually with no breach of the skin. The three factors which can physically cause fruit bruising are vibration, compression load and impact. The last one is the main source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important task. To address these problems a finite element analysis has been developed for studying Portuguese Royal Gala apple bruise. The results obtained will be suitable to apple distributors and sellers and will allow a reduction of the impact caused by bruise damage in apple annual production.
CSIR Research Space (South Africa)
Loveday, PW
2007-03-01
Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...
Advances in the study of hybrid finite elements
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.
Dynamic finite element analysis of third size charpy specimens of V-4Cr-4Ti
Energy Technology Data Exchange (ETDEWEB)
Lansberry, M.R.; Kumar, A.S.; Mueller, G.E. [Univ. of Missouri, Rolla, MO (United States); Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)
1997-04-01
A 2-D finite element analysis was performed on precracked, one third scale CVN specimens to investigate the sensitivity of model results to key material parameters such as yield strength, failure strain and work hardening characteristics. Calculations were carried out at temperatures of -196{degree}C and 50{degree}C. The dynamic finite element analyses were conducted using ABAQUS/Explicit V5.4. The finite element results were compared to experimental results for the production-scale heat of V-4Cr-4Ti (ANL Heat No. 832665) as a benchmark. Agreement between the finite element model and experimental data was very good at -196{degree}C, whereas at 50{degree}C the model predicted a slightly lower absorbed energy than actually measured.
Dynamic test and finite element model updating of bridge structures based on ambient vibration
Institute of Scientific and Technical Information of China (English)
2008-01-01
The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis,and are also an important target of health condition monitoring.In this paper,a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway.Based on design drawings,the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements.Thus,a set of data is selected based on sensitivity analysis and optimization theory;the finite element model of the bridge is updated.The numerical and experimental results show that the updated method is more simple and effective,the updated finite element model can reflect the dynamic characteristics of the bridge better,and it can be used to predict the dynamic response under complex external forces.It is also helpful for further damage identification and health condition monitoring.
THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
Institute of Scientific and Technical Information of China (English)
李宏; 刘儒勋
2001-01-01
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
Finite element model updating of natural fibre reinforced composite structure in structural dynamics
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
Institute of Scientific and Technical Information of China (English)
LIU Yang; FENG Hui
2005-01-01
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex
Institute of Scientific and Technical Information of China (English)
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
Shim, Vickie B; Battley, Mark; Anderson, Iain A; Munro, Jacob T
2015-01-01
Bone in the pelvis is a composite material with a complex anatomical structure that is difficult to model computationally. Rather than assigning material properties to increasingly smaller elements to capture detail in three-dimensional finite element (FE) models, properties can be assigned to Gauss points within larger elements. As part of a validation process, we compared experimental and analytical results from a composite beam under four-point load to FE models with material properties assigned to refined elements and Gauss points within larger elements. Both FE models accurately predicted deformation and the analytical predictions of internal shear stress.
B Free Finite Element Approach for Saturated Porous Media: Consolidation
Directory of Open Access Journals (Sweden)
M. M. Stickle
2016-01-01
Full Text Available The B free finite element approach is applied to the governing equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid and fluid phases. Under this approach, where Voigt notation is avoided, the finite element equilibrium equations and the linearization of the coupled governing equations are fully derived using tensor algebra. In order to assess the B free approach for the consolidation equations, direct comparison with analytical solution of the response of a homogeneous and isotropic water-saturated poroelastic finite column under harmonic load is presented. The results illustrate the capability of this finite element approach of reproducing accurately the response of quasistatic phenomena in a saturated porous medium.
Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation
Directory of Open Access Journals (Sweden)
W. Kanok-Nukulchai
2009-01-01
Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.
Experimental validation of boundary element methods for noise prediction
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.
Shen, Jing Jin; Xu, Feng Yu; Yang, Wen An
2016-08-01
To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element model for the active contraction. The hyper-viscoelastic model considers the myocardium microstructure, while the active model is phenomenologically based on the combination of Hill's equation for the steady tetanized contraction and the specific time-length-force property of the myocardial muscle. To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the model are compared with the experimental values in the literature. It is found that the proposed model not only can estimate well the pumping function of the heart, but also predicts the transverse shear strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual stresses in the myocardium.
Institute of Scientific and Technical Information of China (English)
邹翔; 王三民; 袁茹
2013-01-01
在直齿面齿轮齿面仿真的基础上,利用Matlab与ANSYS相结合实现了面齿轮副在有限元软件中从参数化建模到承载接触分析的自动化.为解决面齿轮强度设计的应力计算问题,研究了点接触面齿轮载荷与弯曲应力的确切关系,并提出了一种采用人工神经网络预测面齿轮弯曲应力的方法,该方法以有限元分析结果为样本,能够完成面齿轮弯曲应力的快速定量计算,在训练神经网络的样本参数范围内,该方法具有很高的精度,为面齿轮的强度设计奠定了基础.%Based on tooth surface simulation of spur face gear, the automation from parametric modeling to load tooth contact analysis of face gear pair in finite element software is achieved by using Matlab and ANSYS. To solve the problem of stress calculation while design face gear, the exact relationship between load and bending stress of face gear is researched, and a method to predict the bending stress by artificial neural network is presented which regard the result of finite element analysis as samples, the method can rapidly calculate the bending stress with high accuracy while parameters are within sample scope. The foundation for strength design of face gear is laid.
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Finite Element Vibration Analysis of Beams, Plates and Shells
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Efficient Finite Element Methods for Transient Analysis of Shells.
1985-04-01
Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J
Research of Stamp Forming Simulation Based on Finite Element Method
Institute of Scientific and Technical Information of China (English)
SU Xaio-ping; XU Lian
2008-01-01
We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Preconditioned CG-solvers and finite element grids
Energy Technology Data Exchange (ETDEWEB)
Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Adaptive grid finite element model of the tokamak scrapeoff layer
Energy Technology Data Exchange (ETDEWEB)
Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...
Footbridge between finite volumes and finite elements with applications to CFD
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
ELASTO-PLASTIC FINITE ELEMENT ANALYSIS OF HOOK'S JOINT
Directory of Open Access Journals (Sweden)
Adnan ATICI
1996-03-01
Full Text Available In this study, stress analysis has been done in Hooke's joint by the finite element method. In finite element meshing, isoparametric quadrilateral elements with four nodes has been chosen and Lagrange polynomial has been used as the interpolation function. The special computer program has been written for the automatic mesh generation. In addition the other program has been developed to solve the finite element problems. Elastoplastic stress analysis is done to calculate the residual stresses in hooke's joint. Elasto-plastic stress values are calculated under loading from 400 daN to 1000 daN with increment of 100 daN. In this analysis "The initial stress method" is used.
Finite element analysis of piezoelectric underwater transducers for acoustic characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)
2009-02-15
This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
Computationally efficient finite element evaluation of natural patellofemoral mechanics.
Fitzpatrick, Clare K; Baldwin, Mark A; Rullkoetter, Paul J
2010-12-01
Finite element methods have been applied to evaluate in vivo joint behavior, new devices, and surgical techniques but have typically been applied to a small or single subject cohort. Anatomic variability necessitates the use of many subject-specific models or probabilistic methods in order to adequately evaluate a device or procedure for a population. However, a fully deformable finite element model can be computationally expensive, prohibiting large multisubject or probabilistic analyses. The aim of this study was to develop a group of subject-specific models of the patellofemoral joint and evaluate trade-offs in analysis time and accuracy with fully deformable and rigid body articular cartilage representations. Finite element models of eight subjects were used to tune a pressure-overclosure relationship during a simulated deep flexion cycle. Patellofemoral kinematics and contact mechanics were evaluated and compared between a fully deformable and a rigid body analysis. Additional eight subjects were used to determine the validity of the rigid body pressure-overclosure relationship as a subject-independent parameter. There was good agreement in predicted kinematics and contact mechanics between deformable and rigid analyses for both the tuned and test groups. Root mean square differences in kinematics were less than 0.5 deg and 0.2 mm for both groups throughout flexion. Differences in contact area and peak and average contact pressures averaged 5.4%, 9.6%, and 3.8%, respectively, for the tuned group and 6.9%, 13.1%, and 6.4%, respectively, for the test group, with no significant differences between the two groups. There was a 95% reduction in computational time with the rigid body analysis as compared with the deformable analysis. The tuned pressure-overclosure relationship derived from the patellofemoral analysis was also applied to tibiofemoral (TF) articular cartilage in a group of eight subjects. Differences in contact area and peak and average contact
Effective Finite Elements for Shell Analysis.
1984-02-20
conjunction with a shallow shell theory . It 2 should be noteJ that contrary to the results of earlier investigators [12,19], use of a shallow shell theory in...the inadequacy of the shallow shell theory for the relatively deep element emerging from such a coarse mesh. A considerable improvement is obtained
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
Institute of Scientific and Technical Information of China (English)
Sutthisak Phongthanapanich; Pramote Dechaumphai
2008-01-01
A nodeless variable element method with the flux-based formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula-tion provides accurate temperature distributions to yield more accurate thermal stress solutions. The flux-based formula-tion is used to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element meshes that can adapt and move along with the transient solution behavior. A version of a nearly opti- mal element size determination is proposed to provide high convergence rate of the predicted solutions. The combined procedure is evaluated by solving several thermal, structural,and thermal stress problems.
FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS
Institute of Scientific and Technical Information of China (English)
Junping Wang; Xiaoshen Wang; Xiu Ye
2008-01-01
We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.
Variational formulation of high performance finite elements: Parametrized variational principles
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
New triangular and quadrilateral plate-bending finite elements
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Institute of Scientific and Technical Information of China (English)
ZHANG QianCheng; CHEN AiPing; CHEN ChangQing; LU TianJian
2009-01-01
The methods of homogenization and finite elements are employed to predict the effective elastic con-stants and stress-strain responses of a new type of lattice structure, the X-structure proposed by the authors in a companion paper. It is shown that in most cases the predictions by the equivalent ho-mogenization theory agree well with the experimental and 3-dimensional finite element calculated re-sults. The theoretical and numerical study supports the argument that the X-structure is superior to the pyramid lattice structure in terms of mechanical strength.
Ultralight X-type lattice sandwich structure (Ⅱ):Micromechanics modeling and finite element analysis
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The methods of homogenization and finite elements are employed to predict the effective elastic constants and stress-strain responses of a new type of lattice structure,the X-structure proposed by the authors in a companion paper. It is shown that in most cases the predictions by the equivalent homogenization theory agree well with the experimental and 3-dimensional finite element calculated results. The theoretical and numerical study supports the argument that the X-structure is superior to the pyramid lattice structure in terms of mechanical strength.
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Finite Element Analysis of Circular Plate using SolidWorks
Energy Technology Data Exchange (ETDEWEB)
Kang, Yeo Jin; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-10-15
Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts
Institute of Scientific and Technical Information of China (English)
GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah
2004-01-01
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.
Crystallographic effects during micromachining — A finite-element model
Song, Shin-Hyung; Choi, Woo Chun
2015-07-01
Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.
3D finite element model for treatment of cleft lip
Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong
2009-02-01
Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.
Finite Element Models for Electron Beam Freeform Fabrication Process
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the
Wang, Tiening; Takayasu, Makoto; Bordini, Bernardo
2014-01-01
Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data curre...
A Finite Element Method for Cracked Components of Structures
Institute of Scientific and Technical Information of China (English)
刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星
2003-01-01
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, J M
2004-08-12
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Finite element modeling for volume phantom in Electrical Impedance Tomography
Directory of Open Access Journals (Sweden)
I. O. Rybina
2011-10-01
Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS
Institute of Scientific and Technical Information of China (English)
Shipeng Mao; Zhong-Ci Shi
2009-01-01
In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an ex-plicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex-tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.
Finite Element Residual Stress Analysis of Planetary Gear Tooth
Directory of Open Access Journals (Sweden)
Jungang Wang
2013-01-01
Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.
Finite element analysis of magnetization reversal in granular thin films
Spargo, A W
2002-01-01
This thesis develops a Galerkin finite element model of magnetisation dynamics in granular thin films. The governing equations of motion are the Gilbert equations with an effective magnetic field taking contributions from exchange interactions, magnetocrystalline anisotropy, applied magnetic field as well as the magnetostatic field given by Maxwells equations. The magnetostatic field is formulated as a scalar potential described by Poissons equation which is solved using a second order finite element method. The Gilbert equations are discretized in time using an implicit midpoint method which naturally conserves the magnitude of the magnetisation vector. An infinite thin film is approximated using periodic boundary conditions with material microstructure represented using the Voronoi tessellation. The effects of thermal fluctuations are modelled by the stochastic Langevin-Gilbert equations, again solved by a Galerkin finite element method. The implicit midpoint time-stepping scheme ensures that solutions conv...
Finite element simulation of barge impact into a rigid wall
Directory of Open Access Journals (Sweden)
H.W. Leheta
2014-03-01
Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
郭书祥; 吕震宙
2001-01-01
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.
Efficient Finite Element Modelling of Elastodynamic Scattering
Velichko, A.; Wilcox, P. D.
2010-02-01
A robust and efficient technique for predicting the complete scattering behavior for an arbitrarily-shaped defect is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. Example results for 2D and 3D scattering in isotropic material and guided wave scattering are presented.
Finite element based model of parchment coffee drying
Directory of Open Access Journals (Sweden)
Preeda Prakotmak
2015-03-01
Full Text Available Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin layer drying. Thin layer drying experiments of coffee bean and parchment coffee were conducted in the temperature range of 40-60o C, the relative humidity ranged from 14 to 28% and drying air velocity of 1.4 m/s. The moisture diffusivities in different coffee’s components (parchment and coffee bean were determined by minimizing the RMSE between the predicted and the experimental data of moisture contents. The simulated results showed that the moisture diffusivities of coffee bean were three orders of magnitude higher than those of the parchment. Moisture diffusivities of coffee components were found to significantly increase (P<0.05 with the increase in drying air temperature and were expressed by Arrhenius-type equations. Moreover, the model was also used to predict the moisture gradient in coffee bean during drying. The model simulates the moisture contents in different components of parchment coffee well and it provides a better understanding of the transport processes in the different components of the parchment coffee
Finite Elements in Ab Initio Electronic-Structure Calulations
Pask, J. E.; Sterne, P. A.
Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.
Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method
Directory of Open Access Journals (Sweden)
Emir Gülümser
2014-01-01
Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.
Splitting extrapolation based on domain decomposition for finite element approximations
Institute of Scientific and Technical Information of China (English)
吕涛; 冯勇
1997-01-01
Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.
Compatible finite element spaces for geophysical fluid dynamics
Natale, Andrea
2016-01-01
Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.
Least-squares finite-element lattice Boltzmann method.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2004-06-01
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.
NURBS-enhanced finite element method for Euler equations
Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.
2008-01-01
This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...
Substructure System Identification for Finite Element Model Updating
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
FINITE ELEMENT IMPLEMENTATION OF DELAMINATION IN COMPOSITE PLATES
Directory of Open Access Journals (Sweden)
Milan Žmindák
2012-12-01
Full Text Available Modelling of composite structures by finite element (FE codes to effectively model certain critical failure modes such as delamination is limited. Previous efforts to model delamination and debonding failure modes using FE codes have typically relied on ad hoc failure criteria and quasi-static fracture data. Improvements to these modelling procedures can be made by using an approach based on fracture mechanics. A study of modelling delamination using the finite element code ANSYS was conducted. This investigation demonstrates the modelling of composites through improved delamination modelling. Further developments to this approach may be improved.
THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM
Institute of Scientific and Technical Information of China (English)
Dongying Hua; Lieheng Wang
2007-01-01
We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Energy Technology Data Exchange (ETDEWEB)
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING
Institute of Scientific and Technical Information of China (English)
党发宁; 荣廷玉; 孙训方
2001-01-01
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
1995-01-01
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Preconditioning for Mixed Finite Element Formulations of Elliptic Problems
Wildey, Tim
2013-01-01
In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION
Directory of Open Access Journals (Sweden)
K. S. Kurachka
2014-01-01
Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.
The Finite Element Method An Introduction with Partial Differential Equations
Davies, A J
2011-01-01
The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co
Local and Parallel Finite Element Algorithms for Eigenvalue Problems
Institute of Scientific and Technical Information of China (English)
Jinchao Xu; Aihui Zhou
2002-01-01
Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.
Diffusive mesh relaxation in ALE finite element numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Discontinuous Galerkin finite element methods for gradient plasticity.
Energy Technology Data Exchange (ETDEWEB)
Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Kim, Jaehwan; Jung, Eunmi; Choi, Seung-Bok
2002-07-01
This paper presents a numerical modeling technique of piezoelectric transducers by taking into account wave radiation and scattering. It is based on the finite element modeling. Coupling problems between piezoelectric and elastic materials as well as fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Wave Envelop Element) is adopted to take into account the infinite domain. The IWEE code is added to an in-house finite element program, and commercial pre and post-processor are used for mesh generation and to see the output. The validation of the numerical modeling is proved through an example, and scattering and radiation analysis of Tonpilz transducer is performed. The scattered wave on the sensor is calculated, and the sensor response, so called RVS (Receiving Voltage Sensitivity) is predicted.
SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
Qi-ding Zhu
2000-01-01
In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
S Gopalakrishnan; G Devi
2000-02-01
The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a close relationship between the penalty finite element approach that uses reduced/selective numerical integration to alleviate locking, and the mixed finite element approach. That is, performing reduced/selective integration in the penalty approach amounts to reducing the order of pressure interpolation in the mixed finite element approach for obtaining similar results. A number of numerical experiments are performed to determine the optimum degree of interpolation of both the mean pressure and the rotational pressure in order that the twin constraints are satisfied exactly. For this purpose, the benchmark solution of the rigid rectangular tank is used. It is found that, irrespective of the degree of mean and the rotational pressure interpolation, the linear triangle mesh, with or without central bubble function (incompatible mode), locks when both the constraints are enforced simultaneously. However, for quadratic triangle, linear interpolation of the mean pressure and constant rotational pressure ensures exact satisfaction of the constraints and the mesh does not lock. Based on the results obtained from the numerical experiments, a number of important conclusions are arrived at.
Parallel finite element modeling of earthquake ground response and liquefaction
Institute of Scientific and Technical Information of China (English)
Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law
2004-01-01
Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
A transputer based finite element solver
Favenesi, J. A.; Danial, A. N.; Bower, M. V.
1987-01-01
The feasibility of performing FEM structural-mechanics analyses on transputer systems is investigated experimentally. Transputers are programmable microprocessors equipped with local memory and point-to-point communication links; they can be joined in a large concurrent system via a programming language which supports distributed processing; this permits parallel processing at relatively low hardware cost. The computational tasks required by FEM programs are reviewed; the hardware (one PC, one master transputer, and 12 slave transputers) employed in the test calculations is described; and results demonstrating the speed and efficiency of the transputer array in assembling a global stiffness matrix and performing Gauss-Jordan matrix inversion are presented in graphs. It is predicted that larger transputer networks could approach the power of supercomputers at minicomputer costs.
Automated muscle wrapping using finite element contact detection.
Favre, Philippe; Gerber, Christian; Snedeker, Jess G
2010-07-20
Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general
Finite element approach for transient analysis of multibody systems
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
A new formulation of hybrid/mixed finite element
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Development of Generic Field Classes for Finite Element and Finite Difference Problems
Directory of Open Access Journals (Sweden)
Diane A. Verner
1993-01-01
Full Text Available This article considers the development of a reusable object-oriented array library, as well as the use of this library in the construction of finite difference and finite element codes. The classes in this array library are also generic enough to be used to construct other classes specific to finite difference and finite element methods. We demonstrate the usefulness of this library by inserting it into two existing object-oriented scientific codes developed at Sandia National Laboratories. One of these codes is based on finite difference methods, whereas the other is based on finite element methods. Previously, these codes were separately maintained across a variety of sequential and parallel computing platforms. The use of object-oriented programming allows both codes to make use of common base classes. This offers a number of advantages related to optimization and portability. Optimization efforts, particularly important in large scientific codes, can be focused on a single library. Furthermore, by encapsulating machine dependencies within this library, the optimization of both codes on different architec-tures will only involve modification to a single library.
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim;
2013-01-01
distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...... modes related to the production methods is presented in this paper. A microscopic analysis of the fracture surfaces was carried out in order to better understand the failure mechanisms. © 2013 Taylor & Francis Group....
Modeling water permeability in needle-punched nonwovens using finite element analysis
CSIR Research Space (South Africa)
Patanaik, A
2008-03-01
Full Text Available -punching process. The pore size in the nonwovens is measured by liquid extrusion porometry. Water permeability is measured by the water permeability tester. A finite element analysis is employed to predict the flow velocity through the nonwovens. A good correlation...
Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner;
2013-01-01
This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...
Schweckendiek, T.; Courage, W.M.G.; Van Gelder, P.H.A.J.M.
2007-01-01
The Finite Element Method is well accepted in design practice nowadays. It can be used for modeling complex structures and systems. The constitutive models are improving, which enables us to make more accurate predictions of the real world behavior. On the other hand, especially in the field of geot
Schweckendiek, T.; Courage, W.M.G.; Gelder, A.J.M. van
2007-01-01
The Finite Element Method is well accepted in design practice nowadays. It can be used for modeling complex structures and systems. The constitutive models are improving, which enables us to make more accurate predictions ofthe real world behavior. On the other hand, especially in the field ofgeotec
Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode
Institute of Scientific and Technical Information of China (English)
Hu Qingxian; Wu Chuansong; Zhang Yuming
2007-01-01
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.
A new strategy for stress analysis using the finite element method
Kamat, M. P.; Vandenbrink, D.
1983-01-01
In the paper the authors examine the effectiveness of the Powell-Toint strategy for evaluating the Hessian of the potential energy surface of a finite element model that can be used for linear stress analysis and transient response predictions of structures. Cases for which the Powell-Toint strategy may be cost-effective with the conventional method of stress analysis are identified.
Simulation of wind effects on tall structures by finite element method
Ebrahimi, Masood
2016-06-01
In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ- ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.
Broeke, ten R.H.M.; Tarala, M.; Arts, J.J.; Janssen, D.W.; Verdonschot, N.J.J.; Geesink, R.G.T.
2014-01-01
This study assessed whether the Symax™ implant, a modification of the Omnifit® stem (in terms of shape, proximal coating and distal surface treatment), would yield improved bone remodelling in a clinical DEXA study, and if these results could be predicted in a finite element (FE) simulation study.
Broeke, R.H. Ten; Tarala, M.; Arts, J.J.C.; Janssen, D.W.; Verdonschot, N.J.J.; Geesink, R.G.T.
2014-01-01
This study assessed whether the Symax implant, a modification of the Omnifit((R)) stem (in terms of shape, proximal coating and distal surface treatment), would yield improved bone remodelling in a clinical DEXA study, and if these results could be predicted in a finite element (FE) simulation study
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2008-01-01
Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...
ON FINITE ELEMENT METHODS FOR INHOMOGENEOUS DIELECTRIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
Zhiming Chen; Jian-hua Yuan
2004-01-01
We investigate the problem of computing electromagnetic guided waves in a closed,inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form associated with the eigenvalue problem, we provide a new convergence analysis for the finite element approximations. Numerical results are reported to illustrate the performance of the method.
A Finite Element Solution for Barrel Dynamic Stress
Institute of Scientific and Technical Information of China (English)
ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen
2007-01-01
With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.
Finite Element Vibration and Dynamic Response Analysis of Engineering Structures
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
2000-01-01
Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.
Surface processing methods for point sets using finite elements
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs
Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing
Directory of Open Access Journals (Sweden)
Merve Yavuz ERKEK
2015-03-01
Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.
Implicit extrapolation methods for multilevel finite element computations
Energy Technology Data Exchange (ETDEWEB)
Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Piezoelectric Accelerometers Modification Based on the Finite Element Method
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.
2000-01-01
The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...
Finite-Element Analysis of Forced Convection and Conduction
Wieting, A. R.
1982-01-01
TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.
A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
芮洪兴
2004-01-01
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given.
DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Abdellatif Agouzal
2000-01-01
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.
MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Xue-jun Xu; Jin-ru Chen
2003-01-01
In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, I.e, the convergence rate is independent of the mesh size L and the time step parameter т.
Boundary control of parabolic systems - Finite-element approximation
Lasiecka, I.
1980-01-01
The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.
An Eulerean finite element model for penetration in layered soil
Berg, van den Peter; Borst, de Rene; Huetink, Han
1996-01-01
An Eulerean large-strain finite element formulation is presented to simulate static soil penetration. The method is an extension of the Updated Lagrangean description to an Eulerean formulation taking into account convection of deformation-history-dependent properties as well as material properties.
Closed Loop Finite Element Modeling of Piezoelectric Smart Structures
Directory of Open Access Journals (Sweden)
Guang Meng
2006-01-01
Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.
On the Approaching Domain Obtained by Finite Element Method
Institute of Scientific and Technical Information of China (English)
邹青松; 李永海
2002-01-01
The use of finite element method leads to replacing the initial domain by an approaching domain,Under some appropriate assumptions,we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.
Finite element modelling of fibre-reinforced brittle materials
Kullaa, J.
1997-01-01
The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi
Finite element analysis of bone loss around failing implants
Wolff, J.; Narra, N.; Antalainen, A.K.; Valášek, J.; Kaiser, J.; Sandór, G.K.; Marcián, P.
2014-01-01
Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A
An Orthogonal Residual Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.
A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...
Finite element estimation of acoustical response functions in HID lamps
Energy Technology Data Exchange (ETDEWEB)
Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)
2009-11-21
High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.
Space-time discontinuous Galerkin finite element methods
Vegt, van der J.J.W.; Deconinck, H.; Ricchiuto, M.
2006-01-01
In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and stabilizati
THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
SHI Dongyang; ZHU Huiqing
2005-01-01
This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
Finite element analysis of boron diffusion in wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
Hands on applied finite element analysis application with ANSYS
Arslan, Mehmet Ali
2015-01-01
Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.
The Development of Piezoelectric Accelerometers Using Finite Element Analysis
DEFF Research Database (Denmark)
Liu, Bin
1999-01-01
This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
A Dual Orthogonality Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.; Hededal, O.
In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, P.; Bechgaard, C.;
2003-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
(AJST) FINITE ELEMENT ANALYSIS OF A FLUID-STRUCTURE ...
African Journals Online (AJOL)
3 Unité de Mécanique des fluides appliquée et Modélisation B.P W 3038 Sfax, Tunisie ... Key words : Fluid-structure interaction, flexible pipe, rubber, finite element method. INTRODUCTION ...... membrane and thin fluid layer, 1999. Journal of ...
Finite Groups with Three Conjugacy Class Sizes of some Elements
Indian Academy of Sciences (India)
Qingjun Kong
2012-08-01
Let be a finite group. We prove as follows: Let be a -solvable group for a fixed prime . If the conjugacy class sizes of all elements of primary and biprimary orders of are $\\{1,p^a,n\\}$ with and two positive integers and (,)=1, then is -nilpotent or has abelian Sylow -subgroups.
Finite Element Studies Of Tangent Mounted Conical Optics
Stoneking, J.; Casstevens, J.; Stillman, D.
1982-12-01
This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.
An electromechanical finite element model for piezoelectric energy harvester plates
De Marqui Junior, Carlos; Erturk, Alper; Inman, Daniel J.
2009-10-01
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton's principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit.
A review of flexibility-based finite element method for beam-column elements
Institute of Scientific and Technical Information of China (English)
LI Shuang; ZHAI Changhai; XIE Lili
2009-01-01
For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.
The importance of tibial alignment: finite element analysis of tibial malalignment.
Perillo-Marcone, A; Barrett, D S; Taylor, M
2000-12-01
The influence of the tibial plateau orientation on cancellous bone stress was examined by finite element analysis for a cemented device. The objectives of the study were i) to examine the effect of the plateau-ankle angle on the cancellous bone stress, ii) to analyze the significance of the anteroposterior angles of the tibial component on these stresses, and iii) to compare the finite element predictions with clinical data. In general, positioning the tibial plateau in valgus resulted in lower cancellous bone stresses. These results support previous clinical studies, which suggest that overall alignment in valgus results in lower migration rates and lower incidence of loosening.
Finite element based simulation of dry sliding wear
Hegadekatte, V.; Huber, N.; Kraft, O.
2005-01-01
In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.
FLASH: A finite element computer code for variably saturated flow
Energy Technology Data Exchange (ETDEWEB)
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.
Finite element modeling of superelastic nickel-titanium orthodontic wires.
Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled
2014-11-28
Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.
Finite Element Modeling of Reheat Stretch Blow Molding of PET
Krishnan, Dwarak; Dupaix, Rebecca B.
2004-06-01
Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.
Topological Optimization of the Evaluation of Finite Element Matrices
Kirby, Robert C; Scott, L Ridgway; Terrel, Andy R; 10.1137/050635547
2012-01-01
We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization.
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
ZHAO Guang-ming; SONG Shun-cheng
2005-01-01
Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.
Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes
Institute of Scientific and Technical Information of China (English)
Lei-chao LIU; Xiang-huai DONG; Cong-xin LI
2009-01-01
An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.
Wave Transformation Modeling with Effective Higher-Order Finite Elements
Directory of Open Access Journals (Sweden)
Tae-Hwa Jung
2016-01-01
Full Text Available This study introduces a finite element method using a higher-order interpolation function for effective simulations of wave transformation. Finite element methods with a higher-order interpolation function usually employ a Lagrangian interpolation function that gives accurate solutions with a lesser number of elements compared to lower order interpolation function. At the same time, it takes a lot of time to get a solution because the size of the local matrix increases resulting in the increase of band width of a global matrix as the order of the interpolation function increases. Mass lumping can reduce computation time by making the local matrix a diagonal form. However, the efficiency is not satisfactory because it requires more elements to get results. In this study, the Legendre cardinal interpolation function, a modified Lagrangian interpolation function, is used for efficient calculation. Diagonal matrix generation by applying direct numerical integration to the Legendre cardinal interpolation function like conducting mass lumping can reduce calculation time with favorable accuracy. Numerical simulations of regular, irregular and solitary waves using the Boussinesq equations through applying the interpolation approaches are carried out to compare the higher-order finite element models on wave transformation and examine the efficiency of calculation.
Discontinuous dual-primal mixed finite elements for elliptic problems
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Vibration Behaviour of Single Walled Carbon Nanotube using Finite Element
Directory of Open Access Journals (Sweden)
Ashirbad Swain
2013-12-01
Full Text Available The flexural vibration of single walled carbon nanotube has analyzed by finite element method. Timoshenko beam element formulation has been used for this purpose. Axial deformation has also been taken into account apart from shear deformation for formulation of the element. Results from multi-scale modeling for free vibration analysis have been found to be in good agreement with the literatures available. Effects of chirality and aspect ratio on vibration characteristics are presented. More over effect of initial axial strain or stress on natural frequency have been analysed and found to have significant effect on the natural frequency of the nanotube.
Visualization of transient finite element analyses on large unstructured grids
Energy Technology Data Exchange (ETDEWEB)
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
A nonlinear truss finite element with varying stiffness
Directory of Open Access Journals (Sweden)
Ďuriš R.
2007-11-01
Full Text Available This contribution deals with a new truss element with varying stiffness intended to geometric and physically nonlinear analysis of composite structures. We present a two-node straight composite truss finite element derived by new nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the composite or/and functionally graded materials (FGM´s. Numerical examples were solved to verify the established relations. The accuracy of the new proposed finite truss element are compared and discused.
A direct implementation for influence lines in finite element software
DEFF Research Database (Denmark)
Jepsen, Michael S.; Damkilde, Lars
2014-01-01
The use of influence lines is a recognized method for determining the critical design load conditions and this paper shows a direct method for applying influence lines in any structural finite element software. The main idea is to equate displacement or angular discontinuities with nodal forces...... to consistent nodal forces, which makes it very suitable for implementation in finite element schemes and applicable for all element types, such as shell, plates, beams etc. This paper derives the consistent nodal forces for angular, lateral and axial displacement discontinuities for a Bernoulli-Euler beam......, and subsequently obtain the influence function only applying a single load case without changing the geometry or boundary conditions of the model. The new approach for determining Influence lines is based on the Müller-Breslau principle, but the discontinuous displacement fields are in the new approach equated...
Streamline upwind finite element method for conjugate heat transfer problems
Institute of Scientific and Technical Information of China (English)
Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen
2005-01-01
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
Finite element dynamic analysis on CDC STAR-100 computer
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.