WorldWideScience

Sample records for finite element formulations

  1. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  2. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  3. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel

  4. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  5. Mixed finite-element formulations in piezoelectricity and flexoelectricity.

    Science.gov (United States)

    Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos

    2016-06-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  6. A cohesive finite element formulation for modelling fracture and ...

    Indian Academy of Sciences (India)

    cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.

  7. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim; Xue, Guangri

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  8. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    Pereira, Luis Carlos Martins

    1998-06-01

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  9. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  10. Mixed Element Formulation for the Finite Element-Boundary Integral Method

    National Research Council Canada - National Science Library

    Meese, J; Kempel, L. C; Schneider, S. W

    2006-01-01

    A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...

  11. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  12. Heat transfer model and finite element formulation for simulation of selective laser melting

    Science.gov (United States)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  13. Finite element formulation for dynamics of planar flexible multi-beam system

    International Nuclear Information System (INIS)

    Liu Zhuyong; Hong Jiazhen; Liu Jinyang

    2009-01-01

    In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation

  14. Rigid body formulation in a finite element context with contact interaction

    Science.gov (United States)

    Refachinho de Campos, Paulo R.; Gay Neto, Alfredo

    2018-03-01

    The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.

  15. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole

    2007-01-01

    given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...... for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several...... two-dimensional acoustic-structure problems are optimized in order to verify the proposed method....

  16. Nonlinear finite element formulation for analyzing shape memory alloy cylindrical panels

    International Nuclear Information System (INIS)

    Mirzaeifar, R; Shakeri, M; Sadighi, M

    2009-01-01

    In this paper, a general incremental displacement based finite element formulation capable of modeling material nonlinearities based on first-order shear deformation theory (FSDT) is developed for cylindrical shape memory alloy (SMA) shells. The Boyd–Lagoudas phenomenological model with polynomial hardening in conjunction with 3D incremental convex cutting plane explicit algorithm is implemented for preparing the SMA constitutive model in the finite element formulation. Several numerical examples are presented for demonstrating the performance of the proposed formulation in stress, deflection and phase transformation analysis of pseudoelastic behavior of shape memory cylindrical panels with various boundary conditions. Also, it is shown that the presented formulation can be implemented for studying plates and beams with rectangular cross section

  17. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures.

  18. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    International Nuclear Information System (INIS)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures

  19. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    Science.gov (United States)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  20. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  1. A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements

    KAUST Repository

    Duddu, Ravindra

    2011-10-05

    We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.

  2. Finite element formulation for fluid-structure interaction in three-dimensional space

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading

  3. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  4. Main formulations of the finite element method for the problems of structural mechanics. Part 2

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    Full Text Available The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.

  5. Stability analysis of internally damped rotating composite shafts using a finite element formulation

    Science.gov (United States)

    Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed

    2018-04-01

    This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.

  6. Dynamic modeling of geometrically nonlinear electrostatically actuated microbeams (Corotational Finite Element formulation and analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, H; Ahmadian, M T [Sharif University of Technology, Center of Excellence for Design, Robotics and Automation, School of Mechanical Engineering, PO Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement.

  7. Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section

    Directory of Open Access Journals (Sweden)

    E. Carrera

    2011-01-01

    Full Text Available This paper presents hierarchical finite elements on the basis of the Carrera Unified Formulation for free vibrations analysis of beam with arbitrary section geometries. The displacement components are expanded in terms of the section coordinates, (x, y, using a set of 1-D generalized displacement variables. N-order Taylor type expansions are employed. N is a free parameter of the formulation, it is supposed to be as high as 4. Linear (2 nodes, quadratic (3 nodes and cubic (4 nodes approximations along the beam axis, (z, are introduced to develop finite element matrices. These are obtained in terms of a few fundamental nuclei whose form is independent of both N and the number of element nodes. Natural frequencies and vibration modes are computed. Convergence and assessment with available results is first made considering different type of beam elements and expansion orders. Additional analyses consider different beam sections (square, annular and airfoil shaped as well as boundary conditions (simply supported and cantilever beams. It has mainly been concluded that the proposed model is capable of detecting 3-D effects on the vibration modes as well as predicting shell-type vibration modes in case of thin walled beam sections.

  8. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  9. Spectral/hp least-squares finite element formulation for the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2003-01-01

    We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier-Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L 2 least-squares functional and L 2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier-Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation

  10. Main formulations of the finite element method for the problems of structural mechanics. Part 3

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2015-01-01

    Full Text Available In this paper the author offers is the classification of the formulae of Finite Element Method. This classification help to orient in a huge number of published articles, as well as those to be published, which are dedicated to the problem of enhancing the efficiency of the most commonly used method. The third part of the article considers the variation formulations of FEM and the energy principles lying in the basis of it. If compared to the direct method, which is applied only to finite elements of a simple geometrical type, the variation formulations of FEM are applicable to the elements of any type. All the variation methods can be conventionally divided into two groups. The methods of the first group are based on the principle of energy functional stationarity - a potential system energy, additional energy or on the basis of these energies, which means the full energy. The methods of the second group are based on the variants of mathematical methods of weighted residuals for solving the differential equations, which in some cases can be handled according to the principle of possible displacements or extreme energy principles. The most widely used and multipurpose is the approach based on the use of energy principles coming from the energy conservation law: principle of possible changes in stress state, principle of possible change in stress-strain state.

  11. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Science.gov (United States)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2017-07-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  12. Lagrangian finite element formulation for fluid-structure interaction and application

    International Nuclear Information System (INIS)

    Hautfenne, M.H.

    1983-01-01

    The aim of this communication is to present a new finite element software (FLUSTRU) for fluid-structure interaction in a lagrangian formulation. The stiffness and damping matrices of the fluid are computed from the governing laws of the medium: the fluid is supposed to be viscous and compressible (Stokes' equations). The main problem stated by the lagrangian formulation of the fluid is the presence of spurious free-vibration modes (zero energy modes) in the fluid. Those modes are generated by the particular form of the matrix. These spurious modes have been examined and two particular methods to eliminate them have been developed: industrial applications prove the efficiency of the proposed methods. (orig./GL)

  13. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    Science.gov (United States)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  14. On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Sanborn, Graham G.; Shabana, Ahmed A.

    2009-01-01

    For almost a decade, the finite element absolute nodal coordinate formulation (ANCF) has been used for both geometry and finite element representations. Because of the ANCF isoparametric property in the cases of beams, plates and shells, ANCF finite elements lend themselves easily to the geometric description of curves and surfaces, as demonstrated in the literature. The ANCF finite elements, therefore, are ideal for what is called isogeometric analysis that aims at the integration ofcomputer aided designandanalysis (ICADA), which involves the integration of what is now split into the separate fields of computer aided design (CAD) and computer aided analysis (CAA). The purpose of this investigation is to establish the relationship between the B-spline and NURBS, which are widely used in the geometric modeling, and the ANCF finite elements. It is shown in this study that by using the ANCF finite elements, one can in a straightforward manner obtain the control point representation required for the Bezier, B-spline and NURBS geometry. To this end, a coordinate transformation is used to write the ANCF gradient vectors in terms of control points. Unifying the CAD and CAA will require the use of such coordinate transformations and their inverses in order to transform control points to position vector gradients which are required for the formulation of the element transformations in the case of discontinuities as well as the formulation of the strain measures and the stress forces based on general continuum mechanics theory. In particular, fully parameterized ANCF finite elements can be very powerful in describing curve, surface, and volume geometry, and they can be effectively used to describe discontinuities while maintaining the many ANCF desirable features that include a constant mass matrix, zero Coriolis and centrifugal forces, no restriction on the amount of rotation or deformation within the finite element, ability for straightforward implementation of general

  15. Thermo-elastic stress analysis of containment wall penetrations using improved finite element formulation

    International Nuclear Information System (INIS)

    Ramani, D.T.; Dimopoulos, A.; Heglin, B.M.

    1979-01-01

    An increased application of finite element techniques, particularly in evaluating structural integrity of nuclear containment walls around penetration points, has aroused considerable interest. Due to extreme thermal effects in the vicinity of penetrations, the concrete containment wall is subject to unwarranted cracking effects, which must be controlled in accordance with ASME-III Code. This paper essentially deals with a unique finite element method of analysis in which nonlinear heat transfer problem across the penetration assembly in the nuclear containment drywell wall, is formulated. Using this technique, thermal analysis, dealing with an evaluation of temperature distribution around axisymmetric penetration assembly accomodating main steam lines or other vital piping at 600 0 F, is carried out. The method of analysis considers steady-state heat transfer energy balance across the process-pipe, insulation layer, guard-pipe sleeve, two intermediate air layers and an axisymmetric opening in the concrete containment wall, the outer faces of which are maintained at ambient temperature of 120 0 F. (orig.)

  16. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    Energy Technology Data Exchange (ETDEWEB)

    De Corato, M., E-mail: marco.decorato@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Slot, J.J.M., E-mail: j.j.m.slot@tue.nl [Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Hütter, M., E-mail: m.huetter@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); D' Avino, G., E-mail: gadavino@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Maffettone, P.L., E-mail: pierluca.maffettone@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Hulsen, M.A., E-mail: m.a.hulsen@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2016-07-01

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.

  17. Efficient formulation of the finite element method for heat conduction in solids

    International Nuclear Information System (INIS)

    Sandsmark, N.; Aamodt, B.; Medonos, S.

    1977-01-01

    The purpose of the paper is to describe efficient methods and computer programs for analysis of heat conduction problems related to design and control of components of nuclear power plants and similar structures where thermal problems are of interest. A short presentation of basic equations and the finite element formulation of three-dimensional stationary and transient heat conduction is given. The finite element types that are used are isoparametric hexahedrons with eight or twenty nodes. The use of consistent as well as diagonal capacity matrices is discussed. Reduction of the transient heat conduction problem may be accomplished by means of the 'master-slave' technique. Furthermore, the superelement technique is discussed for both stationary and transient heat conduction. For the solution of transient problems, the trapezoidal time integration scheme is used. The methods and principles outlined in the paper are materialized in a computer program, NV615, which is one of the application programs in the program system SESAM-69. A brief description is given of NV615. Furthermore, attention is given to combined heat conduction and subsequent thermal stress analysis. Data representing geometry, calculated temperature distribution etc. may be transferred automatically from the heat conduction program to stress analysis programs. As an example of practical application the temperature distribution versus time in a turbine wheel during start up is analysed. Thermal stresses are calculated at selected time instants

  18. A new variational formulation of kinetic plasma theory and the application of moving finite elements

    International Nuclear Information System (INIS)

    Glasser, A.H.

    1991-01-01

    A new variational formulation has been developed for the system of equations governing kinetic plasmas and electromagnetic fields. It is used to apply the method of Moving Finite Elements to the electromagnetic fields. The fields are expanded in a basis of linear finite elements on a movable, unstructured grid of triangles in 2D or tetrahedra in 3D, while the plasma distribution function is expanded in a basis of super particles. Minimization of the variational with respect to the time derivatives of the field quantities yields a coupled system of equations for simultaneously advancing the amplitudes and node positions, resulting in adaptive grid motion. The adaptivity of the grid may save a large factor in the size of the grid and the number of particles required in many problems. Minimization of the variational with respect to the time derivatives of the particle positions and velocities gives the equations of motion, providing consistent prescriptions for assigning particles to the grid and fields to the particles. Orthogonality conditions on the particles are derived as conditions for keeping their equations of motion independent. Collisions can be included in a natural way. The relationship between PIC methods and alternative methods of discretizing phase space is clarified

  19. Finite element formulation for thermal stress analysis of thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.

    1978-01-01

    This paper describes the formulation of a finite-element procedure for the thermal stress analysis of thin wall reactor components. A general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature-dependent yield surface. This form of constitutive relationship is applicable to problems of small strain. A similar form of a hypoelastic-plastic type is also developed for large strains. The variation of the yield surface with temperature is based upon a temperature-dependent, work-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal unaxial stress-strain data. The above constitutive relationships are incorporated into two computer codes and a previously developed numerical algorithm is used with minor modifications. A set of problems is presented validating the thermal analysis capability of the computer codes to a variety of problem types. (Auth.)

  20. Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Hussein, Bassam A.; Weed, David; Shabana, Ahmed A.

    2009-01-01

    In the finite element absolute nodal coordinate formulation (ANCF), the elimination of the relative translations and rotations at a point does not necessarily define a fully clamped joint, particularly in the case of fully parameterized ANCF finite elements that allow for the deformation of the cross section. In this investigation, the formulations and results of two different sets of clamped end conditions that define two different joints are compared. The first joint, called the partially clamped joint, eliminates only the translations and rotations at a point on the cross section. The second joint, called the fully clamped joint, eliminates all the translation, rotation and deformation degrees of freedom at a point on the cross section. The kinematic equations that define the partially and fully clamped joints are developed, and the dynamic equations used in the comparative numerical study presented in this paper are shown. As discussed in this investigation, the fully clamped joint does not allow for the deformation of the cross section at the joint node since the gradient vectors remain orthogonal unit vectors. The partially clamped joint, on the other hand, allows for the deformation of the cross section. Nanson's formula is used as a measure of the deformation of the cross section in the case of the partially clamped joint. A very flexible pendulum that has a rigid body attached to its free end is used to compare the results of the partially and fully clamped joints. The numerical results obtained using this very flexible pendulum example show that, while the type of joint (partially or fully clamped) does not significantly affect the gross reference motion of the system, there are fundamental differences between the two joints since the partially clamped joint allows for the cross section deformations at the joint node

  1. Derivation of finite element formulation for electrochemical governing equations of ionic polymer actuators

    International Nuclear Information System (INIS)

    Kang, Sung Soo

    2013-01-01

    Ionic polymer actuators have recently attracted a great deal of interest as electroactive materials with potentials as soft actuators, sensors, artificial muscles, robotics, and microelectromechanical systems because of their numerous advantages, including low voltage requirement, high compliance, lightness, and flexibility. The platinum-plated Nafion, a perfluorosulfonic acid membrane made by Dupont, is commonly used as a polyelectrolyte in actuator applications. The bending of the ionic polymer actuators in an electric field is dominated by the electro-osmosis of hydrated ions and slow diffusion of free water molecules. The changes in hydration cause a local volumetric strain resulting in bending deformation, such as expansion and contraction. In this study, a two-dimensional finite element (FE) formulation based on the Galerkin method is derived for the governing equations describing these electrochemical responses. In addition, a three-dimensional FE deformation analysis is conducted on the bending behaviors of the platinum-plated ionic polymer actuators. Several numerical studies for ionic polymer actuators, such as plates with various electrode arrangements and disk models in electric field, are performed to confirm the validity of the proposed formulation.

  2. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential and a temperature dependent surface. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. These developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analaysis code. A set of problems is presented to validate both the 3D and 2D programs and to illustrate their applicability to a variety of problems. (Auth.)

  3. Integrating a logarithmic-strain based hyper-elastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finite-strain elasto-plasticity

    International Nuclear Information System (INIS)

    Dina Al Akhrass; Bruchon, Julien; Drapier, Sylvain; Fayolle, Sebastien

    2014-01-01

    This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elasto-plasticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the adoption of standard constitutive models established in a small-strain framework. This model is extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an extension of this model to a three-field mixed finite element formulation is proposed, involving displacements, a strain variable and pressure as nodal variables with respect to standard finite element. Numerical examples of finite-strain problems are presented to assess the performance of the formulation. To conclude, an industrial case for which the classical under-integrated elements fail is considered. (authors)

  4. Space-time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2004-01-01

    We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least

  5. Complex stiffness formulation for the finite element analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads

    International Nuclear Information System (INIS)

    Frater, J.; Lestingi, J.; Padovan, J.

    1977-01-01

    This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)

  6. A stabilized second-order time accurate finite element formulation for incompressible viscous flow with heat transfer

    International Nuclear Information System (INIS)

    Curi, Marcos Filardy

    2011-01-01

    In view of the problem of global warming and the search for clean energy sources, a worldwide expansion on the use of nuclear energy is foreseen. Thus, the development of science and technology regarding nuclear power plants is essential, in particular in the field of reactor engineering. Fluid mechanics and heat transfer play an important role in the development of nuclear reactors. Computational Fluid Mechanics (CFD) is becoming ever more important in the optimization of cost and safety of the designs. This work presents a stabilized second-order time accurate finite element formulation for incompressible flows with heat transfer. A second order time discretization precedes a spatial discretization using finite elements. The terms that stabilize the finite element method arise naturally from the discretization process, rather than being introduced a priori in the variational formulation. The method was implemented in the program 'ns n ew s olvec2d av 2 M PI' written in FORTRAN90, developed in the Parallel Computing Laboratory at the Institute of Nuclear Engineering (LCP/IEN). Numerical solutions of some representative examples, including free, mixed and forced convection, demonstrate that the proposed stabilized formulation attains very good agreement with experimental and computational results available in the literature. (author)

  7. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin ractor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature dependent yield surface. The temperature dependency of the yield surface is based upon a temperature-dependent, material-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal uniaxial stress-strain data. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. The temperature field is described through time-dependent values at mesh node points; the temperature fields in each element are then obtained by interpolation formulas. Hence, problems with both spatial and temporal dependent temperature fields can easily be treated. The above developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analysis Code. STRAW is a two-dimensional code with a plane stress/plane strain beam element. The 3D Implicit code has a triangular flat plate element which is capable of sustaining both membrane and bending loads. To insure numerical stability both codes are based on an iterative-incremental solution procedure with equilibrium checks based on an error in energy

  8. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  9. Global and Local Mechanical Responses for Necking of Rectangular Bars Using Updated and Total Lagrangian Finite Element Formulations

    Directory of Open Access Journals (Sweden)

    Claudio A. Careglio

    2016-01-01

    Full Text Available In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.

  10. A finite element formulation of the Darwin electromagnetic PIC model for unstructured meshes of triangles

    International Nuclear Information System (INIS)

    Sonnendrucker, E.; Ambrosiano, J.; Brandon, S.

    1993-01-01

    The Darwin model for electromagnetic simulation is a reduced form of the Maxwell-Vlasov system that retains all essential physical processes except the propagation of light waves. It is useful in modeling systems for which the light-transit timescales are less important than Alfven wave propagation, or quasistatic effects. The Darwin model is elliptic rather than hyperbolic as are the full set of Maxwell's equations. Appropriate boundary conditions must be chosen for the problems to be well-posed. Using finite element techniques to apply this method for unstructured triangular meshes, a mesh made up of unstructured triangles allows realistic device geometries to be modeled without the necessity of using a large number of mesh points. Analyzing the dispersion relation allows us to validate the code as well as the Darwin approximation

  11. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  12. Elasto-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium iterations. In this connection, a comparative numerical study of the Newton-Raphson iteration scheme, the initial stress method, and modified Newton-Raphson iteration schemes is presented. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. Firstly, an elasto-plastic analysis of a plate with a central hole and subjected to tensile forces is carried out. The results are compared with experimental values. Secondly, a three dimensional analysis of a thick plate with a central through-crack subjected to tensile forces is considered. The variation through the plate thickness of the size of the plastic zones at the crack tip is studied. The numerical examples show that the present method is a powerful and efficient tool in elasto-plastic analysis

  13. New formulations on the finite element method for boundary value problems with internal/external boundary layers; Novas formulacoes de elementos finitos para problemas de valor de contorno com camadas limite interna/externa

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luis Carlos Martins

    1998-06-15

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  14. A stabilized finite element formulation for the solution of the Navier-Stokes equations in axisymmetric geometry

    International Nuclear Information System (INIS)

    Souza, Altivo Monteiro de

    2008-12-01

    The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS S OLVER M PI 2 D A program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)

  15. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  16. Effects of finite element formulation on optimal plate and shell structural topologies

    CSIR Research Space (South Africa)

    Long, CS

    2009-09-01

    Full Text Available , and the other is a 4-node element accounting for in-plane (drilling) rotations. Plate elements selected for evaluation include the discrete Kirchhoff quadrilateral (DKQ) element and two Mindlin–Reissner-based elements, one employing selective reduced integration...

  17. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow

  18. Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method

    Science.gov (United States)

    Ansari, R.; Torabi, J.; Norouzzadeh, A.

    2018-04-01

    Due to the capability of Eringen's nonlocal elasticity theory to capture the small length scale effect, it is widely used to study the mechanical behaviors of nanostructures. Previous studies have indicated that in some cases, the differential form of this theory cannot correctly predict the behavior of structure, and the integral form should be employed to avoid obtaining inconsistent results. The present study deals with the bending analysis of nanoplates resting on elastic foundation based on the integral formulation of Eringen's nonlocal theory. Since the formulation is presented in a general form, arbitrary kernel functions can be used. The first order shear deformation plate theory is considered to model the nanoplates, and the governing equations for both integral and differential forms are presented. Finally, the finite element method is applied to solve the problem. Selected results are given to investigate the effects of elastic foundation and to compare the predictions of integral nonlocal model with those of its differential nonlocal and local counterparts. It is found that by the use of proposed integral formulation of Eringen's nonlocal model, the paradox observed for the cantilever nanoplate is resolved.

  19. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  20. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  1. Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam

    Directory of Open Access Journals (Sweden)

    Abbas Moallemi-Oreh

    2013-01-01

    Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.

  2. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  3. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Guillaume, E-mail: jouvet@vaw.baug.ethz.ch [Institut für Mathematik, Freie Universität Berlin (Germany); Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (Switzerland)

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  4. Efficient Linear and Non-Linear Finite Element Formulation using a New Local Enhancement of Displacement Fields for Triangular Elements

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2012-01-01

    This paper describes a new triangular plane element which can be considered as a linear strain triangular element (LST) extended with incompatible displacement modes. The extended element will have a full cubic interpolation of strains and stresses. The extended LST-element is connected with other...... elements similar to the LST-element i.e. through three corner nodes and three mid-side nodes. The incompatible modes are associated with two displacement gradients at each mid-side node and displacements in the central node. The element passes the patch test and converges to the exact solution. The element...... often show a very slow convergence, and the numerical solutions will in general overestimate the bearing capacity and underestimate the displacements. The examples show that the extended incompatible element behaves much better than the corresponding compatible elements especially for coarse meshes....

  5. Full-wave analysis using a tangential vector finite-element formulation of arbitrary cross-section transmission lines for millimeter and microwave applications

    Science.gov (United States)

    Helal, M.; Legier, J. F.; Pribetich, P.; Kennis, P.

    1994-06-01

    A tangential vector finite-element formulation is implemented to deal with arbitrary cross section and metallic strip shape. Classical planar transmission lines as well as nonconventional cross-section waveguides such as the new microshield line are treated. Effects on propagation characteristics for these lines are studied when the metallization shape is approximated by a lossy trapezoid area.

  6. A new finite element formulation for CFD:VIII. The Galerkin/least-squares method for advective-diffusive equations

    International Nuclear Information System (INIS)

    Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.

    1988-10-01

    Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt

  7. Preliminary Formulation of Finite Element Solution for the 1-D, 1-G Time Dependent Neutron Diffusion Equation without Consideration about Delay Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Song, Yong Mann; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    If time-dependent equation is solved with the FEM, the limitation of the input geometry will disappear. It has often been pointed out that the numerical methods implemented in the RFSP code are not state-of-the-art. Although an acceleration method such as the Coarse Mesh Finite Difference (CMFD) for Finite Difference Method (FDM) does not exist for the FEM, one should keep in mind that the number of time steps for the transient simulation is not large. The rigorous formulation in this study will richen the theoretical basis of the FEM and lead to an extension of the dynamics code to deal with a more complicated problem. In this study, the formulation for the 1-D, 1-G Time Dependent Neutron Diffusion Equation (TDNDE) without consideration of the delay neutron will first be done. A problem including one multiplying medium will be solved. Also several conclusions from a comparison between the numerical and analytic solutions, a comparison between solutions with various element orders, and a comparison between solutions with different time differencing will be made to be certain about the formulation and FEM solution. By investigating various cases with different values of albedo, theta, and the order of elements, it can be concluded that the finite element solution is agree well with the analytic solution. The higher the element order used, the higher the accuracy improvements are obtained.

  8. Generalized finite elements

    International Nuclear Information System (INIS)

    Wachspress, E.

    2009-01-01

    Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)

  9. A first course in finite elements

    CERN Document Server

    Fish, Jacob

    2007-01-01

    Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations.  Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts

  10. Study on the influence of finite element formulation and equation of motion solution scheme on FEM analysis results based on the asymmetrically loaded plate problem

    Directory of Open Access Journals (Sweden)

    Marcin Krzeszowiec

    2015-03-01

    Full Text Available Computer simulations of physical phenomena are at the moment common both in science and industry. The possibility of finding approximate solutions for complicated systems of differential equations, mathematically describing issues in the fields of mechanics, physics or chemistry, allows for shorten design and research time, often significantly reducing the need for expensive experimental studies or costly production of prototypes. However, the mentioned prevalence of these methods, particularly the Finite Element Method, resulted in analysis outcomes to be often in advance regarded as accurate ones. The purpose of the article is to showcase, on a simple stress analysis problem, how parameters such as the density of the finite element mesh, finite element formulation or integration scheme significantly influence on the simulation results and how easy it is to end up with the results that do not hold any physical sense, despite the fact that all the basic assumptions of correct analysis (suitable boundary conditions, total system energy stored etc. have been met. The results of this study can serve as a warning against premature conclusion drawing from calculations carried out by means of FEM simulation.[b]Keywords[/b]: computational mechanics, finite element method, shell elements, numerical integration

  11. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  12. Adaptive solution of the multigroup diffusion equation on irregular structured grids using a conforming finite element method formulation

    International Nuclear Information System (INIS)

    Ragusa, J. C.

    2004-01-01

    In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)

  13. Finite elements methods in mechanics

    CERN Document Server

    Eslami, M Reza

    2014-01-01

    This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...

  14. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.

    Science.gov (United States)

    Hortin, Mitchell S; Bowden, Anton E

    2016-11-01

    Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine. Results suggest that the effects of increased ligament model fidelity on bone strain energy were moderate and the effects on disc pressure were slight, and do not justify a change in modelling strategy for most clinical applications. There were significant effects on the ligament stresses of the ligaments that were directly modified, suggesting that these phenomena should be included in FE models where ligament stresses are the desired metric.

  15. Inside finite elements

    CERN Document Server

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  16. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  17. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    Science.gov (United States)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  18. Automation of finite element methods

    CERN Document Server

    Korelc, Jože

    2016-01-01

    New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.

  19. Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2008-02-01

    Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.

  20. Probabilistic finite elements

    Science.gov (United States)

    Belytschko, Ted; Wing, Kam Liu

    1987-01-01

    In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.

  1. A direct vulnerable atherosclerotic plaque elasticity reconstruction method based on an original material-finite element formulation: theoretical framework

    Science.gov (United States)

    Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M.; Yazdani, Saami K.; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I.; Ohayon, Jacques

    2013-12-01

    The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10-8±5.7 × 10-8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method.

  2. Optical Finite Element Processor

    Science.gov (United States)

    Casasent, David; Taylor, Bradley K.

    1986-01-01

    A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.

  3. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  4. Probabilistic fracture finite elements

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  5. Finite element modelling

    International Nuclear Information System (INIS)

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  6. The finite element response matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-02-01

    A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt

  7. Finite element analysis of nonlinear creeping flows

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Guerreiro, J.N.C.

    1988-12-01

    Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt

  8. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  9. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  10. Image segmentation with a finite element method

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...

  11. Summary compilation of shell element performance versus formulation.

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  12. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  13. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.; Copeland, D.; Moulton, J. D.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four

  14. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  15. Programming the finite element method

    CERN Document Server

    Smith, I M; Margetts, L

    2013-01-01

    Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c

  16. Mathematical aspects of finite element methods for incompressible viscous flows

    Science.gov (United States)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  17. On symmetric pyramidal finite elements

    Czech Academy of Sciences Publication Activity Database

    Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal

    2004-01-01

    Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004

  18. Finite element analysis of inelastic structural behavior

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1977-01-01

    The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model

  19. A stabilized second-order time accurate finite element formulation for incompressible viscous flow with heat transfer; Uma formulacao de elementos finitos estabilizada de segunda ordem no tempo para escoamentos viscosos com transferencia de calor

    Energy Technology Data Exchange (ETDEWEB)

    Curi, Marcos Filardy

    2011-07-01

    In view of the problem of global warming and the search for clean energy sources, a worldwide expansion on the use of nuclear energy is foreseen. Thus, the development of science and technology regarding nuclear power plants is essential, in particular in the field of reactor engineering. Fluid mechanics and heat transfer play an important role in the development of nuclear reactors. Computational Fluid Mechanics (CFD) is becoming ever more important in the optimization of cost and safety of the designs. This work presents a stabilized second-order time accurate finite element formulation for incompressible flows with heat transfer. A second order time discretization precedes a spatial discretization using finite elements. The terms that stabilize the finite element method arise naturally from the discretization process, rather than being introduced a priori in the variational formulation. The method was implemented in the program 'ns{sub n}ew{sub s}olvec2d{sub av}2{sub M}PI' written in FORTRAN90, developed in the Parallel Computing Laboratory at the Institute of Nuclear Engineering (LCP/IEN). Numerical solutions of some representative examples, including free, mixed and forced convection, demonstrate that the proposed stabilized formulation attains very good agreement with experimental and computational results available in the literature. (author)

  20. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  1. Finite elements of nonlinear continua

    CERN Document Server

    Oden, John Tinsley

    1972-01-01

    Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s

  2. Analysis of Tube Drawing Process – A Finite Element Approach ...

    African Journals Online (AJOL)

    In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...

  3. A finite element thermohydrodynamic analyis of profile bore bearing

    International Nuclear Information System (INIS)

    Shah Nor bin Basri

    1994-01-01

    A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained

  4. Behaviour of Lagrangian triangular mixed fluid finite elements

    Indian Academy of Sciences (India)

    The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a ...

  5. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  6. Robust mixed finite element methods to deal with incompressibility in finite strain in an industrial framework

    International Nuclear Information System (INIS)

    Al-Akhrass, Dina

    2014-01-01

    Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)

  7. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  8. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  9. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  10. Variational approach to probabilistic finite elements

    Science.gov (United States)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-08-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  11. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  12. Linear and Nonlinear Finite Elements.

    Science.gov (United States)

    1983-12-01

    Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y𔃾 , (1-y𔃼)’ 1-y’ 2 - y" (6) that change eq. (5) to V𔃺) = , [yŖ(1 + y") - Qy𔃼

  13. Development of a partitioned finite volume-finite element fluid-structure interaction scheme for strongly-coupled problems

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2012-07-01

    Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...

  14. A stabilized finite element formulation for the solution of the Navier-Stokes equations in axisymmetric geometry; Uma formulacao estabilizada de elementos finitos para solucao das equacoes de Navier-Stokes em geometria axissimetrica

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Altivo Monteiro de

    2008-12-15

    The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS{sub S}OLVER{sub M}PI{sub 2}D{sub A} program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)

  15. The finite element response Matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-01-01

    A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed

  16. Effects of planar element formulation and numerical integration order on checkerboard material layouts

    CSIR Research Space (South Africa)

    Long, CS

    2009-01-01

    Full Text Available The effects of selected planar finite element formulations, and their associated integration schemes, on the stiffness of a checkerboard material layout are investigated. Standard 4-node bilinear elements, 8- and 9-node quadratic elements, as well...

  17. Finite element computation of natural convection in enclosures

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    1982-01-01

    Compared to U-V-P-T formulation and stream-vorticity temperature formulation, penalty function formulation is simple and computationally competitive. Incremental New-Raphons method employed in this study is effective and efficient. From this study it is established that very fine mesh is not required for a low Rayleigh number considered in this study. The upwinding finite element may be necessary to avoid oscillations for higher Rayleigh numbers. (author)

  18. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  19. A finite element conjugate gradient FFT method for scattering

    Science.gov (United States)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  20. Probabilistic finite elements for transient analysis in nonlinear continua

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  1. New mixed finite-element methods

    International Nuclear Information System (INIS)

    Franca, L.P.

    1987-01-01

    New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates

  2. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  3. Finite element solution of two dimensional time dependent heat equation

    International Nuclear Information System (INIS)

    Maaz

    1999-01-01

    A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)

  4. Finite element application to global reactor analysis

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1981-01-01

    The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de

  5. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  6. A finite element primer for beginners the basics

    CERN Document Server

    Zohdi, Tarek I

    2014-01-01

    The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th

  7. Linear finite element method for one-dimensional diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica

    2011-07-01

    We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)

  8. Coupled convective and conductive heat transfer by up-wind finite element method

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    1981-01-01

    Some of concepts relating to finite element formulation of the Navier-Stoke's equations using mixed formulation and Penality formulation have been discussed. The two different approaches for solution of nonlinear differential equations for two different types of formulation have been described. Incremental Newton Raphson method can also be applied to mixed formulation. (author)

  9. A (Dis)continuous finite element model for generalized 2D vorticity dynamics

    NARCIS (Netherlands)

    Bernsen, E.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2005-01-01

    A mixed continuous and discontinuous Galerkin finite element discretization is constructed for a generalized vorticity streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport)

  10. Discontinuous finite element formulation for bodies of revolution with application in the prevention of fragile fracture in pressure vessel of PWR reactors; Formulacao de elementos finitos descontinuos para corpos de revolucao com aplicacao na prevencao de fratura fragil em vaso de pressao de reatores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Alvarez, Gustavo

    1999-08-15

    In this work, a hybrid formulation is established for bodies of revolution, based on the equation of Fourier series for the discontinuous finite element method, analogous to the one that exists in the classical finite element method. Furthermore, a methodology to analyse the prevention of fragile fracture in pressure vessel of pressurized water reactors is presented. The results obtained suggest that careful analysis must be made for non symmetric refrigeration. (author)

  11. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  12. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  13. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  14. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  15. Why do probabilistic finite element analysis ?

    CERN Document Server

    Thacker, Ben H

    2008-01-01

    The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.

  16. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  17. A finite element method for flow problems in blast loading

    International Nuclear Information System (INIS)

    Forestier, A.; Lepareux, M.

    1984-06-01

    This paper presents a numerical method which describes fast dynamic problems in flow transient situations as in nuclear plants. A finite element formulation has been chosen; it is described by a preprocessor in CASTEM system: GIBI code. For these typical flow problems, an A.L.E. formulation for physical equations is used. So, some applications are presented: the well known problem of shock tube, the same one in 2D case and a last application to hydrogen detonation

  18. Element-topology-independent preconditioners for parallel finite element computations

    Science.gov (United States)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  19. Books and monographs on finite element technology

    Science.gov (United States)

    Noor, A. K.

    1985-01-01

    The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.

  20. Probabilistic finite elements for fracture mechanics

    Science.gov (United States)

    Besterfield, Glen

    1988-01-01

    The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.

  1. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  2. Finite element analysis of piezoelectric materials

    International Nuclear Information System (INIS)

    Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)

  3. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  4. Finite element approximation to the even-parity transport equation

    International Nuclear Information System (INIS)

    Lewis, E.E.

    1981-01-01

    This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions

  5. On higher order pyramidal finite elements

    Czech Academy of Sciences Publication Activity Database

    Liu, L.; Davies, K.B.; Křížek, Michal; Guan, L.

    2011-01-01

    Roč. 3, č. 2 (2011), s. 131-140 ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : pyramidal polynomial basis functions * finite element method * composite elements * three-dimensional mortar elements Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2011

  6. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  7. Finite element methods a practical guide

    CERN Document Server

    Whiteley, Jonathan

    2017-01-01

    This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

  8. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  9. ANSYS mechanical APDL for finite element analysis

    CERN Document Server

    Thompson, Mary Kathryn

    2017-01-01

    ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...

  10. Review on Finite Element Method * ERHUNMWUN, ID ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this work, we have discussed what Finite Element Method (FEM) is, its historical development, advantages and ... residual procedures, are examples of the direct approach ... The paper centred on the "stiffness and deflection of ...

  11. Finite element bending behaviour of discretely delaminated ...

    African Journals Online (AJOL)

    user

    due to their light weight, high specific strength and stiffness properties. ... cylindrical shell roofs respectively using finite element method with centrally located .... where { }ε and { }γ are the direct and shear strains in midplane and { }κ denotes ...

  12. Finite elements for non-linear analysis of pipelines

    International Nuclear Information System (INIS)

    Benjamim, A.C.; Ebecken, N.F.F.

    1982-01-01

    The application of a three-dimensional lagrangian formulation for the great dislocations analysis and great rotation of pipelines systems is studied. This formulation is derived from the soil mechanics and take into account the shear stress effects. Two finite element models are implemented. The first, of right axis, uses as interpolation functions the conventional gantry functions, defined in relation to mobile coordinates. The second, of curve axis and variable cross sections, is obtained from the degeneration of the three-dimensional isoparametric element, and uses as interpolation functions third degree polynomials. (E.G.) [pt

  13. Bibliography for finite elements. [2200 references

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, J R [comp.

    1975-01-01

    This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.

  14. The finite element method in electromagnetics

    CERN Document Server

    Jin, Jianming

    2014-01-01

    A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The

  15. Surgery simulation using fast finite elements

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...

  16. Dual and primal mixed Petrov-Galerkin finite element methods in heat transfer problems

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Toledo, E.M.

    1988-12-01

    New mixed finite element formulations for the steady state heat transfer problem are presented with no limitation in the choice of conforming finite element spaces. Adding least square residual forms of the governing equations of the classical Galerkin formulation the original saddle point problem is transformed into a minimization problem. Stability analysis, error estimates and numerical results are presented, confirming the error estimates and the good performance of this new formulation. (author) [pt

  17. Adaptive finite-element ballooning analysis of bipolar ionized fields

    International Nuclear Information System (INIS)

    Al-Hamouz, Z.M.

    1995-01-01

    This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch's assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson's equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors' surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis

  18. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  19. Quadrature representation of finite element variational forms

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...

  20. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  1. Modelling drawbeads with finite elements and verification

    NARCIS (Netherlands)

    Carleer, B.D.; Carleer, B.D.; Vreede, P.T.; Vreede, P.T.; Louwes, M.F.M.; Louwes, M.F.M.; Huetink, Han

    1994-01-01

    Drawbeads are commonly used in deep drawing processes to control the flow of the blank during the forming operation. In finite element simulations of deep drawing the drawbead geometries are seldom included because of the small radii; because of these small radii a very large number of elements is

  2. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  3. Finite element approximations of the stokes flow problem based upon various variational principles

    International Nuclear Information System (INIS)

    Franca, L.P.; Hughers, T.J.R.; Stenberg, R.

    1989-05-01

    Finite element methods are constructed by adding to the usual Galerkin method terms that are mesh-dependent least-squares forms of the Euler-Lagrange equations. The methods are consistent and possess additional stability compared to the Galerkin method. Finite element interpolations, which are unstable in the Galerkin approach, are now convergent. The methodology is applied to the velocity-pressure formulation, a.k.a., Herrmann's formulation, to the stress-velocity formulation, a.k.a., Hellinger-Reissner's formulation and to a new formulation based on augmented stress, pressure and velocity [pt

  4. A code for obtaining temperature distribution by finite element method

    International Nuclear Information System (INIS)

    Bloch, M.

    1984-01-01

    The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.) [pt

  5. An embedded crack in a constant strain triangle utilizing extended finite element concepts

    DEFF Research Database (Denmark)

    Olesen, J.F.; Poulsen, P.N.

    2013-01-01

    This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi-brittle m......This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi......-element discontinuity of displacements. The formulation is based on a variational principle of virtual work involving only the interpolation of displacements. The good performance of the element is demonstrated through the comparison with three benchmark tests in which a single crack is propagated: The center cracked...

  6. Finite Element Methods and Their Applications

    CERN Document Server

    Chen, Zhangxin

    2005-01-01

    This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.

  7. Fluid-structure finite-element vibrational analysis

    Science.gov (United States)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  8. Verification of Orthogrid Finite Element Modeling Techniques

    Science.gov (United States)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  9. On the reliability of finite element solutions

    International Nuclear Information System (INIS)

    Prasad, K.S.R.K.

    1975-01-01

    The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)

  10. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  11. Finite-element analysis of dynamic fracture

    Science.gov (United States)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  12. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  13. Stress analysis in pressure vessels by mixed finite element methods taking into account shear deformation

    International Nuclear Information System (INIS)

    Franca, L.P.; Toledo, E.M.; Loula, A.F.D.; Garcia, E.L.M.

    1988-12-01

    A new finite element method is employed to approximate axisymmetric shell problems. This formulation enhances stability and accuracy, from thin to moderately thick shells, compared to the correspondent Galerkin finite element approximations. Numerical results illustrate the good performance of the present method on some typical pressure vessels aplications. (author) [pt

  14. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  15. Finite element and discontinuous Galerkin methods for transient wave equations

    CERN Document Server

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  16. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.

  17. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation ...

  18. Orthodontic treatment: Introducing finite element analysis

    NARCIS (Netherlands)

    Driel, W.D. van; Leeuwen, E.J. van

    1998-01-01

    The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process

  19. Isogeometric finite element analysis of poroelasticity

    NARCIS (Netherlands)

    Irzal, F.; Remmers, J.J.C.; Verhoosel, C.V.; Borst, de R.

    2013-01-01

    We present an alternative numerical approach for predicting the behaviour of a deformable fluid-saturated porous medium. The conventional finite element technology is replaced by isogeometric analysis that uses non-uniform rational B-splines. The ability of these functions to provide higher-order

  20. Fast finite elements for surgery simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...

  1. Simplicial Finite Elements in Higher Dimensions

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Korotov, S.; Křížek, Michal

    2007-01-01

    Roč. 52, č. 3 (2007), s. 251-265 ISSN 0862-7940 R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : n-simplex * finite element method * superconvergence Subject RIV: BA - General Mathematics

  2. Finite element method - theory and applications

    International Nuclear Information System (INIS)

    Baset, S.

    1992-01-01

    This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs

  3. Navier-Stokes equations by the finite element method

    International Nuclear Information System (INIS)

    Portella, P.E.

    1984-01-01

    A computer program to solve the Navier-Stokes equations by using the Finite Element Method is implemented. The solutions variables investigated are stream-function/vorticity in the steady case and velocity/pressure in the steady state and transient cases. For steady state flow the equations are solved simultaneously by the Newton-Raphson method. For the time dependent formulation, a fractional step method is employed to discretize in time and artificial viscosity is used to preclude spurious oscilations in the solution. The element used is the three node triangle. Some numerical examples are presented and comparisons are made with applications already existent. (Author) [pt

  4. A particle finite element method for machining simulations

    Science.gov (United States)

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  5. Introduction to finite and spectral element methods using Matlab

    CERN Document Server

    Pozrikidis, Constantine

    2014-01-01

    The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.

  6. A set of pathological tests to validate new finite elements

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.

  7. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  8. Finite element design procedure for correcting the coining die profiles

    Science.gov (United States)

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  9. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  10. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  11. FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...

    African Journals Online (AJOL)

    eobe

    the stairs and to compare the finite element ana ... tual three dimensional behavior of the stair slab system. ..... due to its close relation of output with the propo .... flights. It is best not to consider any open well when .... thermodynamics of solids.

  12. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1983-01-01

    A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)

  13. Finite element computation of plasma equilibria

    International Nuclear Information System (INIS)

    Rivier, M.

    1977-01-01

    The applicability of the finite element method is investigated for the numerical solution of the nonlinear Grad-Shafranov equation with free boundary for the flux function of a plasma at equilibrium. This method is based on the case of variational principles and finite dimensional subspaces whose elements are piecewise polynomial functions obtained by a Lagrange type interpolation procedure over a triangulation of the domain. Two cases of plasma pressure (exponential and quadratic including a vacuum region) were examined. In both cases the nonuniqueness of the solutions was shown in exhibiting a deeper solution in the case of exponential pressure function, and a non-constant solution for a quadratic pressure function. In order to get this ''other'' solution, two linearization methods were tested with two different constraints. Different cross sections are investigated

  14. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  15. Finite Element Simulation of Fracture Toughness Test

    International Nuclear Information System (INIS)

    Chu, Seok Jae; Liu, Cong Hao

    2013-01-01

    Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found

  16. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  17. Finite element analysis of ARPS structures

    International Nuclear Information System (INIS)

    Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.

    1998-01-01

    Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent

  18. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  19. Finite element analysis of human joints

    International Nuclear Information System (INIS)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described

  20. Finite element simulations with ANSYS workbench 16

    CERN Document Server

    Lee , Huei-Huang

    2015-01-01

    Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...

  1. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    1999-09-01

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  2. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  3. Finite element based electric motor design optimization

    Science.gov (United States)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  4. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  5. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  6. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  7. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  8. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  9. FINELM: a multigroup finite element diffusion code

    International Nuclear Information System (INIS)

    Higgs, C.E.; Davierwalla, D.M.

    1981-06-01

    FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)

  10. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  11. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  12. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  13. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  14. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan

    2012-01-01

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite

  15. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  16. Finite element analysis of plastic recycling machine designed for ...

    African Journals Online (AJOL)

    ... design was evaluated using finite element analysis (FEA) tool in Solid Works Computer ... Also, a minimum factor of safety value of 5.3 was obtained for shredder shaft ... Machine; Design; Recycling; Sustainability; Finite Element; Simulation ...

  17. A finite element model for the quench front evolution problem

    International Nuclear Information System (INIS)

    Folescu, J.; Galeao, A.C.N.R.; Carmo, E.G.D. do.

    1985-01-01

    A model for the rewetting problem associated with the loss of coolant accident in a PWR reactor is proposed. A variational formulation for the time-dependent heat conduction problem on fuel rod cladding is used, and appropriate boundary conditions are assumed in order to simulate the thermal interaction between the fuel rod cladding and the fluid. A numerical procedure which uses the finite element method for the spatial discretization and a Crank-Nicolson-like method for the step-by-step integration is developed. Some numerical results are presented showing the quench front evolution and its stationary profile. (Author) [pt

  18. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  19. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  20. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations

    NARCIS (Netherlands)

    Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.

    We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the formulation is that if the system of nonconservative partial

  1. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations

    NARCIS (Netherlands)

    Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2008-01-01

    We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial

  2. Modelling bucket excavation by finite element

    Science.gov (United States)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  3. The finite element method in engineering, 2nd edition

    International Nuclear Information System (INIS)

    Rao, S.S.

    1986-01-01

    This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications

  4. Finite rotation shells basic equations and finite elements for Reissner kinematics

    CERN Document Server

    Wisniewski, K

    2010-01-01

    This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.

  5. Probabilistic finite elements for fracture and fatigue analysis

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  6. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  7. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1978-01-01

    A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)

  8. Finite element simulation of piezoelectric transformers.

    Science.gov (United States)

    Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H

    2001-07-01

    Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.

  9. FEHM, Finite Element Heat and Mass Transfer Code

    International Nuclear Information System (INIS)

    Zyvoloski, G.A.

    2002-01-01

    1 - Description of program or function: FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities. 2 - Methods: FEHM uses a preconditioned conjugate gradient solution of coupled linear equations and a fully implicit, fully coupled Newton Raphson solution of nonlinear equations. It has the capability of simulating transport using either a advection/diffusion solution or a particle tracking method. 3 - Restriction on the complexity of the problem: Disk space and machine memory are the only limitations

  10. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated

  11. On constitutive modelling in finite element analysis

    International Nuclear Information System (INIS)

    Bathe, K.J.; Snyder, M.D.; Cleary, M.P.

    1979-01-01

    This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)

  12. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  13. TITUS: a general finite element system

    International Nuclear Information System (INIS)

    Bougrelle, P.

    1983-01-01

    TITUS is a general finite element structural analysis system which performs linear/non-linear, static/dynamic analyses of heat-transfer/thermo-mechanical problems. One of the major features of TITUS is that it was designed by engineers, to address engineers in an industrial environment. This has resulted in an easy to use system, with a high-level free-formatted problem oriented language, a large selection of pre- and post processors and sophisticated graphic capabilities. TITUS has many references in civil, mechanical and nuclear engineering applications. The TITUS system is available on various types of machines, from large mainframes to mini computers

  14. Finite element analysis of permanent magnet motors

    International Nuclear Information System (INIS)

    Boglietti, A.; Chiampi, M.; Tartaglia, M.; Chiarabaglio, D.

    1989-01-01

    The analysis of permanent magnet D.C. brushless motors, supplied by current control inverters, is developed employing a finite element package tailored for such devices. The study is devoted to predicting the performance of a set of four poles machines, under different operating conditions (no-load, rated load). The over-load conditions are also considered including the saturation effect. Moreover the influence of such design parameters, as the tooth shape and the number of magnet segments, is investigated. Computed results are found in satisfactory agreement with experimental ones

  15. A 3D Finite Element Method for Flexible Multibody Systems

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Schoeberl, Joachim

    2006-01-01

    An efficient finite element (FE) formulation for the simulation of multibody systems is derived from Hamilton's principle. According to the classical assumptions of multibody systems, a large rotation formulation has been chosen, where large rotations and large displacements, but only small deformations of the single bodies are taken into account. The strain tensor is linearized with respect to a co-rotated frame. The present approach uses absolute coordinates for the degrees of freedom and forms an alternative to the floating frame of reference formulation that is based on relative coordinates and describes deformation with respect to a co-rotated frame. Due to the modified strain tensor, the present formulation distinguishes significantly from standard nodal based nonlinear FE methods. Constraints are defined in integral form for every pair of surfaces of two bodies. This leads to a small number of constraint equations and avoids artificial stress singularities. The resulting mass and stiffness matrices are constant apart from a transformation based on a single rotation matrix for each body. The particular structure of this transformation allows to prevent from the usually expensive factorization of the system Jacobian within implicit time--integration methods. The present method has been implemented and tested with the FE-package NGSolve and specific 3D examples are verified with a standard beam formulation

  16. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  17. New formulation of the discrete element method

    Science.gov (United States)

    Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon

    2018-01-01

    A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.

  18. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  19. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  20. Finite element modeling of piezoelectric elements with complex electrode configuration

    International Nuclear Information System (INIS)

    Paradies, R; Schläpfer, B

    2009-01-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  1. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  2. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates

    NARCIS (Netherlands)

    Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.

    For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen

  3. A FINITE-ELEMENTS APPROACH TO THE STUDY OF FUNCTIONAL ARCHITECTURE IN SKELETAL-MUSCLE

    NARCIS (Netherlands)

    OTTEN, E; HULLIGER, M

    1994-01-01

    A mathematical model that simulates the mechanical processes inside a skeletal muscle under various conditions of muscle recruitment was formulated. The model is based on the finite-elements approach and simulates both contractile and passive elastic elements. Apart from the classic strategy of

  4. Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation

    International Nuclear Information System (INIS)

    Goudreau, G.L.; Hallquist, J.O.

    1979-08-01

    Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications

  5. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng

    2017-06-09

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.

  6. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  7. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco

    2012-01-01

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  8. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  9. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  10. Finite element program Lamcal. (User's manual)

    International Nuclear Information System (INIS)

    Lamain, L.G.; Blanckenburg, J.F.G.

    1982-01-01

    The present user's manual gives the input formats, job control and an input example for the finite element part of the Lamcal program. The input data have been organized in a more or less self explaining way, using keywords and standard input formats and is printed at the beginning of every run. To simplify the use of the whole program and to avoid unecessary data handling, all three parts of the Lamcal program, meshgeneration, plotting and, FE, are combined into one load module. This setup allows to do all calculations in one single run. However, preprocessing, postprocessing and restarts can be made in separate runs as well. The same reserved space for the dynamic core storage is used in all three parts, if the available space is not sufficient the FE program will stop

  11. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  12. Finite groups with three conjugacy class sizes of some elements

    Indian Academy of Sciences (India)

    Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.

  13. An implementation analysis of the linear discontinuous finite element method

    International Nuclear Information System (INIS)

    Becker, T. L.

    2013-01-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any

  14. An implementation analysis of the linear discontinuous finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Becker, T. L. [Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)

    2013-07-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory

  15. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  16. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  17. Finite element calculation of the interaction energy of shape memory alloy

    International Nuclear Information System (INIS)

    Yang, Seung Yong

    2004-01-01

    Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for

  18. A General Finite Element Scheme for Limit State Analysis and Optimization

    DEFF Research Database (Denmark)

    Damkilde, Lars

    1999-01-01

    Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...

  19. Impact of new computing systems on finite element computations

    International Nuclear Information System (INIS)

    Noor, A.K.; Fulton, R.E.; Storaasi, O.O.

    1983-01-01

    Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified

  20. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  1. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  2. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  3. On the finite element modeling of the asymmetric cracked rotor

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  4. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  5. Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models

    International Nuclear Information System (INIS)

    Quak, W.; Boogaard, A. H. van den

    2011-01-01

    A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.

  6. A Streamline-Upwind Petrov-Galerkin Finite Element Scheme for Non-Ionized Hypersonic Flows in Thermochemical Nonequilibrium

    Science.gov (United States)

    Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.

    2011-01-01

    Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.

  7. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  8. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    KAUST Repository

    Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.

    2013-01-01

    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.

  9. Heat Conduction Analysis Using Semi Analytical Finite Element Method

    International Nuclear Information System (INIS)

    Wargadipura, A. H. S.

    1997-01-01

    Heat conduction problems are very often found in science and engineering fields. It is of accrual importance to determine quantitative descriptions of this important physical phenomena. This paper discusses the development and application of a numerical formulation and computation that can be used to analyze heat conduction problems. The mathematical equation which governs the physical behaviour of heat conduction is in the form of second order partial differential equations. The numerical resolution used in this paper is performed using the finite element method and Fourier series, which is known as semi-analytical finite element methods. The numerical solution results in simultaneous algebraic equations which is solved using the Gauss elimination methodology. The computer implementation is carried out using FORTRAN language. In the final part of the paper, a heat conduction problem in a rectangular plate domain with isothermal boundary conditions in its edge is solved to show the application of the computer program developed and also a comparison with analytical solution is discussed to assess the accuracy of the numerical solution obtained

  10. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)

    2001-09-01

    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)

  11. Application of viscoplastic constitutive equations in finite element programs

    International Nuclear Information System (INIS)

    Hornberger, K.; Stamm, H.

    1987-04-01

    The general mathematical formulation of frequently used viscoplastic constitutive equations is explained and Robinson's model is discussed in more detail. The implementation of viscoplastic constitutive equations into Finite Element programs (such as ABAQUS) is described using Robinson's model as an example. For the numerical integration both an explicit (explicit Euler) and an implicit (generalized midpoint rule) integration scheme is utilized in combination with a time step control strategy. In the implicit integration scheme, convergence in solving a system of nonlinear algebraic equation is improved introducing a projection method. The efficiency of the implemented procedures is demonstrated for different homogeneous load cases as well as for creep loading and strain controlled cyclic loading of a perforated plate. (orig./HP) [de

  12. Perfectly matched layer for the time domain finite element method

    International Nuclear Information System (INIS)

    Rylander, Thomas; Jin Jianming

    2004-01-01

    A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS

  13. Probabilistic finite element modeling of waste rollover

    International Nuclear Information System (INIS)

    Khaleel, M.A.; Cofer, W.F.; Al-fouqaha, A.A.

    1995-09-01

    Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ''rolls over'' and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described

  14. Finite element modelling of composite castellated beam

    Directory of Open Access Journals (Sweden)

    Frans Richard

    2017-01-01

    Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.

  15. Shakedown analysis by finite element incremental procedures

    International Nuclear Information System (INIS)

    Borkowski, A.; Kleiber, M.

    1979-01-01

    It is a common occurence in many practical problems that external loads are variable and the exact time-dependent history of loading is unknown. Instead of it load is characterized by a given loading domain: a convex polyhedron in the n-dimensional space of load parameters. The problem is then to check whether a structure shakes down, i.e. responds elastically after a few elasto-plastic cycles, or not to a variable loading as defined above. Such check can be performed by an incremental procedure. One should reproduce incrementally a simple cyclic process which consists of proportional load paths that connect the origin of the load space with the corners of the loading domain. It was proved that if a structure shakes down to such loading history then it is able to adopt itself to an arbitrary load path contained in the loading domain. The main advantage of such approach is the possibility to use existing incremental finite-element computer codes. (orig.)

  16. TACO: a finite element heat transfer code

    International Nuclear Information System (INIS)

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  17. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1980-05-01

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  18. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  19. Energy flow in plate assembles by hierarchical version of finite element method

    DEFF Research Database (Denmark)

    Wachulec, Marcin; Kirkegaard, Poul Henning

    method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......The dynamic analysis of structures in medium and high frequencies are usually focused on frequency and spatial averages of energy of components, and not the displacement/velocity fields. This is especially true for structure-borne noise modelling. For the analysis of complicated structures...... the finite element method has been used to study the energy flow. The finite element method proved its usefulness despite the computational expense. Therefore studies have been conducted in order to simplify and reduce the computations required. Among others, the use of hierarchical version of finite element...

  20. Finite element analysis of the neutron transport equation in spherical geometry

    International Nuclear Information System (INIS)

    Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong

    1992-01-01

    The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)

  1. Finite element analysis of a finite-strain plasticity problem

    International Nuclear Information System (INIS)

    Crose, J.G.; Fong, H.H.

    1984-01-01

    A finite-strain plasticity analysis was performed of an engraving process in a plastic rotating band during the firing of a gun projectile. The aim was to verify a nonlinear feature of the NIFDI/RB code: plastic large deformation analysis of nearly incompressible materials using a deformation theory of plasticity approach and a total Lagrangian scheme. (orig.)

  2. A Finite Element Analysis of Optimal Variable Thickness Sheets

    DEFF Research Database (Denmark)

    Petersson, Joakim S

    1996-01-01

    A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...

  3. Final Report of the Project "From the finite element method to the virtual element method"

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.

  4. Maxwell's equations in axisymmetrical geometry: coupling H(curl) finite element in volume and H(div) finite element in surface. The numerical code FuMel

    International Nuclear Information System (INIS)

    Cambon, S.; Lacoste, P.

    2011-01-01

    We propose a finite element method to solve the axisymmetric scattering problem posed on a regular bounded domain. Here we shall show how to reduce the initial 3D problem into a truncated sum of 2D independent problems posed into a meridian plane of the object. Each of these problem results in the coupling of a partial differential equation into the interior domain and an integral equation on the surface simulating the free space. Then variational volume and boundary integral formulations of Maxwell's equation on regular surfaces are derived. We introduce some general finite element adapted to cylindrical coordinates and constructed from nodal and mixed finite element both for the interior (volume) and for the integral equation (surface). (authors)

  5. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  6. Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis

    CERN Document Server

    Laursen, Tod A

    2003-01-01

    This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.

  7. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  8. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  9. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  10. A geometric toolbox for tetrahedral finite element partitions

    NARCIS (Netherlands)

    Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

    2011-01-01

    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.

  11. An introduction to the UNCLE finite element scheme

    International Nuclear Information System (INIS)

    Enderby, J.A.

    1983-01-01

    UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)

  12. A simple finite element method for linear hyperbolic problems

    International Nuclear Information System (INIS)

    Mu, Lin; Ye, Xiu

    2017-01-01

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  13. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  14. Finite element simulation of laser transmission welding of dissimilar ...

    African Journals Online (AJOL)

    user

    materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.

  15. A Note on Symplectic, Multisymplectic Scheme in Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke

    2001-01-01

    We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``

  16. Finite Element Analysis of Pipe T-Joint

    OpenAIRE

    P.M.Gedkar; Dr. D.V. Bhope

    2012-01-01

    This paper reports stress analysis of two pressurized cylindrical intersection using finite element method. The different combinations of dimensions of run pipe and the branch pipe are used to investigate thestresses in pipe at the intersection. In this study the stress analysis is accomplished by finite element package ANSYS.

  17. An introduction to the UNCLE finite element scheme

    Energy Technology Data Exchange (ETDEWEB)

    Enderby, J A [UK Atomic Energy Authority, Northern Division, Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)

    1983-05-01

    UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)

  18. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  19. Finite size effects of a pion matrix element

    International Nuclear Information System (INIS)

    Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.

    2004-01-01

    We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation

  20. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    DEFF Research Database (Denmark)

    Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

    2004-01-01

    n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

  1. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  2. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  3. Finite element analysis of a fluid-structure interaction in flexible pipe ...

    African Journals Online (AJOL)

    The obtained mathematical system is constituted of four non-linear hyperbolic partial differential equations describing the wave propagation in both pipe wall and liquid flow. The fluid-structure interaction is found to be governed by Poisson's ratio. In this steady finite element method based on Galerkin formulation is applied.

  4. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...

  5. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  6. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  7. Laminar forced convective/conductive heat transfer by finite element method

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Kakodkar, A.

    1982-01-01

    The present study is directed at developing a finite element computer program for solution of decoupled convective/conductive heat transfer problems. Penalty function formulation has been used to solve momentum equations and subsequently transient energy equation is solved using modified Crank-Nicolson method. The optimal upwinding scheme has been employed in energy equation to remove oscillations at high Peclet number. (author)

  8. On the relationship between some nodal schemes and the finite element method in static diffusion calculations

    International Nuclear Information System (INIS)

    Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.

    1983-03-01

    An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results

  9. A study on discontinuous Galerkin finite element methods for elliptic problems

    NARCIS (Netherlands)

    Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.

    2003-01-01

    In this report we study several approaches of the discontinuous Galerkin finite element methods for elliptic problems. An important aspect in these formulations is the use of a lifting operator, for which we present an efficient numerical approximation technique. Numerical experiments for two

  10. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  11. Advances in 3D electromagnetic finite element modeling

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed

  12. Finite element and boundary element applications in quantum mechanics

    International Nuclear Information System (INIS)

    Ueta, Tsuyoshi

    2003-01-01

    Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to

  13. Some considerations on displacement assumed finite elements with the reduced numerical integration technique

    International Nuclear Information System (INIS)

    Takeda, H.; Isha, H.

    1981-01-01

    The paper is concerned with the displacement-assumed-finite elements by applying the reduced numerical integration technique in structural problems. The first part is a general consideration on the technique. Its purpose is to examine a variational interpretation of the finite element displacement formulation with the reduced integration technique in structural problems. The formulation is critically studied from a standpoint of the natural stiffness approach. It is shown that these types of elements are equivalent to a certain type of displacement and stress assumed mixed elements. The rank deficiency of the stiffness matrix of these elements is interpreted as a problem in the transformation from the natural system to a Cartesian system. It will be shown that a variational basis of the equivalent mixed formulation is closely related to the Hellinger-Reissner's functional. It is presented that for simple elements, e.g. bilinear quadrilateral plane stress and plate bending there are corresponding mixed elements from the functional. For relatively complex types of these elements, it is shown that they are equivalent to localized mixed elements from the Hellinger-Reissner's functional. In the second part, typical finite elements with the reduced integration technique are studied to demonstrate this equivalence. A bilinear displacement and rotation assumed shear beam element, a bilinear displacement assumed quadrilateral plane stress element and a bilinear deflection and rotation assumed quadrilateral plate bending element are examined to present equivalent mixed elements. Not only the theoretical consideration is presented but numerical studies are shown to demonstrate the effectiveness of these elements in practical analysis. (orig.)

  14. Use of the finite element displacement method to solve solid-fluid interaction vibration problems

    International Nuclear Information System (INIS)

    Brown, S.J.; Hsu, K.H.

    1978-01-01

    It is shown through comparison to experimental, theoretical, and other finite element formulations that the finite element displacement method can solve accurately and economically a certain class of solid-fluid eigenvalue problems. The problems considered are small displacements in the absence of viscous damping and are 2-D and 3-D in nature. In this study the advantages of the finite element method (in particular the displacement formulation) is apparent in that a large structure consisting of the cylinders, support flanges, fluid, and other experimental boundaries could be modeled to yield good correlation to experimental data. The ability to handle large problems with standard structural programs is the key advantage of the displacement fluid method. The greatest obstacle is the inability of the analyst to inhibit those rotational degrees of freedom that are unnecessary to his fluid-structure vibration problem. With judicious use of element formulation, boundary conditions and modeling, the displacement finite element method can be successfully used to predict solid-fluid response to vibration and seismic loading

  15. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  16. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  17. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  18. Finite Element Simulation of Blanking Process

    Directory of Open Access Journals (Sweden)

    Afzal Ahmed

    2012-10-01

    daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui  eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing

  19. Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements

    Directory of Open Access Journals (Sweden)

    James H. Haido

    2014-08-01

    Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.

  20. Precise magnetostatic field using the finite element method

    International Nuclear Information System (INIS)

    Nascimento, Francisco Rogerio Teixeira do

    2013-01-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  1. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  2. Review of Tomographic Imaging using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mohd Fua’ad RAHMAT

    2011-12-01

    Full Text Available Many types of techniques for process tomography were proposed and developed during the past 20 years. This paper review the techniques and the current state of knowledge and experience on the subject, aimed at highlighting the problems associated with the non finite element methods, such as the ill posed, ill conditioned which relates to the accuracy and sensitivity of measurements. In this paper, considerations for choice of sensors and its applications were outlined and descriptions of non finite element tomography systems were presented. The finite element method tomography system as obtained from recent works, suitable for process control and measurement were also presented.

  3. Finite element simulation and testing of ISW CFRP anchorage

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl

    2013-01-01

    is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen....... This paper presents a novel mechanical integrated sleeve wedge anchorage which seem very promising when perusing the scope of ultimate utilization of CFRP 8mm rods (with a tension capacity of approximately 140kN). Compression transverse to the CFRP is evaluated to prevent premature failure. The anchorage...

  4. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.

    1977-01-01

    The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis

  5. Development of polygon elements based on the scaled boundary finite element method

    International Nuclear Information System (INIS)

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  6. Finite element methods in incompressible, adiabatic, and compressible flows from fundamental concepts to applications

    CERN Document Server

    Kawahara, Mutsuto

    2016-01-01

    This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results so...

  7. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  8. The Spectral/hp-Finite Element Method for Partial Differential Equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter

    2009-01-01

    dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...

  9. Topological Design for Acoustic-Structure Interaction Problems with a Mixed Finite Element Method

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz...... equation and the linear elasticity equation, the mass density as well as the shear and bulk moduli are interpolated with the design variables. In this formulation, the coupled interface boundary conditions are automatically satisfied without having to compute surface coupling integrals. Two dimensional...

  10. Finite element method for computational fluid dynamics with any type of elements; Finite Element Methode zur numerischen Stroemungsberechnung mit beliebigen Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Steibler, P.

    2000-07-01

    The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet

  11. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  12. A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available Abstract The conventional Timoshenko piezoelectric beam finite elements based on First-order Shear Deformation Theory (FSDT do not maintain the accuracy and convergence consistently over the applicable range of material and geometric properties. In these elements, the inaccuracy arises due to the induced potential effects in the transverse direction and inefficiency arises due to the use of independently assumed linear polynomial interpolation of the field variables in the longitudinal direction. In this work, a novel FSDT-based piezoelectric beam finite element is proposed which is devoid of these deficiencies. A variational formulation with consistent through-thickness potential is developed. The governing equilibrium equations are used to derive the coupled field relations. These relations are used to develop a polynomial interpolation scheme which properly accommodates the bending-extension, bending-shear and induced potential couplings to produce accurate results in an efficient manner. It is noteworthy that this consistently accurate and efficient beam finite element uses the same nodal variables as of conventional FSDT formulations available in the literature. Comparison of numerical results proves the consistent accuracy and efficiency of the proposed formulation irrespective of geometric and material configurations, unlike the conventional formulations.

  13. Low Reynolds number steady state flow through a branching network of rigid vessels: II. A finite element mixture model

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Oomens, C.W.J.; Campen, van D.H.; Heethaar, R.M.

    1989-01-01

    This research aims at formulating and verifying a finite element mixture formulation for blood perfusion. The equations derived in a companion paper [3] are discretized according to the Galerkin method. A flow experiment in a rigid model of a vascular tree of about 500 vessels is performed in order

  14. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    Science.gov (United States)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  15. Finite element model updating using bayesian framework and modal properties

    CSIR Research Space (South Africa)

    Marwala, T

    2005-01-01

    Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...

  16. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette; Murat, Franç ois; Salgado, Abner

    2010-01-01

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and

  17. Finite Element Crash Simulations and Impact-Induced Injuries

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  18. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.

    2013-01-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  19. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  20. Optical strain measurements and its finite element analysis of cold ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Online video images of square grid were recorded during the deformation ... Finite element software ANSYS has been applied for the analysis of the upset forming process.

  1. Finite element analyses for RF photoinjector gun cavities

    International Nuclear Information System (INIS)

    Marhauser, F.

    2006-01-01

    This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)

  2. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  3. Finite element model to study calcium distribution in oocytes ...

    African Journals Online (AJOL)

    Parvaiz Ahmad Naik

    2015-03-20

    Mar 20, 2015 ... Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051 ... finite element method has been employed to obtain the solution. ..... Nelson MT, Cheng H, Rubart M. Relaxation of arterial smooth.

  4. Finite element concept to derive isostatic residual maps ...

    Indian Academy of Sciences (India)

    A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the ... not require explicit assumptions on isostatic models. Besides .... This information is implicit in the Bouguer ...

  5. Finite element analyses for RF photoinjector gun cavities

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, F. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung mbH (BESSY), Berlin (Germany)

    2006-07-01

    This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)

  6. Implementation of a high performance parallel finite element micromagnetics package

    International Nuclear Information System (INIS)

    Scholz, W.; Suess, D.; Dittrich, R.; Schrefl, T.; Tsiantos, V.; Forster, H.; Fidler, J.

    2004-01-01

    A new high performance scalable parallel finite element micromagnetics package has been implemented. It includes solvers for static energy minimization, time integration of the Landau-Lifshitz-Gilbert equation, and the nudged elastic band method

  7. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  8. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  9. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  10. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  11. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  12. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  13. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  14. Thermal stresses in rectangular plates: variational and finite element solutions

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.

    1978-01-01

    This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)

  15. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  16. A finite element solution method for quadrics parallel computer

    International Nuclear Information System (INIS)

    Zucchini, A.

    1996-08-01

    A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem

  17. Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2008-01-01

    Full Text Available The least-squares finite element method (LSFEM has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM. The method leads to a minimization problem in the L2-norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM, is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.

  18. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  19. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  20. Comparison of 3-D finite elements for incompressible fluid flow

    International Nuclear Information System (INIS)

    Robichaud, M.; Tanguy, P.A.

    1985-01-01

    In recent years, the finite element method applied to the solution of incompressible fluid flow has been in constant evolution. In the present state-of-the-art, 2-D problems are solved routinely and reliable results are obtained at a reasonable cost. In 3-D the finite element method is still undergoing active research and many methods have been proposed to solve the Navier-Stokes equations at 'low cost'. These methods have in common the choice of the element which has a trilinear velocity and a discontinuous constant pressure (Q1-PO). The prohibitive cost of 3-D finite element method in fluid flow is the reason for this choice: the Q1-PO is the simplest and the cheapest 3-D element. However, as mentioned in (5) and (6), it generates 'spurious' pressure modes phenomenon called checkerboarding. On regular mesh these spurious modes can be filtered but on distorted mesh the pressure solution is meaningless. (author)

  1. A comparison study on the performance of lower order solid finite element for elastic analysis of plate and shell structures

    International Nuclear Information System (INIS)

    Lee, Young Jung; Lee, Sang Jin; Choun, Young Sun; Seo, Jeong Moon

    2003-05-01

    The objective of this research is to assess the performance of lower order solid finite elements which will be ultimately applied into the safety analysis of nuclear containment building. For the safety analysis of large structures such as nuclear containment building, efficient lower order finite element is necessarily required to calculate the structural response of containment building with low computational cost. In this study, the state of the art formulations of lower order solid finite element are throughly reviewed and the best possible solid finite element is adopted into the development of nuclear containment analysis system. Three 8-node solid finite elements based on standard strain-displacement relationship, B-bar method and EAS method are implemented as computer modules and completely tested with various plate and shell structures. The present results can be directly applied into the analysis code development for general reinforced concrete structures

  2. Numerical experiment on finite element method for matching data

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.

    1993-03-01

    Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)

  3. MESHREF, Finite Elements Mesh Combination with Renumbering

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: The program can assemble different meshes stored on tape or cards. Renumbering is performed in order to keep band width low. Voids and/ or local refinement are possible. 2 - Method of solution: Topology and geometry are read according to input specifications. Abundant nodes and elements are eliminated. The new topology and geometry are stored on tape. 3 - Restrictions on the complexity of the problem: Maximum number of nodes = 2000. Maximum number of elements = 1500

  4. Element size and other restrictions in finite-element modeling of reinforced concrete at elevated temperatures

    DEFF Research Database (Denmark)

    Carstensen, Josephine Voigt; Jomaas, Grunde; Pankaj, Pankaj

    2013-01-01

    to extend this approach for RC at elevated temperatures. Prior to the extension, the approach is investigated for associated modeling issues and a set of limits of application are formulated. The available models of the behavior of plain concrete at elevated temperatures were used to derive inherent......One of the accepted approaches for postpeak finite-element modeling of RC comprises combining plain concrete, reinforcement, and interaction behaviors. In these, the postpeak strain-softening behavior of plain concrete is incorporated by the use of fracture energy concepts. This study attempts...... fracture energy variation with temperature. It is found that the currently used tensile elevated temperature model assumes that the fracture energy decays with temperature. The existing models in compression also show significant decay of fracture energy at higher temperatures (>400°) and a considerable...

  5. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  6. Finite element analysis of composite concrete-timber beams

    Directory of Open Access Journals (Sweden)

    N. C. S. FORTI

    Full Text Available AbstractIn the search for sustainable construction, timber construction is gaining in popularity around the world. Sustainably harvested wood stores carbon dioxide, while reforestation absorbs yet more CO2. One technique involves the combination of a concrete slab and a timber beam, where the two materials are assembled by the use of flexible connectors. Composite structures provide reduced costs, environmental benefits, a better acoustic performance, when compared to timber structures, and maintain structural safety. Composite structures combine materials with different mechanical properties. Their mechanical performance depends on the efficiency of the connection, which is designed to transmit shear longitudinal forces between the two materials and to prevent vertical detachment. This study contributes with the implementation of a finite element formulation for stress and displacement determination of composite concrete-timber beams. The deduced stiffness matrix and load vector are presented along to numerical examples. Numerical examples are compared to the analytical equations available in Eurocode 5 and to experimental data found in the literature.

  7. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  9. Finite element solution of quasistationary nonlinear magnetic field

    International Nuclear Information System (INIS)

    Zlamal, Milos

    1982-01-01

    The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth

  10. Finite element modeling of superelastic nickel-titanium orthodontic wires.

    Science.gov (United States)

    Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled

    2014-11-28

    Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.

  11. Three- and four-noded planar elements using absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Olshevskiy, Alexander; Dmitrochenko, Oleg; Kim, Changwan

    2013-01-01

    This paper investigates two new types of planar finite elements containing three and four nodes. These elements are the reduced forms of the spatial plate elements employing the absolute nodal coordinate approach. Elements of the first type use translations of nodes and global slopes as nodal coordinates and have 18 and 24 degrees of freedom. The slopes facilitate the prevention of the shear locking effect in bending problems. Furthermore, the slopes accurately describe the deformed shape of the elements. Triangular and quadrilateral elements of the second type use translational degrees of freedom only and, therefore, can be utilized successfully in problems without bending. These simple elements with 6 and 8 degrees of freedom are identical to the elements used in conventional formulation of the finite element method from the kinematical point of view. Similarly to the famous problem called “flying spaghetti” which is used often as a benchmark for beam elements, a kind of “flying lasagna” is simulated for the planar elements. Numerical results of simulations are presented.

  12. An efficient coupled polynomial interpolation scheme for shear mode sandwich beam finite element

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available An efficient piezoelectric sandwich beam finite element is presented here. It employs the coupled polynomial field interpolation scheme for field variables which incorporates electromechanical coupling at interpolation level itself; unlike conventional sandwich beam theory (SBT based formulations available in the literature. A variational formulation is used to derive the governing equations, which are used to establish the relationships between field variables. These relations lead to the coupled polynomial field descriptions of variables, unlike conventional SBT formulations which use assumed independent polynomials. The relative axial displacement is expressed only by coupled terms containing contributions from other mechanical and electrical variables, thus eliminating use of the transverse displacement derivative as a degree of freedom. A set of coupled shape function based on these polynomials has shown the improvement in the convergence characteristics of the SBT based formulation. This improvement in the performance is achieved with one nodal degree of freedom lesser than the conventional SBT formulations.

  13. A Finite Element Model for convection-dominatel transport problems

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Galeao, A.C.N.R.

    1987-08-01

    A new Protev-Galerkin Finite Element Model which automatically incorporates the search for the appropriate upwind direction is presented. It is also shown that modifying the Petrov-Galerkin weightin functions associated with elements adjascent to downwing boudaries effectively eliminates numerical oscillations normally obtained near boundary layers. (Author) [pt

  14. Stress distributions in finite element analysis of concrete gravity dam ...

    African Journals Online (AJOL)

    Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...

  15. Finite element stress analysis of brick-mortar masonry under ...

    African Journals Online (AJOL)

    Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...

  16. Modelling Convergence of Finite Element Analysis of Cantilever Beam

    African Journals Online (AJOL)

    Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...

  17. Coupling of smooth particle hydrodynamics with the finite element method

    International Nuclear Information System (INIS)

    Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.

    1994-01-01

    A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))

  18. Stochastic formulation of quantum field at finite temperature

    International Nuclear Information System (INIS)

    Lim, S.C.

    1989-01-01

    This paper reports that, based on an extension of the stochastic quantization method of Nelson, it is possible to obtain finite temperature fields in both the imaginary and real time formalisms which are usually quantized by using the functional integral technique

  19. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  20. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  1. On Using Particle Finite Element for Hydrodynamics Problems Solving

    Directory of Open Access Journals (Sweden)

    E. V. Davidova

    2015-01-01

    Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \

  2. Finite Element Analysis of Circular Plate using SolidWorks

    International Nuclear Information System (INIS)

    Kang, Yeo Jin; Jhung, Myung Jo

    2011-01-01

    Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts

  3. Two-dimensional isostatic meshes in the finite element method

    OpenAIRE

    Martínez Marín, Rubén; Samartín, Avelino

    2002-01-01

    In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...

  4. Simplified Qualitative Discrete Numerical Model to Determine Cracking Pattern in Brittle Materials by Means of Finite Element Method

    OpenAIRE

    Ochoa-Avendaño, J.; Garzon-Alvarado, D. A.; Linero, Dorian L.; Cerrolaza, M.

    2017-01-01

    This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending...

  5. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  6. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  7. Discontinuous finite elements applied to solution of problems about heat transfer in heterogeneous media

    International Nuclear Information System (INIS)

    Ferreira, Monica Barcellos Jansen; Carmo, Eduardo Gomes Dutra do

    2000-01-01

    Heat transfer problems in heterogenous media with large variation of thermal conductivity are notorious for the difficulties in obtaining good numerical results. In this work it is proposed an application of a new mixed discontinuous finite element formulation to this class of problems, which produces good results without the need of high mesh refinement. Stability and consistency aspects are considered and numerical results are presented to show the efficacy of the method. (author)

  8. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  9. Simulation of natural convection in a rectangular loop using finite elements

    International Nuclear Information System (INIS)

    Pepper, D.W.; Hamm, L.L.; Kehoe, A.B.

    1984-01-01

    A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10 4 are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons

  10. Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods

    OpenAIRE

    Laadhari , Aymen; Saramito , Pierre; Misbah , Chaouqi

    2014-01-01

    International audience; The numerical simulation of the deformation of vesicle membranes under simple shear external fluid flow is considered in this paper. A new saddle-point approach is proposed for the imposition of the fluid incompressibility and the membrane inextensibility constraints, through Lagrange multipliers defined in the fluid and on the membrane respectively. Using a level set formulation, the problem is approximated by mixed finite elements combined with an automatic adaptive ...

  11. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha; Papadopoulos, Panayiotis; Taylor, Robert L.

    2012-01-01

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  12. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  13. Hualien forced vibration calculation with a finite element model

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.

    1995-01-01

    The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs

  14. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  15. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  16. Flow Applications of the Least Squares Finite Element Method

    Science.gov (United States)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  17. Finite element simulation of ironing process under warm conditions

    Directory of Open Access Journals (Sweden)

    Swadesh Kumar Singh

    2014-01-01

    Full Text Available Metal forming is one of the most important steps in manufacturing of a large variety of products. Ironing in deep drawing is done by adjusting the clearance between the punch and the die and allow the material flow over the punch. In the present investigation effect of extent of ironing behavior on the characteristics of the product like thickness distribution with respect to temperature was studied. With the help of finite element simulation using explicit finite element code LS-DYNA the stress in the drawn cup were predicted in the drawn cup. To increase the accuracy in the simulation process, numbers of integration points were increased in the thickness direction and it was found that there is very close prediction of finite element results to that of experimental ones.

  18. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  19. Simulation of incompressible flows with heat and mass transfer using parallel finite element method

    Directory of Open Access Journals (Sweden)

    Jalal Abedi

    2003-02-01

    Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.

  20. Finite element modeling and simulation with ANSYS workbench

    CERN Document Server

    Chen, Xiaolin

    2014-01-01

    IntroductionSome Basic ConceptsAn Example in FEA: Spring SystemOverview of ANSYS WorkbenchSummaryProblemsBars and TrussesIntroductionReview of the 1-D Elasticity TheoryModeling of TrussesFormulation of the Bar ElementExamples with Bar ElementsCase Study with ANSYS WorkbenchSummaryProblemsBeams and FramesIntroductionReview of the Beam TheoryModeling of Beams and FramesFormulation of the Beam ElementExamples with Beam ElementsCase Study with ANSYS WorkbenchSummaryProblemsTwo-Dimensional ElasticityIntroductionReview of 2-D Elasticity TheoryModeling of 2-D Elasticity ProblemsFormulation of the Pla

  1. Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

    KAUST Repository

    Gao, Longfei

    2018-02-22

    We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

  2. Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

    KAUST Repository

    Gao, Longfei; Keyes, David E.

    2018-01-01

    We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

  3. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  4. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  5. Matlab and C programming for Trefftz finite element methods

    CERN Document Server

    Qin, Qing-Hua

    2008-01-01

    Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th

  6. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....

  7. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  8. COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER

    Directory of Open Access Journals (Sweden)

    Khomchenko A.

    2017-12-01

    Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.

  9. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  10. Fourier analysis of finite element preconditioned collocation schemes

    Science.gov (United States)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  11. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  12. Finite element modeling of fluid/thermal/structural interaction for a gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1980-01-01

    Two nonlinear finite element formulations for application to a series of experiments in the Gas-Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element for moderately large deformations is combined with a finite element developed for an engineering description of a convecting fluid. Typical results from both elements are illustrated. A combined application for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal coupling is very important

  13. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  14. Parallel algorithms for solving the diffusion equation by finite elements methods and by nodal methods

    International Nuclear Information System (INIS)

    Coulomb, F.

    1989-06-01

    The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr

  15. Evaluation of Concrete Cylinder Tests Using Finite Elements

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1984-01-01

    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....

  16. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  17. A finite element code for electric motor design

    Science.gov (United States)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  18. Finite elements for the thermomechanical calculation of massive structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1978-01-01

    The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de

  19. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  20. CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method

    International Nuclear Information System (INIS)

    Benzley, S.E.; Beisinger, Z.E.

    1981-01-01

    1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used

  1. The nonlinear finite element analysis program NUCAS (NUclear Containment Analysis System) for reinforced concrete containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Lee, Hong Pyo; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The maim goal of this research is to develop a nonlinear finite element analysis program NUCAS to accurately predict global and local failure modes of containment building subjected to internal pressure. In this report, we describe the techniques we developed throught this research. An adequate model to the analysis of containment building such as microscopic material model is adopted and it applied into the development Reissner-Mindlin degenerated shell element. To avoid finite element deficiencies, the substitute strains based on the assumed strain method is used in the shell formulation. Arc-length control method is also adopted to fully trace the peak load-displacement path due to crack formation. In addition, a benchmark test suite is developed to investigate the performance of NUCAS and proposed as the future benchmark tests for nonlinear analysis of reinforced concrete. Finally, the input format of NUCAS and the examples of input/output file are described. 39 refs., 65 figs., 8 tabs. (Author)

  2. Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces

    International Nuclear Information System (INIS)

    Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian

    2005-01-01

    Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm

  3. Determination of the ultimate load in concrete slabs by the yield line finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.

    1984-01-01

    A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt

  4. Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems

    Directory of Open Access Journals (Sweden)

    Xuehai Huang

    2013-01-01

    Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.

  5. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  6. Nonlinear Finite Element Analysis of Pull-Out Test

    DEFF Research Database (Denmark)

    Saabye Ottesen, N

    1981-01-01

    A specific pull-out test used to determine in-situ concrete compressive strength is analyzed. This test consists of a steel disc that is extracted from the structure. The finite element analysis considers cracking as well as strain hardening and softening in the pre- and post-failure region...

  7. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  8. Optimization of forging processes using finite element simulations

    NARCIS (Netherlands)

    Bonte, M.H.A.; Fourment, Lionel; Do, Tien-tho; van den Boogaard, Antonius H.; Huetink, Han

    2010-01-01

    During the last decades, simulation software based on the Finite Element Method (FEM) has significantly contributed to the design of feasible forming processes. Coupling FEM to mathematical optimization algorithms offers a promising opportunity to design optimal metal forming processes rather than

  9. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  10. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  11. Finite element concept to derive isostatic residual maps

    Indian Academy of Sciences (India)

    A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the residual maps of the Gorda Plate of western United States. The technique does not require explicit assumptions on isostatic models. Besides delineating the Gorda Plate boundary, the residual ...

  12. Total hip reconstruction in acetabular dysplasia : a finite element study

    NARCIS (Netherlands)

    Schüller, H.M.; Dalstra, M.; Huiskes, H.W.J.; Marti, R.K.

    1993-01-01

    In acetabular dysplasia, fixation of the acetabular component of a cemented total hip prosthesis may be insecure and superolateral bone grafts are often used to augment the acetabular roof. We used finite element analysis to study the mechanical importance of the lateral acetabular roof and found

  13. A mixed finite element method for particle simulation in lasertron

    International Nuclear Information System (INIS)

    Le Meur, G.

    1987-03-01

    A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown

  14. Steam generator tube rupture simulation using extended finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken

    2016-08-15

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  15. FINELM: a multigroup finite element diffusion code. Part II

    International Nuclear Information System (INIS)

    Davierwalla, D.M.

    1981-05-01

    The author presents the axisymmetric case in cylindrical coordinates for the finite element multigroup neutron diffusion code, FINELM. The numerical acceleration schemes incorporated viz. the Lebedev extrapolations and the coarse mesh rebalancing, space collapsing, are discussed. A few benchmark computations are presented as validation of the code. (Auth.)

  16. Nonlinear nonstationary analysis with the finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.

    1981-01-01

    In this paper, after some introductory remarks on numerical methods for the integration of initial value problems, the applicability of the finite element method for transient diffusion analysis as well as dynamic and inelastic analysis is discussed, and some examples are presented. (RW) [de

  17. Possibilities of Particle Finite Element Methods in Industrial Forming Processes

    Science.gov (United States)

    Oliver, J.; Cante, J. C.; Weyler, R.; Hernandez, J.

    2007-04-01

    The work investigates the possibilities offered by the particle finite element method (PFEM) in the simulation of forming problems involving large deformations, multiple contacts, and new boundaries generation. The description of the most distinguishing aspects of the PFEM, and its application to simulation of representative forming processes, illustrate the proposed methodology.

  18. The future of the finite element method in geotechnics

    NARCIS (Netherlands)

    Brinkgreve, R.B.J.

    2012-01-01

    In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been

  19. Design, development and use of the finite element machine

    Science.gov (United States)

    Adams, L. M.; Voigt, R. C.

    1983-01-01

    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.

  20. Aranha: a 2D mesh generator for triangular finite elements

    International Nuclear Information System (INIS)

    Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.

    1990-01-01

    A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)

  1. 3D finite element simulation of optical modes in VCSELs

    OpenAIRE

    Rozova, M.; Pomplun, J.; Zschiedrich, L.; Schmidt, F.; Burger, S.

    2011-01-01

    We present a finite element method (FEM) solver for computation of optical resonance modes in VCSELs. We perform a convergence study and demonstrate that high accuracies for 3D setups can be attained on standard computers. We also demonstrate simulations of thermo-optical effects in VCSELs.

  2. Finite element analysis of tubular joints in offshore structures ...

    African Journals Online (AJOL)

    ... representing a 2-D model of the joint between the brace and the chord walls. This was subsequently followed but finite element analysis of six tubular joints. A global analysis was initially undertaken, then the submodel analysis carried in the areas of stress concentration. Journal of Civil Engineering, JKUAT (2001) Vol 6, ...

  3. A mixed finite element method for particle simulation in Lasertron

    International Nuclear Information System (INIS)

    Le Meur, G.

    1987-01-01

    A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown

  4. Steam generator tube rupture simulation using extended finite element method

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken

    2016-01-01

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  5. Discontinuous Galerkin finite element methods for hyperbolic differential equations

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.

    2002-01-01

    In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas

  6. Can finite element models detect clinically inferior cemented hip implants?

    NARCIS (Netherlands)

    Stolk, J.; Maher, S.A.; Verdonschot, N.J.J.; Prendergast, P.J.; Huiskes, R.

    2003-01-01

    Rigorous preclinical testing of cemented hip prostheses against the damage accumulation failure scenario will reduce the incidence of aseptic loosening. For that purpose, a finite element simulation is proposed that predicts damage accumulation in the cement mantle and prosthetic migration. If the

  7. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  8. Deflation in preconditioned conjugate gradient methods for Finite Element Problems

    NARCIS (Netherlands)

    Vermolen, F.J.; Vuik, C.; Segal, A.

    2002-01-01

    We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous

  9. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  10. Finite element simulations of two rock mechanics tests

    International Nuclear Information System (INIS)

    Dahlke, H.J.; Lott, S.A.

    1986-04-01

    Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature

  11. Finite element investigation of the prestressed jointed concrete ...

    African Journals Online (AJOL)

    Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...

  12. Appendix F : finite element analysis of end region.

    Science.gov (United States)

    2013-03-01

    FE (finite element) modeling was conducted to 1) provide a better understanding of the : elastic behavior of the end region prior to cracking and 2) to evaluate the effects of bearing pad : stiffness and width on end region elastic stresses. The FEA ...

  13. GRIZ: Visualization of finite element analysis results on unstructured grids

    International Nuclear Information System (INIS)

    Dovey, D.; Loomis, M.D.

    1994-01-01

    GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations

  14. Integral finite element analysis of turntable bearing with flexible rings

    Science.gov (United States)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  15. Crack modeling of rotating blades with cracked hexahedral finite element method

    Science.gov (United States)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  16. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    Science.gov (United States)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  17. Finite Element Analysis of Dam-Reservoir Interaction Using High-Order Doubly Asymptotic Open Boundary

    Directory of Open Access Journals (Sweden)

    Yichao Gao

    2011-01-01

    Full Text Available The dam-reservoir system is divided into the near field modeled by the finite element method, and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB. Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system. In the direct coupled method, a symmetric monolithic governing equation is formulated by incorporating the DAOB with the finite element equation and solved using the standard time-integration methods. In contrast, the near-field finite element equation and the far-field DAOB condition are separately solved in the partitioned coupled methodm, and coupling is achieved by applying the interaction force on the truncated boundary. To improve its numerical stability and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled methods are implemented on the open-source finite element code OpenSees. Numerical examples are employed to demonstrate the performance of these two proposed methods.

  18. A Novel Polygonal Finite Element Method: Virtual Node Method

    Science.gov (United States)

    Tang, X. H.; Zheng, C.; Zhang, J. H.

    2010-05-01

    Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

  19. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  20. An efficient structural finite element for inextensible flexible risers

    Science.gov (United States)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  1. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity, and Lagrange multipliers. We use multiscale basis functions for both the velocity and the gradient of pressure. In the expanded mixed MsFEM framework, we consider both separable and nonseparable spatial scales. Specifically, we analyze the methods in three categories: periodic separable scales, G-convergent separable scales, and a continuum of scales. When there is no scale separation, using some global information can significantly improve the accuracy of the expanded mixed MsFEMs. We present a rigorous convergence analysis of these methods that includes both conforming and nonconforming formulations. Numerical results are presented for various multiscale models of flow in porous media with shale barriers that illustrate the efficacy of the proposed family of expanded mixed MsFEMs. © 2012 Society for Industrial and Applied Mathematics.

  2. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  3. A study of the consistent and the lumped source approximations in finite element neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Azgener, H.A.

    1991-01-01

    In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)

  4. Finite element evaluation of erosion/corrosion affected reducing elbow

    International Nuclear Information System (INIS)

    Basavaraju, C.

    1996-01-01

    Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety

  5. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    International Nuclear Information System (INIS)

    McWilliam, Michael K; Crawford, Curran

    2014-01-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane

  6. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xue

    2016-01-01

    Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.

  7. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    Science.gov (United States)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  8. Finite element methods for engineering sciences. Theoretical approach and problem solving techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert

    2008-07-01

    This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)

  9. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    Science.gov (United States)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  10. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M

    2005-01-01

    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  11. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  12. Finite element study of growth stress formation in wood and related distortion of sawn timber

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.

    2009-01-01

    -related stresses in wood (drying distortions) and growth-related stresses (distortions appearing when logs are split up to timber boards by sawing). To get more knowledge on how these distortions can be reduced in wooden products, there is a need for improved understanding of this material behaviour through good...... numerical tools developed from empirical data. A three-dimensional finite element board distortion model developed by Ormarsson (1999) has been extended to include the influence of growth stresses by incorporating a one-dimensional finite element growth stress model developed here. The growth stress model...... is formulated as an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The simulation results presented include how stresses are progressively generated during the tree growth, distortions related to the redistribution...

  13. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  14. MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.

    1996-05-01

    The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

  15. The finite element method and applications in engineering using ANSYS

    CERN Document Server

    Madenci, Erdogan

    2015-01-01

    This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...

  16. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  17. Introduction to assembly of finite element methods on graphics processors

    International Nuclear Information System (INIS)

    Cecka, Cristopher; Lew, Adrian; Darve, Eric

    2010-01-01

    Recently, graphics processing units (GPUs) have had great success in accelerating numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are presented and discussed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor achieves speedups of 30x or more in comparison to a well optimized serial implementation on the CPU. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite-element discretization.

  18. Finite cover method with mortar elements for elastoplasticity problems

    Science.gov (United States)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  19. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  20. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  1. Finite element modeling of trolling-mode AFM.

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  3. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris

    2010-08-23

    Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.

  4. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...

  5. Finite element modeling of micromachined MEMS photon devices

    Science.gov (United States)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  6. Finite Element Modeling of Micromachined MEMS Photon Devices

    International Nuclear Information System (INIS)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-01-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness

  7. Finite element predictions of active buckling control of stiffened panels

    Science.gov (United States)

    Thompson, Danniella M.; Griffin, O. H., Jr.

    1993-04-01

    Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.

  8. An adaptive finite element method for steady and transient problems

    International Nuclear Information System (INIS)

    Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.

    1987-01-01

    Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media

  9. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    Science.gov (United States)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  10. Finite Element Analysis and Design of Experiments in Engineering Design

    OpenAIRE

    Eriksson, Martin

    1999-01-01

    Projects with the objective of introducing Finite Element Analysis (FEA) into the early phases of the design process have previously been carried out at the Department of Machine Design, see e.g. the Doctoral thesis by Burman [13]. These works clearly highlight the usefulness of introducing design analysis early in the design process. According to Bjärnemo and Burman [10] the most significant advantage of applying design analysis early in the design process was the shift from verification to ...

  11. Three-dimensional modeling with finite element codes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.

    1986-01-17

    This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.

  12. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers....

  13. A finite element method for SSI time history calculation

    International Nuclear Information System (INIS)

    Ni, X.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described

  14. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  15. Imposing orthogonality to hierarchic higher-order finite elements

    Czech Academy of Sciences Publication Activity Database

    Šolín, P.; Vejchodský, Tomáš; Zítka, M.; Ávila, F.

    2007-01-01

    Roč. 76, 1-3 (2007), s. 211-217 ISSN 0378-4754 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape functions * energetic inner product * Laplace equation * symmetric linear elliptic problems * numerical experiments * hp-finite element method Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  16. Finite elements for partial differential equations: An introductory survey

    International Nuclear Information System (INIS)

    Succi, S.

    1988-03-01

    After presentation of the basic ideas behind the theory of the Finite Element Method, the application of the method to three equations of particular interest in Physics and Engineering is discussed in some detail, namely, a one-dimensional Sturm-Liouville problem, a two-dimensional linear Fokker-Planck equation and a two-dimensional nonlinear Navier-Stokes equation. 6 refs, 8 figs

  17. [Application of Finite Element Method in Thoracolumbar Spine Traumatology].

    Science.gov (United States)

    Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei

    2015-04-01

    The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.

  18. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  19. On angle conditions in the finite element method

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Hannukainen, A.; Korotov, S.; Křížek, Michal

    2011-01-01

    Roč. 56, - (2011), s. 81-95 ISSN 1575-9822 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : simplicial finite elements * minimum and maximum angle condition * ball conditions Subject RIV: BA - General Mathematics http://www.sema.org.es/ojs/index.php?journal=journal&page=article&op=viewArticle&path%5B%5D=612

  20. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.