WorldWideScience

Sample records for finite dimensional attractor

  1. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  2. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    2015-01-01

    Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf

  3. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  4. The finite dimensional behaviour of the global attractors for the generalized Landau-Lifshitz equation on compact manifolds

    International Nuclear Information System (INIS)

    Guo Boling

    1994-01-01

    We prove the existence of the global attractors for the generalized Landau-Lifshitz equation on compact manifold M, and give the upper and lower estimates of their Hausdorff and fractal dimensions. (author). 18 refs

  5. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

    OpenAIRE

    Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T. N.; Prasad, A.; Shrimali, M. D.

    2015-01-01

    The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A con...

  6. Existence of a new three-dimensional chaotic attractor

    International Nuclear Information System (INIS)

    Wang Jiezhi; Chen Zengqiang; Yuan Zhuzhi

    2009-01-01

    In this paper, one heteroclinic orbit of a new three-dimensional continuous autonomous chaotic system, whose chaotic attractor belongs to the conjugate Lue attractor, is found. The series expression of the heteroclinic orbit of Shil'nikov type is derived by using the undetermined coefficient method. The uniform convergence of the precise series expansions of this heteroclinic orbits is proved. According to the Shil'nikov theorem, this system clearly has Smale horseshoes and the horseshoe chaos.

  7. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  8. Attractor horizons in six-dimensional type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)

    2012-08-14

    We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.

  9. Finite-dimensional calculus

    International Nuclear Information System (INIS)

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  10. Counting and classifying attractors in high dimensional dynamical systems.

    Science.gov (United States)

    Bagley, R J; Glass, L

    1996-12-07

    Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.

  11. Solving Stochastic Büchi Games on Infinite Arenas with a Finite Attractor

    Directory of Open Access Journals (Sweden)

    Nathalie Bertrand

    2013-06-01

    Full Text Available We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized Büchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.

  12. [Extraction and recognition of attractors in three-dimensional Lorenz plot].

    Science.gov (United States)

    Hu, Min; Jang, Chengfan; Wang, Suxia

    2018-02-01

    Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X , Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency ( A PF ) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, A PF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.

  13. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde, Emilio; Odintsov, Sergei D. [Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Campus UAB, Carrer de Can Magrans, s/n, Cerdanyola del Vallès, Barcelona, 08193 Spain (Spain); Pozdeeva, Ekaterina O.; Vernov, Sergey Yu., E-mail: elizalde@ieec.uab.es, E-mail: odintsov@ieec.uab.es, E-mail: pozdeeva@www-hep.sinp.msu.ru, E-mail: svernov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 (Russian Federation)

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflation scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.

  14. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    OpenAIRE

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  15. Counterexamples to regularity of Mañé projections in the theory of attractors

    International Nuclear Information System (INIS)

    Eden, Al'p; Zelik, Sergey V; Kalantarov, Varga K

    2013-01-01

    This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least C 1 -smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a C 1 -smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness. Bibliography: 35 titles.

  16. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    Science.gov (United States)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  17. Quantum Finance: The Finite Dimensional Case

    OpenAIRE

    Chen, Zeqian

    2001-01-01

    In this paper, we present a quantum version of some portions of Mathematical Finance, including theory of arbitrage, asset pricing, and optional decomposition in financial markets based on finite dimensional quantum probability spaces. As examples, the quantum model of binomial markets is studied. We show that this quantum model ceases to pose the paradox which appears in the classical model of the binomial market. Furthermore, we re-deduce the Cox-Ross-Rubinstein binomial option pricing form...

  18. Example of the Smooth Skew Product in the Plane with the One-dimensional Ramified Continuum as the Global Attractor*

    Directory of Open Access Journals (Sweden)

    Efremova L.S.

    2012-08-01

    Full Text Available The example is constructed of the C1-smooth skew product of interval maps possessing the one-dimensional ramified continuum (containing no arcs homeomorphic to the circle with an infinite set of ramification points as the global attractor. L’exemple est construit à partir d’un produit biaisé lisse de classe C1 de transformations d’un intervalle, qui a un continuum unidimensionnel ramifié (ne contenant pas d’arcs homéomorphes à un cercle avec un ensemble infini de points de branchement comme attracteur global.

  19. Pullback attractors for three-dimensional non-autonomous Navier–Stokes–Voigt equations

    International Nuclear Information System (INIS)

    García-Luengo, Julia; Marín-Rubio, Pedro; Real, José

    2012-01-01

    In this paper, we consider a non-autonomous Navier–Stokes–Voigt model, with which a continuous process can be associated. We study the existence and relationship between minimal pullback attractors for this process in two different frameworks, namely, for the universe of fixed bounded sets, and also for another universe given by a tempered condition. Since the model does not have a regularizing effect, obtaining asymptotic compactness for the process is a more involved task. We prove this in a relatively simple way just using an energy method. Our results simplify—and in some aspects generalize—some of those obtained previously for the autonomous and non-autonomous cases, since for example in section 4, regularity is not required for the boundary of the domain and the force may take values in V'. Under additional suitable assumptions, regularity results for these families of attractors are also obtained, via bootstrapping arguments. Finally, we also conclude some results concerning the attraction in the D(A) norm

  20. Attractors in complex networks

    Science.gov (United States)

    Rodrigues, Alexandre A. P.

    2017-10-01

    In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).

  1. Computations in finite-dimensional Lie algebras

    Directory of Open Access Journals (Sweden)

    A. M. Cohen

    1997-12-01

    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  2. The finite-dimensional Freeman thesis.

    Science.gov (United States)

    Rudolph, Lee

    2008-06-01

    I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.

  3. Chaotic attractors with separated scrolls

    International Nuclear Information System (INIS)

    Bouallegue, Kais

    2015-01-01

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results

  4. Dimensional regularization and analytical continuation at finite temperature

    International Nuclear Information System (INIS)

    Chen Xiangjun; Liu Lianshou

    1998-01-01

    The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given

  5. Approximate Approaches to the One-Dimensional Finite Potential Well

    Science.gov (United States)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  6. Biderivations of finite dimensional complex simple Lie algebras

    OpenAIRE

    Tang, Xiaomin

    2016-01-01

    In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.

  7. Solution of 3-dimensional diffusion equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1978-01-01

    Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)

  8. Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system

    Science.gov (United States)

    Afraimovich, Valentin S.; Moses, Gregory; Young, Todd

    2016-05-01

    We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.

  9. Attractor comparisons based on density

    International Nuclear Information System (INIS)

    Carroll, T. L.

    2015-01-01

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling

  10. Finite-Dimensional Representations for Controlled Diffusions with Delay

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)

    2015-02-15

    We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.

  11. Finite element solution of two dimensional time dependent heat equation

    International Nuclear Information System (INIS)

    Maaz

    1999-01-01

    A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)

  12. Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

    International Nuclear Information System (INIS)

    Giacomin, Giambattista; Pakdaman, Khashayar; Pellegrin, Xavier

    2012-01-01

    We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero

  13. Integrable finite-dimensional systems related to Lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1979-01-01

    Some solvable finite-dimensional classical and quantum systems related to the Lie algebras are considered. The dynamics of these systems is closely related to free motion on symmetric spaces. In specific cases the systems considered describe the one-dimensional n-body problem recently considered by many authors. The review represents from general and universal point of view the results obtained during the last few years. Besides, it contains some results both of physical and mathematical type

  14. Finite-dimensional approximation for operator equations of Hammerstein type

    International Nuclear Information System (INIS)

    Buong, N.

    1992-11-01

    The purpose of this paper is to establish convergence rate for a method of finite-dimensional approximation to solve operator equation of Hammerstein type in real reflexive Banach space. In order to consider a numerical example an iteration method is proposed in Hilbert space. (author). 25 refs

  15. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  16. Irreducible quantum group modules with finite dimensional weight spaces

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    a finitely generated U q -module which has finite dimensional weight spaces and is a sum of those. Our approach follows the procedures used by S. Fernando and O. Mathieu to solve the corresponding problem for semisimple complex Lie algebra modules. To achieve this we have to overcome a number of obstacles...... not present in the classical case. In the process we also construct twisting functors rigerously for quantum group modules, study twisted Verma modules and show that these admit a Jantzen filtration with corresponding Jantzen sum formula....

  17. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  18. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  19. Mappings with closed range and finite dimensional linear spaces

    International Nuclear Information System (INIS)

    Iyahen, S.O.

    1984-09-01

    This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)

  20. Feigenbaum attractor and intermittency in particle collisions

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1992-01-01

    The hypothesis is proposed that the Feigenbaum attractor arising as a limit set in an infinite pichfork bifurcation sequence for unimodal one-dimensional maps underlies the intermittency phenomena in particle collisions. 23 refs.; 8 figs

  1. Topological and metric properties of Henon-type strange attractors

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Gunaratne, G.H.; Procaccia, I.

    1988-01-01

    We use the set of all periodic points of Henon-type mappings to develop a theory of the topological and metric properties of their attractors. The topology of a Henon-type attractor is conveniently represented by a two-dimensional symbol plane, with the allowed and disallowed orbits cleanly separated by the ''pruning front.'' The pruning front is a function discontinuous on every binary rational number, but for maps with finite dissipation chemical bondbchemical bond<1, it is well approximated by a few steps, or, in the symbolic dynamics language, by a finite grammar. Thus equipped with the complete list of allowed periodic points, we reconstruct (to resolution of order b/sup n/) the physical attractor by piecing together the linearized neighborhoods of all periodic points of cycle length n. We use this representation to compute the singularity spectrum f(α). The description in terms of periodic points works very well in the ''hyperbolic phase,'' for α larger than some α/sub c/, where α/sub c/ is the value of α corresponding to the (conjectured) phase transition

  2. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  3. Approximate approaches to the one-dimensional finite potential well

    International Nuclear Information System (INIS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  4. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects

  5. Quantum key distribution for composite dimensional finite systems

    Science.gov (United States)

    Shalaby, Mohamed; Kamal, Yasser

    2017-06-01

    The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.

  6. Ordering, symbols and finite-dimensional approximations of path integrals

    International Nuclear Information System (INIS)

    Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.

    1994-01-01

    We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)

  7. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    Science.gov (United States)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  8. Primary decomposition of zero-dimensional ideals over finite fields

    Science.gov (United States)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  9. Gauge theory for finite-dimensional dynamical systems

    International Nuclear Information System (INIS)

    Gurfil, Pini

    2007-01-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory

  10. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  11. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  12. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  13. Cusps enable line attractors for neural computation

    International Nuclear Information System (INIS)

    Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; Tao, Louis

    2017-01-01

    Here, line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyze system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.

  14. Cusps enable line attractors for neural computation

    Science.gov (United States)

    Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; Tao, Louis

    2017-11-01

    Line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyze system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.

  15. A birational mapping with a strange attractor: post-critical set and covariant curves

    International Nuclear Information System (INIS)

    Bouamra, M; Hassani, S; Maillard, J-M

    2009-01-01

    We consider some two-dimensional birational transformations. One of them is a birational deformation of the Henon map. For some of these birational mappings, the post-critical set (i.e. the iterates of the critical set) is infinite and we show that this gives straightforwardly the algebraic covariant curves of the transformation when they exist. These covariant curves are used to build the preserved meromorphic 2-form. One may also have an infinite post-critical set yielding a covariant curve which is not algebraic (transcendental). For two of the birational mappings considered, the post-critical set is finite and we claim that there is no algebraic covariant curve and no preserved meromorphic 2-form. For these two mappings with finite post-critical sets, attracting sets occur and we show that they pass the usual tests (Lyapunov exponents and the fractal dimension) for being strange attractors. The strange attractor of one of these two mappings is unbounded.

  16. Lyapunov exponents for infinite dimensional dynamical systems

    Science.gov (United States)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  17. Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)

  18. Localization of hidden Chua's attractors

    International Nuclear Information System (INIS)

    Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I.

    2011-01-01

    The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the present Letter for localization of hidden attractors of Chua's circuit it is suggested to use a special analytical-numerical algorithm. -- Highlights: → There are hidden attractors: basin doesn't contain neighborhoods of equilibria. → Hidden attractors cannot be reached by trajectory from neighborhoods of equilibria. → We suggested special procedure for localization of hidden attractors. → We discovered hidden attractor in Chua's system, L. Chua in his work didn't expect this.

  19. A novel 3D autonomous system with different multilayer chaotic attractors

    International Nuclear Information System (INIS)

    Dong Gaogao; Du Ruijin; Tian Lixin; Jia Qiang

    2009-01-01

    This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincare maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.

  20. The finite - dimensional star and grade star irreducible representation of SU(n/1)

    International Nuclear Information System (INIS)

    Han Qi-zhi.

    1981-01-01

    We derive the conditions of star and grade star representations of SU(n/1) and give some examples of them. We also give a brief review of the finite - dimensional irreducible representations of SU(n/1). (author)

  1. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  2. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.

  3. Ultraviolet finiteness of N = 8 supergravity, spontaneously broken by dimensional reduction

    International Nuclear Information System (INIS)

    Sezgin, E.; Nieuwenhuizen, P. van

    1982-06-01

    The one-loop corrections to scalar-scalar scattering in N = 8 supergravity with 4 masses from dimensional reduction, are finite. We discuss various mechanisms that cancel the cosmological constant and infra-red divergences due to finite but non-vanishing tadpoles. (author)

  4. Peculiarities of cyclotron magnetic system calculation with the finite difference method using two-dimensional approximation

    International Nuclear Information System (INIS)

    Shtromberger, N.L.

    1989-01-01

    To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs

  5. The structure of the Hamiltonian in a finite-dimensional formalism based on Weyl's quantum mechanics

    International Nuclear Information System (INIS)

    Santhanam, T.S.; Madivanane, S.

    1982-01-01

    Any discussion on finite-dimensional formulation of quantum mechanics involves the Sylvester matrix (finite Fourier transform). In the usual formulation, a remarkable relation exists that gives the Fourier transform as the exponential of the Hamiltonian of a simple harmonic oscillator. In this paper, assuming that such a relation holds also in the finite dimensional case, we extract the logarithm of the Sylvester matrix and in some cases this can be interpreted as the Hamiltonian of the truncated oscillator. We calculate the Hamiltonian matrix explicitly for some special cases of n = 3,4. (author)

  6. Linear finite element method for one-dimensional diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica

    2011-07-01

    We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)

  7. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method

    International Nuclear Information System (INIS)

    Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi

    2015-01-01

    Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)

  8. Mixed finite element simulations in two-dimensional groundwater flow problems

    International Nuclear Information System (INIS)

    Kimura, Hideo

    1989-01-01

    A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)

  9. Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces

    International Nuclear Information System (INIS)

    Robinson, James C

    2009-01-01

    This paper treats the embedding of finite-dimensional subsets of a Banach space B into finite-dimensional Euclidean spaces. When the Hausdorff dimension of X − X is finite, d H (X − X) k are injective on X. The proof motivates the definition of the 'dual thickness exponent', which is the key to proving that a prevalent set of such linear maps have Hölder continuous inverse when the box-counting dimension of X is finite and k > 2d B (X). A related argument shows that if the Assouad dimension of X − X is finite and k > d A (X − X), a prevalent set of such maps are bi-Lipschitz with logarithmic corrections. This provides a new result for compact homogeneous metric spaces via the Kuratowksi embedding of (X, d) into L ∞ (X)

  10. Approximation of the Frame Coefficients using Finite Dimensional Methods

    DEFF Research Database (Denmark)

    Christensen, Ole; Casazza, P.

    1997-01-01

    _i \\}_{i=1}^{n}$ of the frame and theorthogonal projection $P_n$ onto its span. For $f \\in \\h ,P_nf$ has a representation as a linear combination of $f_i , i=1,2,..n,$and the corresponding coefficients can be calculated using finite dimensionalmethods. We find conditions implying that those coefficients...

  11. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  12. Three-dimensional modeling with finite element codes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.

    1986-01-17

    This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.

  13. Two-dimensional isostatic meshes in the finite element method

    OpenAIRE

    Martínez Marín, Rubén; Samartín, Avelino

    2002-01-01

    In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...

  14. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  15. Exact vacuum polarization in 1 + 1 dimensional finite nuclei

    International Nuclear Information System (INIS)

    Ferree, T.C.

    1992-01-01

    There is considerable interest in the use of renormalizable quantum field theories to describe nuclear structure. In particular, theories which employ hadronic degrees of freedom are used widely and lead to efficient models which allow self-consistent solutions of the many-body problem. An interesting feature inherent to relativistic field theories (like QHD) is the presence of an infinite sea of negative energy fermion (nucleon) states, which interact dynamically with positive energy fermions via other fields. Such interactions give rise to, for example, vacuum polarization effects, in which virtual particle-antiparticle pairs interact with positive energy valence nucleons as well as with each other, and can significantly influence the ground and excited states of nuclear systems. Several authors have addressed this question in various approximations for finite nuclei, mostly based on extensions of results derived for a uniform system of nucleons. Some attempts have also been made to include vacuum effects in finite systems exactly, but the presence of a vector potential can be problematic when working in a spectral representation. In this paper, the author presents a computational method by which vacuum polarization effects in finite nuclei can be calculated exactly in the RHA by employing matrix diagonalization methods in a discrete Fourier representation of the Dirac equation, and an approximate method for including deep negative energy states based on a derivative expansion of the effective action. This efficient approach is shown to provide well-behaved vacuum polarization densities which remain so even in the presence of strong vector potential

  16. Horseshoes in modified Chen's attractors

    International Nuclear Information System (INIS)

    Huang Yan; Yang Xiaosong

    2005-01-01

    In this paper we study dynamics of a class of modified Chen's attractors, we show that these attractors are chaotic by giving a rigorous verification for existence of horseshoes in these systems. We prove that the Poincare maps derived from these modified Chen's attractors are semi-conjugate to the 2-shift map

  17. Hidden attractors in dynamical systems

    Science.gov (United States)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  18. Finite

    Directory of Open Access Journals (Sweden)

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  19. Noise-induced attractor annihilation in the delayed feedback logistic map

    International Nuclear Information System (INIS)

    Pisarchik, A.N.; Martínez-Zérega, B.E.

    2013-01-01

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  20. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  1. Solution of the multigroup diffusion equation for two-dimensional triangular regions by finite Fourier transformation

    International Nuclear Information System (INIS)

    Takeshi, Y.; Keisuke, K.

    1983-01-01

    The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method

  2. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  3. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)]: 1. Typical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky.

    1993-05-01

    In the present paper we construct all typical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] at generic deformation parameter q. As in the non-deformed case the finite-dimensional U q [gl(2/2)]-module W q obtained is irreducible and can be decomposed into finite-dimensional irreducible U q [l(2)+gl(2)]submodules V i q . (authohor). 32 refs

  4. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  5. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  6. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  7. Hyperbolic Plykin attractor can exist in neuron models

    DEFF Research Database (Denmark)

    Belykh, V.; Belykh, I.; Mosekilde, Erik

    2005-01-01

    Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...

  8. Finite size effects and chiral symmetry breaking in quenched three-dimensional QED

    International Nuclear Information System (INIS)

    Hands, S.; Kogut, J.B.

    1990-01-01

    Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)

  9. A finite-dimensional reduction method for slightly supercritical elliptic problems

    Directory of Open Access Journals (Sweden)

    Riccardo Molle

    2004-01-01

    Full Text Available We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.

  10. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  11. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  12. A snapshot attractor view of the advection of inertial particles in the presence of history force

    Science.gov (United States)

    Guseva, Ksenia; Daitche, Anton; Tél, Tamás

    2017-06-01

    We analyse the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. We find that the concept of snapshot attractors is useful to understand the extraordinary slow convergence due to long-term memory: an ensemble of particles converges exponentially fast towards a snapshot attractor, and this attractor undergoes a slow drift for long times. We demonstrate for the case of a periodic attractor that the drift of the snapshot attractor can be well characterized both in the space of the fluid and in the velocity space. For the case of quasiperiodic and chaotic dynamics we propose the use of the average settling velocity of the ensemble as a distinctive measure to characterize the snapshot attractor and the time scale separation corresponding to the convergence towards the snapshot attractor and its own slow dynamics.

  13. Attractors near grazing–sliding bifurcations

    International Nuclear Information System (INIS)

    Glendinning, P; Kowalczyk, P; Nordmark, A B

    2012-01-01

    In this paper we prove, for the first time, that multistability can occur in three-dimensional Fillipov type flows due to grazing–sliding bifurcations. We do this by reducing the study of the dynamics of Filippov type flows around a grazing–sliding bifurcation to the study of appropriately defined one-dimensional maps. In particular, we prove the presence of three qualitatively different types of multiple attractors born in grazing–sliding bifurcations. Namely, a period-two orbit with a sliding segment may coexist with a chaotic attractor, two stable, period-two and period-three orbits with a segment of sliding each may coexist, or a non-sliding and period-three orbit with two sliding segments may coexist

  14. Rare event simulation in finite-infinite dimensional space

    International Nuclear Information System (INIS)

    Au, Siu-Kui; Patelli, Edoardo

    2016-01-01

    Modern engineering systems are becoming increasingly complex. Assessing their risk by simulation is intimately related to the efficient generation of rare failure events. Subset Simulation is an advanced Monte Carlo method for risk assessment and it has been applied in different disciplines. Pivotal to its success is the efficient generation of conditional failure samples, which is generally non-trivial. Conventionally an independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which is applicable to high dimensional problems (i.e., a large number of random variables) without suffering from ‘curse of dimension’. Experience suggests that the algorithm may perform even better for high dimensional problems. Motivated by this, for any given problem we construct an equivalent problem where each random variable is represented by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study analytically the limiting behavior of the algorithm as the number of hidden variables increases indefinitely. This leads to a new algorithm that is more generic and offers greater flexibility and control. It coincides with an algorithm recently suggested by independent researchers, where a joint Gaussian distribution is imposed between the current sample and the candidate. The present work provides theoretical reasoning and insights into the algorithm.

  15. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  16. Three-dimensional finite amplitude electroconvection in dielectric liquids

    Science.gov (United States)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  17. Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1988-01-01

    The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived

  18. Generalized results on the role of new-time transformations in finite-dimensional Poisson systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)

    2010-01-25

    The problem of characterizing all new-time transformations preserving the Poisson structure of a finite-dimensional Poisson system is completely solved in a constructive way. As a corollary, this leads to a broad generalization of previously known results. Examples are given.

  19. Large parallel volumes of finite and compact sets in d-dimensional Euclidean space

    DEFF Research Database (Denmark)

    Kampf, Jürgen; Kiderlen, Markus

    The r-parallel volume V (Cr) of a compact subset C in d-dimensional Euclidean space is the volume of the set Cr of all points of Euclidean distance at most r > 0 from C. According to Steiner’s formula, V (Cr) is a polynomial in r when C is convex. For finite sets C satisfying a certain geometric...

  20. Quantum phase space points for Wigner functions in finite-dimensional spaces

    OpenAIRE

    Luis Aina, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.

  1. Quantum phase space points for Wigner functions in finite-dimensional spaces

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas

  2. A new look at the harmonic oscillator problem in a finite-dimensional Hilbert space

    International Nuclear Information System (INIS)

    Bagchi, B.

    1995-01-01

    In this Letter some basic properties of a truncated oscillator are studied. By using finite-dimensional representation matrices of the truncated oscillator we construct new parasupersymmetric schemes and remark on their relevance to the transition operators of the non-interacting N-level system endowed with bosonic modes. ((orig.))

  3. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  4. Attractors under discretisation

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained – by Beyn for saddle points and by Kloeden & Lorenz for attractors. One-step numerical schemes with a constant step size were considered, so the resulting discrete time dynamical system was also autonomous. One of the aims of this book is to present new findings on the discretisation of dissipative nonautonomous dynamical systems that have been obtained in recent years, and in particular to examine the properties of nonautonomous omega limit sets and their approximations by numerical schemes – results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system.

  5. Conductivities from attractors

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Fernández, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Goulart, Prieslei [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, São Paulo 01140-070, SP (Brazil); Witkowski, Piotr [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany)

    2017-03-28

    In the context of applications of the AdS/CFT correspondence to condensed matter physics, we compute conductivities for field theory duals of dyonic planar black holes in 3+1-dimensional Einstein-Maxwell-dilaton theories at zero temperature. We combine the near-horizon data obtained via Sen’s entropy function formalism with known expressions for conductivities. In this way we express the conductivities in terms of the extremal black hole charges. We apply our approach to three different examples for dilaton theories for which the background geometry is not known explicitly. For a constant scalar potential, the thermoelectric conductivity explicitly scales as α{sub xy}∼N{sup 3/2}, as expected. For the same model, our approach yields a finite result for the heat conductivity κ/T∝N{sup 3/2} even for T→0.

  6. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  7. COSMOS-e'-soft Higgsotic attractors

    Science.gov (United States)

    Choudhury, Sayantan

    2017-07-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.

  8. COSMOS-e"'-soft Higgsotic attractors

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2017-01-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R"2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  9. Multiple single-centered attractors

    International Nuclear Information System (INIS)

    Dominic, Pramod; Mandal, Taniya; Tripathy, Prasanta K.

    2014-01-01

    In this paper we study spherically symmetric single-centered attractors in N=2 supergravity in four dimensions. The attractor points are obtained by extremising the effective black hole potential in the moduli space. Both supersymmetric as well as non-supersymmetric attractors exist in mutually exclusive domains of the charge lattice. We construct axion free supersymmetric as well as non-supersymmetric multiple attractors in a simple two parameter model. We further obtain explicit examples of two distinct non-supersymmetric attractors in type IIA string theory compactified on K3×T"2 carrying D0−D4−D6 charges. We compute the entropy of these attractors and analyse their stability in detail.

  10. A novel one equilibrium hyper-chaotic system generated upon Lü attractor

    International Nuclear Information System (INIS)

    Hong-Yan, Jia; Zeng-Qiang, Chen; Zhu-Zhi, Yuan

    2010-01-01

    By introducing an additional state feedback into a three-dimensional autonomous chaotic attractor Lü system, this paper presents a novel four-dimensional continuous autonomous hyper-chaotic system which has only one equilibrium. There are only 8 terms in all four equations of the new hyper-chaotic system, which may be less than any other four-dimensional continuous autonomous hyper-chaotic systems generated by three-dimensional (3D) continuous autonomous chaotic systems. The hyper-chaotic system undergoes Hopf bifurcation when parameter c varies, and becomes the 3D modified Lü system when parameter k varies. Although the hyper-chaotic system does not undergo Hopf bifurcation when parameter k varies, many dynamic behaviours such as periodic attractor, quasi periodic attractor, chaotic attractor and hyper-chaotic attractor can be observed. A circuit is also designed when parameter k varies and the results of the circuit experiment are in good agreement with those of simulation. (general)

  11. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    Science.gov (United States)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  12. Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method

    International Nuclear Information System (INIS)

    Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.

    1981-01-01

    A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model

  13. Solution of two-dimensional diffusion equation for hexagonal cells by the finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de

  14. Simple one-dimensional finite element algorithm with multi-dimensional capabilities

    International Nuclear Information System (INIS)

    Pepper, D.W.; Baker, A.J.

    1978-01-01

    The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain

  15. D0-branes in black hole attractors

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Simons, Aaron; Strominger, Andrew; Yin Xi

    2006-01-01

    Configurations of N probe D0-branes in a Calabi-Yau black hole are studied. A large degeneracy of near-horizon bound states are found which can be described as lowest Landau levels tiling the horizon of the black hole. These states preserve some of the enhanced supersymmetry of the near-horizon AdS 2 x S 2 x CY 3 attractor geometry, but not of the full asymptotically flat solution. Supersymmetric non-abelian configurations are constructed which, via the Myers effect, develop charges associated with higher-dimensional branes wrapping CY 3 cycles. An SU(1,1/2) superconformal quantum mechanics describing D0-branes in the attractor geometry is explicitly constructed

  16. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    International Nuclear Information System (INIS)

    Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban

    2016-01-01

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.

  17. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Kishore, E-mail: tkishore36@yahoo.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India)

    2016-03-15

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.

  18. Attractors, universality, and inflation

    Science.gov (United States)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.

  19. Finite element method for one-dimensional rill erosion simulation on a curved slope

    Directory of Open Access Journals (Sweden)

    Lijuan Yan

    2015-03-01

    Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.

  20. A complementarity-based approach to phase in finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Klimov, A B; Sanchez-Soto, L L; Guise, H de

    2005-01-01

    We develop a comprehensive theory of phase for finite-dimensional quantum systems. The only physical requirement we impose is that phase is complementary to amplitude. To implement this complementarity we use the notion of mutually unbiased bases, which exist for dimensions that are powers of a prime. For a d-dimensional system (qudit) we explicitly construct d+1 classes of maximally commuting operators, each one consisting of d-1 operators. One of these classes consists of diagonal operators that represent amplitudes (or inversions). By finite Fourier transformation, it is mapped onto ladder operators that can be appropriately interpreted as phase variables. We discuss examples of qubits and qutrits, and show how these results generalize previous approaches

  1. Spherical harmonics solutions of multi-dimensional neutron transport equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1977-01-01

    A method of solution of a monoenergetic neutron transport equation in P sub(L) approximation is presented for x-y and x-y-z geometries using the finite Fourier transformation. A reactor system is assumed to consist of multiregions in each of which the nuclear cross sections are spatially constant. Since the unknown functions of this method are the spherical harmonics components of the neutron angular flux at the material boundaries alone, the three- and two-dimensional equations are reduced to two- and one-dimensional equations, respectively. The present approach therefore gives fewer unknowns than in the usual series expansion method or in the finite difference method. Some numerical examples are shown for the criticality problem. (auth.)

  2. A Lax integrable hierarchy, bi-Hamiltonian structure and finite-dimensional Liouville integrable involutive systems

    International Nuclear Information System (INIS)

    Xia Tiecheng; Chen Xiaohong; Chen Dengyuan

    2004-01-01

    An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations

  3. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  4. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  5. Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles

    International Nuclear Information System (INIS)

    Marchiolli, M.A.; Ruzzi, M.

    2012-01-01

    We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics. - Highlights: ► We construct a discrete version of the Weyl–Wigner–Moyal formalism. ► Coherent states for finite-dimensional discrete phase spaces are established. ► Discrete coordinate and momentum operators are properly defined. ► Uncertainty principles depend on the topology of finite physical systems. ► Corrections for the discrete Heisenberg uncertainty relation are also obtained.

  6. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    Science.gov (United States)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  7. Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2006-01-01

    A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples “cut” from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...

  8. State switching kinetics for quasi-one-dimensional nanosystems: Effects of Finite length and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2017-01-15

    The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.

  9. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  10. Development of three-dimensional transport code by the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1985-01-01

    Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)

  11. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  12. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  13. Quantum limits to information about states for finite dimensional Hilbert space

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1990-01-01

    A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs

  14. A New Chaotic Attractor with Quadratic Exponential Nonlinear Term from Chen’s Attractor

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmed

    2014-02-01

    Full Text Available In this paper a new three-dimensional chaotic system is proposed, which relies on a nonlinear exponential term and a nonlinear quadratic cross term necessary for folding trajectories. Basic dynamical characteristics of the new system are analyzed. Compared with the Chen system, the equilibrium points of the new system does not contain the origin, and has a greater positive Lyapunov index, can produce more complex shaped chaotic attractor.

  15. Attractors for discrete periodic dynamical systems

    Science.gov (United States)

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  16. One-Dimensional Finite Elements An Introduction to the FE Method

    CERN Document Server

    Öchsner, Andreas

    2013-01-01

     This textbook presents finite element methods using exclusively  one-dimensional elements. The aim is to present the complex methodology in  an easily understandable but mathematically correct fashion. The approach of  one-dimensional elements enables the reader to focus on the understanding of  the principles of basic and advanced mechanical problems. The reader easily  understands the assumptions and limitations of mechanical modeling as well  as the underlying physics without struggling with complex mathematics. But  although the description is easy it remains scientifically correct.   The approach using only one-dimensional elements covers not only standard  problems but allows also for advanced topics like plasticity or the  mechanics of composite materials. Many examples illustrate the concepts and  problems at the end of every chapter help to familiarize with the topics.

  17. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  18. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    International Nuclear Information System (INIS)

    Miller, J.D.

    1985-01-01

    This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures

  19. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  20. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  1. Controlling Strange Attractor in Dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nonlinear system which exhibits a strange attractor is considered, with the goal of illustrating how to control the chaotic dynamical system and to obtain a desired attracting periodic orbit by the OGY control algorithm.

  2. Attractor behaviour in ELKO cosmology

    International Nuclear Information System (INIS)

    Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha

    2013-01-01

    We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant

  3. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

    International Nuclear Information System (INIS)

    Tao Ganqiang; Yu Qing; Xiao Xiao

    2011-01-01

    Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

  4. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  5. Three-dimensional finite element analysis of implant-assisted removable partial dentures.

    Science.gov (United States)

    Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom

    2017-06-01

    Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  7. Equilibrium charge distribution on a finite straight one-dimensional wire

    Science.gov (United States)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  8. Equilibrium charge distribution on a finite straight one-dimensional wire

    International Nuclear Information System (INIS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid

    2017-01-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)

  9. Solution of two-dimensional neutron diffusion equation for triangular region by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke; Ishibashi, Hideo

    1978-01-01

    A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)

  10. Stability and Existence Results for Quasimonotone Quasivariational Inequalities in Finite Dimensional Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it [University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics (Italy)

    2016-02-15

    We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.

  11. Stability and Existence Results for Quasimonotone Quasivariational Inequalities in Finite Dimensional Spaces

    International Nuclear Information System (INIS)

    Castellani, Marco; Giuli, Massimiliano

    2016-01-01

    We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered

  12. Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions

    International Nuclear Information System (INIS)

    Barrios, Dolores; Lopez, Guillermo L; Martinez-Finkelshtein, A; Torrano, Emilio

    1999-01-01

    The approximability of the resolvent of an operator induced by a band matrix by the resolvents of its finite-dimensional sections is studied. For bounded perturbations of self-adjoint matrices a positive result is obtained. The convergence domain of the sequence of resolvents can be described in this case in terms of matrices involved in the representation. This result is applied to tridiagonal complex matrices to establish conditions for the convergence of Chebyshev continued fractions on sets in the complex domain. In the particular case of compact perturbations this result is improved and a connection between the poles of the limit function and the eigenvalues of the tridiagonal matrix is established

  13. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  14. Finite-temperature symmetry restoration in the four-dimensional Φ4 model with four components

    International Nuclear Information System (INIS)

    Jansen, K.

    1990-01-01

    The finite-temperature symmetry restoration in the four-dimensional φ 4 theory with four components and with an infinite self-coupling is studied by means of Monte Carlo simulations on lattices with time extensions L t =4,5,6 and space extensions 12 3 -28 3 . The numerical calculations are done by means of the Wolff cluster algorithm which is very efficient for simulations near a phase transition. The numerical results are in good agreement with an improved one-loop expansion and with the 1/N-expansion, indicating that in the electroweak theory the symmetry restoration temperature T sr is about 350 GeV. (orig.)

  15. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

    International Nuclear Information System (INIS)

    Mordant, Maurice.

    1981-04-01

    To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

  16. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  17. Strange attractor in the Potts spin glass on hierarchical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Washington de [Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Pernambuco (Brazil); Camelo-Neto, G. [Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Laboratório de Física Teórica e Computacional, CEP 57309-005 Arapiraca, Alagoas (Brazil); Coutinho, S., E-mail: sergio@ufpe.br [Universidade Federal de Pernambuco, Departamento de Física, Laboratório de Física Teórica e Computacional, Cidade Universitária, CEP 50670-901 Recife, Pernambuco (Brazil)

    2013-11-29

    The spin-glass q-state Potts model on d-dimensional diamond hierarchical lattices is investigated by an exact real space renormalization group scheme. Above a critical dimension d{sub l}(q) for q>2, the coupling constants probability distribution flows to a low-temperature strange attractor or to the high-temperature paramagnetic fixed point, according to the temperature is below or above the critical temperature T{sub c}(q,d). The strange attractor was investigated considering four initial different distributions for q=3 and d=5 presenting strong robustness in shape and temperature interval suggesting a condensed phase with algebraic decay.

  18. Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere

    Science.gov (United States)

    Brzeźniak, Z.; Goldys, B.; Le Gia, Q. T.

    2018-03-01

    In this paper we prove the existence of random attractors for the Navier-Stokes equations on 2 dimensional sphere under random forcing irregular in space and time. We also deduce the existence of an invariant measure.

  19. Numerical simulation of potato slices drying using a two-dimensional finite element model

    Directory of Open Access Journals (Sweden)

    Beigi Mohsen

    2017-01-01

    Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.

  20. Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression

    Directory of Open Access Journals (Sweden)

    Jifang Zeng

    2018-03-01

    Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.

  1. Supersymmetry and attractors

    International Nuclear Information System (INIS)

    Ferrara, S.; Kallosh, R.

    1996-01-01

    We find a general principle which allows one to compute the area of the horizon of N=2 extremal black holes as an extremum of the central charge. One considers the ADM mass equal to the central charge as a function of electric and magnetic charges and moduli and extremizes this function in the moduli space (a minimum corresponds to a fixed point of attraction). The extremal value of the square of the central charge provides the area of the horizon, which depends only on electric and magnetic charges. The doubling of unbroken supersymmetry at the fixed point of attraction for N=2 black holes near the horizon is derived via conformal flatness of the Bertotti-Robinson-type geometry. These results provide an explicit model-independent expression for the macroscopic Bekenstein-Hawking entropy of N=2 black holes which is manifestly duality invariant. The presence of hypermultiplets in the solution does not affect the area formula. Various examples of the general formula are displayed. We outline the attractor mechanism in N=4,8 supersymmetries and the relation to the N=2 case. The entropy-area formula in five dimensions, recently discussed in the literature, is also seen to be obtained by extremizing the 5d central charge. copyright 1996 The American Physical Society

  2. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  3. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  4. An efficicient data structure for three-dimensional vertex based finite volume method

    Science.gov (United States)

    Akkurt, Semih; Sahin, Mehmet

    2017-11-01

    A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

  5. hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Yousif Fattah

    2016-05-01

    Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.

  6. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  7. On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2017-10-15

    A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)

  8. Google matrix, dynamical attractors, and Ulam networks.

    Science.gov (United States)

    Shepelyansky, D L; Zhirov, O V

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  9. Cosmological attractors in massive gravity

    CERN Document Server

    Dubovsky, S; Tkachev, I I

    2005-01-01

    We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.

  10. Moduli backreaction on inflationary attractors

    International Nuclear Information System (INIS)

    Roest, Diederik; Werkman, Pelle

    2016-07-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT- scenario and cosmological α-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for α-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  11. Moduli Backreaction on Inflationary Attractors

    CERN Document Server

    Roest, Diederik; Werkman, Pelle

    2016-01-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  12. Application of three dimensional finite element modeling for the simulation of machining processes

    International Nuclear Information System (INIS)

    Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.

    2004-01-01

    For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed

  13. Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method

    International Nuclear Information System (INIS)

    Park, Jai Hak

    2009-01-01

    SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook

  14. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    Science.gov (United States)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  15. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    Science.gov (United States)

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  16. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

    Science.gov (United States)

    Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

    2012-06-01

    Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

  17. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  18. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  19. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    Science.gov (United States)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  20. Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam

    International Nuclear Information System (INIS)

    Thomas, V.A.

    1989-01-01

    The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989

  1. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  2. The finite element solution of two-dimensional transverse magnetic scattering problems on the connection machine

    International Nuclear Information System (INIS)

    Hutchinson, S.; Costillo, S.; Dalton, K.; Hensel, E.

    1990-01-01

    A study is conducted of the finite element solution of the partial differential equations governing two-dimensional electromagnetic field scattering problems on a SIMD computer. A nodal assembly technique is introduced which maps a single node to a single processor. The physical domain is first discretized in parallel to yield the node locations of an O-grid mesh. Next, the system of equations is assembled and then solved in parallel using a conjugate gradient algorithm for complex-valued, non-symmetric, non-positive definite systems. Using this technique and Thinking Machines Corporation's Connection Machine-2 (CM-2), problems with more than 250k nodes are solved. Results of electromagnetic scattering, governed by the 2-d scalar Hemoholtz wave equations are presented in this paper. Solutions are demonstrated for a wide range of objects. A summary of performance data is given for the set of test problems

  3. Three-dimensional finite element modelling of the uniaxial tension test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    . One of the most direct methods for determination of the σ-w relationship is the uniaxial tension test, where a notched specimen is pulled apart while the tensile load and the crack opening displacement is observed. This method is appealing since the interpretation is straightforward. The method......Experimental determination of the stress-crack opening relationship (σ-w) for concrete as defined in the fictitious crack model has proven to be difficult. This is due to the problems that may arise from application of the inverse analysis method necessary for the derivation of the relationship...... is examined in this paper through three dimensional finite element analyses. It is concluded that the interpretation of the uniaxial tension test is indeed straightforward, if the testing machine stiffness is sufficiently high....

  4. FINITE VOLUME METHOD FOR SOLVING THREE-DIMENSIONAL ELECTRIC FIELD DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Paţiuc V.I.

    2011-04-01

    Full Text Available The paper examines a new approach to finite volume method which is used to calculate the electric field spatially homogeneous three-dimensional environment. It is formulated the problem Dirihle with building of the computational grid on base of space partition, which is known as Delone triangulation with the use of Voronoi cells. It is proposed numerical algorithm for calculating the potential and electric field strength in the space formed by a cylinder placed in the air. It is developed algorithm and software which were for the case, when the potential on the inner surface of the cylinder has been assigned and on the outer surface and the bottom of cylinder it was assigned zero potential. There are presented results of calculations of distribution in the potential space and electric field strength.

  5. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.

    Science.gov (United States)

    Liang, Zhichun; Crepeau, Richard H; Freed, Jack H

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  6. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  7. Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage

    International Nuclear Information System (INIS)

    Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng

    2014-01-01

    In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak–peak amplitude and normal peak–vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak–peak width and normal peak–vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique. - Highlights: • Three-dimensional (3D) finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. • The contour maps of gradients of the tangential and normal residual magnetic fields are given, and the 3D effect is discussed. • The present study suggests an effective defect identification method with metal magnetic memory technique

  8. Current singularities at finitely compressible three-dimensional magnetic null points

    International Nuclear Information System (INIS)

    Pontin, D.I.; Craig, I.J.D.

    2005-01-01

    The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed

  9. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    Science.gov (United States)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  10. A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems

    International Nuclear Information System (INIS)

    Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.

    2015-01-01

    In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors

  11. Implementation of a novel two-attractor grid multi-scroll chaotic system

    International Nuclear Information System (INIS)

    Xiao-Hua, Luo; Zheng-Wei, Tu; Xi-Rui, Liu; Chang, Cai; Pu, Gong; Yi-Long, Liang

    2010-01-01

    This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method. (general)

  12. Heteroclinic cycles between unstable attractors

    International Nuclear Information System (INIS)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    2008-01-01

    We consider networks of pulse coupled linear oscillators with non-zero delay where the coupling between the oscillators is given by the Mirollo–Strogatz function. We prove the existence of heteroclinic cycles between unstable attractors for a network of four oscillators and for an open set of parameter values

  13. Heteroclinic cycles between unstable attractors

    NARCIS (Netherlands)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    We consider networks of pulse coupled linear oscillators with non-zero delay where the coupling between the oscillators is given by the Mirollo-Strogatz function. We prove the existence of heteroclinic cycles between unstable attractors for a network of four oscillators and for an open set of

  14. Hyperbolic geometry of cosmological attractors

    NARCIS (Netherlands)

    Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Cosmological alpha attractors give a natural explanation for the spectral index n(s) of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial

  15. Finite-time barriers to front propagation in two-dimensional fluid flows

    Science.gov (United States)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  16. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  17. General method to find the attractors of discrete dynamic models of biological systems

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  18. General method to find the attractors of discrete dynamic models of biological systems.

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  19. Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall

    Science.gov (United States)

    Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay

    2018-02-01

    A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.

  20. Co-existing hidden attractors in a radio-physical oscillator system

    DEFF Research Database (Denmark)

    Kuznetsov, A. P.; Kuznetsov, S. P.; Mosekilde, Erik

    2015-01-01

    The term `hidden attractor' relates to a stable periodic, quasiperiodic or chaotic state whose basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Considering a three-dimensional oscillator system that does not allow for the existence of an equilibrium point...... frequency, describe the bifurcations through which hidden attractors of different type arise and disappear, and illustrate the form of the basins of attraction....

  1. FREESURF: A three-dimensional finite-element model for simulating groundwater flow into and around an excavation

    Energy Technology Data Exchange (ETDEWEB)

    Weitzman, Morley

    1992-07-15

    A three-dimensional finite-element code was developed and used to simulate the flow of groundwater towards an excavation in a saturated porous medium, allowing for seepage faces. An iterative procedure was used to predict the movement of the water table and the seepage flux. The numerical solution agreed well with experimental results from a sandbox experiment. (auth)

  2. Convergence rates and finite-dimensional approximations for nonlinear ill-posed problems involving monotone operators in Banach spaces

    International Nuclear Information System (INIS)

    Nguyen Buong.

    1992-11-01

    The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization constructed by dual mapping for nonlinear ill-posed problems involving monotone operators in real reflective Banach spaces. The obtained results are considered in combination with finite-dimensional approximations for the space. An example is considered for illustration. (author). 15 refs

  3. Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men. PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor. To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure. Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6 - 6.5 dimensional complex dynamical systems. It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough. A cluster effect mechanism is presented to explain this phenomenon. By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated. Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  4. Inflationary α -attractor cosmology: A global dynamical systems perspective

    Science.gov (United States)

    Alho, Artur; Uggla, Claes

    2017-04-01

    We study flat Friedmann-Lemaître-Robertson-Walker α -attractor E- and T-models by introducing a dynamical systems framework that yields regularized unconstrained field equations on two-dimensional compact state spaces. This results in both illustrative figures and a complete description of the entire solution spaces of these models, including asymptotics. In particular, it is shown that observational viability, which requires a sufficient number of e -folds, is associated with a particular solution given by a one-dimensional center manifold of a past asymptotic de Sitter state, where the center manifold structure also explains why nearby solutions are attracted to this "inflationary attractor solution." A center manifold expansion yields a description of the inflationary regime with arbitrary analytic accuracy, where the slow-roll approximation asymptotically describes the tangency condition of the center manifold at the asymptotic de Sitter state.

  5. Analysis of distances between inclusions in finite one-dimensional binary stochastic materials

    International Nuclear Information System (INIS)

    Griesheimer, D. P.; Millman, D. L.

    2009-01-01

    In this paper we develop a statistical distribution for the number of inclusions present in a one-dimensional binary stochastic material of a finite length. From this distribution, an analytic solution for the expected number of inclusions present in a given problem is derived. For cases where the analytical solution for the expected number of inclusions is prohibitively expensive to compute, a simple, empirically-derived, approximation for the expected value is presented. A series of numerical experiments are used to bound the error of this approximation over the domain of interest. Finally, the above approximations are used to develop a methodology for determining the distribution of distances between adjacent inclusions in the material, subject to known problem conditions including: the total length of the problem, the length of each inclusion, and the expected volume fraction of inclusions in the problem. The new method is shown to be equivalent to the use of the infinite medium nearest neighbor distribution with an effective volume fraction to account for the finite nature of the material. Numerical results are presented for a wide range of problem parameters, in order to demonstrate the accuracy of this method and identify conditions where the method breaks down. In general, the technique is observed to produce excellent results (absolute error less than 1 10-6) for problems with inclusion volume fractions less than 0.8 and a ratio of problem length to inclusion length greater than 25. For problems that do not fall into this category, the accuracy of the method is shown to be dependent on the particular combination of these parameters. A brief discussion of the relevance of this method for Monte Carlo chord length sampling algorithms is also provided. (authors)

  6. Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions

    International Nuclear Information System (INIS)

    Carpenter, D.C.

    1997-01-01

    Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions

  7. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis.

    Science.gov (United States)

    Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto

    2011-01-01

    The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.

  8. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    Science.gov (United States)

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  9. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2015-05-01

    Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

  10. Torus-doubling process via strange nonchaotic attractors

    International Nuclear Information System (INIS)

    Mitsui, Takahito; Uenohara, Seiji; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-01-01

    Torus-doubling bifurcations typically occur only a finite number of times. It has been assumed that torus-doubling bifurcations in quasiperiodically forced systems are interrupted by the appearance of strange nonchaotic attractors (SNAs). In the present Letter, we study a quasiperiodically forced noninvertible map and report the occurrence of a torus-doubling process via SNAs. The mechanism of this process is numerically clarified. Furthermore, this process is experimentally demonstrated in a switched-capacitor integrated circuit. -- Highlights: ► We report the occurrence of a torus-doubling process via strange nonchaotic attractors (SNAs). ► The process consists of the gradual fractalization of a torus and the Heagy–Hammel transition. ► The torus-doubling process via SNAs is also experimentally demonstrated in an electronic circuit.

  11. Cortical computations via transient attractors.

    Directory of Open Access Journals (Sweden)

    Oliver L C Rourke

    Full Text Available The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  12. Cortical computations via transient attractors.

    Science.gov (United States)

    Rourke, Oliver L C; Butts, Daniel A

    2017-01-01

    The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  13. Architecture of chaotic attractors for flows in the absence of any singular point

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, Christophe [CORIA-UMR 6614 Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray (France); Malasoma, Jean-Marc [Université de Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, 3 Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex (France)

    2016-06-15

    Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain—in the particular case of the Wei system—such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in the neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.

  14. Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking.

    Science.gov (United States)

    Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng

    2017-11-01

    This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.

  15. Two-dimensional transient thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-07-01

    One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)

  16. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V. S.; Kapaev, V. V.

    2016-01-01

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  17. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    Science.gov (United States)

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  18. Finite action for three dimensional gravity with a minimally coupled scalar field

    International Nuclear Information System (INIS)

    Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo

    2003-01-01

    Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity

  19. Partially-massless higher-spin algebras and their finite-dimensional truncations

    International Nuclear Information System (INIS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  20. Three-dimensional finite element model for flexible pavement analyses based field modulus measurements

    International Nuclear Information System (INIS)

    Lacey, G.; Thenoux, G.; Rodriguez-Roa, F.

    2008-01-01

    In accordance with the present development of empirical-mechanistic tools, this paper presents an alternative to traditional analysis methods for flexible pavements using a three-dimensional finite element formulation based on a liner-elastic perfectly-plastic Drucker-Pager model for granular soil layers and a linear-elastic stress-strain law for the asphalt layer. From the sensitivity analysis performed, it was found that variations of +-4 degree in the internal friction angle of granular soil layers did not significantly affect the analyzed pavement response. On the other hand, a null dilation angle is conservatively proposed for design purposes. The use of a Light Falling Weight Deflectometer is also proposed as an effective and practical tool for on-site elastic modulus determination of granular soil layers. However, the stiffness value obtained from the tested layer should be corrected when the measured peak deflection and the peak force do not occur at the same time. In addition, some practical observations are given to achieve successful field measurements. The importance of using a 3D FE analysis to predict the maximum tensile strain at the bottom of the asphalt layer (related to pavement fatigue) and the maximum vertical comprehensive strain transmitted to the top of the granular soil layers (related to rutting) is also shown. (author)

  1. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  3. Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes

    Science.gov (United States)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2015-06-01

    Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.

  4. International Conference on Finite or Infinite Dimensional Complex Analysis and Applications

    CERN Document Server

    Tutschke, W; Yang, C

    2004-01-01

    There is almost no field in Mathematics which does not use Mathe­ matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam....

  5. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.

    Science.gov (United States)

    Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W

    2006-09-01

    Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.

  6. A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids

    Energy Technology Data Exchange (ETDEWEB)

    Bungartz, H.J. [Technische Universitaet Muenchen (Germany)

    1996-12-31

    In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.

  7. COSMOS-e{sup '}-soft Higgsotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-07-15

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R{sup 2} gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  8. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  9. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  10. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  11. Studies on the numerical solution of three-dimensional stationary diffusion equations using the finite element method

    International Nuclear Information System (INIS)

    Franke, H.P.

    1976-05-01

    The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de

  12. A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design

    Directory of Open Access Journals (Sweden)

    Qiang Lai

    2017-12-01

    Full Text Available This paper reports about a novel three-dimensional chaotic system with three nonlinearities. The system has one stable equilibrium, two stable equilibria and one saddle node, two saddle foci and one saddle node for different parameters. One salient feature of this novel system is its multiple attractors caused by different initial values. With the change of parameters, the system experiences mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor, and two coexisting strange attractors. The complex dynamic behaviors of the system are revealed by analyzing the corresponding equilibria and using the numerical simulation method. In addition, an electronic circuit is given for implementing the chaotic attractors of the system. Using the new chaotic system, an S-Box is developed for cryptographic operations. Moreover, we test the performance of this produced S-Box and compare it to the existing S-Box studies.

  13. How additive noise generates a phantom attractor in a model with cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirtseva, Irina; Ryashko, Lev, E-mail: lev.ryashko@urfu.ru

    2016-10-07

    Two-dimensional nonlinear system forced by the additive noise is studied. We show that an increasing noise shifts random states and localizes them in a zone far from deterministic attractors. This phenomenon of the generation of the new “phantom” attractor is investigated on the base of probability density functions, mean values and variances of random states. We show that increasing noise results in the qualitative changes of the form of pdf, sharp shifts of mean values, and spikes of the variance. To clarify this phenomenon mathematically, we use the fast–slow decomposition and averaging over the fast variable. For the dynamics of the mean value of the slow variable, a deterministic equation is derived. It is shown that equilibria and the saddle-node bifurcation point of this deterministic equation well describe the stochastic phenomenon of “phantom” attractor in the initial two-dimensional stochastic system. - Highlights: • Two-dimensional nonlinear system with cubic nonlinearity is studied. • Additive noise generates a new phantom attractor. • By averaging over the fast variable one-dimensional equation is derived. • Phantom attractor appearance is analyzed by bifurcation analysis of this equation.

  14. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    Science.gov (United States)

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  15. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  16. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)

    2012-06-04

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  17. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    International Nuclear Information System (INIS)

    Sergyeyev, Artur

    2012-01-01

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  18. A Hyperchaotic Attractor with Multiple Positive Lyapunov Exponents

    International Nuclear Information System (INIS)

    Guo-Si, Hu

    2009-01-01

    There are many hyperchaotic systems, but few systems can generate hyperchaotic attractors with more than three PLEs (positive Lyapunov exponents). A new hyperchaotic system, constructed by adding an approximate time-delay state feedback to a five-dimensional hyperchaotic system, is presented. With the increasing number of phase-shift units used in this system, the number of PLEs also steadily increases. Hyperchaotic attractors with 25 PLEs can be generated by this system with 32 phase-shift units. The sum of the PLEs will reach the maximum value when 23 phase-shift units are used. A simple electronic circuit, consisting of 16 operational amplifiers and two analogy multipliers, is presented for confirming hyperchaos of order 5, i.e., with 5 PLEs

  19. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  20. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  1. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  2. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

    Science.gov (United States)

    Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

    2006-05-01

    To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

  3. Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media

    Directory of Open Access Journals (Sweden)

    Djordjevich Alexandar

    2017-12-01

    Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.

  4. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)] II: Nontypical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky; Stoilova, N.I.

    1994-11-01

    The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs

  5. Application of hexagonal element scheme in finite element method to three-dimensional diffusion problem of fast reactors

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Higuchi, Kenji

    1983-01-01

    The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)

  6. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.

  7. Tetrapterous butterfly attractors in modified Lorenz systems

    International Nuclear Information System (INIS)

    Yu Simin; Tang, Wallace K.S.

    2009-01-01

    In this paper, the Lorenz-type tetrapterous butterfly attractors are firstly reported. With the introduction of multiple segment piecewise linear functions, these interesting and complex attractors are obtained from two different modified Lorenz models. This approach are verified in both simulations and experiments.

  8. Oscillatory attractors: a new cosmological phase

    Energy Technology Data Exchange (ETDEWEB)

    Bains, Jasdeep S. [Center for the Fundamental Laws of Nature, Harvard University, 17 Oxford St, Cambridge, MA 02138 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155 (United States); Wilczek, Frank, E-mail: bains@physics.harvard.edu, E-mail: mark.hertzberg@tufts.edu, E-mail: wilczek@mit.edu [Center for Theoretical Physics, Department of Physics, MIT, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2017-05-01

    In expanding FRW spacetimes, it is usually the case that homogeneous scalar fields redshift and their amplitudes approach limiting values: Hubble friction usually ensures that the field relaxes to its minimum energy configuration, which is usually a static configuration. Here we discover a class of relativistic scalar field models in which the attractor behavior is the field oscillating indefinitely, with finite amplitude, in an expanding FRW spacetime, despite the presence of Hubble friction. This is an example of spontaneous breaking of time translation symmetry. We find that the effective equation of state of the field has average value ( w )=−1, implying that the field itself could drive an inflationary or dark energy dominated phase. This behavior is reminiscent of ghost condensate models, but in the new models, unlike in the ghost condensate models, the energy-momentum tensor is time dependent, so that these new models embody a more definitive breaking of time translation symmetry. We explore (quantum) fluctuations around the homogeneous background solution, and find that low k -modes can be stable, while high k -modes are typically unstable. We discuss possible interpretations and implications of that instability.

  9. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)

    2016-09-15

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

  10. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    Science.gov (United States)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the

  11. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  12. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Science.gov (United States)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  13. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    Science.gov (United States)

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone

  14. A finite volume solver for three dimensional debris flow simulations based on a single calibration parameter

    Science.gov (United States)

    von Boetticher, Albrecht; Turowski, Jens M.; McArdell, Brian; Rickenmann, Dieter

    2016-04-01

    Debris flows are frequent natural hazards that cause massive damage. A wide range of debris flow models try to cover the complex flow behavior that arises from the inhomogeneous material mixture of water with clay, silt, sand, and gravel. The energy dissipation between moving grains depends on grain collisions and tangential friction, and the viscosity of the interstitial fine material suspension depends on the shear gradient. Thus a rheology description needs to be sensitive to the local pressure and shear rate, making the three-dimensional flow structure a key issue for flows in complex terrain. Furthermore, the momentum exchange between the granular and fluid phases should account for the presence of larger particles. We model the fine material suspension with a Herschel-Bulkley rheology law, and represent the gravel with the Coulomb-viscoplastic rheology of Domnik & Pudasaini (Domnik et al. 2013). Both composites are described by two phases that can mix; a third phase accounting for the air is kept separate to account for the free surface. The fluid dynamics are solved in three dimensions using the finite volume open-source code OpenFOAM. Computational costs are kept reasonable by using the Volume of Fluid method to solve only one phase-averaged system of Navier-Stokes equations. The Herschel-Bulkley parameters are modeled as a function of water content, volumetric solid concentration of the mixture, clay content and its mineral composition (Coussot et al. 1989, Yu et al. 2013). The gravel phase properties needed for the Coulomb-viscoplastic rheology are defined by the angle of repose of the gravel. In addition to this basic setup, larger grains and the corresponding grain collisions can be introduced by a coupled Lagrangian particle simulation. Based on the local Savage number a diffusive term in the gravel phase can activate phase separation. The resulting model can reproduce the sensitivity of the debris flow to water content and channel bed roughness, as

  15. Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls

    Directory of Open Access Journals (Sweden)

    Ciprian G. Gal

    2006-11-01

    Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.

  16. A two-dimensional, finite-element methods for calculating TF coil response to out-of-plane Lorentz forces

    International Nuclear Information System (INIS)

    Witt, R.J.

    1989-01-01

    Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)

  17. Exact Finite-Difference Schemes for d-Dimensional Linear Stochastic Systems with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2013-01-01

    Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.

  18. Chiral ward-Takahashi identities at finite temperature and chiral phase transition in (2+1) dimensional chiral Gross-Neveu model

    International Nuclear Information System (INIS)

    Shen Kun; Qiu Zhongping

    1993-01-01

    Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature

  19. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  20. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems

    International Nuclear Information System (INIS)

    Derstine, K.L.

    1984-04-01

    The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1

  1. Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads

    Science.gov (United States)

    Newman, J. C., Jr.; Raju, I. S.

    1984-01-01

    Stress intensity factor equations are presented for an embedded elliptical crack, a semielliptical surface crack, a quarter elliptical corner crack, a semielliptical surface crack along the bore of a circular hole, and a quarter elliptical corner crack at the edge of a circular hole in finite plates. The plates were subjected to either remote tension or bending loads. The stress intensity factors used to develop these equations were obtained from previous three dimensional finite element analyses of these crack configurations. The equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and, where applicable, hole radius. The ratio of crack depth to plate thickness ranged from 0 to 1, the ratio of crack depth to crack length ranged from 0.2 to 2, and the ratio of hole radius to plate thickness ranged from 0.5 to 2. The effects of plate width on stress intensity variation along the crack front were also included.

  2. Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikyriakou, Eleni, E-mail: ec3g12@soton.ac.uk; Potter, Kenneth; Redman-White, William; De Groot, C.H.

    2017-02-15

    Highlights: • Simulation of Total Ionizing Dose using the Finite Elements Method. • Carrier generation, transport and trapping in the oxide. • Application in three-dimensional bulk FinFET model of 22 nm node. • Examination of trapped charge in the Shallow Trench Isolation. • Trapped charge dependency of parasitic transistor current. - Abstract: Finite Elements Method simulation of Total Ionizing Dose effects on 22 nm bulk Fin Field Effect Transistor (FinFET) devices using the commercial software Synopsys Sentaurus TCAD is presented. The simulation parameters are extracted by calibrating the charge trapping model to experimental results on 400 nm SiO{sub 2} capacitors irradiated under zero bias. The FinFET device characteristics are calibrated to the Intel 22 nm bulk technology. Irradiation simulations of the transistor performed with all terminals unbiased reveal increased hardness up to a total dose of 1 MRad(SiO{sub 2}).

  3. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  4. Interactive finite difference preprocessor for three-dimensional fluid flow systems. [PREFLO

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (Rensselaer Polytechnic Inst., Troy, NY); Patterson, M.R.

    1981-06-01

    A preprocessor, called PREFLO, consisting of data processing modules combined with a flexible finite difference grid generator is described. This economical, interactive computer code is a useful research tool contributing significantly to the accurate analysis and modeling of large and/or geometrically complex flow systems. PREFLO (PREprocessor for fluid FLOw problems), written in FORTRAN IV, consists of four modules which in turn call various subroutines. The main programs accomplish the following tasks: (1) system identification and selection of appropriate finite difference algorithms; (2) input devices for storage of natural flow boundaries; (3) interactive generation of finite difference meshes and display of computer graphics; (4) preparation of all data files for the source program. The computation of the velocity field near a power plant site is outlined to illustrate the capabilities and application of PREFLO.

  5. A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models

    International Nuclear Information System (INIS)

    Sun Yepeng; Chen Dengyuan

    2006-01-01

    A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra

  6. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  7. Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Manconi, Elisabetta; Vanali, Marcello

    2016-01-01

    Adding periodicity to structures leads to wavemode interaction, which generates pass- and stop-bands. The frequencies at which stop-bands occur are related to the periodic nature of the structure. Thus structural periodicity can be shaped in order to design vibro-acoustic filters for reducing...... method deals with the evaluation of a vibration level difference (VLD) in a finite periodic structure embedded within an infinite one-dimensional waveguide. This VLD is defined to predict the performance in terms of noise and vibration insulation of periodic cells embedded in an otherwise uniform...

  8. NCEL: two dimensional finite element code for steady-state temperature distribution in seven rod-bundle

    International Nuclear Information System (INIS)

    Hrehor, M.

    1979-01-01

    The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation

  9. Theoretical background and implementation of the finite element method for multi-dimensional Fokker-Planck equation analysis

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil; Náprstek, Jiří

    2017-01-01

    Roč. 113, November (2017), s. 54-75 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * simplex element * multi-dimensional problem * non-symmetric operator Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0965997817301904

  10. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  11. The Lorentz Attractor and Other Attractors in the Economic System of a Firm

    International Nuclear Information System (INIS)

    Shapovalov, V I; Kazakov, N V

    2015-01-01

    A nonlinear model of the economic system of ''a firm'' is offered. It is shown that this model has several chaotic attractors, including the Lorentz attractor and a new attractor that, in our opinion, has not yet been described in the scientific literature. The chaotic nature of the attractors that were found was confirmed by computing the Lyapunov indicators. The functioning of our economic model is demonstrated with examples of firm behaviour that change the control parameters; these are well known in practice. In particular, it is shown that changes in the specific control parameters may change the system and avoid bankruptcy for the firm

  12. Multistability and hidden attractors in a relay system with hysteresis

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.

    2015-01-01

    with the neighborhood of that cycle. We show how the equilibrium point of a relay system disappears in a boundary-equilibrium bifurcation as the system enters the region of autonomous switching dynamics and demonstrate experimentally how a relay system can exhibit large amplitude chaotic oscillations at high values...... of the supply voltage. By investigating a four-dimensional model of the experimental relay system we finally show how a variety of hidden periodic, quasiperiodic and chaotic attractors arise, transform and disappear through different bifurcations. (C) 2015 Elsevier B.V. All rights reserved....

  13. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    Science.gov (United States)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  14. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  15. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  16. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    Science.gov (United States)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  17. Exponential attractors for a nonclassical diffusion equation

    Directory of Open Access Journals (Sweden)

    Qiaozhen Ma

    2009-01-01

    Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.

  18. Development of a three-dimensional neutron transport code DFEM based on the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1996-01-01

    A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)

  19. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  20. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton

    2015-07-01

    To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow

  2. A two-dimensional finite element method for analysis of solid body contact problems in fuel rod mechanics

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1988-06-01

    Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de

  3. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  4. Finite element formulation for fluid-structure interaction in three-dimensional space

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading

  5. Efficacy of transpalatal arch as an anchorage reinforcing unit during orthodontic space closure: A three-dimensional finite element study

    Directory of Open Access Journals (Sweden)

    Vishal Shrishail Kudagi

    2017-01-01

    Full Text Available Background and Objectives: Connecting the contralateral upper molars by means of a transpalatal arch (TPA is thought to decrease the tendency of the molars to move mesially in response to orthodontic force (i.e., provide orthodontic anchorage. This study was hence conducted to investigate the effects of the TPA on the displacement of the molars and stresses generated in the periodontium during orthodontic tooth movement using the finite element method (FEM. Materials and Methods: A three-dimensional (3D model was generated using medical modeling software (Mimics using the computed tomography slice images of the skull which were obtained at a slice thickness of 1 mm. From this, the finite element model was built using HyperMesh and analysis was performed using PATRAN software (MSC Software Corporation, 4675 MacArthur Court, Newport Beach, California 92660. The 3D finite element models were fabricated in two versions such as maxillary first molars including their associated periodontal ligament and alveolar bone one with TPA and another without TPA. Both were subjected to orthodontic forces, and the resultant stress patterns and displacements between the models with and without TPA were determined. Results: The stress and displacement plots in this study failed to show any significant differences in stress and displacement within the periodontium of molars, between the two models – one with TPA and the other without, in response to the orthodontic force. Interpretation and Conclusion: The results of the current finite element analysis, therefore, suggest that the presence of a TPA brings about no change in the initial dental and periodontal stress distribution and displacement.

  6. Three-dimensional parallel edge-based finite element modeling of electromagnetic data with field redatuming

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael

    2015-01-01

    This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...

  7. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    Science.gov (United States)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface

  8. Supersymmetry, attractors and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Bellorin, Jorge [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: jorge.bellorin@uam.es; Meessen, Patrick [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: patrick.meessen@cern.ch; Ortin, Tomas [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: tomas.ortin@cern.ch

    2007-01-29

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.

  9. On the control of the chaotic attractors of the 2-d Navier-Stokes equations.

    Science.gov (United States)

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  10. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow

    Science.gov (United States)

    Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.

    2018-02-01

    The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

  11. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Král, Radomil

    2016-01-01

    Roč. 744, č. 1 (2016), č. článku 012177. ISSN 1742-6588. [International Conference on Motion and Vibration Control (MOVIC 2016) /13./ and International Conference on Recent Advances in Structural Dynamics (RASD 2016) /12./. Southampton, 04.07.2016-06.07.2016] R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * single degree of freedom systems (SDOF) Subject RIV: JM - Building Engineering http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177

  12. Finite elements for the calculation of turbulent flows in three-dimensional complex geometries

    Science.gov (United States)

    Ruprecht, A.

    A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.

  13. Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem

    KAUST Repository

    Bramble, James H.

    2010-01-01

    We consider the application of a perfectly matched layer (PML) technique to approximate solutions to the elastic wave scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift in spherical coordinates which leads to a variable complex coefficient equation for the displacement vector posed on an infinite domain (the complement of the scatterer). The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). We prove existence and uniqueness of the solutions to the infinite domain and truncated domain PML equations (provided that the truncated domain is sufficiently large). We also show exponential convergence of the solution of the truncated PML problem to the solution of the original scattering problem in the region of interest. We then analyze a Galerkin numerical approximation to the truncated PML problem and prove that it is well posed provided that the PML damping parameter and mesh size are small enough. Finally, computational results illustrating the efficiency of the finite element PML approximation are presented. © 2010 American Mathematical Society.

  14. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    Science.gov (United States)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  15. Implementation of Unsplit Perfectly Matched Layer Absorbing Boundary Condition in 3 Dimensional Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    B. U. Musa

    2017-04-01

    Full Text Available The C++ programming language was used to implement three-dimensional (3-D finite-difference time-domain (FDTD technique to simulate radiation of high frequency electromagnetic waves in free space. To achieve any meaningful results the computational domain of interest should have to be truncated in some way and this is achieved by applying absorbing boundary conditions. A uniaxial perfectly matched layer (UPML absorbing boundary condition is used in this work. The discretised equations of the UPML in FDTD time stepping scheme were derived and has been successfully implemented using the computer program. Simulation results showed that the UPML behaves as an absorber. This was confirmed by comparing the results with another boundary condition, the Mur ABC.

  16. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    International Nuclear Information System (INIS)

    Xiong Yuhong; Hofmeister, William H.; Cheng Zhao; Smugeresky, John E.; Lavernia, Enrique J.; Schoenung, Julie M.

    2009-01-01

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  17. Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2014-10-01

    Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.

  18. A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, A.; Domenech-Garret, J.L.; Chemisana, D.; Rosell, J.I. [Departament de Medi Ambient i C.S., University of Lleida, Av. Alcalde Rovira Roure 191, E25198 (Spain)

    2009-09-15

    A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail. (author)

  19. [Three dimensional finite element analysis of maxillary anterior teeth retraction with micro-implant anchorage and sliding mechanics].

    Science.gov (United States)

    Zhang, Yi; Zhang, Lei; Fan, Yu-bo; Song, Jin-lin; Deng, Feng

    2009-10-01

    To investigate the biomechanical effects of micro-implant anchorage technique with sliding mechanics on maxillary anterior teeth retraction under different implant insertion heights and different retraction hook heights. The three dimensional finite element model of maxillary anterior teeth retraction force system was constructed with CT scanning and MIMICS software and the relationships between brackets, teeth, wire and micro-implant were simulating the clinical factions. Then the initial tooth displacement was calculated when the insertion heights were 4 mm and 8 mm and the retraction hook heights were 1, 4, 7, 10 mm respectively. With retraction hook height added, the anterior teeth movement changed from lingual crown tipping to labial crown tipping and the intrusion movement was more apparent when the micro-implant was inserted in a higher location. The ideal teeth movement control could be achieved by different insertion heights of micro-implant and different retraction hook heights in straight wire retraction force system.

  20. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  1. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    Science.gov (United States)

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  2. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  3. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří

    2017-01-01

    Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835

  4. Solution of three-dimensional energy equation using finite element method

    International Nuclear Information System (INIS)

    Bhasin, V.; Singh, R.K.; Dutta, B.K.; Kushwaha, H.S.

    1993-01-01

    In the present work an attempt has been made to formulate an efficient 3-D finite element program for solving coupled momentum-energy equation with unsymmetric frontal solver and a suitable upwinding scheme. Based on the above solution technique of energy equation it can be concluded that upwinding scheme can lead to fairly accurate and smooth results even with coarse mesh. Otherwise the mesh size requirement will be extremely stringent for most of the practical problems. With upwinding the additional computer time required is marginally more. This effort has resulted in getting practical solution for large size real life problems in nuclear industry. The program was used for computation of temperature field in heavy water moderator of Madras Atomic Power Station (MAPS) reactor, in new mode of operation. (author). 9 refs., 7 figs

  5. A two-dimensional discontinuous heterogeneous finite element method for neutron transport calculations

    International Nuclear Information System (INIS)

    Masiello, E.; Sanchez, R.

    2007-01-01

    A discontinuous heterogeneous finite element method is presented and discussed. The method is intended for realistic numerical pin-by-pin lattice calculations when an exact representation of the geometric shape of the pins is made without need for homogenization. The method keeps the advantages of conventional discrete ordinate methods, such as fast execution together with the possibility to deal with a large number of spatial meshes, while minimizing the need for geometric modeling. It also provides a complete factorization in space, angle, and energy for the discretized matrices and minimizes, thus, storage requirements. An angular multigrid acceleration technique has also been developed to speed up the rate of convergence of the inner iterations. A particular aspect of this acceleration is the introduction of boundary restriction and prolongation operators that minimize oscillatory behavior and enhance positivity. Numerical tests are presented that show the high precision of the method and the efficiency of the angular multigrid acceleration. (authors)

  6. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    Science.gov (United States)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  7. Numerical stress analysis of toroidal coil by three-dimensional finite element method

    International Nuclear Information System (INIS)

    Nishimura, Hidetomo; Shimamoto, Susumu

    1977-10-01

    A structure analysis program based on finite element method for toroidal coils, developed in JAERI, and its example application to a medium-size tokamak are described. In this application, the effects of material anisotropy, poloidal field and spring constant value were studied, and also the influence of toroidal coil failure on the peak stress. The following were revealed. The effect of anisotropy on the peak stress in reinforcement must be considered. The effect of poloidal field on the peak stress is small compared with that of toroidal field. The spring constant value between coil and support does not much influence the peak stress value, The peak stress in reinforcement rises with increasing number of failed coils. In the case of 2000 nodes on the structure, CPU time with the program is about 40 min. (auth.)

  8. Two-dimensional multigroup finite element calculation of fast reactor in diffusion approximation

    International Nuclear Information System (INIS)

    Schmid, J.

    1986-06-01

    When a linear element of triangular shape is used the actual finite element calculation is relatively simple. Extensive programs for mesh generation were written for easy inputting the configuration of reactors. A number of other programs were written for plotting neutron flux fields in individual groups, the power distribution, spatial plotting of fields, etc. The operation of selected programs, data preparation and operating instructions are described and examples given of data and results. All programs are written in GIER ALGOL. The used method and the developed programs have demonstrated that they are a useful instrument for the calculation of criticality and the distribution of neutron flux and power of both fast and thermal reactors. (J.B.)

  9. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  10. Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films

    Science.gov (United States)

    Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.

    2017-12-01

    By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.

  11. A Three-Dimensional, Immersed Boundary, Finite Volume Method for the Simulation of Incompressible Heat Transfer Flows around Complex Geometries

    Directory of Open Access Journals (Sweden)

    Hassan Badreddine

    2017-01-01

    Full Text Available The current work focuses on the development and application of a new finite volume immersed boundary method (IBM to simulate three-dimensional fluid flows and heat transfer around complex geometries. First, the discretization of the governing equations based on the second-order finite volume method on Cartesian, structured, staggered grid is outlined, followed by the description of modifications which have to be applied to the discretized system once a body is immersed into the grid. To validate the new approach, the heat conduction equation with a source term is solved inside a cavity with an immersed body. The approach is then tested for a natural convection flow in a square cavity with and without circular cylinder for different Rayleigh numbers. The results computed with the present approach compare very well with the benchmark solutions. As a next step in the validation procedure, the method is tested for Direct Numerical Simulation (DNS of a turbulent flow around a surface-mounted matrix of cubes. The results computed with the present method compare very well with Laser Doppler Anemometry (LDA measurements of the same case, showing that the method can be used for scale-resolving simulations of turbulence as well.

  12. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    Science.gov (United States)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  13. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  14. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    Science.gov (United States)

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  15. Application of space-and-angle finite element method to the three-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Fujimura, T.; Nakahara, Y.; Matsumura, M.

    1983-01-01

    A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)

  16. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  17. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Exact effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    International Nuclear Information System (INIS)

    Maciel, Soraya G.; Perez, Silvana

    2008-01-01

    In this paper we study the effects of a nonzero chemical potential in (1+1)-dimensional quantum field models at finite temperature. We particularly consider massless fermions in an Abelian gauge field background and calculate the effective action by evaluating the n-point functions. We find that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike in the absence of a chemical potential, odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of μ, while the odd point functions are odd functions of μ which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left- and right-handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory.

  19. Black hole attractors and pure spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  20. Describing chaotic attractors: Regular and perpetual points

    Science.gov (United States)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    2018-03-01

    We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

  1. Black Hole Attractors and Pure Spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  2. Non-linguistic Conditions for Causativization as a Linguistic Attractor

    OpenAIRE

    Johanna Nichols; Johanna Nichols; Johanna Nichols

    2018-01-01

    An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an e...

  3. Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)

    2011-05-09

    A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: A new family of Poisson structures is globally characterized and analyzed. Such family is globally defined for arbitrary values of the dimension and the rank. Global construction of Casimir invariants and Darboux canonical form is provided. Very diverse and previously known solutions of physical interest are generalized.

  4. Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems

    International Nuclear Information System (INIS)

    Hernandez-Bermejo, Benito

    2011-01-01

    A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: → A new family of Poisson structures is globally characterized and analyzed. → Such family is globally defined for arbitrary values of the dimension and the rank. → Global construction of Casimir invariants and Darboux canonical form is provided. → Very diverse and previously known solutions of physical interest are generalized.

  5. Coulomb blockade threshold in finite one-dimensional arrays of small tunnel junctions

    International Nuclear Information System (INIS)

    Lien, Nguyen V.; Dat, Nguyen T.; Nam, Nguyen H.

    2001-11-01

    The current-voltage characteristics of one-dimensional tunnel junction arrays are simulated using the semiclassical and full capacitance matrix description. The threshold voltage V th of the Coulomb blockade (CB) is evaluated and analyzed in detail as a function of the gate capacitance C 0 , the array length N, the temperature, and the degree of disorder. The disordered effect is found to be essential, while the long range interaction included in the full capacitance matrix calculations, when decreasing V th , weakly affects the qualitative behaviour of the CB for the V th (C 0 ) - and the V th (N)-dependences. (author)

  6. Connecting coherent structures and strange attractors

    Science.gov (United States)

    Keefe, Laurence R.

    1990-01-01

    A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.

  7. Applying Chaos Theory to Careers: Attraction and Attractors

    Science.gov (United States)

    Pryor, Robert G. L.; Bright, Jim E. H.

    2007-01-01

    This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…

  8. A contribution to quantum cryptography in finite-dimensional systems including further results from the field of quantum information theory

    International Nuclear Information System (INIS)

    Ranade, Kedar S.

    2009-01-01

    This PhD thesis deals with quantum-cryptographic protocols which allow general finite-dimensional quantum systems (qudits) as carriers of information in contrast to the predominantly used two-dimensional quantum systems (qubits). The main focus of investigations is the maximum tolerable error rate of such protocols and its behaviour as a function of the dimension of the information carriers. For this purpose, several concepts are introduced which allow the treatment of this problem. In particular, protocols are presented which work up to a maximum tolerate error rate, and it is shown that a wide class of protocols cannot be used for higher error rates. Among other things, it turns out that the maximum tolerable error rate for two-basis protocols increases up to 50% for high dimensions. Apart from the above-mentioned main subjects of this thesis, some other results from the field of quantum information theory are given, which were achieved during this PhD project. (orig.)

  9. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    Science.gov (United States)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  10. ImageParser: a tool for finite element generation from three-dimensional medical images

    Directory of Open Access Journals (Sweden)

    Yamada T

    2004-10-01

    Full Text Available Abstract Background The finite element method (FEM is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures of interest (ROIs may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.

  11. Two-dimensional quantum-corrected black hole in a finite size cavity

    International Nuclear Information System (INIS)

    Zaslavskii, O.B.

    2004-01-01

    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability

  12. Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake

    Science.gov (United States)

    Ubaidillah; Permata, A. N. S.; Mazlan, S. A.; Tjahjana, D. D. D. P.; Widodo, P. J.

    2017-10-01

    This research delivers a finite element magnetic simulation of a novel disk type multi-coil magnetorheological brake (MR brake). The MR brake axial design had more than one coil located outside of the casing. This design could simplify the maintenance process of brakes. One pair of coils was used as the representative of the entire coil in the simulation process, and it could distribute magnetic flux in all parts of the electromagnetic. The objective of this simulation was to produce magnetic flux on the surface of the disc brake rotor. The value of the MR brake magnetic flux was higher than that of the current MR brake having one coil with a larger size. The result of the simulation would be used to identify the effect of different fluids on each variation. The Magneto-rheological fluid MRF-132DG and MRF-140CG were injected in each gap as much as 0.50, 1.00, and 1.50 mm, respectively. On the simulation process, the coils were energized at 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 A, respectively. The magnetic flux produced by MRF-140CG was 336 m Tesla on the gap of 0.5 mm. The result of the simulation shows that the smaller the gap variation was, the higher the magnetic value was.

  13. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    Science.gov (United States)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  14. Particle Swarm Optimization Based on Local Attractors of Ordinary Differential Equation System

    Directory of Open Access Journals (Sweden)

    Wenyu Yang

    2014-01-01

    Full Text Available Particle swarm optimization (PSO is inspired by sociological behavior. In this paper, we interpret PSO as a finite difference scheme for solving a system of stochastic ordinary differential equations (SODE. In this framework, the position points of the swarm converge to an equilibrium point of the SODE and the local attractors, which are easily defined by the present position points, also converge to the global attractor. Inspired by this observation, we propose a class of modified PSO iteration methods (MPSO based on local attractors of the SODE. The idea of MPSO is to choose the next update state near the present local attractor, rather than the present position point as in the original PSO, according to a given probability density function. In particular, the quantum-behaved particle swarm optimization method turns out to be a special case of MPSO by taking a special probability density function. The MPSO methods with six different probability density functions are tested on a few benchmark problems. These MPSO methods behave differently for different problems. Thus, our framework not only gives an interpretation for the ordinary PSO but also, more importantly, provides a warehouse of PSO-like methods to choose from for solving different practical problems.

  15. On the development of a three-dimensional finite-element groundwater flow model of the saturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Faunt, C.C.; Gable, C.W.; Zyvoloski, G.A.

    1996-01-01

    Development of a preliminary three-dimensional model of the saturated zone at Yucca Mountain, the potential location for a high-level nuclear waste repository, is presented. The development of the model advances the technology of interfacing: (1)complex three-dimensional hydrogeologic framework modeling; (2) fully three-dimensional, unstructured, finite-element mesh generation; and (3) groundwater flow, heat, and transport simulation. The three-dimensional hydrogeologic framework model is developed using maps, cross sections, and well data. The framework model data are used to feed an automated mesh generator, designed to discretize irregular three-dimensional solids,a nd to assign materials properties from the hydrogeologic framework model to the tetrahedral elements. The mesh generator facilitated the addition of nodes to the finite-element mesh which correspond to the exact three-dimensional position of the potentiometric surface based on water-levels from wells. A ground water flow and heat simulator is run with the resulting finite- element mesh, within a parameter-estimation program. The application of the parameter-estimation program is designed to provide optimal values of permeability and specified fluxes over the model domain to minimize the residual between observed and simulated water levels

  16. A two-dimensional analytical model for groundwater flow in a leaky aquifer extending finite distance under the estuary

    Science.gov (United States)

    Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen

    2017-04-01

    In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.

  17. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  18. Split Attractor Flow in N=2 Minimally Coupled Supergravity

    CERN Document Server

    Ferrara, Sergio; Orazi, Emanuele

    2011-01-01

    We classify the stability region, marginal stability walls (MS) and split attractor flows for two-center extremal black holes in four-dimensional N=2 supergravity minimally coupled to n vector multiplets. It is found that two-center (continuous) charge orbits, classified by four duality invariants, either support a stability region ending on a MS wall or on an anti-marginal stability (AMS) wall, but not both. Therefore, the scalar manifold never contains both walls. Moreover, the BPS mass of the black hole composite (in its stability region) never vanishes in the scalar manifold. For these reasons, the "bound state transformation walls" phenomenon does not necessarily occur in these theories. The entropy of the flow trees also satisfies an inequality which forbids "entropy enigma" decays in these models. Finally, the non-BPS case, due to the existence of a "fake" superpotential satisfying a triangle inequality, can be treated as well, and it can be shown to exhibit a split attractor flow dynamics which, at le...

  19. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    International Nuclear Information System (INIS)

    Gorbatsevich, Vladimir V

    2012-01-01

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra is considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.

  20. Hydrodynamic Influence Dabanhu River Bridge Holes Widening Based on Two-Dimensional Finite Element Numerical Model

    Science.gov (United States)

    Li, Dong Feng; Bai, Fu Qing; Nie, Hui

    2018-06-01

    In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach

  1. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    Science.gov (United States)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  2. Three-dimensional body-wave model of Nepal using finite difference tomography

    Science.gov (United States)

    Ho, T. M.; Priestley, K.; Roecker, S. W.

    2017-12-01

    The processes occurring during continent-continent collision are still poorly understood. Ascertaining the seismic properties of the crust and uppermost mantle in such settings provides insight into continental rheology and geodynamics. The most active present-day continent-continent collision is that of India with Eurasia which has created the Himalayas and the Tibetan Plateau. Nepal provides an ideal laboratory for imaging the crustal processes resulting from the Indo-Eurasia collision. We build body wave models using local body wave arrivals picked at stations in Nepal deployed by the Department of Mining and Geology of Nepal. We use the tomographic inversion method of Roecker et al. [2006], the key feature of which is that the travel times are generated using a finite difference solution to the eikonal equation. The advantage of this technique is increased accuracy in the highly heterogeneous medium expected for the Himalayas. Travel times are calculated on a 3D Cartesian grid with a grid spacing of 6 km and intragrid times are estimated by trilinear interpolation. The gridded area spans a region of 80-90o longitude and 25-30o latitude. For a starting velocity model, we use IASP91. Inversion is performed using the LSQR algorithm. Since the damping parameter can have a significant effect on the final solution, we tested a range of damping parameters to fully explore its effect. Much of the seismicity is clustered to the West of Kathmandu at depths Small areas of strong fast wavespeeds exist in the centre of the region in the upper 30 km of the crust. At depths of 40-50 km, large areas of slow wavespeeds are present which track along the plate boundary.

  3. Recurrence quantification analysis in Liu's attractor

    International Nuclear Information System (INIS)

    Balibrea, Francisco; Caballero, M. Victoria; Molera, Lourdes

    2008-01-01

    Recurrence Quantification Analysis is used to detect transitions chaos to periodical states or chaos to chaos in a new dynamical system proposed by Liu et al. This system contains a control parameter in the second equation and was originally introduced to investigate the forming mechanism of the compound structure of the chaotic attractor which exists when the control parameter is zero

  4. Attractor merging crisis in chaotic business cycles

    International Nuclear Information System (INIS)

    Chian, Abraham C.-L.; Borotto, Felix A.; Rempel, Erico L.; Rogers, Colin

    2005-01-01

    A numerical study is performed on a forced-oscillator model of nonlinear business cycles. An attractor merging crisis due to a global bifurcation is analyzed using the unstable periodic orbits and their associated stable and unstable manifolds. Characterization of crisis can improve our ability to forecast sudden major changes in economic systems

  5. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  6. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  7. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin ractor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature dependent yield surface. The temperature dependency of the yield surface is based upon a temperature-dependent, material-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal uniaxial stress-strain data. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. The temperature field is described through time-dependent values at mesh node points; the temperature fields in each element are then obtained by interpolation formulas. Hence, problems with both spatial and temporal dependent temperature fields can easily be treated. The above developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analysis Code. STRAW is a two-dimensional code with a plane stress/plane strain beam element. The 3D Implicit code has a triangular flat plate element which is capable of sustaining both membrane and bending loads. To insure numerical stability both codes are based on an iterative-incremental solution procedure with equilibrium checks based on an error in energy

  8. Plantar pressure relief under the metatarsal heads: therapeutic insole design using three-dimensional finite element model of the foot.

    Science.gov (United States)

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2015-02-26

    Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  10. Conversion and comparison of the mathematical, three-dimensional, finite-difference, ground-water flow model to the modular, three-dimensional, finite-difference, ground-water flow model for the Tesuque aquifer system in northern New Mexico

    Science.gov (United States)

    Umari, A.M.; Szeliga, T.L.

    1989-01-01

    The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)

  11. On the Dynamics of a Model with Coexistence of Three Attractors: A Point, a Periodic Orbit and a Strange Attractor

    Energy Technology Data Exchange (ETDEWEB)

    Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Universitat Autònoma de Barcelona, Departament de Matemàtiques (Spain); Valls, Claudia, E-mail: cvalls@math.ist.utl.pt [Universidade de Lisboa, Departamento de Matemática, Instituto Superior Técnico (Portugal)

    2017-06-15

    For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics near the infinity, and prove that it has no Darboux first integrals.

  12. A review of finite size effects in quasi-zero dimensional superconductors.

    Science.gov (United States)

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  13. A review of finite size effects in quasi-zero dimensional superconductors

    International Nuclear Information System (INIS)

    Bose, Sangita; Ayyub, Pushan

    2014-01-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non

  14. Interpolating from Bianchi attractors to Lifshitz and AdS spacetimes

    International Nuclear Information System (INIS)

    Kachru, Shamit; Kundu, Nilay; Saha, Arpan; Samanta, Rickmoy; Trivedi, Sandip P.

    2014-01-01

    We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or AdS 2 ×S 3 geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or AdS 2 ×S 3 geometries can in turn be connected to AdS 5 spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to AdS 5 spacetime. The asymptotic AdS 5 spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either spontaneous or due to sources for other fields. Finally, we show that for a large class of flows which connect two Bianchi attractors, a C-function can be defined which is monotonically decreasing from the UV to the IR as long as the null energy condition is satisfied. However, except for special examples of Bianchi attractors (including AdS space), this function does not attain a finite and non-vanishing constant value at the end points

  15. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Moment Inversion of the DPRK Nuclear Tests Using Finite-Difference Three-dimensional Strain Green's Tensors

    Science.gov (United States)

    Bao, X.; Shen, Y.; Wang, N.

    2017-12-01

    Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.

  17. Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent

    International Nuclear Information System (INIS)

    Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio

    2013-01-01

    In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  18. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification

    Science.gov (United States)

    Zhao, Y.; Qin, R. S.; Chen, D. F.

    2013-08-01

    A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.

  19. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    Energy Technology Data Exchange (ETDEWEB)

    Li, K., E-mail: likai@imech.ac.cn [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Xun, B.; Hu, W. R. [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-15

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  20. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples

  1. Comparison of one-dimensional probabilistic finite element method with direct numerical simulation of dynamically loaded heterogeneous materials

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2011-06-01

    Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    Science.gov (United States)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  3. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution.

    Science.gov (United States)

    Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.

  4. Three-dimensional finite element analysis on canine teeth distalization by different accessories of bracket-free invisible orthodontics technology

    Science.gov (United States)

    Xu, Nuo; Lei, Xue; Yang, Xiaoli; Li, Xinhui; Ge, Zhenlin

    2018-04-01

    Objective: to compare canine tooth stress distribution condition during maxillary canine tooth distalization by different accessories of bracket-free invisible orthodontics technology after removal of maxillary first premolar, and provide basis for clinical design of invisible orthodontics technology. Method: CBCT scanning image of a patient with individual normal occlusion was adopted, Mimics, Geomagic and ProlE software were used for establishing three-dimensional models of maxilla, maxillary dentition, parodontium, invisible orthodontics appliance and accessories, ANSYS WORKBENCH was utilized as finite element analysis tools for analyzing stress distribution and movement pattern of canine tooth and parodontium when canine tooth was equipped with power arm and vertical rectangle accessory. Meanwhile, canine tooth none-accessory design group was regarded as a control. Result: teeth had even bistal surface stress distribution in the power arm group; stress was concentrated on distal tooth neck, and the stress was gradually deviated to mesial-labial side and distal lingual side in vertical rectangle group and none-accessory group. Conclusion: teeth tend to move as a whole in the Power arm group, vertical rectangle group has lower tooth gradient compared with the none-accessory group, teeth are inclined for movement in the none-accessory group, and canine teeth tend to rotate to the distal lingual side.

  5. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    International Nuclear Information System (INIS)

    Li, K.; Xun, B.; Hu, W. R.

    2016-01-01

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  6. Three-dimensional finite element analysis of zirconia all-ceramic cantilevered fixed partial dentures with different framework designs.

    Science.gov (United States)

    Miura, Shoko; Kasahara, Shin; Yamauchi, Shinobu; Egusa, Hiroshi

    2017-06-01

    The purpose of this study were: to perform stress analyses using three-dimensional finite element analysis methods; to analyze the mechanical stress of different framework designs; and to investigate framework designs that will provide for the long-term stability of both cantilevered fixed partial dentures (FPDs) and abutment teeth. An analysis model was prepared for three units of cantilevered FPDs that assume a missing mandibular first molar. Four types of framework design (Design 1, basic type; Design 2, framework width expanded buccolingually by 2 mm; Design 3, framework height expanded by 0.5 mm to the occlusal surface side from the end abutment to the connector area; and Design 4, a combination of Designs 2 and 3) were created. Two types of framework material (yttrium-oxide partially stabilized zirconia and a high precious noble metal gold alloy) and two types of abutment material (dentin and brass) were used. In the framework designs, Design 1 exhibited the highest maximum principal stress value for both zirconia and gold alloy. In the abutment tooth, Design 3 exhibited the highest maximum principal stress value for all abutment teeth. In the present study, Design 4 (the design with expanded framework height and framework width) could contribute to preventing the concentration of stress and protecting abutment teeth. © 2017 Eur J Oral Sci.

  7. Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips

    Directory of Open Access Journals (Sweden)

    Junjie Zeng

    2018-03-01

    Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.

  8. Study of a method to solve the one speed, three dimensional transport equation using the finite element method and the associated Legendre function

    International Nuclear Information System (INIS)

    Fernandes, A.

    1991-01-01

    A method to solve three dimensional neutron transport equation and it is based on the original work suggested by J.K. Fletcher (42, 43). The angular dependence of the flux is approximated by associated Legendre functions and the finite element method is applied to the space components is presented. When the angular flux, the scattering cross section and the neutrons source are expanded in associated Legendre functions, the first order neutron transport equation is reduced to a coupled set of second order diffusion like equations. These equations are solved in an iterative way by the finite element method to the moments. (author)

  9. STRANGE ATTRACTORS IN SYMMETRIC UNFOLDINGS OF A SINGULARITY WITH THREE-FOLD ZERO EIGENVALUE

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou

    2009-01-01

    In this paper, we study the Sil'nikov heteroclinic bifurcations, which display strange attractors, for the symmetric versal unfoldings of the singularity at the origin with a nilpotent Linear part and 3-jet, using the normal form, the blow-up and the ge-neralized Mel'nikov methods of heteroclinic orbits to two hyperbolic or nonhyperbolic equilibria in a high-dimensional space.

  10. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  11. Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2011-01-01

    Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.

  12. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  13. Sneutrino Inflation with $\\alpha$-attractors

    CERN Document Server

    Kallosh, Renata; Roest, Diederik; Wrase, Timm

    2016-11-22

    Sneutrino inflation employs the fermionic partners of the inflaton and stabilizer field as right-handed neutrinos to realize the seesaw mechanism for light neutrino masses. A crucial ingredient in existing constructions for sneutrino (multi-)natural inflation is an unbroken discrete shift symmetry. We demonstrate that a similar construction applies to $\\alpha$-attractor models. In this case the hyperbolic geometry protects the neutrino Yukawa couplings to the inflaton field, and the masses of leptons and Higgs fields, from blowing up when the inflaton is super-Planckian. We find that the predictions for $n_s$ and $r$ for $\\alpha$-attractor cosmological models, compatible with the current cosmological data, are preserved in the presence of the neutrino sector.

  14. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  15. The power spectrum of inflationary attractors

    International Nuclear Information System (INIS)

    Broy, Benedict J.; Westphal, Alexander; Roest, Diederik

    2014-08-01

    Inflationary attractors predict the spectral index and tensor-to-scalar ratio to take specific values that are consistent with Planck. An example is the universal attractor for models with a generalised non-minimal coupling, leading to Starobinsky inflation. In this letter we demonstrate that it also predicts a specific relation between the amplitude of the power spectrum and the number of e-folds. The length and height of the inflationary plateau are related via the non-minimal coupling: in a wide variety of examples, the observed power normalisation leads to at least 55 flat e-foldings. Prior to this phase, the inflationary predictions vary and can account for the observational indications of power loss at large angular scales.

  16. Contractive function systems, their attractors and metrization

    Czech Academy of Sciences Publication Activity Database

    Banakh, T.; Kubiś, Wieslaw; Novosad, N.; Nowak, M.; Strobin, F.

    2015-01-01

    Roč. 46, č. 2 (2015), s. 1029-1066 ISSN 1230-3429 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : fractal * attractor * iterated function system * contracting function system Subject RIV: BA - General Mathematics Impact factor: 0.717, year: 2015 http://www.apcz.pl/czasopisma/index.php/TMNA/article/view/TMNA.2015.076

  17. Internal wave attractors: different scenarios of instability

    OpenAIRE

    Brouzet, Christophe; Ermanyuk, E. V.; Joubaud, Sylvain; Pillet, Grimaud; Dauxois, Thierry

    2017-01-01

    International audience; This paper presents an experimental study of different instability scenarios in a parallelogram-shaped internal wave attractor in a trapezoidal domain filled with a uniformly stratified fluid.Energy is injected into the system via the oscillatory motion of a vertical wall of the trapezoidal domain. Whole-field velocity measurements are performed with the conventional PIV technique. In the linear regime, the total kinetic energyof the fluid system is used to quantify th...

  18. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  19. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  20. A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants.

    Science.gov (United States)

    Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo

    2013-10-01

    The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.

  1. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    M. Nawaz

    Full Text Available In this article, we developed a computer code of Galerikan Finite Element method (GFEM for three dimensional flow equations of nano-plasma fluid (blood in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm’s law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8. Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood are influenced significantly by the inclusion of nano-particles of Copper (Cu and Silver (Ag. Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid. Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field. Keywords: Nanofluid, Grid independent study, Convergence, Error analysis, Skin friction, Joule heating, Viscous dissipation, Hall and ion currents

  2. The analysis of three-dimensional effects of nitanium palatal expander 2 and hyrax maxillary expansion appliances on craniofacial structures: A finite element study

    Directory of Open Access Journals (Sweden)

    Avinash Kumar

    2017-01-01

    Full Text Available Objectives: To analyze three-dimensional effects of stress distribution and displacement on the craniofacial structures, following the application of forces from Nitanium Palatal Expander 2 (NPE2 and Hyrax appliance in early mixed dentition period using finite element analysis. Materials and Methods: Three-dimensional finite element models of the young dried human skull, NPE2 and Hyrax were constructed, and the initial activation of the expanders was simulated to carry out the analysis and to evaluate the von misses stresses and displacement on the craniofacial structures. Results: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The inferior nasal floor showed highest downward displacement and point A showed outward, backward, and upward displacement in both the models. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than Hyrax. The cusp of the erupting canine and the mesiobuccal cusp of the second molar showed outward, backward, and downward displacement signifying eruption pattern following maxillary expansion. Conclusions: Nickel titanium palatal expander-2 and Hyrax produced similar stress pattern in early mixed dentition period finite element model. We conclude from this finite element method study that NPE2 is equally effective as Hyrax when used in early mixed dentition period as it exhibits orthopedic nature of expansion with minimal residual stresses in the craniofacial structures.

  3. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study

    OpenAIRE

    Krishna Chaitanya Kanneganti; Dileep Nag Vinnakota; Srinivas Rao Pottem; Mahesh Pulagam

    2018-01-01

    Purpose: The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. Materials and Methods: 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled t...

  4. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  5. Black-Hole Attractors in N=1 Supergravity

    CERN Document Server

    Andrianopoli, L; Ferrara, Sergio; Trigiante, M; Andrianopoli, Laura; Auria, Riccardo D'; Ferrara, Sergio; Trigiante, Mario

    2007-01-01

    We study the attractor mechanism for N=1 supergravity coupled to vector and chiral multiplets and compute the attractor equations of these theories. These equations may have solutions depending on the choice of the holomorphic symmetric matrix f_{\\Lambda\\Sigma} which appears in the kinetic lagrangian of the vector sector. Models with non trivial electric-magnetic duality group which have or have not attractor behavior are exhibited. For a particular class of models, based on an N=1 reduction of homogeneous special geometries, the attractor equations are related to the theory of pure spinors.

  6. Crisis of the chaotic attractor of a climate model: a transfer operator approach

    Science.gov (United States)

    Tantet, Alexis; Lucarini, Valerio; Lunkeit, Frank; Dijkstra, Henk A.

    2018-05-01

    The destruction of a chaotic attractor leading to rough changes in the dynamics of a dynamical system is studied. Local bifurcations are known to be characterised by a single or a pair of characteristic exponents crossing the imaginary axis. As a result, the approach of such bifurcations in the presence of noise can be inferred from the slowing down of the decay of correlations (Held and Kleinen 2004 Geophys. Res. Lett. 31 1–4). On the other hand, little is known about global bifurcations involving high-dimensional attractors with several positive Lyapunov exponents. It is known that the global stability of chaotic attractors may be characterised by the spectral properties of the Koopman (Mauroy and Mezić 2016 IEEE Trans. Autom. Control 61 3356–69) or the transfer operators governing the evolution of statistical ensembles. Accordingly, it has recently been shown (Tantet 2017 J. Stat. Phys. 1–33) that a boundary crisis in the Lorenz flow coincides with the approach to the unit circle of the eigenvalues of these operators associated with motions about the attractor, the stable resonances. A second class of resonances, the unstable resonances, are responsible for the decay of correlations and mixing on the attractor. In the deterministic case, these cannot be expected to be affected by general boundary crises. Here, however, we give an example of a chaotic system in which slowing down of the decay of correlations of some observables does occur at the approach of a boundary crisis. The system considered is a high-dimensional, chaotic climate model of physical relevance. Moreover, coarse-grained approximations of the transfer operators on a reduced space, constructed from a long time series of the system, give evidence that this behaviour is due to the approach of unstable resonances to the unit circle. That the unstable resonances are affected by the crisis can be physically understood from the fact that the process responsible for the instability, the ice

  7. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, J. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Department of Physics, Laboratory of Electronics and Signal Processing (LETS), Faculty of Science, University of Dschang, Dschang (Cameroon)

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.

  8. Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes

    International Nuclear Information System (INIS)

    Chen, Shijia; Guillemot, Gildas; Gandin, Charles-André

    2016-01-01

    Solidification grain structure has significant impact on the final properties of welded parts using fusion welding processes. Direct simulation of grain structure at industrial scale is yet rarely reported in the literature and remains a challenge. A three-dimensional (3D) coupled Cellular Automaton (CA) – Finite Element (FE) model is presented that predicts the grain structure formation during multiple passes Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW). The FE model is established in a level set (LS) approach that tracks the evolution of the metal-shielding gas interface due to the addition of metal. The FE method solves the mass, energy and momentum conservation equations for the metal plus shielding gas system based on an adaptive mesh (FE mesh). Fields are projected in a second FE mesh, named CA mesh. A CA grid made of a regular lattice of cubic cells is created to overlay the fixed CA mesh. The CA model based on the CA grid simulates the melting and growth of the grain boundaries in the liquid pool. In order to handle large computational domains while keeping reasonable computational costs, parallel computations and dynamic strategies for the allocation/deallocation of the CA grid are introduced. These strategies correspond to significant optimizations of the computer memories that are demonstrated. The 3D CAFE model is first applied to the simple configuration of single linear passes by GTAW of a duplex stainless steel URANUS 2202. It is then applied to a more persuasive example considering GMAW in spray transfer mode during multiple passes to fill a V-groove chamfer. Simulations reveal the possibility to handle domains with millions of grains in representative domain sizes while following the formation of textures that result from the growth competition among columnar grains. -- Graphical abstract: Simulated 3D grain structure (3D CAFE model) for GTAW multiple linear passes at the surface of a duplex stainless steel (URANUS 22002

  9. 3rd School on Attractor Mechanism

    CERN Document Server

    SAM 2007; The Attractor Mechanism: Proceedings of the INFN-Laboratori Nazionali di Frascati School 2007

    2010-01-01

    This book is based upon lectures presented in June 2007 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, M. Gunaydin, P. Levay, and T. Mohaupt. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and related reworking of, the various contributions. In addition, this volume contains contributions originating from short presentations of rece

  10. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2003-01-01

    There are growing experimental, numerical and theoretical evidences that the anomalous transport observed in tokamaks and stellarators is caused by slow, drift-type modes (such as trapped electron modes and ion-temperature gradient-driven modes). Although typical collision frequencies in hot, magnetized fusion plasmas can be quite low in absolute values, collisional effects are nevertheless important since they act as dissipative sinks. As it is well known, dissipative systems with many (strictly speaking more than two) degrees of freedom are often chaotic and may evolve towards a so-called attractor

  11. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  12. Existence of global attractor for the Trojan Y Chromosome model

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2012-04-01

    Full Text Available This paper is concerned with the long time behavior of solution for the equation derived by the Trojan Y Chromosome (TYC model with spatial spread. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that this equations possesses a global attractor in $H^k(\\Omega^4$ $(k\\geq 0$ space.

  13. Attractors for a class of doubly nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2006-03-01

    Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.

  14. Existence and attractors of solutions for nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2001-01-01

    Full Text Available We prove existence and asymptotic behaviour results for weak solutions of a mixed problem (S. We also obtain the existence of the global attractor and the regularity for this attractor in $\\left[H^{2}(\\Omega \\right] ^{2}$ and we derive estimates of its Haussdorf and fractal dimensions.

  15. Synchronization in Coupled Oscillators with Two Coexisting Attractors

    International Nuclear Information System (INIS)

    Han-Han, Zhu; Jun-Zhong, Yang

    2008-01-01

    Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Duffing oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions. (general)

  16. Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids

    National Research Council Canada - National Science Library

    Naff, R. L; Russell, T. F; Wilson, J. D

    2000-01-01

    .... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...

  17. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  18. Attractor mechanism as a distillation procedure

    International Nuclear Information System (INIS)

    Levay, Peter; Szalay, Szilard

    2010-01-01

    In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

  19. On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary Conditions

    KAUST Repository

    Settle, Sean O.

    2013-01-01

    The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.

  20. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth

    Science.gov (United States)

    Zhao, Xue-Hui; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Sun, Yan; Guo, Yong-Jiang

    2018-04-01

    Under investigation in this paper is a (2+1)-dimensional Davey-Stewartson system, which describes the transformation of a wave-packet on water of finite depth. By virtue of the bell polynomials, bilinear form, Bäcklund transformation and Lax pair are got. One- and two-soliton solutions are obtained via the symbolic computation and Hirota method. Velocity and amplitude of the one-soliton solutions are relevant with the wave number. Graphical analysis indicates that soliton shapes keep unchanged and maintain their original directions and amplitudes during the propagation. Elastic overtaking and head-on interactions between the two solitons are described.

  2. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  3. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    Science.gov (United States)

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  4. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  5. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  6. Local density of optical states in the band gap of a finite one-dimensional photonic crystal

    NARCIS (Netherlands)

    Yeganegi Dastgerdi, Elahe; Lagendijk, Aart; Mosk, Allard; Vos, Willem L.

    2014-01-01

    We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose an original point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the

  7. Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems

    NARCIS (Netherlands)

    van den Brink, J.; Sawatzky, G.A.

    2000-01-01

    We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and

  8. Finite-temperature correlation function for the one-dimensional quantum Ising model:The virial expansion

    Science.gov (United States)

    Reyes, S. A.; Tsvelik, A. M.

    2006-06-01

    We rewrite the exact expression for the finite-temperature two-point correlation function for the magnetization as a partition function of some field theory. This removes singularities and provides a convenient form to develop a virial expansion (expansion in powers of the soliton density).

  9. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    Science.gov (United States)

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  10. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  11. Black hole microstates and attractor without supersymmetry

    International Nuclear Information System (INIS)

    Dabholkar, Atish; Trivedi, Sandip P.; Sen, Ashoke

    2007-01-01

    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument

  12. Fibre inflation and α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata; Linde, Andrei [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics; Leiden Univ. (Netherlands). Lorentz Inst. for Theoretical Physics; Roest, Diederik [Groningen Univ. (Netherlands). Van Swinderen Inst. for Particle Physics and Gravity; Westphal, Alexander [DESY, Hamburg (Germany). Theory Group; Yamada, Yusuke [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics

    2017-07-15

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α=2 and α=1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an D3 uplift term with a nilpotent superfield. Specific moduli dependent D3 induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  13. Attractor cosmology from nonminimally coupled gravity

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2018-03-01

    By using a bottom-up reconstruction technique for nonminimally coupled scalar-tensor theories, we realize the Einstein frame attractor cosmologies in the Ω (ϕ )-Jordan frame. For our approach, what is needed for the reconstruction method to work is the functional form of the nonminimal coupling Ω (ϕ ) and of the scalar-to-tensor ratio, and also the assumption of the slow-roll inflation in the Ω (ϕ )-Jordan frame. By appropriately choosing the scalar-to-tensor ratio, we demonstrate that the observational indices of the attractor cosmologies can be realized directly in the Ω (ϕ )-Jordan frame. We investigate the special conditions that are required to hold true in for this realization to occur, and we provide the analytic form of the potential in the Ω (ϕ )-Jordan frame. Also, by performing a conformal transformation, we find the corresponding Einstein frame canonical scalar-tensor theory, and we calculate in detail the corresponding observational indices. The result indicates that although the spectral index of the primordial curvature perturbations is the same in the Jordan and Einstein frames, at leading order in the e -foldings number, the scalar-to-tensor ratio differs. We discuss the possible reasons behind this discrepancy, and we argue that the difference is due to some approximation we performed to the functional form of the potential in the Einstein frame, in order to obtain analytical results, and also due to the difference in the definition of the e -foldings number in the two frames, which is also pointed out in the related literature. Finally, we find the F (R ) gravity corresponding to the Einstein frame canonical scalar-tensor theory.

  14. Minimality of invariant laminations for partially hyperbolic attractors

    International Nuclear Information System (INIS)

    Nobili, Felipe

    2015-01-01

    Let f : M → M be a C 1 -diffeomorphism over a compact boundaryless Riemannian manifold M, and Λ a compact f-invariant subset of M admitting a partially hyperbolic spliting T f Λ = E s  ⊕ E c  ⊕ E u over the tangent bundle T f Λ. It's known from the Hirsch–Pugh–Shub theory that Λ admits two invariant laminations associated to the extremal bundles E s and E u . These laminations are families of dynamically defined immersed submanifolds of the M tangent, respectively, to the bundles E s and E u at every point in Λ. In this work, we prove that at least one of the invariant laminations of a transitive partially hyperbolic attractor with a one-dimensional center bundle is minimal: the orbit of every leaf intersects Λ densely. This result extends those in Bonatti et al (2002 J. Inst. Math. Jussieu 1 513–41) and Hertz et al (2007 Fields Institute Communications vol 51 (Providence, RI: American Mathematical Society) pp 103–9) about minimal foliations for robustly transitive diffeomorphisms. (paper)

  15. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    Science.gov (United States)

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  16. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential and a temperature dependent surface. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. These developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analaysis code. A set of problems is presented to validate both the 3D and 2D programs and to illustrate their applicability to a variety of problems. (Auth.)

  17. Multi-wing hyperchaotic attractors from coupled Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.

    2009-01-01

    This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.

  18. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  19. The Kuramoto–Sivashinsky equation. A Local Attractor Filled with Unstable Periodic Solutions

    Directory of Open Access Journals (Sweden)

    Anatoli N. Kulikov

    2018-01-01

    Full Text Available A periodic boundary value problem is considered for one version of the KuramotoSivashinsky equation, which is widely known in mathematical physics. Local bifurcations in a neighborhood of the spatially homogeneous equilibrium points in the case when they change stability are studied. It is shown that the loss of stability of homogeneous equilibrium points leads to the appearance of a two-dimensional attractor on which all solutions are periodic functions of time, except one spatially inhomogeneous state. A spectrum of frequencies of the given family of periodic solutions fills the entire number line, and they are all unstable in a sense of Lyapunov definition in the metric of the phase space (space of initial conditions of the corresponding initial boundary value problem. It is chosen the Sobolev space as the phase space. For the periodic solutions which fill the two-dimensional attractor, the asymptotic formulas are given. In order to analyze the bifurcation problem it was used analysis methods for infinite-dimensional dynamical systems: the integral (invariant manifold method, the Poincare normal form theory, and asymptotic methods. The analysis of bifurcations for periodic boundary value problem was reduced to analysing the structure of the neighborhood of the zero solution of the homogeneous Dirichlet boundary value problem for the considered equation. 

  20. Coexisting multiple attractors and riddled basins of a memristive system.

    Science.gov (United States)

    Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu

    2018-01-01

    In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.

  1. Attractor of reaction-diffusion equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    José Valero

    2001-04-01

    Full Text Available In this paper we prove first some abstract theorems on existence of global attractors for differential inclusions generated by w-dissipative operators. Then these results are applied to reaction-diffusion equations in which the Babach space Lp is used as phase space. Finally, new results concerning the fractal dimension of the global attractor in the space L2 are obtained.

  2. Revisiting non-Gaussianity from non-attractor inflation models

    Science.gov (United States)

    Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei

    2018-05-01

    Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.

  3. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  4. The instantaneous local transition of a stable equilibrium to a chaotic attractor in piecewise-smooth systems of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz

    2016-09-07

    An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.

  5. Three-Dimensional Finite Element Analysis of Maxillary Sinus Floor Augmentation with Optimal Positioning of a Bone Graft Block

    Directory of Open Access Journals (Sweden)

    Peter Schuller-Götzburg

    2018-01-01

    Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for

  6. Modeling Bidirectional Reflectance Distribution Function of One-dimensional Random Rough Surfaces with the Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    Min-Jhong Gu

    2014-08-01

    Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.

  7. NUMERICAL METHOD OF MIXED FINITE VOLUME-MODIFIED UPWIND FRACTIONAL STEP DIFFERENCE FOR THREE-DIMENSIONAL SEMICONDUCTOR DEVICE TRANSIENT BEHAVIOR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yirang YUAN; Qing YANG; Changfeng LI; Tongjun SUN

    2017-01-01

    Transient behavior of three-dimensional semiconductor device with heat conduction is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions.The electric potential is defined by an elliptic equation and it appears in the following three equations via the electric field intensity.The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation.A mixed finite volume element approximation,keeping physical conservation law,is used to get numerical values of the electric potential and the accuracy is improved one order.Two concentrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences.This method can overcome numerical oscillation,dispersion and decreases computational complexity.Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened.An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations.This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.

  8. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  10. Quintessential inflation with α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Konstantinos; Owen, Charlotte, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: c.owen@lancaster.ac.uk [Consortium for Fundamental Physics, Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2017-06-01

    A novel approach to quintessential inflation model building is studied, within the framework of α-attractors, motivated by supergravity theories. Inflationary observables are in excellent agreement with the latest CMB observations, while quintessence explains the dark energy observations without any fine-tuning. The model is kept intentionally minimal, avoiding the introduction of many degrees of freedom, couplings and mass scales. In stark contrast to ΛCDM, for natural values of the parameters, the model attains transient accelerated expansion, which avoids the future horizon problem, while it maintains the field displacement mildly sub-Planckian such that the flatness of the quintessential tail is not lifted by radiative corrections and violations of the equivalence principle (fifth force) are under control. In particular, the required value of the cosmological constant is near the eletroweak scale. Attention is paid to the reheating of the Universe, which avoids gravitino overproduction and respects nucleosynthesis constraints. Kination is treated in a model independent way. A spike in gravitational waves, due to kination, is found not to disturb nucleosynthesis as well.

  11. Fibre inflation and α-attractors

    Science.gov (United States)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  12. Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method

    International Nuclear Information System (INIS)

    Park, Jai Hak; Nikishkov, G. P.

    2010-01-01

    An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems

  13. Comparison of finite element and influence function methods for three-dimensional elastic analysis of boiling water reactor feedwater nozzle cracks. Phase report

    International Nuclear Information System (INIS)

    Besuner, P.M.; Caughey, W.R.

    1976-11-01

    The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution

  14. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning

    Energy Technology Data Exchange (ETDEWEB)

    Hallquist, J.O.

    1982-02-01

    This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

  15. [Stress analysis of femoral stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer].

    Science.gov (United States)

    Oomori, H; Imura, S; Gesso, H

    1992-04-01

    To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.

  16. [Stress analysis on the acetabular side of bipolar hemiarthroplasty by the two-dimensional finite element method incorporating the boundary friction layer].

    Science.gov (United States)

    Ichihashi, K; Imura, S; Oomori, H; Gesso, H

    1994-11-01

    We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.

  17. An improvement of the filter diagonalization-based post-processing method applied to finite difference time domain calculations of three-dimensional phononic band structures

    International Nuclear Information System (INIS)

    Su Xiaoxing; Zhang Chuanzeng; Ma Tianxue; Wang Yuesheng

    2012-01-01

    When three-dimensional (3D) phononic band structures are calculated by using the finite difference time domain (FDTD) method with a relatively small number of iterations, the results can be effectively improved by post-processing the FDTD time series (FDTD-TS) based on the filter diagonalization method (FDM), instead of the classical fast Fourier transform. In this paper, we propose a way to further improve the performance of the FDM-based post-processing method by introducing a relatively large number of observing points to record the FDTD-TS. To this end, the existing scheme of FDTD-TS preprocessing is modified. With the new preprocessing scheme, the processing efficiency of a single FDTD-TS can be improved significantly, and thus the entire post-processing method can have sufficiently high efficiency even when a relatively large number of observing points are used. The feasibility of the proposed method for improvement is verified by the numerical results.

  18. Three-dimensional finite-element analysis of the cellular convection phenomena in the Clinch River Breeder Reactor Plant prototype pump

    International Nuclear Information System (INIS)

    Silver, A.H.; Lee, J.Y.

    1983-01-01

    Cellular convection was studied rigorously during the development of the Clinch River Breeder Reactor Plant (CRBRP) Program Pumps. This paper presents the development of a three-dimensional finite-element heat transfer model which accounts for the cellular convection phenomena. A buoyancy driven cellular convection flow pattern is introduced in the annulus region between the upper inner structure and the pump tank. Steady-state thermal data were obtained for several test conditions for argon gas pressures up to 93 psig (741 kPa) and sodium operating temperatures to 1000 0 F (811 0 K). Test temperature distributions on the pump tank and inner structure were correlated with numerical results and excellent agreement was obtained

  19. FINEDAN - an explicit finite-element calculation code for two-dimensional analyses of fast dynamic transients in nuclear reactor technology

    International Nuclear Information System (INIS)

    Adamik, V.; Matejovic, P.

    1989-01-01

    The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs

  20. A new class of infinite-dimensional Lie algebras: an analytical continuation of the arbitrary finite-dimensional semisimple Lie algebra

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-06-01

    With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs

  1. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    Science.gov (United States)

    Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried

    2010-05-07

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Incorpararion of Topography Effect Into Two-Dimensional DC Resistivity Modelling by Using Finite-Element Method

    International Nuclear Information System (INIS)

    Erdogan, E.

    2007-01-01

    In earth investigation done by using the direct current resistivity technique, impact of the change in the examined surface topography on determining the resistivity distrubition in the earth has been a frequently faced question. In order to get more fruitful results and make more correct interpretetions in earth surveying carried on the areas where topographical changes occur, modelling should be done by taking the change in surface topography into account and topography effect should be included into inversion. In this study impact of topography to the direct current resistivity method has been analysed. For this purpose, 2-D forward modeling algorithm has been developed by using finite element method. In this algorithm impact of topography can be incorporate into the model. Also the pseudo sections which is produced from the program can be imaged with topography. By using this algorithm response of models under different surface topography has been analysed and compared with the straight topography of same models

  3. A Fast O(N log N Finite Difference Method for the One-Dimensional Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Treena Basu

    2015-10-01

    Full Text Available This paper proposes an approach for the space-fractional diffusion equation in one dimension. Since fractional differential operators are non-local, two main difficulties arise after discretization and solving using Gaussian elimination: how to handle the memory requirement of O(N2 for storing the dense or even full matrices that arise from application of numerical methods and how to manage the significant computational work count of O(N3 per time step, where N is the number of spatial grid points. In this paper, a fast iterative finite difference method is developed, which has a memory requirement of O(N and a computational cost of O(N logN per iteration. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.

  4. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  5. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  6. Influence of three-dimensional reconstruction method for building a model of the cervical spine on its biomechanical responses: A finite element analysis study

    Directory of Open Access Journals (Sweden)

    Iman Zafarparandeh

    2016-03-01

    Full Text Available In some finite element analysis studies of models of sections of the spine, the three-dimensional solid model is built by assuming symmetry about the mid-sagittal plane of the section, whereas in other studies, the model is built from the exact geometry of the section. The influence of the method used to build the solid model on model parameters, in the case of the cervical spine, has not been reported in the literature. This issue is the subject of this study, with the section being C2–C7, the applied loadings being extension, flexion, left lateral bending, and right axial rotation (each of magnitude 1 Nm, and the model parameters determined being rotation, intradiskal pressure, and facet load at each of the segments. When all the parameter results were considered, it was found that, by and large, the influence of solid model construction method used (exact geometry vs assumption of symmetry about the mid-sagittal plane of the section was marginal. As construction of a symmetric finite element model requires less time and effort, construction of an asymmetric model may be justified in special cases only.

  7. Three dimensional stress analysis of nozzle-to-shell intersections by the finite element method and a auto-mesh generation program

    International Nuclear Information System (INIS)

    Fujihara, Hirohiko; Ueda, Masahiro

    1975-01-01

    In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)

  8. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  9. Numerical study of effects of the beam tube on laser fields with a three-dimensional simulation code using the finite element method

    CERN Document Server

    Sobajima, M; Yamazaki, T; Yoshikawa, K; Ohnishi, M; Toku, H; Masuda, K; Kitagaki, J; Nakamura, T

    1999-01-01

    In January 1997, the Beijing FEL observed large laser amplification at 8-18 mu m. However, through the collaborative work, it was found from both experiments and numerical simulations that the laser loss on the beam tube wall was not negligible, and that the saturation was not seen in the relatively long wavelength range because of this loss. This calls for further investigation on the effects of the beam tube of finite size. In order to include such effects self-consistently, we have developed a new three-dimensional code that can solve equations with the boundary conditions of the beam tube by using the Finite Element Method. Results show that the beam tube effects are dominant in deriving higher laser modes in the tube, compared with the optical guiding effects, and consequently reduced gain especially in the longer wavelength range, where the beam tube effects are greatly emphasized. It is also found that TEM sub 0 sub 2 mode is the most dominant higher mode in the beam tube, and is also the main cause of...

  10. Evaluation of stress patterns on maxillary posterior segment when intruded with mini implant anchorage: A three-dimensional finite element study

    Directory of Open Access Journals (Sweden)

    Nikhita Pekhale

    2016-01-01

    Full Text Available Introduction: The aim of this study is to evaluate stress and displacement effects of maxillary posterior intrusion mechanics with mini-implant anchorage by using finite element method. Materials and Methods: A computer stimulation of three-dimensional model maxilla with all teeth, PDL, bone, mini-implants, brackets, arch wire, force element, and transpalatal arch was constructed on the basis of average anatomic morphology. Finite element analysis was done to evaluate the amount of stress and its distribution during orthodontic intrusive force. Results: Increased Von Mises stress values were observed in mesio-cervical region of first molar. The middle third of second premolar and second molar and regions adjacent to force application sites also showed relatively high stress values. Minimum stress values were observed in apical region of first premolar as it is away from force application. Conclusion: Using three mini-implant and transpalatal arches, this study demonstrates that significant amount of true intrusion of maxillary molars could be obtained with lesser concentration of stresses in the apical area recorded.

  11. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  12. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation

    International Nuclear Information System (INIS)

    Lan, Haiqiang; Zhang, Zhongjie

    2011-01-01

    The finite-difference (FD) method is a powerful tool in seismic wave field modelling for understanding seismic wave propagation in the Earth's interior and interpreting the real seismic data. The accuracy of FD modelling partly depends on the implementation of the free-surface (i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary condition approximate schemes (such as one-sided, centred finite-difference, composed, new composed, implicit and boundary-modified approximations) have been developed in FD second-order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and lateral heterogeneous models using these free-surface boundary condition approximate schemes and evaluate their stability and applicability by comparing with corresponding analytical solutions, and then quantitatively evaluate the accuracies of different approximate schemes from the misfit of the amplitude and phase between the numerical and analytical results. Our results confirm that the composed scheme becomes unstable for the V s /V p ratio less than 0.57, and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2) the new composed, implicit and boundary-modified schemes are stable even when the V s /V p ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical solution (which means larger errors in travel-time and reflection strength), the other five approximate schemes show better performance in travel-time (phase) than strength (amplitude)

  13. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    Science.gov (United States)

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  14. Non-linguistic Conditions for Causativization as a Linguistic Attractor.

    Science.gov (United States)

    Nichols, Johanna

    2017-01-01

    An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc.), but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten , or Turkish korkmak 'fear, be afraid' and korkutmak 'frighten, scare', or Finnish istua 'sit' and istutta 'seat (someone)', or Spanish sentarse 'sit down' and sentar 'seat (someone)' is susceptible to selection. Specifically, the Turkish and Finnish pattern, where 'seat' is derived from 'sit' by addition of a suffix-is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization.

  15. Non-linguistic Conditions for Causativization as a Linguistic Attractor

    Directory of Open Access Journals (Sweden)

    Johanna Nichols

    2018-01-01

    Full Text Available An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc., but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten, or Turkish korkmak ‘fear, be afraid’ and korkutmak ‘frighten, scare’, or Finnish istua ‘sit’ and istutta ‘seat (someone’, or Spanish sentarse ‘sit down’ and sentar ‘seat (someone’ is susceptible to selection. Specifically, the Turkish and Finnish pattern, where ‘seat’ is derived from ‘sit’ by addition of a suffix—is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization.

  16. Supersymmetric theories and finiteness

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.

    1989-01-01

    We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)

  17. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force.

    Science.gov (United States)

    Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M

    2008-12-01

    We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.

  18. Positive Solutions of the One-Dimensional p-Laplacian with Nonlinearity Defined on a Finite Interval

    OpenAIRE

    Ruyun Ma; Chunjie Xie; Abubaker Ahmed

    2013-01-01

    We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional $p$ -Laplacian ${\\left({u}^{\\prime }\\left(t\\right){|}^{p-2}{u}^{\\prime }\\left(t\\right)\\right)}^{\\prime }+\\lambda f\\left(u\\left(t\\right)\\right)=0$ , $t\\in \\left(0,1\\right)$ , $u\\left(0\\right)=u\\left(1\\right)=0$ , where $p\\in \\left(1,2\\right]$ , $\\lambda \\in \\left(0,\\mathrm{\\infty }\\right)$ is a parameter, $f\\in {C}^{1}\\left(\\left[0,r\\right),\\l...

  19. Low-dimensional chaos in a hydrodynamic system

    International Nuclear Information System (INIS)

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-01-01

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number

  20. β-expansion attractors observed in A/D converters

    Science.gov (United States)

    Kohda, Tohru; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-12-01

    The recently proposed β-encoders, analog-to-digital converters using an amplifier with a factor β and a flaky quantizer with threshold ν, have proven to be explained by the deterministic dynamics of multi-valued Rényi-Parry maps. Such a map is locally eventually onto [ν-1, ν), which is topologically conjugate to Parry's (β,α)-map with α =(β-1)(ν-1). This implies that β-encoders have a closed subinterval [ν-1,ν), which includes an attractor. Thus, the iteration of the multi-valued Rényi-Parry map performs the β-expansion of x while quantization errors in β-encoders behave chaotically and do not converge to a fixed point. This β-expansion attractor is relatively simpler than previously reported attractors. The object of this paper is twofold: to observe the embedded attractors in the β-encoder and to identify attractors that are useful for spread-spectrum codes and optimization techniques using pseudo-random numbers.

  1. Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors

    Science.gov (United States)

    Wei, Zhouchao; Rajagopal, Karthikeyan; Zhang, Wei; Kingni, Sifeu Takougang; Akgül, Akif

    2018-04-01

    Hidden hyperchaotic attractors can be generated with three positive Lyapunov exponents in the proposed 5D hyperchaotic Burke-Shaw system with only one stable equilibrium. To the best of our knowledge, this feature has rarely been previously reported in any other higher-dimensional systems. Unidirectional linear error feedback coupling scheme is used to achieve hyperchaos synchronisation, which will be estimated by using two indicators: the normalised average root-mean squared synchronisation error and the maximum cross-correlation coefficient. The 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integration. In addition, fractional-order hidden hyperchaotic system will be considered from the following three aspects: stability, bifurcation analysis and FPGA implementation. Such implementations in real time represent hidden hyperchaotic attractors with important consequences for engineering applications.

  2. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs

    Science.gov (United States)

    Zarrati, Simindokht; Heidari, Fatemeh; Kashani, Jamal

    2015-01-01

    Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis. PMID:26884772

  3. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  4. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials.

    Science.gov (United States)

    Tribst, João Paulo Mendes; de Morais, Dayana Campanelli; Alonso, Alexandre Abhdala; Piva, Amanda Maria de Oliveira Dal; Borges, Alexandre Luis Souto

    2017-01-01

    The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic infrastructure. The aim of this study was to evaluate the influence of two different framework materials on stress distribution over a bone tissue-simulating material. Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element analysis. According to MS, both models showed strains on peri-implant region of the penultimate (same side of the load application) and central implants. For MPS, more stress concentration was slightly higher in the left posterior region for Ti's bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, while for zirconia's bar, the cervical of the penultimate implant was the one that highlighted larger areas of possible damages. The stress generated in all constituents of the system was not significantly influenced by the framework's material. This allows suggesting that in cases without components, the use of a framework in zirconia has biomechanical behavior similar to that of a Ti bar.

  5. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs.

    Science.gov (United States)

    Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal

    2015-06-01

    This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.

  6. Applications of energy-release-rate techniques to part-through cracks in plates and cylinders. Volume 2. ORVIRT: a finite element program for energy release rate calculations for 2-dimensional and 3-dimensional crack models

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.

    1983-02-01

    Certain studies of fracture phenomena, such as pressurized-thermal-shock of cracked structures, require that crack tip parameters be determined for combined thermal and mechanical loads. A method is proposed here that modifies the isothermal formulation of deLorenzi to account for thermal strains in cracked bodies. The formulation has been implemented in the virtual-crack-extension program ORVIRT (Oak Ridge VIRTual-Crack-Extension). Program ORVIRT performs energy release rate calculations for both 2- and 3-dimensional nonlinear models of crack configurations in engineering structures. Two applications of the ORVIRT program are described. In the first, semielliptical surface cracks in an experimental test vessel are analyzed under elastic-plastic conditions using the finite element method. The second application is a thick-walled test vessel subjected to combined pressure and thermal shock loading

  7. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs

    Directory of Open Access Journals (Sweden)

    Simindokht Zarrati

    2015-11-01

    Full Text Available Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs and the same RPD abutment tooth (not isolated.Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated; 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software.Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate.Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.      

  8. No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis

    International Nuclear Information System (INIS)

    Yazdani-Asrami, Mohammad; Mirzaie, Mohammad; Shayegani Akmal, Amir Abbas

    2013-01-01

    Transformers are basically designed to operate under nominal voltage, rated frequency and also, pure sinusoidal load current. In recent decade, change in the type of loads and increasing use of power electronic devices with their nonsinusoidal current waveform has distorted the system voltage waveform as well. The losses of transformers include load and no-load losses. No-load loss continuously led to loss of energy in transformers that are connected to the network in all 24 h. With respect to high significance of energy and undesirable impacts of losses on the aging of transformers, the no-load loss is considered as a critical factor. Nowadays, it is necessary to apply a suitable method for calculation of no-load loss in presence of the voltage harmonics and over-excite conditions, especially for distribution transformers, as a result of harmonic increase in the voltage and current in the network and particular applications. In this paper, Finite Element Method (FEM) has been used to simulate nonsinusoidal voltage effects on no-load loss of transformers. Such simulation enables the software to simulate and analyze different electromagnetic parameters such as flux lines, flux density, losses, and etc under different input sources and with high accuracy. In addition, effect of nonsinusoidal voltages on no-load loss has been investigated by a typical experimental transformer using several practical tests. - Highlights: ► FEM has been employed to loss calculation of distribution transformer under distorted voltages. ► This method gives accurate results in comparison with standard or circuit based methods. ► A new version of 3D FEM has been used, this approach is electromagnetic based. ► In literature, FEM always used for study of transformer load loss and most of them based on magneto-static FEM. ► FEM results are validated by experiment for small test transformer

  9. A three-dimensional finite element analysis for overdenture attachments supported by teeth and/or mini dental implants.

    Science.gov (United States)

    Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang

    2012-12-01

    The aim of this study was to establish the optimum design and attachment combination to support an overdenture with minimal stress and flexing produced in the alveolar bone surrounding any natural teeth and/or mini dental implants. Twelve models were included in the study: the six main models (A, B, C, D, E, and F) were categorized according to the support designs of the overdenture prosthesis, and each model was further subdivided according to the attachment combinations into model 1: with Dalbo elliptic and/or O-ring attachments only and model 2: with flexible acrylic attachments. Vertical loads (35 N) and 17.5 N lateral loads under static conditions were applied to the models to simulate the occlusal forces following the concept of lingualized occlusion. All conditions were created using a finite element software program. Maximum von Mises stress at the level of the attachments and at the bone support foundation interfaces were compared in all 12 models. The flexing of the mandible and the attachments were also compared qualitatively. Stress on these models was analyzed after the given loading condition. The results showed that the model with three freestanding mini dental implants and flexible acrylic attachments showed the lowest von Mises stress and flexing, while the models with four freestanding mini dental implants and O-ring attachments showed the highest von Mises stress. Three freestanding mini dental implants with flexible acrylic attachment systems supporting an overdenture were better choices than four mini dental implants with O-ring attachment systems, which showed the maximum flexing and stress values in this qualitative comparison. © 2012 by the American College of Prosthodontists.

  10. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Sergei P [Saratov Branch, Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov (Russian Federation)

    2011-02-28

    Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale-Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples. (reviews of topical problems)

  11. The dimension of attractors underlying periodic turbulent Poiseuille flow

    Science.gov (United States)

    Keefe, Laurence; Moin, Parviz; Kim, John

    1992-01-01

    A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.

  12. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  13. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  14. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  15. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2005-01-01

    In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra

  16. Analysis of chaos attractors of MCG-recordings.

    Science.gov (United States)

    Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin

    2006-01-01

    By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.

  17. STRANGE ATTRACTORS ON PSEUDOSPECTRAL SOLUTIONS FOR DISSIPATIVE ZAKHAROV EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    马书清; 常谦顺

    2004-01-01

    In this paper, the pseudospcctral method to solve the dissipative Zakharov equations is used. Its convergence is proved by priori estinates. The existence of the global attractors and the estimates of dimension are presented. A class of steady state solutions is also disscussed. The numerical results show that if the steady state solutions satisfy some special conditions, they become unstable and limit cycles and strange attractors will occur for very small perturbations.The largest Lyapunov exponent and analysis of the lincarized system are applied to explain these phenomena.

  18. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    International Nuclear Information System (INIS)

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping

  19. Simplified Chua's attractor via bridging a diode pair

    Directory of Open Access Journals (Sweden)

    Quan Xu

    2015-04-01

    Full Text Available In this paper, a simplified Chua's circuit is realised by bridging a diode pair between a passive LC (inductance and capacitance in parallel connection - LC oscillator and an active RC (resistance and capacitance in parallel connection - RC filter. The dynamical behaviours of the circuit are investigated by numerical simulations and verified by experimental measurements. It is found that the simplified Chua's circuit generates Chua's attractors similarly and demonstrates complex non-linear phenomena including coexisting bifurcation modes and coexisting attractors in particular.

  20. Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Gidaspow, D.; Solbrig, C.W.; Hughes, E.D.

    1975-01-01

    Equation systems describing one-dimensional, transient, two-phase flow with separate continuity, momentum, and energy equations for each phase are classified by use of the method of characteristics. Little attempt is made to justify the physics of these equations. Many of the equation systems possess complex-valued characteristics and hence, according to well-known mathematical theorems, are not well-posed as initial-value problems (IVPs). Real-valued characteristics are necessary but not sufficient to insure well-posedness. In the absence of lower order source or sink terms (potential type flows), which can affect the well-posedness of IVPs, the complex characteristics associated with these two-phase flow equations imply unbounded exponential growth for disturbances of all wavelengths. Analytical and numerical examples show that the ill-posedness of IVPs for the two-phase flow partial differential equations which possess complex characteristics produce unstable numerical schemes. These unstable numerical schemes can produce apparently stable and even accurate results if the growth rate resulting from the complex characteristics remains small throughout the time span of the numerical experiment or if sufficient numerical damping is present for the increment size used. Other examples show that clearly nonphysical numerical instabilities resulting from the complex characteristics can be produced. These latter types of numerical instabilities are shown to be removed by the addition of physically motivated differential terms which eliminate the complex characteristics. (auth)

  1. A two-dimensional finite element method to calculate the AC loss in superconducting cables, wires and coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk

    2008-02-15

    In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.

  2. Three-dimensional TDEM modeling using finite-difference method; Sabunho ni yoru TDEM ho no sanjigen modeling

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K; Endo, M [Waseda University, Tokyo (Japan). School of Science and Engineering

    1997-10-22

    Study is made on the theory of three-dimensional modelling of TDEM (Time Domain Electromagnetic) method based on the theory of Wang and Hohmann. A difference scheme is built and investigation is conducted about calculation accuracy with attention paid especially to space and time division, and the obtained optimum value is compared with the analytical solution for a homogeneous medium. As the result, it becomes possible to have a high-accuracy TDEM response thanks to the obtained optimum parameter. In an example, a response is determined in the case of a high-resistivity body in presence near the ground surface. Calculation is performed under the given conditions of a medium 100 ohm/m in resistivity, anomalous bodies 200, 500, 1000, 2000,5000, and 10,000 ohm/m in resistivity, respectively, and a distance in the direction of depth of 20m. The result indicates that it is possible to estimate the effect of the ground surface terrain on a TDEM response. Since the effect of the ground surface terrain emerges at the initial part of a response, it is inferred that consideration of terrain is mandatory in building a model if it is for interpreting the subsurface structure in detail. 5 refs., 7 figs.

  3. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method.

    Science.gov (United States)

    Çelik Köycü, Berrak; İmirzalıoğlu, Pervin

    2017-07-01

    Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.

  4. [Three-dimensional finite element analysis on mechanical behavior of the bone remodeling and bone integration between the bone-implant interface after hip replacement].

    Science.gov (United States)

    Li, Yong-Jiang; Zhang, Li-Cheng; Zhang, Mei-Chao; Yang, Guo-Jing; Lin, Rui-Xin; Cai, Chun-Yuan; Zhong, Shi-Zhen

    2014-04-01

    To discuss the primary stability of the fixed interface between the cementless prosthesis and femur, and its influence on bone ingrowth and secondary stability under the roughened surface and press fit of different prostheses by finite element analysis. :A three-dimensional finite element module of total hip arthroplasty (THA) was developed with Mimics software. There was a collection of data when simulating hip arthroplasty. The frictional coefficient between the fixed interface was 0,0.15,0.40 and 1.00 representing the roughness of prosthesis surface. The press fit was 0, 0.01,0.05 and 0.10 mm according to the operation. The Vion Mises stress distribution and the contact pressure,friction stress and relative sliding displacement between the interface were analysed and compared when simulating the maneuver of climbing stairs. At a fixed press fit of 0.05 mm,the contact pressure between the interface was 230 , 231, 222 and 275 MN under four different frictional coefficient (0,0. 15,0.40 and 1.00) with little change; the relative sliding displacement was 0.529, 0.129, 0.107 and 0.087 mm with a consistent and obvious decline. As the fixed frictional coefficient was 0.40,the contact pressure between the interface were 56.0,67.7 ,60.4 and 49.6 MN under four different press fit (0, 0.01, 0.05 and 0.10 mm) with a reduction; the relative sliding displacement was 0.064,0.062,0.043 and 0.042 mm with an obvious decline, and there was a maximal friction stress when press fit of 0.01 mm. There is a dynamic process of the bone remodeling and bone integration between the interface after hip replacement, determining the long-term outcome. The interface clearance and the frictional coefficient are the key factors of the bone integration.

  5. Morphological changes of the internal structure of maxillae with tooth loss. Three-dimensional and mechanical analysis using micro-CT and finite element method

    International Nuclear Information System (INIS)

    Usami, Akinobu; Hara, Toshihiro; Ide, Yoshinobu

    2003-01-01

    The purpose of this study was to analyze the morphological and mechanical properties of the internal structures of maxillae at the molar region using a micro-CT system. Ten dentulous and edentulous maxillae were employed in this study. Images and angle information from all materials were taken by a micro-CT and 100 x 100 x 100 voxels were extracted from the fixed buccal and palatal molar regions in each material for three-dimensional morphological analysis of the internal structure. The bone volume fraction, trabecular thickness, trabecular separation and trabecular number were calculated. To analyze mechanical properties all voxels were converted to micro finite element models with element size of 33 x 33 x 33 μm 3 and maximal stiffness, axial stiffness and angle between the stiffest direction of trabecular and the axial loading direction (angleα) were determined using micro finite element method. In the result, the morphological changes including decrease of bone volume fraction, trabecular thickness and increase of trabecular separation were evident with tooth loss, although trabecular number was not changed. Mechanically, maximal stiffness was decreased with tooth loss at buccal region. However, the axial stiffness at buccal region was larger and the angleα was distributed widely in each edentulous maxilla, comparing to the same region of dentulous maxilla. These findings suggest that trabecular bone become thinner in both buccal and palatal regions, consequently maximal stiffness at buccal region become smaller with tooth loss. On the other hand, axial stiffness at the buccal region in edentulous was larger than one in dentulous. It seems to be caused by the change of the angleα. (author)

  6. Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis.

    Science.gov (United States)

    Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan

    2013-03-01

    The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional

  8. On attractor mechanism of AdS4 black holes

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru

    2013-01-01

    We construct a general family of exact non-extremal 4-dimensional black holes in AdS gravity with U(1) gauge fields non-minimally coupled to a dilaton and a non-trivial dilaton potential. These black holes can have spherical, toroidal, and hyperbolic horizon topologies. We use the entropy function formalism to obtain the near horizon data in the extremal limit. Due to the non-trivial self-interaction of the scalar field, the zero temperature black holes can have a finite horizon area even if only the electric field is turned on

  9. ARKAS: A three-dimensional finite element code for the analysis of core distortions and mechanical behaviour

    International Nuclear Information System (INIS)

    Nakagawa, M.

    1984-01-01

    Computer program ARKAS has been developed for the purpose of predicting core distortions and mechanical behaviour in a cluster of subassemblies under steady state conditions in LMFBR cores. This report describes the analytical models and numerical procedures employed in the code together with some typical results of the analysis made on large LMFBR cores. ARKAS is programmed in the FORTRAN-IV language and is capable of treating up to 260 assemblies in a cluster with flexible boundary conditions including mirror and rotational symmetry. The nonlinearity of the problem due to contact and separation is solved by the step iterative procedure based on the Newton-Raphson method. In each step iterative procedure, the linear matrix equation must be reconstructed and then solved directly. To save computer time and memory, the substructure method is adopted in the step of reconstructing the linear matrix equation, and in the step of solving the linear matrix equation, the block successive over-relaxation method is adopted. The program ARKAS computes, at every time step, 3-dimensional displacements and rotations of the subassemblies in the core and the interduct forces including at the nozzle tips and nozzle bases with friction effects. The code also has an ability to deal with the refueling and shuffling of subassemblies and to calculate the values of withdrawal forces. For the qualitative validation of the code, sample calculations were performed on the several bundle arrays. In these calculations, contact and separation processes under the influences of friction forces, off-center loading, duct rotations and torsion, thermal expansion and irradiation induced swelling and creep were analyzed. These results are quite reasonable in the light of the expected behaviour. This work was performed under the sponsorship of Toshiba Corporation

  10. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad

    2013-09-01

    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  11. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    Science.gov (United States)

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  12. Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit

    International Nuclear Information System (INIS)

    Njitacke, Z.T.; Kengne, J.; Fotsin, H.B.; Negou, A. Nguomkam; Tchiotsop, D.

    2016-01-01

    In the present paper, a new memristor based oscillator is obtained from the autonomous Jerk circuit [Kengne et al., Nonlinear Dynamics (2016) 83: 751̶765] by substituting the nonlinear element of the original circuit with a first order memristive diode bridge. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. Various nonlinear analysis tools such as phase portraits, time series, bifurcation diagrams, Poincaré section and the spectrum of Lyapunov exponents are exploited to characterize different scenarios to chaos in the novel circuit. It is found that the system experiences period doubling and crisis routes to chaos. One of the major results of this work is the finding of a window in the parameters’ space in which the circuit develops hysteretic behaviors characterized by the coexistence of four different (periodic and chaotic) attractors for the same values of the system parameters. Basins of attractions of various coexisting attractors are plotted showing complex basin boundaries. As far as the authors’ knowledge goes, the novel memristive jerk circuit represents one of the simplest electrical circuits (no analog multiplier chip is involved) capable of four disconnected coexisting attractors reported to date. Both PSpice simulations of the nonlinear dynamics of the oscillator and laboratory experimental measurements are carried out to validate the theoretical analysis.

  13. MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

    NARCIS (Netherlands)

    SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM

    In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the

  14. The Geometric Structure of Strange Attractors in the Lozi Map

    Institute of Scientific and Technical Information of China (English)

    YongluoCAO; ZengrongLIU

    1998-01-01

    In this paper,the structure of the strange attractors in the Lozi map is investigated on basis of the results gotten by the authors in 1991-1993,The new results of the strange atrtractors of the Lozi map show that our viewpoint is correct.

  15. Global attractors for the coupled suspension bridge system with temperature

    Czech Academy of Sciences Publication Activity Database

    Dell'Oro, Filippo; Giorgi, C.

    2016-01-01

    Roč. 39, č. 4 (2016), s. 864-875 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : absorbing set * coupled bridge system * global attractor Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3526/abstract

  16. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  17. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  18. Our universe as an attractor in a superstring model

    International Nuclear Information System (INIS)

    Maeda, Keiichi.

    1986-11-01

    One preferential scenario of the evolution of the universe is discussed in a superstring model. The universe can reach the present state as an attractor in the dynamical system. The kinetic terms of the ''axions'' play an important role so that our present universe is realized almost uniquely. (author)

  19. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    Science.gov (United States)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  20. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    Science.gov (United States)

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.